nvmm_x86_vmx.c revision 1.32 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.32 2019/04/29 18:54:26 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.32 2019/04/29 18:54:26 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 bool cpuidpresent[VMX_NCPUIDS];
701 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
706 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
707 };
708
709 struct vmx_cpudata {
710 /* General */
711 uint64_t asid;
712 bool gtlb_want_flush;
713 bool gtsc_want_update;
714 uint64_t vcpu_htlb_gen;
715 kcpuset_t *htlb_want_flush;
716
717 /* VMCS */
718 struct vmcs *vmcs;
719 paddr_t vmcs_pa;
720 size_t vmcs_refcnt;
721 struct cpu_info *vmcs_ci;
722 bool vmcs_launched;
723
724 /* MSR bitmap */
725 uint8_t *msrbm;
726 paddr_t msrbm_pa;
727
728 /* Host state */
729 uint64_t hxcr0;
730 uint64_t star;
731 uint64_t lstar;
732 uint64_t cstar;
733 uint64_t sfmask;
734 uint64_t kernelgsbase;
735 bool ts_set;
736 struct xsave_header hfpu __aligned(64);
737
738 /* Intr state */
739 bool int_window_exit;
740 bool nmi_window_exit;
741 bool evt_pending;
742
743 /* Guest state */
744 struct msr_entry *gmsr;
745 paddr_t gmsr_pa;
746 uint64_t gmsr_misc_enable;
747 uint64_t gcr2;
748 uint64_t gcr8;
749 uint64_t gxcr0;
750 uint64_t gprs[NVMM_X64_NGPR];
751 uint64_t drs[NVMM_X64_NDR];
752 uint64_t gtsc;
753 struct xsave_header gfpu __aligned(64);
754 };
755
756 static const struct {
757 uint64_t selector;
758 uint64_t attrib;
759 uint64_t limit;
760 uint64_t base;
761 } vmx_guest_segs[NVMM_X64_NSEG] = {
762 [NVMM_X64_SEG_ES] = {
763 VMCS_GUEST_ES_SELECTOR,
764 VMCS_GUEST_ES_ACCESS_RIGHTS,
765 VMCS_GUEST_ES_LIMIT,
766 VMCS_GUEST_ES_BASE
767 },
768 [NVMM_X64_SEG_CS] = {
769 VMCS_GUEST_CS_SELECTOR,
770 VMCS_GUEST_CS_ACCESS_RIGHTS,
771 VMCS_GUEST_CS_LIMIT,
772 VMCS_GUEST_CS_BASE
773 },
774 [NVMM_X64_SEG_SS] = {
775 VMCS_GUEST_SS_SELECTOR,
776 VMCS_GUEST_SS_ACCESS_RIGHTS,
777 VMCS_GUEST_SS_LIMIT,
778 VMCS_GUEST_SS_BASE
779 },
780 [NVMM_X64_SEG_DS] = {
781 VMCS_GUEST_DS_SELECTOR,
782 VMCS_GUEST_DS_ACCESS_RIGHTS,
783 VMCS_GUEST_DS_LIMIT,
784 VMCS_GUEST_DS_BASE
785 },
786 [NVMM_X64_SEG_FS] = {
787 VMCS_GUEST_FS_SELECTOR,
788 VMCS_GUEST_FS_ACCESS_RIGHTS,
789 VMCS_GUEST_FS_LIMIT,
790 VMCS_GUEST_FS_BASE
791 },
792 [NVMM_X64_SEG_GS] = {
793 VMCS_GUEST_GS_SELECTOR,
794 VMCS_GUEST_GS_ACCESS_RIGHTS,
795 VMCS_GUEST_GS_LIMIT,
796 VMCS_GUEST_GS_BASE
797 },
798 [NVMM_X64_SEG_GDT] = {
799 0, /* doesn't exist */
800 0, /* doesn't exist */
801 VMCS_GUEST_GDTR_LIMIT,
802 VMCS_GUEST_GDTR_BASE
803 },
804 [NVMM_X64_SEG_IDT] = {
805 0, /* doesn't exist */
806 0, /* doesn't exist */
807 VMCS_GUEST_IDTR_LIMIT,
808 VMCS_GUEST_IDTR_BASE
809 },
810 [NVMM_X64_SEG_LDT] = {
811 VMCS_GUEST_LDTR_SELECTOR,
812 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
813 VMCS_GUEST_LDTR_LIMIT,
814 VMCS_GUEST_LDTR_BASE
815 },
816 [NVMM_X64_SEG_TR] = {
817 VMCS_GUEST_TR_SELECTOR,
818 VMCS_GUEST_TR_ACCESS_RIGHTS,
819 VMCS_GUEST_TR_LIMIT,
820 VMCS_GUEST_TR_BASE
821 }
822 };
823
824 /* -------------------------------------------------------------------------- */
825
826 static uint64_t
827 vmx_get_revision(void)
828 {
829 uint64_t msr;
830
831 msr = rdmsr(MSR_IA32_VMX_BASIC);
832 msr &= IA32_VMX_BASIC_IDENT;
833
834 return msr;
835 }
836
837 static void
838 vmx_vmclear_ipi(void *arg1, void *arg2)
839 {
840 paddr_t vmcs_pa = (paddr_t)arg1;
841 vmx_vmclear(&vmcs_pa);
842 }
843
844 static void
845 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
846 {
847 uint64_t xc;
848 int bound;
849
850 KASSERT(kpreempt_disabled());
851
852 bound = curlwp_bind();
853 kpreempt_enable();
854
855 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
856 xc_wait(xc);
857
858 kpreempt_disable();
859 curlwp_bindx(bound);
860 }
861
862 static void
863 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
864 {
865 struct vmx_cpudata *cpudata = vcpu->cpudata;
866 struct cpu_info *vmcs_ci;
867 paddr_t oldpa __diagused;
868
869 cpudata->vmcs_refcnt++;
870 if (cpudata->vmcs_refcnt > 1) {
871 #ifdef DIAGNOSTIC
872 KASSERT(kpreempt_disabled());
873 oldpa = vmx_vmptrst();
874 KASSERT(oldpa == cpudata->vmcs_pa);
875 #endif
876 return;
877 }
878
879 vmcs_ci = cpudata->vmcs_ci;
880 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
881
882 kpreempt_disable();
883
884 if (vmcs_ci == NULL) {
885 /* This VMCS is loaded for the first time. */
886 vmx_vmclear(&cpudata->vmcs_pa);
887 cpudata->vmcs_launched = false;
888 } else if (vmcs_ci != curcpu()) {
889 /* This VMCS is active on a remote CPU. */
890 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else {
893 /* This VMCS is active on curcpu, nothing to do. */
894 }
895
896 vmx_vmptrld(&cpudata->vmcs_pa);
897 }
898
899 static void
900 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
901 {
902 struct vmx_cpudata *cpudata = vcpu->cpudata;
903
904 KASSERT(kpreempt_disabled());
905 #ifdef DIAGNOSTIC
906 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
907 #endif
908 KASSERT(cpudata->vmcs_refcnt > 0);
909 cpudata->vmcs_refcnt--;
910
911 if (cpudata->vmcs_refcnt > 0) {
912 return;
913 }
914
915 cpudata->vmcs_ci = curcpu();
916 kpreempt_enable();
917 }
918
919 static void
920 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
921 {
922 struct vmx_cpudata *cpudata = vcpu->cpudata;
923
924 KASSERT(kpreempt_disabled());
925 #ifdef DIAGNOSTIC
926 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
927 #endif
928 KASSERT(cpudata->vmcs_refcnt == 1);
929 cpudata->vmcs_refcnt--;
930
931 vmx_vmclear(&cpudata->vmcs_pa);
932 kpreempt_enable();
933 }
934
935 /* -------------------------------------------------------------------------- */
936
937 static void
938 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
939 {
940 struct vmx_cpudata *cpudata = vcpu->cpudata;
941 uint64_t ctls1;
942
943 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
944
945 if (nmi) {
946 // XXX INT_STATE_NMI?
947 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
948 cpudata->nmi_window_exit = true;
949 } else {
950 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
951 cpudata->int_window_exit = true;
952 }
953
954 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
955 }
956
957 static void
958 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
959 {
960 struct vmx_cpudata *cpudata = vcpu->cpudata;
961 uint64_t ctls1;
962
963 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
964
965 if (nmi) {
966 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
967 cpudata->nmi_window_exit = false;
968 } else {
969 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
970 cpudata->int_window_exit = false;
971 }
972
973 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
974 }
975
976 static inline int
977 vmx_event_has_error(uint64_t vector)
978 {
979 switch (vector) {
980 case 8: /* #DF */
981 case 10: /* #TS */
982 case 11: /* #NP */
983 case 12: /* #SS */
984 case 13: /* #GP */
985 case 14: /* #PF */
986 case 17: /* #AC */
987 case 30: /* #SX */
988 return 1;
989 default:
990 return 0;
991 }
992 }
993
994 static int
995 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
996 struct nvmm_event *event)
997 {
998 struct vmx_cpudata *cpudata = vcpu->cpudata;
999 int type = 0, err = 0, ret = EINVAL;
1000 uint64_t info;
1001
1002 if (event->vector >= 256) {
1003 return EINVAL;
1004 }
1005
1006 vmx_vmcs_enter(vcpu);
1007
1008 switch (event->type) {
1009 case NVMM_EVENT_INTERRUPT_HW:
1010 type = INTR_TYPE_EXT_INT;
1011 if (event->vector == 2) {
1012 type = INTR_TYPE_NMI;
1013 vmx_event_waitexit_enable(vcpu, true);
1014 }
1015 err = 0;
1016 break;
1017 case NVMM_EVENT_INTERRUPT_SW:
1018 goto out;
1019 case NVMM_EVENT_EXCEPTION:
1020 if (event->vector == 2 || event->vector >= 32)
1021 goto out;
1022 if (event->vector == 3 || event->vector == 0)
1023 goto out;
1024 type = INTR_TYPE_HW_EXC;
1025 err = vmx_event_has_error(event->vector);
1026 break;
1027 default:
1028 goto out;
1029 }
1030
1031 info =
1032 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
1033 __SHIFTIN(type, INTR_INFO_TYPE) |
1034 __SHIFTIN(err, INTR_INFO_ERROR) |
1035 __SHIFTIN(1, INTR_INFO_VALID);
1036 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1037 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
1038
1039 cpudata->evt_pending = true;
1040 ret = 0;
1041
1042 out:
1043 vmx_vmcs_leave(vcpu);
1044 return ret;
1045 }
1046
1047 static void
1048 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1049 {
1050 struct nvmm_event event;
1051 int ret __diagused;
1052
1053 event.type = NVMM_EVENT_EXCEPTION;
1054 event.vector = 6;
1055 event.u.error = 0;
1056
1057 ret = vmx_vcpu_inject(mach, vcpu, &event);
1058 KASSERT(ret == 0);
1059 }
1060
1061 static void
1062 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1063 {
1064 struct nvmm_event event;
1065 int ret __diagused;
1066
1067 event.type = NVMM_EVENT_EXCEPTION;
1068 event.vector = 13;
1069 event.u.error = 0;
1070
1071 ret = vmx_vcpu_inject(mach, vcpu, &event);
1072 KASSERT(ret == 0);
1073 }
1074
1075 static inline void
1076 vmx_inkernel_advance(void)
1077 {
1078 uint64_t rip, inslen, intstate;
1079
1080 /*
1081 * Maybe we should also apply single-stepping and debug exceptions.
1082 * Matters for guest-ring3, because it can execute 'cpuid' under a
1083 * debugger.
1084 */
1085 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1086 rip = vmx_vmread(VMCS_GUEST_RIP);
1087 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1088 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1089 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1090 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1091 }
1092
1093 static void
1094 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1095 struct nvmm_exit *exit)
1096 {
1097 uint64_t qual;
1098
1099 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1100
1101 if ((qual & INTR_INFO_VALID) == 0) {
1102 goto error;
1103 }
1104 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1105 goto error;
1106 }
1107
1108 exit->reason = NVMM_EXIT_NONE;
1109 return;
1110
1111 error:
1112 exit->reason = NVMM_EXIT_INVALID;
1113 }
1114
1115 static void
1116 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1117 {
1118 struct vmx_cpudata *cpudata = vcpu->cpudata;
1119 uint64_t cr4;
1120
1121 switch (eax) {
1122 case 0x00000001:
1123 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1124
1125 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1126 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1127 CPUID_LOCAL_APIC_ID);
1128
1129 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1130 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1131
1132 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1133
1134 /* CPUID2_OSXSAVE depends on CR4. */
1135 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1136 if (!(cr4 & CR4_OSXSAVE)) {
1137 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1138 }
1139 break;
1140 case 0x00000005:
1141 case 0x00000006:
1142 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1143 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1144 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1145 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1146 break;
1147 case 0x00000007:
1148 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1149 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1150 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1151 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1152 break;
1153 case 0x0000000D:
1154 if (vmx_xcr0_mask == 0) {
1155 break;
1156 }
1157 switch (ecx) {
1158 case 0:
1159 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1160 if (cpudata->gxcr0 & XCR0_SSE) {
1161 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1162 } else {
1163 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1164 }
1165 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1166 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1167 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1168 break;
1169 case 1:
1170 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1171 break;
1172 }
1173 break;
1174 case 0x40000000:
1175 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1176 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1177 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1178 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1179 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1180 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1181 break;
1182 case 0x80000001:
1183 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1184 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1185 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1186 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1187 break;
1188 default:
1189 break;
1190 }
1191 }
1192
1193 static void
1194 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1195 struct nvmm_exit *exit)
1196 {
1197 struct vmx_machdata *machdata = mach->machdata;
1198 struct vmx_cpudata *cpudata = vcpu->cpudata;
1199 struct nvmm_x86_conf_cpuid *cpuid;
1200 uint64_t eax, ecx;
1201 u_int descs[4];
1202 size_t i;
1203
1204 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1205 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1206 x86_cpuid2(eax, ecx, descs);
1207
1208 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1209 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1210 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1211 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1212
1213 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1214
1215 for (i = 0; i < VMX_NCPUIDS; i++) {
1216 cpuid = &machdata->cpuid[i];
1217 if (!machdata->cpuidpresent[i]) {
1218 continue;
1219 }
1220 if (cpuid->leaf != eax) {
1221 continue;
1222 }
1223
1224 /* del */
1225 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1226 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1227 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1228 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1229
1230 /* set */
1231 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1232 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1233 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1234 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1235
1236 break;
1237 }
1238
1239 vmx_inkernel_advance();
1240 exit->reason = NVMM_EXIT_NONE;
1241 }
1242
1243 static void
1244 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1245 struct nvmm_exit *exit)
1246 {
1247 struct vmx_cpudata *cpudata = vcpu->cpudata;
1248 uint64_t rflags;
1249
1250 if (cpudata->int_window_exit) {
1251 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1252 if (rflags & PSL_I) {
1253 vmx_event_waitexit_disable(vcpu, false);
1254 }
1255 }
1256
1257 vmx_inkernel_advance();
1258 exit->reason = NVMM_EXIT_HALTED;
1259 }
1260
1261 #define VMX_QUAL_CR_NUM __BITS(3,0)
1262 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1263 #define CR_TYPE_WRITE 0
1264 #define CR_TYPE_READ 1
1265 #define CR_TYPE_CLTS 2
1266 #define CR_TYPE_LMSW 3
1267 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1268 #define VMX_QUAL_CR_GPR __BITS(11,8)
1269 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1270
1271 static inline int
1272 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1273 {
1274 /* Bits set to 1 in fixed0 are fixed to 1. */
1275 if ((crval & fixed0) != fixed0) {
1276 return -1;
1277 }
1278 /* Bits set to 0 in fixed1 are fixed to 0. */
1279 if (crval & ~fixed1) {
1280 return -1;
1281 }
1282 return 0;
1283 }
1284
1285 static int
1286 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1287 uint64_t qual)
1288 {
1289 struct vmx_cpudata *cpudata = vcpu->cpudata;
1290 uint64_t type, gpr, cr0;
1291 uint64_t efer, ctls1;
1292
1293 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1294 if (type != CR_TYPE_WRITE) {
1295 return -1;
1296 }
1297
1298 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1299 KASSERT(gpr < 16);
1300
1301 if (gpr == NVMM_X64_GPR_RSP) {
1302 gpr = vmx_vmread(VMCS_GUEST_RSP);
1303 } else {
1304 gpr = cpudata->gprs[gpr];
1305 }
1306
1307 cr0 = gpr | CR0_NE | CR0_ET;
1308 cr0 &= ~(CR0_NW|CR0_CD);
1309
1310 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1311 return -1;
1312 }
1313
1314 /*
1315 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1316 * from CR3.
1317 */
1318
1319 if (cr0 & CR0_PG) {
1320 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1321 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1322 if (efer & EFER_LME) {
1323 ctls1 |= ENTRY_CTLS_LONG_MODE;
1324 efer |= EFER_LMA;
1325 } else {
1326 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1327 efer &= ~EFER_LMA;
1328 }
1329 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1330 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1331 }
1332
1333 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1334 vmx_inkernel_advance();
1335 return 0;
1336 }
1337
1338 static int
1339 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1340 uint64_t qual)
1341 {
1342 struct vmx_cpudata *cpudata = vcpu->cpudata;
1343 uint64_t type, gpr, cr4;
1344
1345 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1346 if (type != CR_TYPE_WRITE) {
1347 return -1;
1348 }
1349
1350 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1351 KASSERT(gpr < 16);
1352
1353 if (gpr == NVMM_X64_GPR_RSP) {
1354 gpr = vmx_vmread(VMCS_GUEST_RSP);
1355 } else {
1356 gpr = cpudata->gprs[gpr];
1357 }
1358
1359 cr4 = gpr | CR4_VMXE;
1360
1361 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1362 return -1;
1363 }
1364
1365 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1366 vmx_inkernel_advance();
1367 return 0;
1368 }
1369
1370 static int
1371 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1372 uint64_t qual)
1373 {
1374 struct vmx_cpudata *cpudata = vcpu->cpudata;
1375 uint64_t type, gpr;
1376 bool write;
1377
1378 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1379 if (type == CR_TYPE_WRITE) {
1380 write = true;
1381 } else if (type == CR_TYPE_READ) {
1382 write = false;
1383 } else {
1384 return -1;
1385 }
1386
1387 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1388 KASSERT(gpr < 16);
1389
1390 if (write) {
1391 if (gpr == NVMM_X64_GPR_RSP) {
1392 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1393 } else {
1394 cpudata->gcr8 = cpudata->gprs[gpr];
1395 }
1396 } else {
1397 if (gpr == NVMM_X64_GPR_RSP) {
1398 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1399 } else {
1400 cpudata->gprs[gpr] = cpudata->gcr8;
1401 }
1402 }
1403
1404 vmx_inkernel_advance();
1405 return 0;
1406 }
1407
1408 static void
1409 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1410 struct nvmm_exit *exit)
1411 {
1412 uint64_t qual;
1413 int ret;
1414
1415 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1416
1417 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1418 case 0:
1419 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1420 break;
1421 case 4:
1422 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1423 break;
1424 case 8:
1425 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1426 break;
1427 default:
1428 ret = -1;
1429 break;
1430 }
1431
1432 if (ret == -1) {
1433 vmx_inject_gp(mach, vcpu);
1434 }
1435
1436 exit->reason = NVMM_EXIT_NONE;
1437 }
1438
1439 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1440 #define IO_SIZE_8 0
1441 #define IO_SIZE_16 1
1442 #define IO_SIZE_32 3
1443 #define VMX_QUAL_IO_IN __BIT(3)
1444 #define VMX_QUAL_IO_STR __BIT(4)
1445 #define VMX_QUAL_IO_REP __BIT(5)
1446 #define VMX_QUAL_IO_DX __BIT(6)
1447 #define VMX_QUAL_IO_PORT __BITS(31,16)
1448
1449 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1450 #define IO_ADRSIZE_16 0
1451 #define IO_ADRSIZE_32 1
1452 #define IO_ADRSIZE_64 2
1453 #define VMX_INFO_IO_SEG __BITS(17,15)
1454
1455 static void
1456 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1457 struct nvmm_exit *exit)
1458 {
1459 uint64_t qual, info, inslen, rip;
1460
1461 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1462 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1463
1464 exit->reason = NVMM_EXIT_IO;
1465
1466 if (qual & VMX_QUAL_IO_IN) {
1467 exit->u.io.type = NVMM_EXIT_IO_IN;
1468 } else {
1469 exit->u.io.type = NVMM_EXIT_IO_OUT;
1470 }
1471
1472 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1473
1474 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1475 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1476
1477 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1478 exit->u.io.address_size = 8;
1479 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1480 exit->u.io.address_size = 4;
1481 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1482 exit->u.io.address_size = 2;
1483 }
1484
1485 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1486 exit->u.io.operand_size = 4;
1487 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1488 exit->u.io.operand_size = 2;
1489 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1490 exit->u.io.operand_size = 1;
1491 }
1492
1493 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1494 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1495
1496 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1497 exit->u.io.seg = NVMM_X64_SEG_ES;
1498 }
1499
1500 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1501 rip = vmx_vmread(VMCS_GUEST_RIP);
1502 exit->u.io.npc = rip + inslen;
1503
1504 vmx_vcpu_state_provide(vcpu,
1505 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1506 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1507 }
1508
1509 static const uint64_t msr_ignore_list[] = {
1510 MSR_BIOS_SIGN,
1511 MSR_IA32_PLATFORM_ID
1512 };
1513
1514 static bool
1515 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1516 struct nvmm_exit *exit)
1517 {
1518 struct vmx_cpudata *cpudata = vcpu->cpudata;
1519 uint64_t val;
1520 size_t i;
1521
1522 switch (exit->u.msr.type) {
1523 case NVMM_EXIT_MSR_RDMSR:
1524 if (exit->u.msr.msr == MSR_CR_PAT) {
1525 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1526 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1527 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1528 goto handled;
1529 }
1530 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1531 val = cpudata->gmsr_misc_enable;
1532 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1533 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1534 goto handled;
1535 }
1536 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1537 if (msr_ignore_list[i] != exit->u.msr.msr)
1538 continue;
1539 val = 0;
1540 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1541 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1542 goto handled;
1543 }
1544 break;
1545 case NVMM_EXIT_MSR_WRMSR:
1546 if (exit->u.msr.msr == MSR_TSC) {
1547 cpudata->gtsc = exit->u.msr.val;
1548 cpudata->gtsc_want_update = true;
1549 goto handled;
1550 }
1551 if (exit->u.msr.msr == MSR_CR_PAT) {
1552 val = exit->u.msr.val;
1553 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1554 goto error;
1555 }
1556 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1557 goto handled;
1558 }
1559 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1560 /* Don't care. */
1561 goto handled;
1562 }
1563 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1564 if (msr_ignore_list[i] != exit->u.msr.msr)
1565 continue;
1566 goto handled;
1567 }
1568 break;
1569 }
1570
1571 return false;
1572
1573 handled:
1574 vmx_inkernel_advance();
1575 return true;
1576
1577 error:
1578 vmx_inject_gp(mach, vcpu);
1579 return true;
1580 }
1581
1582 static void
1583 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1584 struct nvmm_exit *exit, bool rdmsr)
1585 {
1586 struct vmx_cpudata *cpudata = vcpu->cpudata;
1587 uint64_t inslen, rip;
1588
1589 if (rdmsr) {
1590 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1591 } else {
1592 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1593 }
1594
1595 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1596
1597 if (rdmsr) {
1598 exit->u.msr.val = 0;
1599 } else {
1600 uint64_t rdx, rax;
1601 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1602 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1603 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1604 }
1605
1606 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1607 exit->reason = NVMM_EXIT_NONE;
1608 return;
1609 }
1610
1611 exit->reason = NVMM_EXIT_MSR;
1612 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1613 rip = vmx_vmread(VMCS_GUEST_RIP);
1614 exit->u.msr.npc = rip + inslen;
1615
1616 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1617 }
1618
1619 static void
1620 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1621 struct nvmm_exit *exit)
1622 {
1623 struct vmx_cpudata *cpudata = vcpu->cpudata;
1624 uint16_t val;
1625
1626 exit->reason = NVMM_EXIT_NONE;
1627
1628 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1629 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1630
1631 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1632 goto error;
1633 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1634 goto error;
1635 } else if (__predict_false((val & XCR0_X87) == 0)) {
1636 goto error;
1637 }
1638
1639 cpudata->gxcr0 = val;
1640
1641 vmx_inkernel_advance();
1642 return;
1643
1644 error:
1645 vmx_inject_gp(mach, vcpu);
1646 }
1647
1648 #define VMX_EPT_VIOLATION_READ __BIT(0)
1649 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1650 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1651
1652 static void
1653 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1654 struct nvmm_exit *exit)
1655 {
1656 uint64_t perm;
1657 gpaddr_t gpa;
1658
1659 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1660
1661 exit->reason = NVMM_EXIT_MEMORY;
1662 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1663 if (perm & VMX_EPT_VIOLATION_WRITE)
1664 exit->u.mem.prot = PROT_WRITE;
1665 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1666 exit->u.mem.prot = PROT_EXEC;
1667 else
1668 exit->u.mem.prot = PROT_READ;
1669 exit->u.mem.gpa = gpa;
1670 exit->u.mem.inst_len = 0;
1671
1672 vmx_vcpu_state_provide(vcpu,
1673 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1674 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1675 }
1676
1677 static void
1678 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1679 {
1680 exit->u.inv.hwcode = code;
1681 exit->reason = NVMM_EXIT_INVALID;
1682 }
1683
1684 /* -------------------------------------------------------------------------- */
1685
1686 static void
1687 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1688 {
1689 struct vmx_cpudata *cpudata = vcpu->cpudata;
1690
1691 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1692
1693 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1694 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1695
1696 if (vmx_xcr0_mask != 0) {
1697 cpudata->hxcr0 = rdxcr(0);
1698 wrxcr(0, cpudata->gxcr0);
1699 }
1700 }
1701
1702 static void
1703 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1704 {
1705 struct vmx_cpudata *cpudata = vcpu->cpudata;
1706
1707 if (vmx_xcr0_mask != 0) {
1708 cpudata->gxcr0 = rdxcr(0);
1709 wrxcr(0, cpudata->hxcr0);
1710 }
1711
1712 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1713 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1714
1715 if (cpudata->ts_set) {
1716 stts();
1717 }
1718 }
1719
1720 static void
1721 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1722 {
1723 struct vmx_cpudata *cpudata = vcpu->cpudata;
1724
1725 x86_dbregs_save(curlwp);
1726
1727 ldr7(0);
1728
1729 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1730 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1731 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1732 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1733 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1734 }
1735
1736 static void
1737 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1738 {
1739 struct vmx_cpudata *cpudata = vcpu->cpudata;
1740
1741 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1742 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1743 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1744 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1745 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1746
1747 x86_dbregs_restore(curlwp);
1748 }
1749
1750 static void
1751 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1752 {
1753 struct vmx_cpudata *cpudata = vcpu->cpudata;
1754
1755 /* This gets restored automatically by the CPU. */
1756 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1757 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1758 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1759
1760 /* Note: MSR_LSTAR is not static, because of SVS. */
1761 cpudata->lstar = rdmsr(MSR_LSTAR);
1762 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1763 }
1764
1765 static void
1766 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1767 {
1768 struct vmx_cpudata *cpudata = vcpu->cpudata;
1769
1770 wrmsr(MSR_STAR, cpudata->star);
1771 wrmsr(MSR_LSTAR, cpudata->lstar);
1772 wrmsr(MSR_CSTAR, cpudata->cstar);
1773 wrmsr(MSR_SFMASK, cpudata->sfmask);
1774 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1775 }
1776
1777 /* -------------------------------------------------------------------------- */
1778
1779 #define VMX_INVVPID_ADDRESS 0
1780 #define VMX_INVVPID_CONTEXT 1
1781 #define VMX_INVVPID_ALL 2
1782 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1783
1784 #define VMX_INVEPT_CONTEXT 1
1785 #define VMX_INVEPT_ALL 2
1786
1787 static inline void
1788 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1789 {
1790 struct vmx_cpudata *cpudata = vcpu->cpudata;
1791
1792 if (vcpu->hcpu_last != hcpu) {
1793 cpudata->gtlb_want_flush = true;
1794 }
1795 }
1796
1797 static inline void
1798 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1799 {
1800 struct vmx_cpudata *cpudata = vcpu->cpudata;
1801 struct ept_desc ept_desc;
1802
1803 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1804 return;
1805 }
1806
1807 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1808 ept_desc.mbz = 0;
1809 vmx_invept(vmx_ept_flush_op, &ept_desc);
1810 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1811 }
1812
1813 static inline uint64_t
1814 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1815 {
1816 struct ept_desc ept_desc;
1817 uint64_t machgen;
1818
1819 machgen = machdata->mach_htlb_gen;
1820 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1821 return machgen;
1822 }
1823
1824 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1825
1826 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1827 ept_desc.mbz = 0;
1828 vmx_invept(vmx_ept_flush_op, &ept_desc);
1829
1830 return machgen;
1831 }
1832
1833 static inline void
1834 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1835 {
1836 cpudata->vcpu_htlb_gen = machgen;
1837 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1838 }
1839
1840 static inline void
1841 vmx_exit_evt(struct vmx_cpudata *cpudata)
1842 {
1843 uint64_t info, err;
1844
1845 cpudata->evt_pending = false;
1846
1847 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1848 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1849 return;
1850 }
1851 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1852
1853 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1854 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1855
1856 cpudata->evt_pending = true;
1857 }
1858
1859 static int
1860 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1861 struct nvmm_exit *exit)
1862 {
1863 struct nvmm_comm_page *comm = vcpu->comm;
1864 struct vmx_machdata *machdata = mach->machdata;
1865 struct vmx_cpudata *cpudata = vcpu->cpudata;
1866 struct vpid_desc vpid_desc;
1867 struct cpu_info *ci;
1868 uint64_t exitcode;
1869 uint64_t intstate;
1870 uint64_t machgen;
1871 int hcpu, s, ret;
1872 bool launched;
1873
1874 vmx_vmcs_enter(vcpu);
1875
1876 vmx_vcpu_state_commit(vcpu);
1877 comm->state_cached = 0;
1878
1879 ci = curcpu();
1880 hcpu = cpu_number();
1881 launched = cpudata->vmcs_launched;
1882
1883 vmx_gtlb_catchup(vcpu, hcpu);
1884 vmx_htlb_catchup(vcpu, hcpu);
1885
1886 if (vcpu->hcpu_last != hcpu) {
1887 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1888 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1889 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1890 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1891 cpudata->gtsc_want_update = true;
1892 vcpu->hcpu_last = hcpu;
1893 }
1894
1895 vmx_vcpu_guest_dbregs_enter(vcpu);
1896 vmx_vcpu_guest_misc_enter(vcpu);
1897
1898 while (1) {
1899 if (cpudata->gtlb_want_flush) {
1900 vpid_desc.vpid = cpudata->asid;
1901 vpid_desc.addr = 0;
1902 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1903 cpudata->gtlb_want_flush = false;
1904 }
1905
1906 if (__predict_false(cpudata->gtsc_want_update)) {
1907 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1908 cpudata->gtsc_want_update = false;
1909 }
1910
1911 s = splhigh();
1912 machgen = vmx_htlb_flush(machdata, cpudata);
1913 vmx_vcpu_guest_fpu_enter(vcpu);
1914 lcr2(cpudata->gcr2);
1915 if (launched) {
1916 ret = vmx_vmresume(cpudata->gprs);
1917 } else {
1918 ret = vmx_vmlaunch(cpudata->gprs);
1919 }
1920 cpudata->gcr2 = rcr2();
1921 vmx_vcpu_guest_fpu_leave(vcpu);
1922 vmx_htlb_flush_ack(cpudata, machgen);
1923 splx(s);
1924
1925 if (__predict_false(ret != 0)) {
1926 exit->reason = NVMM_EXIT_INVALID;
1927 break;
1928 }
1929 vmx_exit_evt(cpudata);
1930
1931 launched = true;
1932
1933 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1934 exitcode &= __BITS(15,0);
1935
1936 switch (exitcode) {
1937 case VMCS_EXITCODE_EXC_NMI:
1938 vmx_exit_exc_nmi(mach, vcpu, exit);
1939 break;
1940 case VMCS_EXITCODE_EXT_INT:
1941 exit->reason = NVMM_EXIT_NONE;
1942 break;
1943 case VMCS_EXITCODE_CPUID:
1944 vmx_exit_cpuid(mach, vcpu, exit);
1945 break;
1946 case VMCS_EXITCODE_HLT:
1947 vmx_exit_hlt(mach, vcpu, exit);
1948 break;
1949 case VMCS_EXITCODE_CR:
1950 vmx_exit_cr(mach, vcpu, exit);
1951 break;
1952 case VMCS_EXITCODE_IO:
1953 vmx_exit_io(mach, vcpu, exit);
1954 break;
1955 case VMCS_EXITCODE_RDMSR:
1956 vmx_exit_msr(mach, vcpu, exit, true);
1957 break;
1958 case VMCS_EXITCODE_WRMSR:
1959 vmx_exit_msr(mach, vcpu, exit, false);
1960 break;
1961 case VMCS_EXITCODE_SHUTDOWN:
1962 exit->reason = NVMM_EXIT_SHUTDOWN;
1963 break;
1964 case VMCS_EXITCODE_MONITOR:
1965 exit->reason = NVMM_EXIT_MONITOR;
1966 break;
1967 case VMCS_EXITCODE_MWAIT:
1968 exit->reason = NVMM_EXIT_MWAIT;
1969 break;
1970 case VMCS_EXITCODE_XSETBV:
1971 vmx_exit_xsetbv(mach, vcpu, exit);
1972 break;
1973 case VMCS_EXITCODE_RDPMC:
1974 case VMCS_EXITCODE_RDTSCP:
1975 case VMCS_EXITCODE_INVVPID:
1976 case VMCS_EXITCODE_INVEPT:
1977 case VMCS_EXITCODE_VMCALL:
1978 case VMCS_EXITCODE_VMCLEAR:
1979 case VMCS_EXITCODE_VMLAUNCH:
1980 case VMCS_EXITCODE_VMPTRLD:
1981 case VMCS_EXITCODE_VMPTRST:
1982 case VMCS_EXITCODE_VMREAD:
1983 case VMCS_EXITCODE_VMRESUME:
1984 case VMCS_EXITCODE_VMWRITE:
1985 case VMCS_EXITCODE_VMXOFF:
1986 case VMCS_EXITCODE_VMXON:
1987 vmx_inject_ud(mach, vcpu);
1988 exit->reason = NVMM_EXIT_NONE;
1989 break;
1990 case VMCS_EXITCODE_EPT_VIOLATION:
1991 vmx_exit_epf(mach, vcpu, exit);
1992 break;
1993 case VMCS_EXITCODE_INT_WINDOW:
1994 vmx_event_waitexit_disable(vcpu, false);
1995 exit->reason = NVMM_EXIT_INT_READY;
1996 break;
1997 case VMCS_EXITCODE_NMI_WINDOW:
1998 vmx_event_waitexit_disable(vcpu, true);
1999 exit->reason = NVMM_EXIT_NMI_READY;
2000 break;
2001 default:
2002 vmx_exit_invalid(exit, exitcode);
2003 break;
2004 }
2005
2006 /* If no reason to return to userland, keep rolling. */
2007 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2008 break;
2009 }
2010 if (curcpu()->ci_data.cpu_softints != 0) {
2011 break;
2012 }
2013 if (curlwp->l_flag & LW_USERRET) {
2014 break;
2015 }
2016 if (exit->reason != NVMM_EXIT_NONE) {
2017 break;
2018 }
2019 }
2020
2021 cpudata->vmcs_launched = launched;
2022
2023 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2024
2025 vmx_vcpu_guest_misc_leave(vcpu);
2026 vmx_vcpu_guest_dbregs_leave(vcpu);
2027
2028 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2029 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2030 vmx_vmread(VMCS_GUEST_RFLAGS);
2031 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2032 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2033 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2034 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2035 cpudata->int_window_exit;
2036 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2037 cpudata->nmi_window_exit;
2038 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2039 cpudata->evt_pending;
2040
2041 vmx_vmcs_leave(vcpu);
2042
2043 return 0;
2044 }
2045
2046 /* -------------------------------------------------------------------------- */
2047
2048 static int
2049 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2050 {
2051 struct pglist pglist;
2052 paddr_t _pa;
2053 vaddr_t _va;
2054 size_t i;
2055 int ret;
2056
2057 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2058 &pglist, 1, 0);
2059 if (ret != 0)
2060 return ENOMEM;
2061 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2062 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2063 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2064 if (_va == 0)
2065 goto error;
2066
2067 for (i = 0; i < npages; i++) {
2068 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2069 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2070 }
2071 pmap_update(pmap_kernel());
2072
2073 memset((void *)_va, 0, npages * PAGE_SIZE);
2074
2075 *pa = _pa;
2076 *va = _va;
2077 return 0;
2078
2079 error:
2080 for (i = 0; i < npages; i++) {
2081 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2082 }
2083 return ENOMEM;
2084 }
2085
2086 static void
2087 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2088 {
2089 size_t i;
2090
2091 pmap_kremove(va, npages * PAGE_SIZE);
2092 pmap_update(pmap_kernel());
2093 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2094 for (i = 0; i < npages; i++) {
2095 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2096 }
2097 }
2098
2099 /* -------------------------------------------------------------------------- */
2100
2101 static void
2102 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2103 {
2104 uint64_t byte;
2105 uint8_t bitoff;
2106
2107 if (msr < 0x00002000) {
2108 /* Range 1 */
2109 byte = ((msr - 0x00000000) / 8) + 0;
2110 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2111 /* Range 2 */
2112 byte = ((msr - 0xC0000000) / 8) + 1024;
2113 } else {
2114 panic("%s: wrong range", __func__);
2115 }
2116
2117 bitoff = (msr & 0x7);
2118
2119 if (read) {
2120 bitmap[byte] &= ~__BIT(bitoff);
2121 }
2122 if (write) {
2123 bitmap[2048 + byte] &= ~__BIT(bitoff);
2124 }
2125 }
2126
2127 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2128 #define VMX_SEG_ATTRIB_S __BIT(4)
2129 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2130 #define VMX_SEG_ATTRIB_P __BIT(7)
2131 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2132 #define VMX_SEG_ATTRIB_L __BIT(13)
2133 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2134 #define VMX_SEG_ATTRIB_G __BIT(15)
2135 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2136
2137 static void
2138 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2139 {
2140 uint64_t attrib;
2141
2142 attrib =
2143 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2144 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2145 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2146 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2147 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2148 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2149 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2150 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2151 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2152
2153 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2154 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2155 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2156 }
2157 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2158 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2159 }
2160
2161 static void
2162 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2163 {
2164 uint64_t selector = 0, attrib = 0, base, limit;
2165
2166 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2167 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2168 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2169 }
2170 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2171 base = vmx_vmread(vmx_guest_segs[idx].base);
2172
2173 segs[idx].selector = selector;
2174 segs[idx].limit = limit;
2175 segs[idx].base = base;
2176 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2177 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2178 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2179 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2180 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2181 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2182 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2183 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2184 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2185 segs[idx].attrib.p = 0;
2186 }
2187 }
2188
2189 static inline bool
2190 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2191 {
2192 uint64_t cr0, cr3, cr4, efer;
2193
2194 if (flags & NVMM_X64_STATE_CRS) {
2195 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2196 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2197 return true;
2198 }
2199 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2200 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2201 return true;
2202 }
2203 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2204 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2205 return true;
2206 }
2207 }
2208
2209 if (flags & NVMM_X64_STATE_MSRS) {
2210 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2211 if ((efer ^
2212 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2213 return true;
2214 }
2215 }
2216
2217 return false;
2218 }
2219
2220 static void
2221 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2222 {
2223 struct nvmm_comm_page *comm = vcpu->comm;
2224 const struct nvmm_x64_state *state = &comm->state;
2225 struct vmx_cpudata *cpudata = vcpu->cpudata;
2226 struct fxsave *fpustate;
2227 uint64_t ctls1, intstate;
2228 uint64_t flags;
2229
2230 flags = comm->state_wanted;
2231
2232 vmx_vmcs_enter(vcpu);
2233
2234 if (vmx_state_tlb_flush(state, flags)) {
2235 cpudata->gtlb_want_flush = true;
2236 }
2237
2238 if (flags & NVMM_X64_STATE_SEGS) {
2239 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2240 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2241 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2242 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2243 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2244 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2245 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2246 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2247 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2248 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2249 }
2250
2251 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2252 if (flags & NVMM_X64_STATE_GPRS) {
2253 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2254
2255 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2256 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2257 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2258 }
2259
2260 if (flags & NVMM_X64_STATE_CRS) {
2261 /*
2262 * CR0_NE and CR4_VMXE are mandatory.
2263 */
2264 vmx_vmwrite(VMCS_GUEST_CR0,
2265 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2266 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2267 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2268 vmx_vmwrite(VMCS_GUEST_CR4,
2269 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2270 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2271
2272 if (vmx_xcr0_mask != 0) {
2273 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2274 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2275 cpudata->gxcr0 &= vmx_xcr0_mask;
2276 cpudata->gxcr0 |= XCR0_X87;
2277 }
2278 }
2279
2280 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2281 if (flags & NVMM_X64_STATE_DRS) {
2282 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2283
2284 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2285 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2286 }
2287
2288 if (flags & NVMM_X64_STATE_MSRS) {
2289 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2290 state->msrs[NVMM_X64_MSR_STAR];
2291 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2292 state->msrs[NVMM_X64_MSR_LSTAR];
2293 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2294 state->msrs[NVMM_X64_MSR_CSTAR];
2295 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2296 state->msrs[NVMM_X64_MSR_SFMASK];
2297 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2298 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2299
2300 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2301 state->msrs[NVMM_X64_MSR_EFER]);
2302 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2303 state->msrs[NVMM_X64_MSR_PAT]);
2304 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2305 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2306 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2307 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2308 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2309 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2310
2311 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2312 cpudata->gtsc_want_update = true;
2313
2314 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2315 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2316 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2317 ctls1 |= ENTRY_CTLS_LONG_MODE;
2318 } else {
2319 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2320 }
2321 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2322 }
2323
2324 if (flags & NVMM_X64_STATE_INTR) {
2325 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2326 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2327 if (state->intr.int_shadow) {
2328 intstate |= INT_STATE_MOVSS;
2329 }
2330 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2331
2332 if (state->intr.int_window_exiting) {
2333 vmx_event_waitexit_enable(vcpu, false);
2334 } else {
2335 vmx_event_waitexit_disable(vcpu, false);
2336 }
2337
2338 if (state->intr.nmi_window_exiting) {
2339 vmx_event_waitexit_enable(vcpu, true);
2340 } else {
2341 vmx_event_waitexit_disable(vcpu, true);
2342 }
2343 }
2344
2345 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2346 if (flags & NVMM_X64_STATE_FPU) {
2347 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2348 sizeof(state->fpu));
2349
2350 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2351 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2352 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2353
2354 if (vmx_xcr0_mask != 0) {
2355 /* Reset XSTATE_BV, to force a reload. */
2356 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2357 }
2358 }
2359
2360 vmx_vmcs_leave(vcpu);
2361
2362 comm->state_wanted = 0;
2363 comm->state_cached |= flags;
2364 }
2365
2366 static void
2367 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2368 {
2369 struct nvmm_comm_page *comm = vcpu->comm;
2370 struct nvmm_x64_state *state = &comm->state;
2371 struct vmx_cpudata *cpudata = vcpu->cpudata;
2372 uint64_t intstate, flags;
2373
2374 flags = comm->state_wanted;
2375
2376 vmx_vmcs_enter(vcpu);
2377
2378 if (flags & NVMM_X64_STATE_SEGS) {
2379 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2380 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2381 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2382 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2383 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2384 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2385 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2386 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2387 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2388 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2389 }
2390
2391 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2392 if (flags & NVMM_X64_STATE_GPRS) {
2393 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2394
2395 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2396 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2397 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2398 }
2399
2400 if (flags & NVMM_X64_STATE_CRS) {
2401 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2402 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2403 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2404 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2405 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2406 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2407
2408 /* Hide VMXE. */
2409 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2410 }
2411
2412 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2413 if (flags & NVMM_X64_STATE_DRS) {
2414 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2415
2416 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2417 }
2418
2419 if (flags & NVMM_X64_STATE_MSRS) {
2420 state->msrs[NVMM_X64_MSR_STAR] =
2421 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2422 state->msrs[NVMM_X64_MSR_LSTAR] =
2423 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2424 state->msrs[NVMM_X64_MSR_CSTAR] =
2425 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2426 state->msrs[NVMM_X64_MSR_SFMASK] =
2427 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2428 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2429 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2430 state->msrs[NVMM_X64_MSR_EFER] =
2431 vmx_vmread(VMCS_GUEST_IA32_EFER);
2432 state->msrs[NVMM_X64_MSR_PAT] =
2433 vmx_vmread(VMCS_GUEST_IA32_PAT);
2434 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2435 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2436 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2437 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2438 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2439 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2440 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2441 }
2442
2443 if (flags & NVMM_X64_STATE_INTR) {
2444 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2445 state->intr.int_shadow =
2446 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2447 state->intr.int_window_exiting = cpudata->int_window_exit;
2448 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2449 state->intr.evt_pending = cpudata->evt_pending;
2450 }
2451
2452 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2453 if (flags & NVMM_X64_STATE_FPU) {
2454 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2455 sizeof(state->fpu));
2456 }
2457
2458 vmx_vmcs_leave(vcpu);
2459
2460 comm->state_wanted = 0;
2461 comm->state_cached |= flags;
2462 }
2463
2464 static void
2465 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2466 {
2467 vcpu->comm->state_wanted = flags;
2468 vmx_vcpu_getstate(vcpu);
2469 }
2470
2471 static void
2472 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2473 {
2474 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2475 vcpu->comm->state_commit = 0;
2476 vmx_vcpu_setstate(vcpu);
2477 }
2478
2479 /* -------------------------------------------------------------------------- */
2480
2481 static void
2482 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2483 {
2484 struct vmx_cpudata *cpudata = vcpu->cpudata;
2485 size_t i, oct, bit;
2486
2487 mutex_enter(&vmx_asidlock);
2488
2489 for (i = 0; i < vmx_maxasid; i++) {
2490 oct = i / 8;
2491 bit = i % 8;
2492
2493 if (vmx_asidmap[oct] & __BIT(bit)) {
2494 continue;
2495 }
2496
2497 cpudata->asid = i;
2498
2499 vmx_asidmap[oct] |= __BIT(bit);
2500 vmx_vmwrite(VMCS_VPID, i);
2501 mutex_exit(&vmx_asidlock);
2502 return;
2503 }
2504
2505 mutex_exit(&vmx_asidlock);
2506
2507 panic("%s: impossible", __func__);
2508 }
2509
2510 static void
2511 vmx_asid_free(struct nvmm_cpu *vcpu)
2512 {
2513 size_t oct, bit;
2514 uint64_t asid;
2515
2516 asid = vmx_vmread(VMCS_VPID);
2517
2518 oct = asid / 8;
2519 bit = asid % 8;
2520
2521 mutex_enter(&vmx_asidlock);
2522 vmx_asidmap[oct] &= ~__BIT(bit);
2523 mutex_exit(&vmx_asidlock);
2524 }
2525
2526 static void
2527 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2528 {
2529 struct vmx_cpudata *cpudata = vcpu->cpudata;
2530 struct vmcs *vmcs = cpudata->vmcs;
2531 struct msr_entry *gmsr = cpudata->gmsr;
2532 extern uint8_t vmx_resume_rip;
2533 uint64_t rev, eptp;
2534
2535 rev = vmx_get_revision();
2536
2537 memset(vmcs, 0, VMCS_SIZE);
2538 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2539 vmcs->abort = 0;
2540
2541 vmx_vmcs_enter(vcpu);
2542
2543 /* No link pointer. */
2544 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2545
2546 /* Install the CTLSs. */
2547 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2548 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2549 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2550 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2551 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2552
2553 /* Allow direct access to certain MSRs. */
2554 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2555 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2556 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2557 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2558 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2559 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2560 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2561 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2562 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2563 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2564 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2565 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2566 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2567 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2568 true, false);
2569 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2570
2571 /*
2572 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2573 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2574 */
2575 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2576 gmsr[VMX_MSRLIST_STAR].val = 0;
2577 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2578 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2579 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2580 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2581 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2582 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2583 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2584 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2585 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2586 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2587 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2588 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2589 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2590 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2591
2592 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2593 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2594 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2595
2596 /* Force CR4_VMXE to zero. */
2597 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2598
2599 /* Set the Host state for resuming. */
2600 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2601 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2602 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2603 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2604 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2605 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2606 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2607 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2608 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2609 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2610 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2611 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2612 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2613 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2614
2615 /* Generate ASID. */
2616 vmx_asid_alloc(vcpu);
2617
2618 /* Enable Extended Paging, 4-Level. */
2619 eptp =
2620 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2621 __SHIFTIN(4-1, EPTP_WALKLEN) |
2622 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2623 mach->vm->vm_map.pmap->pm_pdirpa[0];
2624 vmx_vmwrite(VMCS_EPTP, eptp);
2625
2626 /* Init IA32_MISC_ENABLE. */
2627 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2628 cpudata->gmsr_misc_enable &=
2629 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2630 cpudata->gmsr_misc_enable |=
2631 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2632
2633 /* Init XSAVE header. */
2634 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2635 cpudata->gfpu.xsh_xcomp_bv = 0;
2636
2637 /* These MSRs are static. */
2638 cpudata->star = rdmsr(MSR_STAR);
2639 cpudata->cstar = rdmsr(MSR_CSTAR);
2640 cpudata->sfmask = rdmsr(MSR_SFMASK);
2641
2642 /* Install the RESET state. */
2643 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2644 sizeof(nvmm_x86_reset_state));
2645 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2646 vcpu->comm->state_cached = 0;
2647 vmx_vcpu_setstate(vcpu);
2648
2649 vmx_vmcs_leave(vcpu);
2650 }
2651
2652 static int
2653 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2654 {
2655 struct vmx_cpudata *cpudata;
2656 int error;
2657
2658 /* Allocate the VMX cpudata. */
2659 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2660 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2661 UVM_KMF_WIRED|UVM_KMF_ZERO);
2662 vcpu->cpudata = cpudata;
2663
2664 /* VMCS */
2665 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2666 VMCS_NPAGES);
2667 if (error)
2668 goto error;
2669
2670 /* MSR Bitmap */
2671 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2672 MSRBM_NPAGES);
2673 if (error)
2674 goto error;
2675
2676 /* Guest MSR List */
2677 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2678 if (error)
2679 goto error;
2680
2681 kcpuset_create(&cpudata->htlb_want_flush, true);
2682
2683 /* Init the VCPU info. */
2684 vmx_vcpu_init(mach, vcpu);
2685
2686 return 0;
2687
2688 error:
2689 if (cpudata->vmcs_pa) {
2690 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2691 VMCS_NPAGES);
2692 }
2693 if (cpudata->msrbm_pa) {
2694 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2695 MSRBM_NPAGES);
2696 }
2697 if (cpudata->gmsr_pa) {
2698 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2699 }
2700
2701 kmem_free(cpudata, sizeof(*cpudata));
2702 return error;
2703 }
2704
2705 static void
2706 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2707 {
2708 struct vmx_cpudata *cpudata = vcpu->cpudata;
2709
2710 vmx_vmcs_enter(vcpu);
2711 vmx_asid_free(vcpu);
2712 vmx_vmcs_destroy(vcpu);
2713
2714 kcpuset_destroy(cpudata->htlb_want_flush);
2715
2716 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2717 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2718 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2719 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2720 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2721 }
2722
2723 /* -------------------------------------------------------------------------- */
2724
2725 static void
2726 vmx_tlb_flush(struct pmap *pm)
2727 {
2728 struct nvmm_machine *mach = pm->pm_data;
2729 struct vmx_machdata *machdata = mach->machdata;
2730
2731 atomic_inc_64(&machdata->mach_htlb_gen);
2732
2733 /* Generates IPIs, which cause #VMEXITs. */
2734 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2735 }
2736
2737 static void
2738 vmx_machine_create(struct nvmm_machine *mach)
2739 {
2740 struct pmap *pmap = mach->vm->vm_map.pmap;
2741 struct vmx_machdata *machdata;
2742
2743 /* Convert to EPT. */
2744 pmap_ept_transform(pmap);
2745
2746 /* Fill in pmap info. */
2747 pmap->pm_data = (void *)mach;
2748 pmap->pm_tlb_flush = vmx_tlb_flush;
2749
2750 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2751 mach->machdata = machdata;
2752
2753 /* Start with an hTLB flush everywhere. */
2754 machdata->mach_htlb_gen = 1;
2755 }
2756
2757 static void
2758 vmx_machine_destroy(struct nvmm_machine *mach)
2759 {
2760 struct vmx_machdata *machdata = mach->machdata;
2761
2762 kmem_free(machdata, sizeof(struct vmx_machdata));
2763 }
2764
2765 static int
2766 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2767 {
2768 struct nvmm_x86_conf_cpuid *cpuid = data;
2769 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2770 size_t i;
2771
2772 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2773 return EINVAL;
2774 }
2775
2776 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2777 (cpuid->set.ebx & cpuid->del.ebx) ||
2778 (cpuid->set.ecx & cpuid->del.ecx) ||
2779 (cpuid->set.edx & cpuid->del.edx))) {
2780 return EINVAL;
2781 }
2782
2783 /* If already here, replace. */
2784 for (i = 0; i < VMX_NCPUIDS; i++) {
2785 if (!machdata->cpuidpresent[i]) {
2786 continue;
2787 }
2788 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2789 memcpy(&machdata->cpuid[i], cpuid,
2790 sizeof(struct nvmm_x86_conf_cpuid));
2791 return 0;
2792 }
2793 }
2794
2795 /* Not here, insert. */
2796 for (i = 0; i < VMX_NCPUIDS; i++) {
2797 if (!machdata->cpuidpresent[i]) {
2798 machdata->cpuidpresent[i] = true;
2799 memcpy(&machdata->cpuid[i], cpuid,
2800 sizeof(struct nvmm_x86_conf_cpuid));
2801 return 0;
2802 }
2803 }
2804
2805 return ENOBUFS;
2806 }
2807
2808 /* -------------------------------------------------------------------------- */
2809
2810 static int
2811 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2812 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2813 {
2814 uint64_t basic, val, true_val;
2815 bool one_allowed, zero_allowed, has_true;
2816 size_t i;
2817
2818 basic = rdmsr(MSR_IA32_VMX_BASIC);
2819 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2820
2821 val = rdmsr(msr_ctls);
2822 if (has_true) {
2823 true_val = rdmsr(msr_true_ctls);
2824 } else {
2825 true_val = val;
2826 }
2827
2828 #define ONE_ALLOWED(msrval, bitoff) \
2829 ((msrval & __BIT(32 + bitoff)) != 0)
2830 #define ZERO_ALLOWED(msrval, bitoff) \
2831 ((msrval & __BIT(bitoff)) == 0)
2832
2833 for (i = 0; i < 32; i++) {
2834 one_allowed = ONE_ALLOWED(true_val, i);
2835 zero_allowed = ZERO_ALLOWED(true_val, i);
2836
2837 if (zero_allowed && !one_allowed) {
2838 if (set_one & __BIT(i))
2839 return -1;
2840 *res &= ~__BIT(i);
2841 } else if (one_allowed && !zero_allowed) {
2842 if (set_zero & __BIT(i))
2843 return -1;
2844 *res |= __BIT(i);
2845 } else {
2846 if (set_zero & __BIT(i)) {
2847 *res &= ~__BIT(i);
2848 } else if (set_one & __BIT(i)) {
2849 *res |= __BIT(i);
2850 } else if (!has_true) {
2851 *res &= ~__BIT(i);
2852 } else if (ZERO_ALLOWED(val, i)) {
2853 *res &= ~__BIT(i);
2854 } else if (ONE_ALLOWED(val, i)) {
2855 *res |= __BIT(i);
2856 } else {
2857 return -1;
2858 }
2859 }
2860 }
2861
2862 return 0;
2863 }
2864
2865 static bool
2866 vmx_ident(void)
2867 {
2868 uint64_t msr;
2869 int ret;
2870
2871 if (!(cpu_feature[1] & CPUID2_VMX)) {
2872 return false;
2873 }
2874
2875 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2876 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2877 return false;
2878 }
2879
2880 msr = rdmsr(MSR_IA32_VMX_BASIC);
2881 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2882 return false;
2883 }
2884 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2885 return false;
2886 }
2887
2888 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2889 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2890 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2891 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2892 if (ret == -1) {
2893 return false;
2894 }
2895
2896 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2897 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2898 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2899 if (ret == -1) {
2900 return false;
2901 }
2902
2903 /* Init the CTLSs right now, and check for errors. */
2904 ret = vmx_init_ctls(
2905 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2906 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2907 &vmx_pinbased_ctls);
2908 if (ret == -1) {
2909 return false;
2910 }
2911 ret = vmx_init_ctls(
2912 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2913 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2914 &vmx_procbased_ctls);
2915 if (ret == -1) {
2916 return false;
2917 }
2918 ret = vmx_init_ctls(
2919 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2920 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2921 &vmx_procbased_ctls2);
2922 if (ret == -1) {
2923 return false;
2924 }
2925 ret = vmx_init_ctls(
2926 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2927 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2928 &vmx_entry_ctls);
2929 if (ret == -1) {
2930 return false;
2931 }
2932 ret = vmx_init_ctls(
2933 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2934 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2935 &vmx_exit_ctls);
2936 if (ret == -1) {
2937 return false;
2938 }
2939
2940 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2941 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2942 return false;
2943 }
2944 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2945 return false;
2946 }
2947 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2948 return false;
2949 }
2950 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2951 pmap_ept_has_ad = true;
2952 } else {
2953 pmap_ept_has_ad = false;
2954 }
2955 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2956 return false;
2957 }
2958
2959 return true;
2960 }
2961
2962 static void
2963 vmx_init_asid(uint32_t maxasid)
2964 {
2965 size_t allocsz;
2966
2967 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2968
2969 vmx_maxasid = maxasid;
2970 allocsz = roundup(maxasid, 8) / 8;
2971 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2972
2973 /* ASID 0 is reserved for the host. */
2974 vmx_asidmap[0] |= __BIT(0);
2975 }
2976
2977 static void
2978 vmx_change_cpu(void *arg1, void *arg2)
2979 {
2980 struct cpu_info *ci = curcpu();
2981 bool enable = (bool)arg1;
2982 uint64_t cr4;
2983
2984 if (!enable) {
2985 vmx_vmxoff();
2986 }
2987
2988 cr4 = rcr4();
2989 if (enable) {
2990 cr4 |= CR4_VMXE;
2991 } else {
2992 cr4 &= ~CR4_VMXE;
2993 }
2994 lcr4(cr4);
2995
2996 if (enable) {
2997 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2998 }
2999 }
3000
3001 static void
3002 vmx_init_l1tf(void)
3003 {
3004 u_int descs[4];
3005 uint64_t msr;
3006
3007 if (cpuid_level < 7) {
3008 return;
3009 }
3010
3011 x86_cpuid(7, descs);
3012
3013 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3014 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3015 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3016 /* No mitigation needed. */
3017 return;
3018 }
3019 }
3020
3021 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3022 /* Enable hardware mitigation. */
3023 vmx_msrlist_entry_nmsr += 1;
3024 }
3025 }
3026
3027 static void
3028 vmx_init(void)
3029 {
3030 CPU_INFO_ITERATOR cii;
3031 struct cpu_info *ci;
3032 uint64_t xc, msr;
3033 struct vmxon *vmxon;
3034 uint32_t revision;
3035 paddr_t pa;
3036 vaddr_t va;
3037 int error;
3038
3039 /* Init the ASID bitmap (VPID). */
3040 vmx_init_asid(VPID_MAX);
3041
3042 /* Init the XCR0 mask. */
3043 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3044
3045 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3046 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3047 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3048 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3049 } else {
3050 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3051 }
3052 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3053 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3054 } else {
3055 vmx_ept_flush_op = VMX_INVEPT_ALL;
3056 }
3057 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3058 vmx_eptp_type = EPTP_TYPE_WB;
3059 } else {
3060 vmx_eptp_type = EPTP_TYPE_UC;
3061 }
3062
3063 /* Init the L1TF mitigation. */
3064 vmx_init_l1tf();
3065
3066 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3067 revision = vmx_get_revision();
3068
3069 for (CPU_INFO_FOREACH(cii, ci)) {
3070 error = vmx_memalloc(&pa, &va, 1);
3071 if (error) {
3072 panic("%s: out of memory", __func__);
3073 }
3074 vmxoncpu[cpu_index(ci)].pa = pa;
3075 vmxoncpu[cpu_index(ci)].va = va;
3076
3077 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3078 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3079 }
3080
3081 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3082 xc_wait(xc);
3083 }
3084
3085 static void
3086 vmx_fini_asid(void)
3087 {
3088 size_t allocsz;
3089
3090 allocsz = roundup(vmx_maxasid, 8) / 8;
3091 kmem_free(vmx_asidmap, allocsz);
3092
3093 mutex_destroy(&vmx_asidlock);
3094 }
3095
3096 static void
3097 vmx_fini(void)
3098 {
3099 uint64_t xc;
3100 size_t i;
3101
3102 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3103 xc_wait(xc);
3104
3105 for (i = 0; i < MAXCPUS; i++) {
3106 if (vmxoncpu[i].pa != 0)
3107 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3108 }
3109
3110 vmx_fini_asid();
3111 }
3112
3113 static void
3114 vmx_capability(struct nvmm_capability *cap)
3115 {
3116 cap->arch.xcr0_mask = vmx_xcr0_mask;
3117 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3118 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3119 }
3120
3121 const struct nvmm_impl nvmm_x86_vmx = {
3122 .ident = vmx_ident,
3123 .init = vmx_init,
3124 .fini = vmx_fini,
3125 .capability = vmx_capability,
3126 .conf_max = NVMM_X86_NCONF,
3127 .conf_sizes = vmx_conf_sizes,
3128 .state_size = sizeof(struct nvmm_x64_state),
3129 .machine_create = vmx_machine_create,
3130 .machine_destroy = vmx_machine_destroy,
3131 .machine_configure = vmx_machine_configure,
3132 .vcpu_create = vmx_vcpu_create,
3133 .vcpu_destroy = vmx_vcpu_destroy,
3134 .vcpu_setstate = vmx_vcpu_setstate,
3135 .vcpu_getstate = vmx_vcpu_getstate,
3136 .vcpu_inject = vmx_vcpu_inject,
3137 .vcpu_run = vmx_vcpu_run
3138 };
3139