nvmm_x86_vmx.c revision 1.31 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.31 2019/04/28 14:22:13 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.31 2019/04/28 14:22:13 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 bool cpuidpresent[VMX_NCPUIDS];
701 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
706 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
707 };
708
709 struct vmx_cpudata {
710 /* General */
711 uint64_t asid;
712 bool gtlb_want_flush;
713 bool gtsc_want_update;
714 uint64_t vcpu_htlb_gen;
715 kcpuset_t *htlb_want_flush;
716
717 /* VMCS */
718 struct vmcs *vmcs;
719 paddr_t vmcs_pa;
720 size_t vmcs_refcnt;
721 struct cpu_info *vmcs_ci;
722 bool vmcs_launched;
723
724 /* MSR bitmap */
725 uint8_t *msrbm;
726 paddr_t msrbm_pa;
727
728 /* Host state */
729 uint64_t hxcr0;
730 uint64_t star;
731 uint64_t lstar;
732 uint64_t cstar;
733 uint64_t sfmask;
734 uint64_t kernelgsbase;
735 bool ts_set;
736 struct xsave_header hfpu __aligned(64);
737
738 /* Intr state */
739 bool int_window_exit;
740 bool nmi_window_exit;
741 bool evt_pending;
742
743 /* Guest state */
744 struct msr_entry *gmsr;
745 paddr_t gmsr_pa;
746 uint64_t gmsr_misc_enable;
747 uint64_t gcr2;
748 uint64_t gcr8;
749 uint64_t gxcr0;
750 uint64_t gprs[NVMM_X64_NGPR];
751 uint64_t drs[NVMM_X64_NDR];
752 uint64_t gtsc;
753 struct xsave_header gfpu __aligned(64);
754 };
755
756 static const struct {
757 uint64_t selector;
758 uint64_t attrib;
759 uint64_t limit;
760 uint64_t base;
761 } vmx_guest_segs[NVMM_X64_NSEG] = {
762 [NVMM_X64_SEG_ES] = {
763 VMCS_GUEST_ES_SELECTOR,
764 VMCS_GUEST_ES_ACCESS_RIGHTS,
765 VMCS_GUEST_ES_LIMIT,
766 VMCS_GUEST_ES_BASE
767 },
768 [NVMM_X64_SEG_CS] = {
769 VMCS_GUEST_CS_SELECTOR,
770 VMCS_GUEST_CS_ACCESS_RIGHTS,
771 VMCS_GUEST_CS_LIMIT,
772 VMCS_GUEST_CS_BASE
773 },
774 [NVMM_X64_SEG_SS] = {
775 VMCS_GUEST_SS_SELECTOR,
776 VMCS_GUEST_SS_ACCESS_RIGHTS,
777 VMCS_GUEST_SS_LIMIT,
778 VMCS_GUEST_SS_BASE
779 },
780 [NVMM_X64_SEG_DS] = {
781 VMCS_GUEST_DS_SELECTOR,
782 VMCS_GUEST_DS_ACCESS_RIGHTS,
783 VMCS_GUEST_DS_LIMIT,
784 VMCS_GUEST_DS_BASE
785 },
786 [NVMM_X64_SEG_FS] = {
787 VMCS_GUEST_FS_SELECTOR,
788 VMCS_GUEST_FS_ACCESS_RIGHTS,
789 VMCS_GUEST_FS_LIMIT,
790 VMCS_GUEST_FS_BASE
791 },
792 [NVMM_X64_SEG_GS] = {
793 VMCS_GUEST_GS_SELECTOR,
794 VMCS_GUEST_GS_ACCESS_RIGHTS,
795 VMCS_GUEST_GS_LIMIT,
796 VMCS_GUEST_GS_BASE
797 },
798 [NVMM_X64_SEG_GDT] = {
799 0, /* doesn't exist */
800 0, /* doesn't exist */
801 VMCS_GUEST_GDTR_LIMIT,
802 VMCS_GUEST_GDTR_BASE
803 },
804 [NVMM_X64_SEG_IDT] = {
805 0, /* doesn't exist */
806 0, /* doesn't exist */
807 VMCS_GUEST_IDTR_LIMIT,
808 VMCS_GUEST_IDTR_BASE
809 },
810 [NVMM_X64_SEG_LDT] = {
811 VMCS_GUEST_LDTR_SELECTOR,
812 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
813 VMCS_GUEST_LDTR_LIMIT,
814 VMCS_GUEST_LDTR_BASE
815 },
816 [NVMM_X64_SEG_TR] = {
817 VMCS_GUEST_TR_SELECTOR,
818 VMCS_GUEST_TR_ACCESS_RIGHTS,
819 VMCS_GUEST_TR_LIMIT,
820 VMCS_GUEST_TR_BASE
821 }
822 };
823
824 /* -------------------------------------------------------------------------- */
825
826 static uint64_t
827 vmx_get_revision(void)
828 {
829 uint64_t msr;
830
831 msr = rdmsr(MSR_IA32_VMX_BASIC);
832 msr &= IA32_VMX_BASIC_IDENT;
833
834 return msr;
835 }
836
837 static void
838 vmx_vmclear_ipi(void *arg1, void *arg2)
839 {
840 paddr_t vmcs_pa = (paddr_t)arg1;
841 vmx_vmclear(&vmcs_pa);
842 }
843
844 static void
845 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
846 {
847 uint64_t xc;
848 int bound;
849
850 KASSERT(kpreempt_disabled());
851
852 bound = curlwp_bind();
853 kpreempt_enable();
854
855 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
856 xc_wait(xc);
857
858 kpreempt_disable();
859 curlwp_bindx(bound);
860 }
861
862 static void
863 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
864 {
865 struct vmx_cpudata *cpudata = vcpu->cpudata;
866 struct cpu_info *vmcs_ci;
867 paddr_t oldpa __diagused;
868
869 cpudata->vmcs_refcnt++;
870 if (cpudata->vmcs_refcnt > 1) {
871 #ifdef DIAGNOSTIC
872 KASSERT(kpreempt_disabled());
873 oldpa = vmx_vmptrst();
874 KASSERT(oldpa == cpudata->vmcs_pa);
875 #endif
876 return;
877 }
878
879 vmcs_ci = cpudata->vmcs_ci;
880 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
881
882 kpreempt_disable();
883
884 if (vmcs_ci == NULL) {
885 /* This VMCS is loaded for the first time. */
886 vmx_vmclear(&cpudata->vmcs_pa);
887 cpudata->vmcs_launched = false;
888 } else if (vmcs_ci != curcpu()) {
889 /* This VMCS is active on a remote CPU. */
890 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else {
893 /* This VMCS is active on curcpu, nothing to do. */
894 }
895
896 vmx_vmptrld(&cpudata->vmcs_pa);
897 }
898
899 static void
900 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
901 {
902 struct vmx_cpudata *cpudata = vcpu->cpudata;
903
904 KASSERT(kpreempt_disabled());
905 #ifdef DIAGNOSTIC
906 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
907 #endif
908 KASSERT(cpudata->vmcs_refcnt > 0);
909 cpudata->vmcs_refcnt--;
910
911 if (cpudata->vmcs_refcnt > 0) {
912 return;
913 }
914
915 cpudata->vmcs_ci = curcpu();
916 kpreempt_enable();
917 }
918
919 static void
920 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
921 {
922 struct vmx_cpudata *cpudata = vcpu->cpudata;
923
924 KASSERT(kpreempt_disabled());
925 #ifdef DIAGNOSTIC
926 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
927 #endif
928 KASSERT(cpudata->vmcs_refcnt == 1);
929 cpudata->vmcs_refcnt--;
930
931 vmx_vmclear(&cpudata->vmcs_pa);
932 kpreempt_enable();
933 }
934
935 /* -------------------------------------------------------------------------- */
936
937 static void
938 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
939 {
940 struct vmx_cpudata *cpudata = vcpu->cpudata;
941 uint64_t ctls1;
942
943 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
944
945 if (nmi) {
946 // XXX INT_STATE_NMI?
947 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
948 cpudata->nmi_window_exit = true;
949 } else {
950 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
951 cpudata->int_window_exit = true;
952 }
953
954 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
955 }
956
957 static void
958 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
959 {
960 struct vmx_cpudata *cpudata = vcpu->cpudata;
961 uint64_t ctls1;
962
963 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
964
965 if (nmi) {
966 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
967 cpudata->nmi_window_exit = false;
968 } else {
969 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
970 cpudata->int_window_exit = false;
971 }
972
973 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
974 }
975
976 static inline int
977 vmx_event_has_error(uint64_t vector)
978 {
979 switch (vector) {
980 case 8: /* #DF */
981 case 10: /* #TS */
982 case 11: /* #NP */
983 case 12: /* #SS */
984 case 13: /* #GP */
985 case 14: /* #PF */
986 case 17: /* #AC */
987 case 30: /* #SX */
988 return 1;
989 default:
990 return 0;
991 }
992 }
993
994 static int
995 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
996 struct nvmm_event *event)
997 {
998 struct vmx_cpudata *cpudata = vcpu->cpudata;
999 int type = 0, err = 0, ret = 0;
1000 uint64_t info, intstate, rflags;
1001
1002 if (event->vector >= 256) {
1003 return EINVAL;
1004 }
1005
1006 vmx_vmcs_enter(vcpu);
1007
1008 switch (event->type) {
1009 case NVMM_EVENT_INTERRUPT_HW:
1010 type = INTR_TYPE_EXT_INT;
1011 if (event->vector == 2) {
1012 type = INTR_TYPE_NMI;
1013 }
1014 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1015 if (type == INTR_TYPE_NMI) {
1016 if (cpudata->nmi_window_exit) {
1017 ret = EAGAIN;
1018 goto out;
1019 }
1020 vmx_event_waitexit_enable(vcpu, true);
1021 } else {
1022 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1023 if ((rflags & PSL_I) == 0 ||
1024 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
1025 vmx_event_waitexit_enable(vcpu, false);
1026 ret = EAGAIN;
1027 goto out;
1028 }
1029 }
1030 err = 0;
1031 break;
1032 case NVMM_EVENT_INTERRUPT_SW:
1033 ret = EINVAL;
1034 goto out;
1035 case NVMM_EVENT_EXCEPTION:
1036 if (event->vector == 2 || event->vector >= 32) {
1037 ret = EINVAL;
1038 goto out;
1039 }
1040 if (event->vector == 3 || event->vector == 0) {
1041 ret = EINVAL;
1042 goto out;
1043 }
1044 type = INTR_TYPE_HW_EXC;
1045 err = vmx_event_has_error(event->vector);
1046 break;
1047 default:
1048 ret = EAGAIN;
1049 goto out;
1050 }
1051
1052 info =
1053 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
1054 __SHIFTIN(type, INTR_INFO_TYPE) |
1055 __SHIFTIN(err, INTR_INFO_ERROR) |
1056 __SHIFTIN(1, INTR_INFO_VALID);
1057 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1058 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
1059
1060 cpudata->evt_pending = true;
1061
1062 out:
1063 vmx_vmcs_leave(vcpu);
1064 return ret;
1065 }
1066
1067 static void
1068 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1069 {
1070 struct nvmm_event event;
1071 int ret __diagused;
1072
1073 event.type = NVMM_EVENT_EXCEPTION;
1074 event.vector = 6;
1075 event.u.error = 0;
1076
1077 ret = vmx_vcpu_inject(mach, vcpu, &event);
1078 KASSERT(ret == 0);
1079 }
1080
1081 static void
1082 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1083 {
1084 struct nvmm_event event;
1085 int ret __diagused;
1086
1087 event.type = NVMM_EVENT_EXCEPTION;
1088 event.vector = 13;
1089 event.u.error = 0;
1090
1091 ret = vmx_vcpu_inject(mach, vcpu, &event);
1092 KASSERT(ret == 0);
1093 }
1094
1095 static inline void
1096 vmx_inkernel_advance(void)
1097 {
1098 uint64_t rip, inslen, intstate;
1099
1100 /*
1101 * Maybe we should also apply single-stepping and debug exceptions.
1102 * Matters for guest-ring3, because it can execute 'cpuid' under a
1103 * debugger.
1104 */
1105 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1106 rip = vmx_vmread(VMCS_GUEST_RIP);
1107 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1108 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1109 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1110 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1111 }
1112
1113 static void
1114 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1115 struct nvmm_exit *exit)
1116 {
1117 uint64_t qual;
1118
1119 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1120
1121 if ((qual & INTR_INFO_VALID) == 0) {
1122 goto error;
1123 }
1124 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1125 goto error;
1126 }
1127
1128 exit->reason = NVMM_EXIT_NONE;
1129 return;
1130
1131 error:
1132 exit->reason = NVMM_EXIT_INVALID;
1133 }
1134
1135 static void
1136 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1137 {
1138 struct vmx_cpudata *cpudata = vcpu->cpudata;
1139 uint64_t cr4;
1140
1141 switch (eax) {
1142 case 0x00000001:
1143 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1144
1145 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1146 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1147 CPUID_LOCAL_APIC_ID);
1148
1149 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1150 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1151
1152 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1153
1154 /* CPUID2_OSXSAVE depends on CR4. */
1155 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1156 if (!(cr4 & CR4_OSXSAVE)) {
1157 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1158 }
1159 break;
1160 case 0x00000005:
1161 case 0x00000006:
1162 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1163 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1164 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1165 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1166 break;
1167 case 0x00000007:
1168 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1169 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1170 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1171 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1172 break;
1173 case 0x0000000D:
1174 if (vmx_xcr0_mask == 0) {
1175 break;
1176 }
1177 switch (ecx) {
1178 case 0:
1179 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1180 if (cpudata->gxcr0 & XCR0_SSE) {
1181 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1182 } else {
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1184 }
1185 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1186 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1187 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1188 break;
1189 case 1:
1190 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1191 break;
1192 }
1193 break;
1194 case 0x40000000:
1195 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1196 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1197 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1198 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1199 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1200 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1201 break;
1202 case 0x80000001:
1203 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1204 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1205 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1206 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1207 break;
1208 default:
1209 break;
1210 }
1211 }
1212
1213 static void
1214 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1215 struct nvmm_exit *exit)
1216 {
1217 struct vmx_machdata *machdata = mach->machdata;
1218 struct vmx_cpudata *cpudata = vcpu->cpudata;
1219 struct nvmm_x86_conf_cpuid *cpuid;
1220 uint64_t eax, ecx;
1221 u_int descs[4];
1222 size_t i;
1223
1224 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1225 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1226 x86_cpuid2(eax, ecx, descs);
1227
1228 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1229 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1230 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1231 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1232
1233 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1234
1235 for (i = 0; i < VMX_NCPUIDS; i++) {
1236 cpuid = &machdata->cpuid[i];
1237 if (!machdata->cpuidpresent[i]) {
1238 continue;
1239 }
1240 if (cpuid->leaf != eax) {
1241 continue;
1242 }
1243
1244 /* del */
1245 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1246 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1247 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1248 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1249
1250 /* set */
1251 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1252 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1253 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1254 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1255
1256 break;
1257 }
1258
1259 vmx_inkernel_advance();
1260 exit->reason = NVMM_EXIT_NONE;
1261 }
1262
1263 static void
1264 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1265 struct nvmm_exit *exit)
1266 {
1267 struct vmx_cpudata *cpudata = vcpu->cpudata;
1268 uint64_t rflags;
1269
1270 if (cpudata->int_window_exit) {
1271 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1272 if (rflags & PSL_I) {
1273 vmx_event_waitexit_disable(vcpu, false);
1274 }
1275 }
1276
1277 vmx_inkernel_advance();
1278 exit->reason = NVMM_EXIT_HALTED;
1279 }
1280
1281 #define VMX_QUAL_CR_NUM __BITS(3,0)
1282 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1283 #define CR_TYPE_WRITE 0
1284 #define CR_TYPE_READ 1
1285 #define CR_TYPE_CLTS 2
1286 #define CR_TYPE_LMSW 3
1287 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1288 #define VMX_QUAL_CR_GPR __BITS(11,8)
1289 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1290
1291 static inline int
1292 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1293 {
1294 /* Bits set to 1 in fixed0 are fixed to 1. */
1295 if ((crval & fixed0) != fixed0) {
1296 return -1;
1297 }
1298 /* Bits set to 0 in fixed1 are fixed to 0. */
1299 if (crval & ~fixed1) {
1300 return -1;
1301 }
1302 return 0;
1303 }
1304
1305 static int
1306 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1307 uint64_t qual)
1308 {
1309 struct vmx_cpudata *cpudata = vcpu->cpudata;
1310 uint64_t type, gpr, cr0;
1311 uint64_t efer, ctls1;
1312
1313 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1314 if (type != CR_TYPE_WRITE) {
1315 return -1;
1316 }
1317
1318 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1319 KASSERT(gpr < 16);
1320
1321 if (gpr == NVMM_X64_GPR_RSP) {
1322 gpr = vmx_vmread(VMCS_GUEST_RSP);
1323 } else {
1324 gpr = cpudata->gprs[gpr];
1325 }
1326
1327 cr0 = gpr | CR0_NE | CR0_ET;
1328 cr0 &= ~(CR0_NW|CR0_CD);
1329
1330 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1331 return -1;
1332 }
1333
1334 /*
1335 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1336 * from CR3.
1337 */
1338
1339 if (cr0 & CR0_PG) {
1340 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1341 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1342 if (efer & EFER_LME) {
1343 ctls1 |= ENTRY_CTLS_LONG_MODE;
1344 efer |= EFER_LMA;
1345 } else {
1346 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1347 efer &= ~EFER_LMA;
1348 }
1349 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1350 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1351 }
1352
1353 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1354 vmx_inkernel_advance();
1355 return 0;
1356 }
1357
1358 static int
1359 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1360 uint64_t qual)
1361 {
1362 struct vmx_cpudata *cpudata = vcpu->cpudata;
1363 uint64_t type, gpr, cr4;
1364
1365 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1366 if (type != CR_TYPE_WRITE) {
1367 return -1;
1368 }
1369
1370 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1371 KASSERT(gpr < 16);
1372
1373 if (gpr == NVMM_X64_GPR_RSP) {
1374 gpr = vmx_vmread(VMCS_GUEST_RSP);
1375 } else {
1376 gpr = cpudata->gprs[gpr];
1377 }
1378
1379 cr4 = gpr | CR4_VMXE;
1380
1381 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1382 return -1;
1383 }
1384
1385 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1386 vmx_inkernel_advance();
1387 return 0;
1388 }
1389
1390 static int
1391 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1392 uint64_t qual)
1393 {
1394 struct vmx_cpudata *cpudata = vcpu->cpudata;
1395 uint64_t type, gpr;
1396 bool write;
1397
1398 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1399 if (type == CR_TYPE_WRITE) {
1400 write = true;
1401 } else if (type == CR_TYPE_READ) {
1402 write = false;
1403 } else {
1404 return -1;
1405 }
1406
1407 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1408 KASSERT(gpr < 16);
1409
1410 if (write) {
1411 if (gpr == NVMM_X64_GPR_RSP) {
1412 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1413 } else {
1414 cpudata->gcr8 = cpudata->gprs[gpr];
1415 }
1416 } else {
1417 if (gpr == NVMM_X64_GPR_RSP) {
1418 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1419 } else {
1420 cpudata->gprs[gpr] = cpudata->gcr8;
1421 }
1422 }
1423
1424 vmx_inkernel_advance();
1425 return 0;
1426 }
1427
1428 static void
1429 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1430 struct nvmm_exit *exit)
1431 {
1432 uint64_t qual;
1433 int ret;
1434
1435 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1436
1437 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1438 case 0:
1439 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1440 break;
1441 case 4:
1442 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1443 break;
1444 case 8:
1445 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1446 break;
1447 default:
1448 ret = -1;
1449 break;
1450 }
1451
1452 if (ret == -1) {
1453 vmx_inject_gp(mach, vcpu);
1454 }
1455
1456 exit->reason = NVMM_EXIT_NONE;
1457 }
1458
1459 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1460 #define IO_SIZE_8 0
1461 #define IO_SIZE_16 1
1462 #define IO_SIZE_32 3
1463 #define VMX_QUAL_IO_IN __BIT(3)
1464 #define VMX_QUAL_IO_STR __BIT(4)
1465 #define VMX_QUAL_IO_REP __BIT(5)
1466 #define VMX_QUAL_IO_DX __BIT(6)
1467 #define VMX_QUAL_IO_PORT __BITS(31,16)
1468
1469 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1470 #define IO_ADRSIZE_16 0
1471 #define IO_ADRSIZE_32 1
1472 #define IO_ADRSIZE_64 2
1473 #define VMX_INFO_IO_SEG __BITS(17,15)
1474
1475 static void
1476 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1477 struct nvmm_exit *exit)
1478 {
1479 uint64_t qual, info, inslen, rip;
1480
1481 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1482 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1483
1484 exit->reason = NVMM_EXIT_IO;
1485
1486 if (qual & VMX_QUAL_IO_IN) {
1487 exit->u.io.type = NVMM_EXIT_IO_IN;
1488 } else {
1489 exit->u.io.type = NVMM_EXIT_IO_OUT;
1490 }
1491
1492 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1493
1494 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1495 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1496
1497 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1498 exit->u.io.address_size = 8;
1499 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1500 exit->u.io.address_size = 4;
1501 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1502 exit->u.io.address_size = 2;
1503 }
1504
1505 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1506 exit->u.io.operand_size = 4;
1507 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1508 exit->u.io.operand_size = 2;
1509 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1510 exit->u.io.operand_size = 1;
1511 }
1512
1513 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1514 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1515
1516 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1517 exit->u.io.seg = NVMM_X64_SEG_ES;
1518 }
1519
1520 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1521 rip = vmx_vmread(VMCS_GUEST_RIP);
1522 exit->u.io.npc = rip + inslen;
1523
1524 vmx_vcpu_state_provide(vcpu,
1525 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1526 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1527 }
1528
1529 static const uint64_t msr_ignore_list[] = {
1530 MSR_BIOS_SIGN,
1531 MSR_IA32_PLATFORM_ID
1532 };
1533
1534 static bool
1535 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1536 struct nvmm_exit *exit)
1537 {
1538 struct vmx_cpudata *cpudata = vcpu->cpudata;
1539 uint64_t val;
1540 size_t i;
1541
1542 switch (exit->u.msr.type) {
1543 case NVMM_EXIT_MSR_RDMSR:
1544 if (exit->u.msr.msr == MSR_CR_PAT) {
1545 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1546 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1547 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1548 goto handled;
1549 }
1550 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1551 val = cpudata->gmsr_misc_enable;
1552 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1553 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1554 goto handled;
1555 }
1556 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1557 if (msr_ignore_list[i] != exit->u.msr.msr)
1558 continue;
1559 val = 0;
1560 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1561 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1562 goto handled;
1563 }
1564 break;
1565 case NVMM_EXIT_MSR_WRMSR:
1566 if (exit->u.msr.msr == MSR_TSC) {
1567 cpudata->gtsc = exit->u.msr.val;
1568 cpudata->gtsc_want_update = true;
1569 goto handled;
1570 }
1571 if (exit->u.msr.msr == MSR_CR_PAT) {
1572 val = exit->u.msr.val;
1573 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1574 goto error;
1575 }
1576 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1577 goto handled;
1578 }
1579 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1580 /* Don't care. */
1581 goto handled;
1582 }
1583 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1584 if (msr_ignore_list[i] != exit->u.msr.msr)
1585 continue;
1586 goto handled;
1587 }
1588 break;
1589 }
1590
1591 return false;
1592
1593 handled:
1594 vmx_inkernel_advance();
1595 return true;
1596
1597 error:
1598 vmx_inject_gp(mach, vcpu);
1599 return true;
1600 }
1601
1602 static void
1603 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1604 struct nvmm_exit *exit, bool rdmsr)
1605 {
1606 struct vmx_cpudata *cpudata = vcpu->cpudata;
1607 uint64_t inslen, rip;
1608
1609 if (rdmsr) {
1610 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1611 } else {
1612 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1613 }
1614
1615 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1616
1617 if (rdmsr) {
1618 exit->u.msr.val = 0;
1619 } else {
1620 uint64_t rdx, rax;
1621 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1622 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1623 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1624 }
1625
1626 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1627 exit->reason = NVMM_EXIT_NONE;
1628 return;
1629 }
1630
1631 exit->reason = NVMM_EXIT_MSR;
1632 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1633 rip = vmx_vmread(VMCS_GUEST_RIP);
1634 exit->u.msr.npc = rip + inslen;
1635
1636 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1637 }
1638
1639 static void
1640 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1641 struct nvmm_exit *exit)
1642 {
1643 struct vmx_cpudata *cpudata = vcpu->cpudata;
1644 uint16_t val;
1645
1646 exit->reason = NVMM_EXIT_NONE;
1647
1648 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1649 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1650
1651 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1652 goto error;
1653 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1654 goto error;
1655 } else if (__predict_false((val & XCR0_X87) == 0)) {
1656 goto error;
1657 }
1658
1659 cpudata->gxcr0 = val;
1660
1661 vmx_inkernel_advance();
1662 return;
1663
1664 error:
1665 vmx_inject_gp(mach, vcpu);
1666 }
1667
1668 #define VMX_EPT_VIOLATION_READ __BIT(0)
1669 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1670 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1671
1672 static void
1673 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1674 struct nvmm_exit *exit)
1675 {
1676 uint64_t perm;
1677 gpaddr_t gpa;
1678
1679 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1680
1681 exit->reason = NVMM_EXIT_MEMORY;
1682 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1683 if (perm & VMX_EPT_VIOLATION_WRITE)
1684 exit->u.mem.prot = PROT_WRITE;
1685 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1686 exit->u.mem.prot = PROT_EXEC;
1687 else
1688 exit->u.mem.prot = PROT_READ;
1689 exit->u.mem.gpa = gpa;
1690 exit->u.mem.inst_len = 0;
1691
1692 vmx_vcpu_state_provide(vcpu,
1693 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1694 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1695 }
1696
1697 static void
1698 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1699 {
1700 exit->u.inv.hwcode = code;
1701 exit->reason = NVMM_EXIT_INVALID;
1702 }
1703
1704 /* -------------------------------------------------------------------------- */
1705
1706 static void
1707 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1708 {
1709 struct vmx_cpudata *cpudata = vcpu->cpudata;
1710
1711 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1712
1713 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1714 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1715
1716 if (vmx_xcr0_mask != 0) {
1717 cpudata->hxcr0 = rdxcr(0);
1718 wrxcr(0, cpudata->gxcr0);
1719 }
1720 }
1721
1722 static void
1723 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1724 {
1725 struct vmx_cpudata *cpudata = vcpu->cpudata;
1726
1727 if (vmx_xcr0_mask != 0) {
1728 cpudata->gxcr0 = rdxcr(0);
1729 wrxcr(0, cpudata->hxcr0);
1730 }
1731
1732 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1733 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1734
1735 if (cpudata->ts_set) {
1736 stts();
1737 }
1738 }
1739
1740 static void
1741 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1742 {
1743 struct vmx_cpudata *cpudata = vcpu->cpudata;
1744
1745 x86_dbregs_save(curlwp);
1746
1747 ldr7(0);
1748
1749 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1750 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1751 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1752 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1753 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1754 }
1755
1756 static void
1757 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1758 {
1759 struct vmx_cpudata *cpudata = vcpu->cpudata;
1760
1761 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1762 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1763 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1764 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1765 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1766
1767 x86_dbregs_restore(curlwp);
1768 }
1769
1770 static void
1771 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1772 {
1773 struct vmx_cpudata *cpudata = vcpu->cpudata;
1774
1775 /* This gets restored automatically by the CPU. */
1776 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1777 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1778 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1779
1780 /* Note: MSR_LSTAR is not static, because of SVS. */
1781 cpudata->lstar = rdmsr(MSR_LSTAR);
1782 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1783 }
1784
1785 static void
1786 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1787 {
1788 struct vmx_cpudata *cpudata = vcpu->cpudata;
1789
1790 wrmsr(MSR_STAR, cpudata->star);
1791 wrmsr(MSR_LSTAR, cpudata->lstar);
1792 wrmsr(MSR_CSTAR, cpudata->cstar);
1793 wrmsr(MSR_SFMASK, cpudata->sfmask);
1794 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1795 }
1796
1797 /* -------------------------------------------------------------------------- */
1798
1799 #define VMX_INVVPID_ADDRESS 0
1800 #define VMX_INVVPID_CONTEXT 1
1801 #define VMX_INVVPID_ALL 2
1802 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1803
1804 #define VMX_INVEPT_CONTEXT 1
1805 #define VMX_INVEPT_ALL 2
1806
1807 static inline void
1808 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1809 {
1810 struct vmx_cpudata *cpudata = vcpu->cpudata;
1811
1812 if (vcpu->hcpu_last != hcpu) {
1813 cpudata->gtlb_want_flush = true;
1814 }
1815 }
1816
1817 static inline void
1818 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1819 {
1820 struct vmx_cpudata *cpudata = vcpu->cpudata;
1821 struct ept_desc ept_desc;
1822
1823 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1824 return;
1825 }
1826
1827 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1828 ept_desc.mbz = 0;
1829 vmx_invept(vmx_ept_flush_op, &ept_desc);
1830 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1831 }
1832
1833 static inline uint64_t
1834 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1835 {
1836 struct ept_desc ept_desc;
1837 uint64_t machgen;
1838
1839 machgen = machdata->mach_htlb_gen;
1840 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1841 return machgen;
1842 }
1843
1844 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1845
1846 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1847 ept_desc.mbz = 0;
1848 vmx_invept(vmx_ept_flush_op, &ept_desc);
1849
1850 return machgen;
1851 }
1852
1853 static inline void
1854 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1855 {
1856 cpudata->vcpu_htlb_gen = machgen;
1857 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1858 }
1859
1860 static inline void
1861 vmx_exit_evt(struct vmx_cpudata *cpudata)
1862 {
1863 uint64_t info, err;
1864
1865 cpudata->evt_pending = false;
1866
1867 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1868 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1869 return;
1870 }
1871 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1872
1873 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1874 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1875
1876 cpudata->evt_pending = true;
1877 }
1878
1879 static int
1880 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1881 struct nvmm_exit *exit)
1882 {
1883 struct nvmm_comm_page *comm = vcpu->comm;
1884 struct vmx_machdata *machdata = mach->machdata;
1885 struct vmx_cpudata *cpudata = vcpu->cpudata;
1886 struct vpid_desc vpid_desc;
1887 struct cpu_info *ci;
1888 uint64_t exitcode;
1889 uint64_t intstate;
1890 uint64_t machgen;
1891 int hcpu, s, ret;
1892 bool launched;
1893
1894 vmx_vmcs_enter(vcpu);
1895
1896 vmx_vcpu_state_commit(vcpu);
1897 comm->state_cached = 0;
1898
1899 ci = curcpu();
1900 hcpu = cpu_number();
1901 launched = cpudata->vmcs_launched;
1902
1903 vmx_gtlb_catchup(vcpu, hcpu);
1904 vmx_htlb_catchup(vcpu, hcpu);
1905
1906 if (vcpu->hcpu_last != hcpu) {
1907 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1908 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1909 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1910 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1911 cpudata->gtsc_want_update = true;
1912 vcpu->hcpu_last = hcpu;
1913 }
1914
1915 vmx_vcpu_guest_dbregs_enter(vcpu);
1916 vmx_vcpu_guest_misc_enter(vcpu);
1917
1918 while (1) {
1919 if (cpudata->gtlb_want_flush) {
1920 vpid_desc.vpid = cpudata->asid;
1921 vpid_desc.addr = 0;
1922 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1923 cpudata->gtlb_want_flush = false;
1924 }
1925
1926 if (__predict_false(cpudata->gtsc_want_update)) {
1927 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1928 cpudata->gtsc_want_update = false;
1929 }
1930
1931 s = splhigh();
1932 machgen = vmx_htlb_flush(machdata, cpudata);
1933 vmx_vcpu_guest_fpu_enter(vcpu);
1934 lcr2(cpudata->gcr2);
1935 if (launched) {
1936 ret = vmx_vmresume(cpudata->gprs);
1937 } else {
1938 ret = vmx_vmlaunch(cpudata->gprs);
1939 }
1940 cpudata->gcr2 = rcr2();
1941 vmx_vcpu_guest_fpu_leave(vcpu);
1942 vmx_htlb_flush_ack(cpudata, machgen);
1943 splx(s);
1944
1945 if (__predict_false(ret != 0)) {
1946 exit->reason = NVMM_EXIT_INVALID;
1947 break;
1948 }
1949 vmx_exit_evt(cpudata);
1950
1951 launched = true;
1952
1953 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1954 exitcode &= __BITS(15,0);
1955
1956 switch (exitcode) {
1957 case VMCS_EXITCODE_EXC_NMI:
1958 vmx_exit_exc_nmi(mach, vcpu, exit);
1959 break;
1960 case VMCS_EXITCODE_EXT_INT:
1961 exit->reason = NVMM_EXIT_NONE;
1962 break;
1963 case VMCS_EXITCODE_CPUID:
1964 vmx_exit_cpuid(mach, vcpu, exit);
1965 break;
1966 case VMCS_EXITCODE_HLT:
1967 vmx_exit_hlt(mach, vcpu, exit);
1968 break;
1969 case VMCS_EXITCODE_CR:
1970 vmx_exit_cr(mach, vcpu, exit);
1971 break;
1972 case VMCS_EXITCODE_IO:
1973 vmx_exit_io(mach, vcpu, exit);
1974 break;
1975 case VMCS_EXITCODE_RDMSR:
1976 vmx_exit_msr(mach, vcpu, exit, true);
1977 break;
1978 case VMCS_EXITCODE_WRMSR:
1979 vmx_exit_msr(mach, vcpu, exit, false);
1980 break;
1981 case VMCS_EXITCODE_SHUTDOWN:
1982 exit->reason = NVMM_EXIT_SHUTDOWN;
1983 break;
1984 case VMCS_EXITCODE_MONITOR:
1985 exit->reason = NVMM_EXIT_MONITOR;
1986 break;
1987 case VMCS_EXITCODE_MWAIT:
1988 exit->reason = NVMM_EXIT_MWAIT;
1989 break;
1990 case VMCS_EXITCODE_XSETBV:
1991 vmx_exit_xsetbv(mach, vcpu, exit);
1992 break;
1993 case VMCS_EXITCODE_RDPMC:
1994 case VMCS_EXITCODE_RDTSCP:
1995 case VMCS_EXITCODE_INVVPID:
1996 case VMCS_EXITCODE_INVEPT:
1997 case VMCS_EXITCODE_VMCALL:
1998 case VMCS_EXITCODE_VMCLEAR:
1999 case VMCS_EXITCODE_VMLAUNCH:
2000 case VMCS_EXITCODE_VMPTRLD:
2001 case VMCS_EXITCODE_VMPTRST:
2002 case VMCS_EXITCODE_VMREAD:
2003 case VMCS_EXITCODE_VMRESUME:
2004 case VMCS_EXITCODE_VMWRITE:
2005 case VMCS_EXITCODE_VMXOFF:
2006 case VMCS_EXITCODE_VMXON:
2007 vmx_inject_ud(mach, vcpu);
2008 exit->reason = NVMM_EXIT_NONE;
2009 break;
2010 case VMCS_EXITCODE_EPT_VIOLATION:
2011 vmx_exit_epf(mach, vcpu, exit);
2012 break;
2013 case VMCS_EXITCODE_INT_WINDOW:
2014 vmx_event_waitexit_disable(vcpu, false);
2015 exit->reason = NVMM_EXIT_INT_READY;
2016 break;
2017 case VMCS_EXITCODE_NMI_WINDOW:
2018 vmx_event_waitexit_disable(vcpu, true);
2019 exit->reason = NVMM_EXIT_NMI_READY;
2020 break;
2021 default:
2022 vmx_exit_invalid(exit, exitcode);
2023 break;
2024 }
2025
2026 /* If no reason to return to userland, keep rolling. */
2027 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2028 break;
2029 }
2030 if (curcpu()->ci_data.cpu_softints != 0) {
2031 break;
2032 }
2033 if (curlwp->l_flag & LW_USERRET) {
2034 break;
2035 }
2036 if (exit->reason != NVMM_EXIT_NONE) {
2037 break;
2038 }
2039 }
2040
2041 cpudata->vmcs_launched = launched;
2042
2043 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2044
2045 vmx_vcpu_guest_misc_leave(vcpu);
2046 vmx_vcpu_guest_dbregs_leave(vcpu);
2047
2048 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2049 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2050 vmx_vmread(VMCS_GUEST_RFLAGS);
2051 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2052 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2053 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2054 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2055 cpudata->int_window_exit;
2056 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2057 cpudata->nmi_window_exit;
2058 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2059 cpudata->evt_pending;
2060
2061 vmx_vmcs_leave(vcpu);
2062
2063 return 0;
2064 }
2065
2066 /* -------------------------------------------------------------------------- */
2067
2068 static int
2069 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2070 {
2071 struct pglist pglist;
2072 paddr_t _pa;
2073 vaddr_t _va;
2074 size_t i;
2075 int ret;
2076
2077 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2078 &pglist, 1, 0);
2079 if (ret != 0)
2080 return ENOMEM;
2081 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2082 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2083 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2084 if (_va == 0)
2085 goto error;
2086
2087 for (i = 0; i < npages; i++) {
2088 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2089 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2090 }
2091 pmap_update(pmap_kernel());
2092
2093 memset((void *)_va, 0, npages * PAGE_SIZE);
2094
2095 *pa = _pa;
2096 *va = _va;
2097 return 0;
2098
2099 error:
2100 for (i = 0; i < npages; i++) {
2101 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2102 }
2103 return ENOMEM;
2104 }
2105
2106 static void
2107 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2108 {
2109 size_t i;
2110
2111 pmap_kremove(va, npages * PAGE_SIZE);
2112 pmap_update(pmap_kernel());
2113 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2114 for (i = 0; i < npages; i++) {
2115 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2116 }
2117 }
2118
2119 /* -------------------------------------------------------------------------- */
2120
2121 static void
2122 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2123 {
2124 uint64_t byte;
2125 uint8_t bitoff;
2126
2127 if (msr < 0x00002000) {
2128 /* Range 1 */
2129 byte = ((msr - 0x00000000) / 8) + 0;
2130 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2131 /* Range 2 */
2132 byte = ((msr - 0xC0000000) / 8) + 1024;
2133 } else {
2134 panic("%s: wrong range", __func__);
2135 }
2136
2137 bitoff = (msr & 0x7);
2138
2139 if (read) {
2140 bitmap[byte] &= ~__BIT(bitoff);
2141 }
2142 if (write) {
2143 bitmap[2048 + byte] &= ~__BIT(bitoff);
2144 }
2145 }
2146
2147 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2148 #define VMX_SEG_ATTRIB_S __BIT(4)
2149 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2150 #define VMX_SEG_ATTRIB_P __BIT(7)
2151 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2152 #define VMX_SEG_ATTRIB_L __BIT(13)
2153 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2154 #define VMX_SEG_ATTRIB_G __BIT(15)
2155 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2156
2157 static void
2158 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2159 {
2160 uint64_t attrib;
2161
2162 attrib =
2163 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2164 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2165 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2166 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2167 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2168 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2169 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2170 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2171 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2172
2173 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2174 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2175 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2176 }
2177 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2178 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2179 }
2180
2181 static void
2182 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2183 {
2184 uint64_t selector = 0, attrib = 0, base, limit;
2185
2186 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2187 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2188 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2189 }
2190 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2191 base = vmx_vmread(vmx_guest_segs[idx].base);
2192
2193 segs[idx].selector = selector;
2194 segs[idx].limit = limit;
2195 segs[idx].base = base;
2196 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2197 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2198 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2199 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2200 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2201 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2202 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2203 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2204 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2205 segs[idx].attrib.p = 0;
2206 }
2207 }
2208
2209 static inline bool
2210 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2211 {
2212 uint64_t cr0, cr3, cr4, efer;
2213
2214 if (flags & NVMM_X64_STATE_CRS) {
2215 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2216 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2217 return true;
2218 }
2219 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2220 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2221 return true;
2222 }
2223 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2224 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2225 return true;
2226 }
2227 }
2228
2229 if (flags & NVMM_X64_STATE_MSRS) {
2230 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2231 if ((efer ^
2232 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2233 return true;
2234 }
2235 }
2236
2237 return false;
2238 }
2239
2240 static void
2241 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2242 {
2243 struct nvmm_comm_page *comm = vcpu->comm;
2244 const struct nvmm_x64_state *state = &comm->state;
2245 struct vmx_cpudata *cpudata = vcpu->cpudata;
2246 struct fxsave *fpustate;
2247 uint64_t ctls1, intstate;
2248 uint64_t flags;
2249
2250 flags = comm->state_wanted;
2251
2252 vmx_vmcs_enter(vcpu);
2253
2254 if (vmx_state_tlb_flush(state, flags)) {
2255 cpudata->gtlb_want_flush = true;
2256 }
2257
2258 if (flags & NVMM_X64_STATE_SEGS) {
2259 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2260 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2261 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2262 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2263 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2264 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2265 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2266 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2267 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2268 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2269 }
2270
2271 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2272 if (flags & NVMM_X64_STATE_GPRS) {
2273 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2274
2275 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2276 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2277 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2278 }
2279
2280 if (flags & NVMM_X64_STATE_CRS) {
2281 /*
2282 * CR0_NE and CR4_VMXE are mandatory.
2283 */
2284 vmx_vmwrite(VMCS_GUEST_CR0,
2285 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2286 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2287 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2288 vmx_vmwrite(VMCS_GUEST_CR4,
2289 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2290 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2291
2292 if (vmx_xcr0_mask != 0) {
2293 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2294 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2295 cpudata->gxcr0 &= vmx_xcr0_mask;
2296 cpudata->gxcr0 |= XCR0_X87;
2297 }
2298 }
2299
2300 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2301 if (flags & NVMM_X64_STATE_DRS) {
2302 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2303
2304 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2305 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2306 }
2307
2308 if (flags & NVMM_X64_STATE_MSRS) {
2309 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2310 state->msrs[NVMM_X64_MSR_STAR];
2311 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2312 state->msrs[NVMM_X64_MSR_LSTAR];
2313 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2314 state->msrs[NVMM_X64_MSR_CSTAR];
2315 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2316 state->msrs[NVMM_X64_MSR_SFMASK];
2317 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2318 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2319
2320 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2321 state->msrs[NVMM_X64_MSR_EFER]);
2322 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2323 state->msrs[NVMM_X64_MSR_PAT]);
2324 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2325 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2326 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2327 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2328 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2329 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2330
2331 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2332 cpudata->gtsc_want_update = true;
2333
2334 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2335 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2336 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2337 ctls1 |= ENTRY_CTLS_LONG_MODE;
2338 } else {
2339 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2340 }
2341 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2342 }
2343
2344 if (flags & NVMM_X64_STATE_INTR) {
2345 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2346 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2347 if (state->intr.int_shadow) {
2348 intstate |= INT_STATE_MOVSS;
2349 }
2350 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2351
2352 if (state->intr.int_window_exiting) {
2353 vmx_event_waitexit_enable(vcpu, false);
2354 } else {
2355 vmx_event_waitexit_disable(vcpu, false);
2356 }
2357
2358 if (state->intr.nmi_window_exiting) {
2359 vmx_event_waitexit_enable(vcpu, true);
2360 } else {
2361 vmx_event_waitexit_disable(vcpu, true);
2362 }
2363 }
2364
2365 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2366 if (flags & NVMM_X64_STATE_FPU) {
2367 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2368 sizeof(state->fpu));
2369
2370 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2371 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2372 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2373
2374 if (vmx_xcr0_mask != 0) {
2375 /* Reset XSTATE_BV, to force a reload. */
2376 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2377 }
2378 }
2379
2380 vmx_vmcs_leave(vcpu);
2381
2382 comm->state_wanted = 0;
2383 comm->state_cached |= flags;
2384 }
2385
2386 static void
2387 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2388 {
2389 struct nvmm_comm_page *comm = vcpu->comm;
2390 struct nvmm_x64_state *state = &comm->state;
2391 struct vmx_cpudata *cpudata = vcpu->cpudata;
2392 uint64_t intstate, flags;
2393
2394 flags = comm->state_wanted;
2395
2396 vmx_vmcs_enter(vcpu);
2397
2398 if (flags & NVMM_X64_STATE_SEGS) {
2399 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2400 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2401 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2402 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2403 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2404 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2405 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2406 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2407 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2408 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2409 }
2410
2411 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2412 if (flags & NVMM_X64_STATE_GPRS) {
2413 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2414
2415 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2416 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2417 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2418 }
2419
2420 if (flags & NVMM_X64_STATE_CRS) {
2421 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2422 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2423 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2424 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2425 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2426 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2427
2428 /* Hide VMXE. */
2429 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2430 }
2431
2432 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2433 if (flags & NVMM_X64_STATE_DRS) {
2434 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2435
2436 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2437 }
2438
2439 if (flags & NVMM_X64_STATE_MSRS) {
2440 state->msrs[NVMM_X64_MSR_STAR] =
2441 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2442 state->msrs[NVMM_X64_MSR_LSTAR] =
2443 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2444 state->msrs[NVMM_X64_MSR_CSTAR] =
2445 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2446 state->msrs[NVMM_X64_MSR_SFMASK] =
2447 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2448 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2449 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2450 state->msrs[NVMM_X64_MSR_EFER] =
2451 vmx_vmread(VMCS_GUEST_IA32_EFER);
2452 state->msrs[NVMM_X64_MSR_PAT] =
2453 vmx_vmread(VMCS_GUEST_IA32_PAT);
2454 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2455 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2456 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2457 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2458 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2459 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2460 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2461 }
2462
2463 if (flags & NVMM_X64_STATE_INTR) {
2464 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2465 state->intr.int_shadow =
2466 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2467 state->intr.int_window_exiting = cpudata->int_window_exit;
2468 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2469 state->intr.evt_pending = cpudata->evt_pending;
2470 }
2471
2472 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2473 if (flags & NVMM_X64_STATE_FPU) {
2474 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2475 sizeof(state->fpu));
2476 }
2477
2478 vmx_vmcs_leave(vcpu);
2479
2480 comm->state_wanted = 0;
2481 comm->state_cached |= flags;
2482 }
2483
2484 static void
2485 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2486 {
2487 vcpu->comm->state_wanted = flags;
2488 vmx_vcpu_getstate(vcpu);
2489 }
2490
2491 static void
2492 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2493 {
2494 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2495 vcpu->comm->state_commit = 0;
2496 vmx_vcpu_setstate(vcpu);
2497 }
2498
2499 /* -------------------------------------------------------------------------- */
2500
2501 static void
2502 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2503 {
2504 struct vmx_cpudata *cpudata = vcpu->cpudata;
2505 size_t i, oct, bit;
2506
2507 mutex_enter(&vmx_asidlock);
2508
2509 for (i = 0; i < vmx_maxasid; i++) {
2510 oct = i / 8;
2511 bit = i % 8;
2512
2513 if (vmx_asidmap[oct] & __BIT(bit)) {
2514 continue;
2515 }
2516
2517 cpudata->asid = i;
2518
2519 vmx_asidmap[oct] |= __BIT(bit);
2520 vmx_vmwrite(VMCS_VPID, i);
2521 mutex_exit(&vmx_asidlock);
2522 return;
2523 }
2524
2525 mutex_exit(&vmx_asidlock);
2526
2527 panic("%s: impossible", __func__);
2528 }
2529
2530 static void
2531 vmx_asid_free(struct nvmm_cpu *vcpu)
2532 {
2533 size_t oct, bit;
2534 uint64_t asid;
2535
2536 asid = vmx_vmread(VMCS_VPID);
2537
2538 oct = asid / 8;
2539 bit = asid % 8;
2540
2541 mutex_enter(&vmx_asidlock);
2542 vmx_asidmap[oct] &= ~__BIT(bit);
2543 mutex_exit(&vmx_asidlock);
2544 }
2545
2546 static void
2547 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2548 {
2549 struct vmx_cpudata *cpudata = vcpu->cpudata;
2550 struct vmcs *vmcs = cpudata->vmcs;
2551 struct msr_entry *gmsr = cpudata->gmsr;
2552 extern uint8_t vmx_resume_rip;
2553 uint64_t rev, eptp;
2554
2555 rev = vmx_get_revision();
2556
2557 memset(vmcs, 0, VMCS_SIZE);
2558 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2559 vmcs->abort = 0;
2560
2561 vmx_vmcs_enter(vcpu);
2562
2563 /* No link pointer. */
2564 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2565
2566 /* Install the CTLSs. */
2567 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2568 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2569 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2570 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2571 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2572
2573 /* Allow direct access to certain MSRs. */
2574 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2575 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2576 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2577 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2578 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2579 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2580 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2581 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2582 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2583 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2584 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2585 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2586 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2587 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2588 true, false);
2589 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2590
2591 /*
2592 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2593 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2594 */
2595 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2596 gmsr[VMX_MSRLIST_STAR].val = 0;
2597 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2598 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2599 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2600 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2601 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2602 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2603 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2604 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2605 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2606 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2607 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2608 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2609 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2610 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2611
2612 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2613 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2614 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2615
2616 /* Force CR4_VMXE to zero. */
2617 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2618
2619 /* Set the Host state for resuming. */
2620 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2621 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2622 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2623 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2624 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2625 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2626 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2627 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2628 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2629 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2630 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2631 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2632 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2633 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2634
2635 /* Generate ASID. */
2636 vmx_asid_alloc(vcpu);
2637
2638 /* Enable Extended Paging, 4-Level. */
2639 eptp =
2640 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2641 __SHIFTIN(4-1, EPTP_WALKLEN) |
2642 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2643 mach->vm->vm_map.pmap->pm_pdirpa[0];
2644 vmx_vmwrite(VMCS_EPTP, eptp);
2645
2646 /* Init IA32_MISC_ENABLE. */
2647 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2648 cpudata->gmsr_misc_enable &=
2649 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2650 cpudata->gmsr_misc_enable |=
2651 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2652
2653 /* Init XSAVE header. */
2654 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2655 cpudata->gfpu.xsh_xcomp_bv = 0;
2656
2657 /* These MSRs are static. */
2658 cpudata->star = rdmsr(MSR_STAR);
2659 cpudata->cstar = rdmsr(MSR_CSTAR);
2660 cpudata->sfmask = rdmsr(MSR_SFMASK);
2661
2662 /* Install the RESET state. */
2663 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2664 sizeof(nvmm_x86_reset_state));
2665 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2666 vcpu->comm->state_cached = 0;
2667 vmx_vcpu_setstate(vcpu);
2668
2669 vmx_vmcs_leave(vcpu);
2670 }
2671
2672 static int
2673 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2674 {
2675 struct vmx_cpudata *cpudata;
2676 int error;
2677
2678 /* Allocate the VMX cpudata. */
2679 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2680 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2681 UVM_KMF_WIRED|UVM_KMF_ZERO);
2682 vcpu->cpudata = cpudata;
2683
2684 /* VMCS */
2685 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2686 VMCS_NPAGES);
2687 if (error)
2688 goto error;
2689
2690 /* MSR Bitmap */
2691 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2692 MSRBM_NPAGES);
2693 if (error)
2694 goto error;
2695
2696 /* Guest MSR List */
2697 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2698 if (error)
2699 goto error;
2700
2701 kcpuset_create(&cpudata->htlb_want_flush, true);
2702
2703 /* Init the VCPU info. */
2704 vmx_vcpu_init(mach, vcpu);
2705
2706 return 0;
2707
2708 error:
2709 if (cpudata->vmcs_pa) {
2710 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2711 VMCS_NPAGES);
2712 }
2713 if (cpudata->msrbm_pa) {
2714 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2715 MSRBM_NPAGES);
2716 }
2717 if (cpudata->gmsr_pa) {
2718 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2719 }
2720
2721 kmem_free(cpudata, sizeof(*cpudata));
2722 return error;
2723 }
2724
2725 static void
2726 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2727 {
2728 struct vmx_cpudata *cpudata = vcpu->cpudata;
2729
2730 vmx_vmcs_enter(vcpu);
2731 vmx_asid_free(vcpu);
2732 vmx_vmcs_destroy(vcpu);
2733
2734 kcpuset_destroy(cpudata->htlb_want_flush);
2735
2736 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2737 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2738 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2739 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2740 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2741 }
2742
2743 /* -------------------------------------------------------------------------- */
2744
2745 static void
2746 vmx_tlb_flush(struct pmap *pm)
2747 {
2748 struct nvmm_machine *mach = pm->pm_data;
2749 struct vmx_machdata *machdata = mach->machdata;
2750
2751 atomic_inc_64(&machdata->mach_htlb_gen);
2752
2753 /* Generates IPIs, which cause #VMEXITs. */
2754 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2755 }
2756
2757 static void
2758 vmx_machine_create(struct nvmm_machine *mach)
2759 {
2760 struct pmap *pmap = mach->vm->vm_map.pmap;
2761 struct vmx_machdata *machdata;
2762
2763 /* Convert to EPT. */
2764 pmap_ept_transform(pmap);
2765
2766 /* Fill in pmap info. */
2767 pmap->pm_data = (void *)mach;
2768 pmap->pm_tlb_flush = vmx_tlb_flush;
2769
2770 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2771 mach->machdata = machdata;
2772
2773 /* Start with an hTLB flush everywhere. */
2774 machdata->mach_htlb_gen = 1;
2775 }
2776
2777 static void
2778 vmx_machine_destroy(struct nvmm_machine *mach)
2779 {
2780 struct vmx_machdata *machdata = mach->machdata;
2781
2782 kmem_free(machdata, sizeof(struct vmx_machdata));
2783 }
2784
2785 static int
2786 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2787 {
2788 struct nvmm_x86_conf_cpuid *cpuid = data;
2789 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2790 size_t i;
2791
2792 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2793 return EINVAL;
2794 }
2795
2796 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2797 (cpuid->set.ebx & cpuid->del.ebx) ||
2798 (cpuid->set.ecx & cpuid->del.ecx) ||
2799 (cpuid->set.edx & cpuid->del.edx))) {
2800 return EINVAL;
2801 }
2802
2803 /* If already here, replace. */
2804 for (i = 0; i < VMX_NCPUIDS; i++) {
2805 if (!machdata->cpuidpresent[i]) {
2806 continue;
2807 }
2808 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2809 memcpy(&machdata->cpuid[i], cpuid,
2810 sizeof(struct nvmm_x86_conf_cpuid));
2811 return 0;
2812 }
2813 }
2814
2815 /* Not here, insert. */
2816 for (i = 0; i < VMX_NCPUIDS; i++) {
2817 if (!machdata->cpuidpresent[i]) {
2818 machdata->cpuidpresent[i] = true;
2819 memcpy(&machdata->cpuid[i], cpuid,
2820 sizeof(struct nvmm_x86_conf_cpuid));
2821 return 0;
2822 }
2823 }
2824
2825 return ENOBUFS;
2826 }
2827
2828 /* -------------------------------------------------------------------------- */
2829
2830 static int
2831 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2832 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2833 {
2834 uint64_t basic, val, true_val;
2835 bool one_allowed, zero_allowed, has_true;
2836 size_t i;
2837
2838 basic = rdmsr(MSR_IA32_VMX_BASIC);
2839 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2840
2841 val = rdmsr(msr_ctls);
2842 if (has_true) {
2843 true_val = rdmsr(msr_true_ctls);
2844 } else {
2845 true_val = val;
2846 }
2847
2848 #define ONE_ALLOWED(msrval, bitoff) \
2849 ((msrval & __BIT(32 + bitoff)) != 0)
2850 #define ZERO_ALLOWED(msrval, bitoff) \
2851 ((msrval & __BIT(bitoff)) == 0)
2852
2853 for (i = 0; i < 32; i++) {
2854 one_allowed = ONE_ALLOWED(true_val, i);
2855 zero_allowed = ZERO_ALLOWED(true_val, i);
2856
2857 if (zero_allowed && !one_allowed) {
2858 if (set_one & __BIT(i))
2859 return -1;
2860 *res &= ~__BIT(i);
2861 } else if (one_allowed && !zero_allowed) {
2862 if (set_zero & __BIT(i))
2863 return -1;
2864 *res |= __BIT(i);
2865 } else {
2866 if (set_zero & __BIT(i)) {
2867 *res &= ~__BIT(i);
2868 } else if (set_one & __BIT(i)) {
2869 *res |= __BIT(i);
2870 } else if (!has_true) {
2871 *res &= ~__BIT(i);
2872 } else if (ZERO_ALLOWED(val, i)) {
2873 *res &= ~__BIT(i);
2874 } else if (ONE_ALLOWED(val, i)) {
2875 *res |= __BIT(i);
2876 } else {
2877 return -1;
2878 }
2879 }
2880 }
2881
2882 return 0;
2883 }
2884
2885 static bool
2886 vmx_ident(void)
2887 {
2888 uint64_t msr;
2889 int ret;
2890
2891 if (!(cpu_feature[1] & CPUID2_VMX)) {
2892 return false;
2893 }
2894
2895 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2896 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2897 return false;
2898 }
2899
2900 msr = rdmsr(MSR_IA32_VMX_BASIC);
2901 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2902 return false;
2903 }
2904 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2905 return false;
2906 }
2907
2908 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2909 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2910 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2911 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2912 if (ret == -1) {
2913 return false;
2914 }
2915
2916 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2917 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2918 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2919 if (ret == -1) {
2920 return false;
2921 }
2922
2923 /* Init the CTLSs right now, and check for errors. */
2924 ret = vmx_init_ctls(
2925 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2926 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2927 &vmx_pinbased_ctls);
2928 if (ret == -1) {
2929 return false;
2930 }
2931 ret = vmx_init_ctls(
2932 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2933 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2934 &vmx_procbased_ctls);
2935 if (ret == -1) {
2936 return false;
2937 }
2938 ret = vmx_init_ctls(
2939 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2940 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2941 &vmx_procbased_ctls2);
2942 if (ret == -1) {
2943 return false;
2944 }
2945 ret = vmx_init_ctls(
2946 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2947 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2948 &vmx_entry_ctls);
2949 if (ret == -1) {
2950 return false;
2951 }
2952 ret = vmx_init_ctls(
2953 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2954 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2955 &vmx_exit_ctls);
2956 if (ret == -1) {
2957 return false;
2958 }
2959
2960 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2961 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2962 return false;
2963 }
2964 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2965 return false;
2966 }
2967 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2968 return false;
2969 }
2970 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2971 pmap_ept_has_ad = true;
2972 } else {
2973 pmap_ept_has_ad = false;
2974 }
2975 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2976 return false;
2977 }
2978
2979 return true;
2980 }
2981
2982 static void
2983 vmx_init_asid(uint32_t maxasid)
2984 {
2985 size_t allocsz;
2986
2987 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2988
2989 vmx_maxasid = maxasid;
2990 allocsz = roundup(maxasid, 8) / 8;
2991 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2992
2993 /* ASID 0 is reserved for the host. */
2994 vmx_asidmap[0] |= __BIT(0);
2995 }
2996
2997 static void
2998 vmx_change_cpu(void *arg1, void *arg2)
2999 {
3000 struct cpu_info *ci = curcpu();
3001 bool enable = (bool)arg1;
3002 uint64_t cr4;
3003
3004 if (!enable) {
3005 vmx_vmxoff();
3006 }
3007
3008 cr4 = rcr4();
3009 if (enable) {
3010 cr4 |= CR4_VMXE;
3011 } else {
3012 cr4 &= ~CR4_VMXE;
3013 }
3014 lcr4(cr4);
3015
3016 if (enable) {
3017 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3018 }
3019 }
3020
3021 static void
3022 vmx_init_l1tf(void)
3023 {
3024 u_int descs[4];
3025 uint64_t msr;
3026
3027 if (cpuid_level < 7) {
3028 return;
3029 }
3030
3031 x86_cpuid(7, descs);
3032
3033 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3034 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3035 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3036 /* No mitigation needed. */
3037 return;
3038 }
3039 }
3040
3041 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3042 /* Enable hardware mitigation. */
3043 vmx_msrlist_entry_nmsr += 1;
3044 }
3045 }
3046
3047 static void
3048 vmx_init(void)
3049 {
3050 CPU_INFO_ITERATOR cii;
3051 struct cpu_info *ci;
3052 uint64_t xc, msr;
3053 struct vmxon *vmxon;
3054 uint32_t revision;
3055 paddr_t pa;
3056 vaddr_t va;
3057 int error;
3058
3059 /* Init the ASID bitmap (VPID). */
3060 vmx_init_asid(VPID_MAX);
3061
3062 /* Init the XCR0 mask. */
3063 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3064
3065 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3066 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3067 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3068 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3069 } else {
3070 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3071 }
3072 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3073 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3074 } else {
3075 vmx_ept_flush_op = VMX_INVEPT_ALL;
3076 }
3077 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3078 vmx_eptp_type = EPTP_TYPE_WB;
3079 } else {
3080 vmx_eptp_type = EPTP_TYPE_UC;
3081 }
3082
3083 /* Init the L1TF mitigation. */
3084 vmx_init_l1tf();
3085
3086 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3087 revision = vmx_get_revision();
3088
3089 for (CPU_INFO_FOREACH(cii, ci)) {
3090 error = vmx_memalloc(&pa, &va, 1);
3091 if (error) {
3092 panic("%s: out of memory", __func__);
3093 }
3094 vmxoncpu[cpu_index(ci)].pa = pa;
3095 vmxoncpu[cpu_index(ci)].va = va;
3096
3097 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3098 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3099 }
3100
3101 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3102 xc_wait(xc);
3103 }
3104
3105 static void
3106 vmx_fini_asid(void)
3107 {
3108 size_t allocsz;
3109
3110 allocsz = roundup(vmx_maxasid, 8) / 8;
3111 kmem_free(vmx_asidmap, allocsz);
3112
3113 mutex_destroy(&vmx_asidlock);
3114 }
3115
3116 static void
3117 vmx_fini(void)
3118 {
3119 uint64_t xc;
3120 size_t i;
3121
3122 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3123 xc_wait(xc);
3124
3125 for (i = 0; i < MAXCPUS; i++) {
3126 if (vmxoncpu[i].pa != 0)
3127 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3128 }
3129
3130 vmx_fini_asid();
3131 }
3132
3133 static void
3134 vmx_capability(struct nvmm_capability *cap)
3135 {
3136 cap->arch.xcr0_mask = vmx_xcr0_mask;
3137 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3138 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3139 }
3140
3141 const struct nvmm_impl nvmm_x86_vmx = {
3142 .ident = vmx_ident,
3143 .init = vmx_init,
3144 .fini = vmx_fini,
3145 .capability = vmx_capability,
3146 .conf_max = NVMM_X86_NCONF,
3147 .conf_sizes = vmx_conf_sizes,
3148 .state_size = sizeof(struct nvmm_x64_state),
3149 .machine_create = vmx_machine_create,
3150 .machine_destroy = vmx_machine_destroy,
3151 .machine_configure = vmx_machine_configure,
3152 .vcpu_create = vmx_vcpu_create,
3153 .vcpu_destroy = vmx_vcpu_destroy,
3154 .vcpu_setstate = vmx_vcpu_setstate,
3155 .vcpu_getstate = vmx_vcpu_getstate,
3156 .vcpu_inject = vmx_vcpu_inject,
3157 .vcpu_run = vmx_vcpu_run
3158 };
3159