nvmm_x86_vmx.c revision 1.33 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.33 2019/05/01 09:20:21 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.33 2019/05/01 09:20:21 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 bool cpuidpresent[VMX_NCPUIDS];
701 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
706 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
707 };
708
709 struct vmx_cpudata {
710 /* General */
711 uint64_t asid;
712 bool gtlb_want_flush;
713 bool gtsc_want_update;
714 uint64_t vcpu_htlb_gen;
715 kcpuset_t *htlb_want_flush;
716
717 /* VMCS */
718 struct vmcs *vmcs;
719 paddr_t vmcs_pa;
720 size_t vmcs_refcnt;
721 struct cpu_info *vmcs_ci;
722 bool vmcs_launched;
723
724 /* MSR bitmap */
725 uint8_t *msrbm;
726 paddr_t msrbm_pa;
727
728 /* Host state */
729 uint64_t hxcr0;
730 uint64_t star;
731 uint64_t lstar;
732 uint64_t cstar;
733 uint64_t sfmask;
734 uint64_t kernelgsbase;
735 bool ts_set;
736 struct xsave_header hfpu __aligned(64);
737
738 /* Intr state */
739 bool int_window_exit;
740 bool nmi_window_exit;
741 bool evt_pending;
742
743 /* Guest state */
744 struct msr_entry *gmsr;
745 paddr_t gmsr_pa;
746 uint64_t gmsr_misc_enable;
747 uint64_t gcr2;
748 uint64_t gcr8;
749 uint64_t gxcr0;
750 uint64_t gprs[NVMM_X64_NGPR];
751 uint64_t drs[NVMM_X64_NDR];
752 uint64_t gtsc;
753 struct xsave_header gfpu __aligned(64);
754 };
755
756 static const struct {
757 uint64_t selector;
758 uint64_t attrib;
759 uint64_t limit;
760 uint64_t base;
761 } vmx_guest_segs[NVMM_X64_NSEG] = {
762 [NVMM_X64_SEG_ES] = {
763 VMCS_GUEST_ES_SELECTOR,
764 VMCS_GUEST_ES_ACCESS_RIGHTS,
765 VMCS_GUEST_ES_LIMIT,
766 VMCS_GUEST_ES_BASE
767 },
768 [NVMM_X64_SEG_CS] = {
769 VMCS_GUEST_CS_SELECTOR,
770 VMCS_GUEST_CS_ACCESS_RIGHTS,
771 VMCS_GUEST_CS_LIMIT,
772 VMCS_GUEST_CS_BASE
773 },
774 [NVMM_X64_SEG_SS] = {
775 VMCS_GUEST_SS_SELECTOR,
776 VMCS_GUEST_SS_ACCESS_RIGHTS,
777 VMCS_GUEST_SS_LIMIT,
778 VMCS_GUEST_SS_BASE
779 },
780 [NVMM_X64_SEG_DS] = {
781 VMCS_GUEST_DS_SELECTOR,
782 VMCS_GUEST_DS_ACCESS_RIGHTS,
783 VMCS_GUEST_DS_LIMIT,
784 VMCS_GUEST_DS_BASE
785 },
786 [NVMM_X64_SEG_FS] = {
787 VMCS_GUEST_FS_SELECTOR,
788 VMCS_GUEST_FS_ACCESS_RIGHTS,
789 VMCS_GUEST_FS_LIMIT,
790 VMCS_GUEST_FS_BASE
791 },
792 [NVMM_X64_SEG_GS] = {
793 VMCS_GUEST_GS_SELECTOR,
794 VMCS_GUEST_GS_ACCESS_RIGHTS,
795 VMCS_GUEST_GS_LIMIT,
796 VMCS_GUEST_GS_BASE
797 },
798 [NVMM_X64_SEG_GDT] = {
799 0, /* doesn't exist */
800 0, /* doesn't exist */
801 VMCS_GUEST_GDTR_LIMIT,
802 VMCS_GUEST_GDTR_BASE
803 },
804 [NVMM_X64_SEG_IDT] = {
805 0, /* doesn't exist */
806 0, /* doesn't exist */
807 VMCS_GUEST_IDTR_LIMIT,
808 VMCS_GUEST_IDTR_BASE
809 },
810 [NVMM_X64_SEG_LDT] = {
811 VMCS_GUEST_LDTR_SELECTOR,
812 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
813 VMCS_GUEST_LDTR_LIMIT,
814 VMCS_GUEST_LDTR_BASE
815 },
816 [NVMM_X64_SEG_TR] = {
817 VMCS_GUEST_TR_SELECTOR,
818 VMCS_GUEST_TR_ACCESS_RIGHTS,
819 VMCS_GUEST_TR_LIMIT,
820 VMCS_GUEST_TR_BASE
821 }
822 };
823
824 /* -------------------------------------------------------------------------- */
825
826 static uint64_t
827 vmx_get_revision(void)
828 {
829 uint64_t msr;
830
831 msr = rdmsr(MSR_IA32_VMX_BASIC);
832 msr &= IA32_VMX_BASIC_IDENT;
833
834 return msr;
835 }
836
837 static void
838 vmx_vmclear_ipi(void *arg1, void *arg2)
839 {
840 paddr_t vmcs_pa = (paddr_t)arg1;
841 vmx_vmclear(&vmcs_pa);
842 }
843
844 static void
845 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
846 {
847 uint64_t xc;
848 int bound;
849
850 KASSERT(kpreempt_disabled());
851
852 bound = curlwp_bind();
853 kpreempt_enable();
854
855 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
856 xc_wait(xc);
857
858 kpreempt_disable();
859 curlwp_bindx(bound);
860 }
861
862 static void
863 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
864 {
865 struct vmx_cpudata *cpudata = vcpu->cpudata;
866 struct cpu_info *vmcs_ci;
867 paddr_t oldpa __diagused;
868
869 cpudata->vmcs_refcnt++;
870 if (cpudata->vmcs_refcnt > 1) {
871 #ifdef DIAGNOSTIC
872 KASSERT(kpreempt_disabled());
873 oldpa = vmx_vmptrst();
874 KASSERT(oldpa == cpudata->vmcs_pa);
875 #endif
876 return;
877 }
878
879 vmcs_ci = cpudata->vmcs_ci;
880 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
881
882 kpreempt_disable();
883
884 if (vmcs_ci == NULL) {
885 /* This VMCS is loaded for the first time. */
886 vmx_vmclear(&cpudata->vmcs_pa);
887 cpudata->vmcs_launched = false;
888 } else if (vmcs_ci != curcpu()) {
889 /* This VMCS is active on a remote CPU. */
890 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else {
893 /* This VMCS is active on curcpu, nothing to do. */
894 }
895
896 vmx_vmptrld(&cpudata->vmcs_pa);
897 }
898
899 static void
900 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
901 {
902 struct vmx_cpudata *cpudata = vcpu->cpudata;
903
904 KASSERT(kpreempt_disabled());
905 #ifdef DIAGNOSTIC
906 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
907 #endif
908 KASSERT(cpudata->vmcs_refcnt > 0);
909 cpudata->vmcs_refcnt--;
910
911 if (cpudata->vmcs_refcnt > 0) {
912 return;
913 }
914
915 cpudata->vmcs_ci = curcpu();
916 kpreempt_enable();
917 }
918
919 static void
920 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
921 {
922 struct vmx_cpudata *cpudata = vcpu->cpudata;
923
924 KASSERT(kpreempt_disabled());
925 #ifdef DIAGNOSTIC
926 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
927 #endif
928 KASSERT(cpudata->vmcs_refcnt == 1);
929 cpudata->vmcs_refcnt--;
930
931 vmx_vmclear(&cpudata->vmcs_pa);
932 kpreempt_enable();
933 }
934
935 /* -------------------------------------------------------------------------- */
936
937 static void
938 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
939 {
940 struct vmx_cpudata *cpudata = vcpu->cpudata;
941 uint64_t ctls1;
942
943 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
944
945 if (nmi) {
946 // XXX INT_STATE_NMI?
947 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
948 cpudata->nmi_window_exit = true;
949 } else {
950 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
951 cpudata->int_window_exit = true;
952 }
953
954 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
955 }
956
957 static void
958 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
959 {
960 struct vmx_cpudata *cpudata = vcpu->cpudata;
961 uint64_t ctls1;
962
963 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
964
965 if (nmi) {
966 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
967 cpudata->nmi_window_exit = false;
968 } else {
969 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
970 cpudata->int_window_exit = false;
971 }
972
973 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
974 }
975
976 static inline int
977 vmx_event_has_error(uint64_t vector)
978 {
979 switch (vector) {
980 case 8: /* #DF */
981 case 10: /* #TS */
982 case 11: /* #NP */
983 case 12: /* #SS */
984 case 13: /* #GP */
985 case 14: /* #PF */
986 case 17: /* #AC */
987 case 30: /* #SX */
988 return 1;
989 default:
990 return 0;
991 }
992 }
993
994 static int
995 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
996 {
997 struct nvmm_comm_page *comm = vcpu->comm;
998 struct vmx_cpudata *cpudata = vcpu->cpudata;
999 int type = 0, err = 0, ret = EINVAL;
1000 enum nvmm_event_type evtype;
1001 uint64_t info, vector, error;
1002
1003 evtype = comm->event.type;
1004 vector = comm->event.vector;
1005 error = comm->event.u.error;
1006 __insn_barrier();
1007
1008 if (__predict_false(vector >= 256)) {
1009 return EINVAL;
1010 }
1011
1012 vmx_vmcs_enter(vcpu);
1013
1014 switch (evtype) {
1015 case NVMM_EVENT_INTERRUPT_HW:
1016 type = INTR_TYPE_EXT_INT;
1017 if (vector == 2) {
1018 type = INTR_TYPE_NMI;
1019 vmx_event_waitexit_enable(vcpu, true);
1020 }
1021 err = 0;
1022 break;
1023 case NVMM_EVENT_EXCEPTION:
1024 if (vector == 2 || vector >= 32)
1025 goto out;
1026 if (vector == 3 || vector == 0)
1027 goto out;
1028 type = INTR_TYPE_HW_EXC;
1029 err = vmx_event_has_error(vector);
1030 break;
1031 default:
1032 goto out;
1033 }
1034
1035 info =
1036 __SHIFTIN(vector, INTR_INFO_VECTOR) |
1037 __SHIFTIN(type, INTR_INFO_TYPE) |
1038 __SHIFTIN(err, INTR_INFO_ERROR) |
1039 __SHIFTIN(1, INTR_INFO_VALID);
1040 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1041 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1042
1043 cpudata->evt_pending = true;
1044 ret = 0;
1045
1046 out:
1047 vmx_vmcs_leave(vcpu);
1048 return ret;
1049 }
1050
1051 static void
1052 vmx_inject_ud(struct nvmm_cpu *vcpu)
1053 {
1054 struct nvmm_comm_page *comm = vcpu->comm;
1055 int ret __diagused;
1056
1057 comm->event.type = NVMM_EVENT_EXCEPTION;
1058 comm->event.vector = 6;
1059 comm->event.u.error = 0;
1060
1061 ret = vmx_vcpu_inject(vcpu);
1062 KASSERT(ret == 0);
1063 }
1064
1065 static void
1066 vmx_inject_gp(struct nvmm_cpu *vcpu)
1067 {
1068 struct nvmm_comm_page *comm = vcpu->comm;
1069 int ret __diagused;
1070
1071 comm->event.type = NVMM_EVENT_EXCEPTION;
1072 comm->event.vector = 13;
1073 comm->event.u.error = 0;
1074
1075 ret = vmx_vcpu_inject(vcpu);
1076 KASSERT(ret == 0);
1077 }
1078
1079 static inline int
1080 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1081 {
1082 if (__predict_true(!vcpu->comm->event_commit)) {
1083 return 0;
1084 }
1085 vcpu->comm->event_commit = false;
1086 return vmx_vcpu_inject(vcpu);
1087 }
1088
1089 static inline void
1090 vmx_inkernel_advance(void)
1091 {
1092 uint64_t rip, inslen, intstate;
1093
1094 /*
1095 * Maybe we should also apply single-stepping and debug exceptions.
1096 * Matters for guest-ring3, because it can execute 'cpuid' under a
1097 * debugger.
1098 */
1099 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1100 rip = vmx_vmread(VMCS_GUEST_RIP);
1101 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1102 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1103 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1104 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1105 }
1106
1107 static void
1108 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1109 struct nvmm_exit *exit)
1110 {
1111 uint64_t qual;
1112
1113 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1114
1115 if ((qual & INTR_INFO_VALID) == 0) {
1116 goto error;
1117 }
1118 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1119 goto error;
1120 }
1121
1122 exit->reason = NVMM_EXIT_NONE;
1123 return;
1124
1125 error:
1126 exit->reason = NVMM_EXIT_INVALID;
1127 }
1128
1129 static void
1130 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1131 {
1132 struct vmx_cpudata *cpudata = vcpu->cpudata;
1133 uint64_t cr4;
1134
1135 switch (eax) {
1136 case 0x00000001:
1137 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1138
1139 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1140 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1141 CPUID_LOCAL_APIC_ID);
1142
1143 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1144 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1145
1146 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1147
1148 /* CPUID2_OSXSAVE depends on CR4. */
1149 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1150 if (!(cr4 & CR4_OSXSAVE)) {
1151 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1152 }
1153 break;
1154 case 0x00000005:
1155 case 0x00000006:
1156 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1157 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1158 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1159 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1160 break;
1161 case 0x00000007:
1162 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1163 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1164 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1165 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1166 break;
1167 case 0x0000000D:
1168 if (vmx_xcr0_mask == 0) {
1169 break;
1170 }
1171 switch (ecx) {
1172 case 0:
1173 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1174 if (cpudata->gxcr0 & XCR0_SSE) {
1175 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1176 } else {
1177 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1178 }
1179 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1180 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1181 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1182 break;
1183 case 1:
1184 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1185 break;
1186 }
1187 break;
1188 case 0x40000000:
1189 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1190 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1191 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1192 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1193 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1194 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1195 break;
1196 case 0x80000001:
1197 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1198 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1199 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1200 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1201 break;
1202 default:
1203 break;
1204 }
1205 }
1206
1207 static void
1208 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1209 struct nvmm_exit *exit)
1210 {
1211 struct vmx_machdata *machdata = mach->machdata;
1212 struct vmx_cpudata *cpudata = vcpu->cpudata;
1213 struct nvmm_x86_conf_cpuid *cpuid;
1214 uint64_t eax, ecx;
1215 u_int descs[4];
1216 size_t i;
1217
1218 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1219 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1220 x86_cpuid2(eax, ecx, descs);
1221
1222 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1223 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1224 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1225 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1226
1227 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1228
1229 for (i = 0; i < VMX_NCPUIDS; i++) {
1230 cpuid = &machdata->cpuid[i];
1231 if (!machdata->cpuidpresent[i]) {
1232 continue;
1233 }
1234 if (cpuid->leaf != eax) {
1235 continue;
1236 }
1237
1238 /* del */
1239 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1240 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1241 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1242 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1243
1244 /* set */
1245 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1246 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1247 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1248 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1249
1250 break;
1251 }
1252
1253 vmx_inkernel_advance();
1254 exit->reason = NVMM_EXIT_NONE;
1255 }
1256
1257 static void
1258 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1259 struct nvmm_exit *exit)
1260 {
1261 struct vmx_cpudata *cpudata = vcpu->cpudata;
1262 uint64_t rflags;
1263
1264 if (cpudata->int_window_exit) {
1265 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1266 if (rflags & PSL_I) {
1267 vmx_event_waitexit_disable(vcpu, false);
1268 }
1269 }
1270
1271 vmx_inkernel_advance();
1272 exit->reason = NVMM_EXIT_HALTED;
1273 }
1274
1275 #define VMX_QUAL_CR_NUM __BITS(3,0)
1276 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1277 #define CR_TYPE_WRITE 0
1278 #define CR_TYPE_READ 1
1279 #define CR_TYPE_CLTS 2
1280 #define CR_TYPE_LMSW 3
1281 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1282 #define VMX_QUAL_CR_GPR __BITS(11,8)
1283 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1284
1285 static inline int
1286 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1287 {
1288 /* Bits set to 1 in fixed0 are fixed to 1. */
1289 if ((crval & fixed0) != fixed0) {
1290 return -1;
1291 }
1292 /* Bits set to 0 in fixed1 are fixed to 0. */
1293 if (crval & ~fixed1) {
1294 return -1;
1295 }
1296 return 0;
1297 }
1298
1299 static int
1300 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1301 uint64_t qual)
1302 {
1303 struct vmx_cpudata *cpudata = vcpu->cpudata;
1304 uint64_t type, gpr, cr0;
1305 uint64_t efer, ctls1;
1306
1307 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1308 if (type != CR_TYPE_WRITE) {
1309 return -1;
1310 }
1311
1312 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1313 KASSERT(gpr < 16);
1314
1315 if (gpr == NVMM_X64_GPR_RSP) {
1316 gpr = vmx_vmread(VMCS_GUEST_RSP);
1317 } else {
1318 gpr = cpudata->gprs[gpr];
1319 }
1320
1321 cr0 = gpr | CR0_NE | CR0_ET;
1322 cr0 &= ~(CR0_NW|CR0_CD);
1323
1324 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1325 return -1;
1326 }
1327
1328 /*
1329 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1330 * from CR3.
1331 */
1332
1333 if (cr0 & CR0_PG) {
1334 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1335 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1336 if (efer & EFER_LME) {
1337 ctls1 |= ENTRY_CTLS_LONG_MODE;
1338 efer |= EFER_LMA;
1339 } else {
1340 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1341 efer &= ~EFER_LMA;
1342 }
1343 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1344 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1345 }
1346
1347 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1348 vmx_inkernel_advance();
1349 return 0;
1350 }
1351
1352 static int
1353 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1354 uint64_t qual)
1355 {
1356 struct vmx_cpudata *cpudata = vcpu->cpudata;
1357 uint64_t type, gpr, cr4;
1358
1359 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1360 if (type != CR_TYPE_WRITE) {
1361 return -1;
1362 }
1363
1364 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1365 KASSERT(gpr < 16);
1366
1367 if (gpr == NVMM_X64_GPR_RSP) {
1368 gpr = vmx_vmread(VMCS_GUEST_RSP);
1369 } else {
1370 gpr = cpudata->gprs[gpr];
1371 }
1372
1373 cr4 = gpr | CR4_VMXE;
1374
1375 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1376 return -1;
1377 }
1378
1379 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1380 vmx_inkernel_advance();
1381 return 0;
1382 }
1383
1384 static int
1385 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1386 uint64_t qual)
1387 {
1388 struct vmx_cpudata *cpudata = vcpu->cpudata;
1389 uint64_t type, gpr;
1390 bool write;
1391
1392 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1393 if (type == CR_TYPE_WRITE) {
1394 write = true;
1395 } else if (type == CR_TYPE_READ) {
1396 write = false;
1397 } else {
1398 return -1;
1399 }
1400
1401 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1402 KASSERT(gpr < 16);
1403
1404 if (write) {
1405 if (gpr == NVMM_X64_GPR_RSP) {
1406 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1407 } else {
1408 cpudata->gcr8 = cpudata->gprs[gpr];
1409 }
1410 } else {
1411 if (gpr == NVMM_X64_GPR_RSP) {
1412 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1413 } else {
1414 cpudata->gprs[gpr] = cpudata->gcr8;
1415 }
1416 }
1417
1418 vmx_inkernel_advance();
1419 return 0;
1420 }
1421
1422 static void
1423 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1424 struct nvmm_exit *exit)
1425 {
1426 uint64_t qual;
1427 int ret;
1428
1429 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1430
1431 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1432 case 0:
1433 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1434 break;
1435 case 4:
1436 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1437 break;
1438 case 8:
1439 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1440 break;
1441 default:
1442 ret = -1;
1443 break;
1444 }
1445
1446 if (ret == -1) {
1447 vmx_inject_gp(vcpu);
1448 }
1449
1450 exit->reason = NVMM_EXIT_NONE;
1451 }
1452
1453 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1454 #define IO_SIZE_8 0
1455 #define IO_SIZE_16 1
1456 #define IO_SIZE_32 3
1457 #define VMX_QUAL_IO_IN __BIT(3)
1458 #define VMX_QUAL_IO_STR __BIT(4)
1459 #define VMX_QUAL_IO_REP __BIT(5)
1460 #define VMX_QUAL_IO_DX __BIT(6)
1461 #define VMX_QUAL_IO_PORT __BITS(31,16)
1462
1463 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1464 #define IO_ADRSIZE_16 0
1465 #define IO_ADRSIZE_32 1
1466 #define IO_ADRSIZE_64 2
1467 #define VMX_INFO_IO_SEG __BITS(17,15)
1468
1469 static void
1470 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1471 struct nvmm_exit *exit)
1472 {
1473 uint64_t qual, info, inslen, rip;
1474
1475 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1476 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1477
1478 exit->reason = NVMM_EXIT_IO;
1479
1480 if (qual & VMX_QUAL_IO_IN) {
1481 exit->u.io.type = NVMM_EXIT_IO_IN;
1482 } else {
1483 exit->u.io.type = NVMM_EXIT_IO_OUT;
1484 }
1485
1486 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1487
1488 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1489 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1490
1491 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1492 exit->u.io.address_size = 8;
1493 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1494 exit->u.io.address_size = 4;
1495 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1496 exit->u.io.address_size = 2;
1497 }
1498
1499 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1500 exit->u.io.operand_size = 4;
1501 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1502 exit->u.io.operand_size = 2;
1503 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1504 exit->u.io.operand_size = 1;
1505 }
1506
1507 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1508 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1509
1510 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1511 exit->u.io.seg = NVMM_X64_SEG_ES;
1512 }
1513
1514 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1515 rip = vmx_vmread(VMCS_GUEST_RIP);
1516 exit->u.io.npc = rip + inslen;
1517
1518 vmx_vcpu_state_provide(vcpu,
1519 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1520 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1521 }
1522
1523 static const uint64_t msr_ignore_list[] = {
1524 MSR_BIOS_SIGN,
1525 MSR_IA32_PLATFORM_ID
1526 };
1527
1528 static bool
1529 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1530 struct nvmm_exit *exit)
1531 {
1532 struct vmx_cpudata *cpudata = vcpu->cpudata;
1533 uint64_t val;
1534 size_t i;
1535
1536 switch (exit->u.msr.type) {
1537 case NVMM_EXIT_MSR_RDMSR:
1538 if (exit->u.msr.msr == MSR_CR_PAT) {
1539 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1540 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1541 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1542 goto handled;
1543 }
1544 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1545 val = cpudata->gmsr_misc_enable;
1546 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1547 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1548 goto handled;
1549 }
1550 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1551 if (msr_ignore_list[i] != exit->u.msr.msr)
1552 continue;
1553 val = 0;
1554 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1555 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1556 goto handled;
1557 }
1558 break;
1559 case NVMM_EXIT_MSR_WRMSR:
1560 if (exit->u.msr.msr == MSR_TSC) {
1561 cpudata->gtsc = exit->u.msr.val;
1562 cpudata->gtsc_want_update = true;
1563 goto handled;
1564 }
1565 if (exit->u.msr.msr == MSR_CR_PAT) {
1566 val = exit->u.msr.val;
1567 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1568 goto error;
1569 }
1570 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1571 goto handled;
1572 }
1573 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1574 /* Don't care. */
1575 goto handled;
1576 }
1577 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1578 if (msr_ignore_list[i] != exit->u.msr.msr)
1579 continue;
1580 goto handled;
1581 }
1582 break;
1583 }
1584
1585 return false;
1586
1587 handled:
1588 vmx_inkernel_advance();
1589 return true;
1590
1591 error:
1592 vmx_inject_gp(vcpu);
1593 return true;
1594 }
1595
1596 static void
1597 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1598 struct nvmm_exit *exit, bool rdmsr)
1599 {
1600 struct vmx_cpudata *cpudata = vcpu->cpudata;
1601 uint64_t inslen, rip;
1602
1603 if (rdmsr) {
1604 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1605 } else {
1606 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1607 }
1608
1609 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1610
1611 if (rdmsr) {
1612 exit->u.msr.val = 0;
1613 } else {
1614 uint64_t rdx, rax;
1615 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1616 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1617 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1618 }
1619
1620 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1621 exit->reason = NVMM_EXIT_NONE;
1622 return;
1623 }
1624
1625 exit->reason = NVMM_EXIT_MSR;
1626 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1627 rip = vmx_vmread(VMCS_GUEST_RIP);
1628 exit->u.msr.npc = rip + inslen;
1629
1630 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1631 }
1632
1633 static void
1634 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1635 struct nvmm_exit *exit)
1636 {
1637 struct vmx_cpudata *cpudata = vcpu->cpudata;
1638 uint16_t val;
1639
1640 exit->reason = NVMM_EXIT_NONE;
1641
1642 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1643 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1644
1645 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1646 goto error;
1647 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1648 goto error;
1649 } else if (__predict_false((val & XCR0_X87) == 0)) {
1650 goto error;
1651 }
1652
1653 cpudata->gxcr0 = val;
1654
1655 vmx_inkernel_advance();
1656 return;
1657
1658 error:
1659 vmx_inject_gp(vcpu);
1660 }
1661
1662 #define VMX_EPT_VIOLATION_READ __BIT(0)
1663 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1664 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1665
1666 static void
1667 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1668 struct nvmm_exit *exit)
1669 {
1670 uint64_t perm;
1671 gpaddr_t gpa;
1672
1673 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1674
1675 exit->reason = NVMM_EXIT_MEMORY;
1676 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1677 if (perm & VMX_EPT_VIOLATION_WRITE)
1678 exit->u.mem.prot = PROT_WRITE;
1679 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1680 exit->u.mem.prot = PROT_EXEC;
1681 else
1682 exit->u.mem.prot = PROT_READ;
1683 exit->u.mem.gpa = gpa;
1684 exit->u.mem.inst_len = 0;
1685
1686 vmx_vcpu_state_provide(vcpu,
1687 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1688 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1689 }
1690
1691 static void
1692 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1693 {
1694 exit->u.inv.hwcode = code;
1695 exit->reason = NVMM_EXIT_INVALID;
1696 }
1697
1698 /* -------------------------------------------------------------------------- */
1699
1700 static void
1701 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1702 {
1703 struct vmx_cpudata *cpudata = vcpu->cpudata;
1704
1705 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1706
1707 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1708 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1709
1710 if (vmx_xcr0_mask != 0) {
1711 cpudata->hxcr0 = rdxcr(0);
1712 wrxcr(0, cpudata->gxcr0);
1713 }
1714 }
1715
1716 static void
1717 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1718 {
1719 struct vmx_cpudata *cpudata = vcpu->cpudata;
1720
1721 if (vmx_xcr0_mask != 0) {
1722 cpudata->gxcr0 = rdxcr(0);
1723 wrxcr(0, cpudata->hxcr0);
1724 }
1725
1726 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1727 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1728
1729 if (cpudata->ts_set) {
1730 stts();
1731 }
1732 }
1733
1734 static void
1735 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1736 {
1737 struct vmx_cpudata *cpudata = vcpu->cpudata;
1738
1739 x86_dbregs_save(curlwp);
1740
1741 ldr7(0);
1742
1743 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1744 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1745 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1746 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1747 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1748 }
1749
1750 static void
1751 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1752 {
1753 struct vmx_cpudata *cpudata = vcpu->cpudata;
1754
1755 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1756 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1757 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1758 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1759 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1760
1761 x86_dbregs_restore(curlwp);
1762 }
1763
1764 static void
1765 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1766 {
1767 struct vmx_cpudata *cpudata = vcpu->cpudata;
1768
1769 /* This gets restored automatically by the CPU. */
1770 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1771 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1772 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1773
1774 /* Note: MSR_LSTAR is not static, because of SVS. */
1775 cpudata->lstar = rdmsr(MSR_LSTAR);
1776 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1777 }
1778
1779 static void
1780 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1781 {
1782 struct vmx_cpudata *cpudata = vcpu->cpudata;
1783
1784 wrmsr(MSR_STAR, cpudata->star);
1785 wrmsr(MSR_LSTAR, cpudata->lstar);
1786 wrmsr(MSR_CSTAR, cpudata->cstar);
1787 wrmsr(MSR_SFMASK, cpudata->sfmask);
1788 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1789 }
1790
1791 /* -------------------------------------------------------------------------- */
1792
1793 #define VMX_INVVPID_ADDRESS 0
1794 #define VMX_INVVPID_CONTEXT 1
1795 #define VMX_INVVPID_ALL 2
1796 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1797
1798 #define VMX_INVEPT_CONTEXT 1
1799 #define VMX_INVEPT_ALL 2
1800
1801 static inline void
1802 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1803 {
1804 struct vmx_cpudata *cpudata = vcpu->cpudata;
1805
1806 if (vcpu->hcpu_last != hcpu) {
1807 cpudata->gtlb_want_flush = true;
1808 }
1809 }
1810
1811 static inline void
1812 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1813 {
1814 struct vmx_cpudata *cpudata = vcpu->cpudata;
1815 struct ept_desc ept_desc;
1816
1817 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1818 return;
1819 }
1820
1821 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1822 ept_desc.mbz = 0;
1823 vmx_invept(vmx_ept_flush_op, &ept_desc);
1824 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1825 }
1826
1827 static inline uint64_t
1828 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1829 {
1830 struct ept_desc ept_desc;
1831 uint64_t machgen;
1832
1833 machgen = machdata->mach_htlb_gen;
1834 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1835 return machgen;
1836 }
1837
1838 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1839
1840 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1841 ept_desc.mbz = 0;
1842 vmx_invept(vmx_ept_flush_op, &ept_desc);
1843
1844 return machgen;
1845 }
1846
1847 static inline void
1848 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1849 {
1850 cpudata->vcpu_htlb_gen = machgen;
1851 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1852 }
1853
1854 static inline void
1855 vmx_exit_evt(struct vmx_cpudata *cpudata)
1856 {
1857 uint64_t info, err;
1858
1859 cpudata->evt_pending = false;
1860
1861 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1862 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1863 return;
1864 }
1865 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1866
1867 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1868 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1869
1870 cpudata->evt_pending = true;
1871 }
1872
1873 static int
1874 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1875 struct nvmm_exit *exit)
1876 {
1877 struct nvmm_comm_page *comm = vcpu->comm;
1878 struct vmx_machdata *machdata = mach->machdata;
1879 struct vmx_cpudata *cpudata = vcpu->cpudata;
1880 struct vpid_desc vpid_desc;
1881 struct cpu_info *ci;
1882 uint64_t exitcode;
1883 uint64_t intstate;
1884 uint64_t machgen;
1885 int hcpu, s, ret;
1886 bool launched;
1887
1888 vmx_vmcs_enter(vcpu);
1889
1890 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1891 vmx_vmcs_leave(vcpu);
1892 return EINVAL;
1893 }
1894 vmx_vcpu_state_commit(vcpu);
1895 comm->state_cached = 0;
1896
1897 ci = curcpu();
1898 hcpu = cpu_number();
1899 launched = cpudata->vmcs_launched;
1900
1901 vmx_gtlb_catchup(vcpu, hcpu);
1902 vmx_htlb_catchup(vcpu, hcpu);
1903
1904 if (vcpu->hcpu_last != hcpu) {
1905 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1906 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1907 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1908 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1909 cpudata->gtsc_want_update = true;
1910 vcpu->hcpu_last = hcpu;
1911 }
1912
1913 vmx_vcpu_guest_dbregs_enter(vcpu);
1914 vmx_vcpu_guest_misc_enter(vcpu);
1915
1916 while (1) {
1917 if (cpudata->gtlb_want_flush) {
1918 vpid_desc.vpid = cpudata->asid;
1919 vpid_desc.addr = 0;
1920 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1921 cpudata->gtlb_want_flush = false;
1922 }
1923
1924 if (__predict_false(cpudata->gtsc_want_update)) {
1925 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1926 cpudata->gtsc_want_update = false;
1927 }
1928
1929 s = splhigh();
1930 machgen = vmx_htlb_flush(machdata, cpudata);
1931 vmx_vcpu_guest_fpu_enter(vcpu);
1932 lcr2(cpudata->gcr2);
1933 if (launched) {
1934 ret = vmx_vmresume(cpudata->gprs);
1935 } else {
1936 ret = vmx_vmlaunch(cpudata->gprs);
1937 }
1938 cpudata->gcr2 = rcr2();
1939 vmx_vcpu_guest_fpu_leave(vcpu);
1940 vmx_htlb_flush_ack(cpudata, machgen);
1941 splx(s);
1942
1943 if (__predict_false(ret != 0)) {
1944 exit->reason = NVMM_EXIT_INVALID;
1945 break;
1946 }
1947 vmx_exit_evt(cpudata);
1948
1949 launched = true;
1950
1951 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1952 exitcode &= __BITS(15,0);
1953
1954 switch (exitcode) {
1955 case VMCS_EXITCODE_EXC_NMI:
1956 vmx_exit_exc_nmi(mach, vcpu, exit);
1957 break;
1958 case VMCS_EXITCODE_EXT_INT:
1959 exit->reason = NVMM_EXIT_NONE;
1960 break;
1961 case VMCS_EXITCODE_CPUID:
1962 vmx_exit_cpuid(mach, vcpu, exit);
1963 break;
1964 case VMCS_EXITCODE_HLT:
1965 vmx_exit_hlt(mach, vcpu, exit);
1966 break;
1967 case VMCS_EXITCODE_CR:
1968 vmx_exit_cr(mach, vcpu, exit);
1969 break;
1970 case VMCS_EXITCODE_IO:
1971 vmx_exit_io(mach, vcpu, exit);
1972 break;
1973 case VMCS_EXITCODE_RDMSR:
1974 vmx_exit_msr(mach, vcpu, exit, true);
1975 break;
1976 case VMCS_EXITCODE_WRMSR:
1977 vmx_exit_msr(mach, vcpu, exit, false);
1978 break;
1979 case VMCS_EXITCODE_SHUTDOWN:
1980 exit->reason = NVMM_EXIT_SHUTDOWN;
1981 break;
1982 case VMCS_EXITCODE_MONITOR:
1983 exit->reason = NVMM_EXIT_MONITOR;
1984 break;
1985 case VMCS_EXITCODE_MWAIT:
1986 exit->reason = NVMM_EXIT_MWAIT;
1987 break;
1988 case VMCS_EXITCODE_XSETBV:
1989 vmx_exit_xsetbv(mach, vcpu, exit);
1990 break;
1991 case VMCS_EXITCODE_RDPMC:
1992 case VMCS_EXITCODE_RDTSCP:
1993 case VMCS_EXITCODE_INVVPID:
1994 case VMCS_EXITCODE_INVEPT:
1995 case VMCS_EXITCODE_VMCALL:
1996 case VMCS_EXITCODE_VMCLEAR:
1997 case VMCS_EXITCODE_VMLAUNCH:
1998 case VMCS_EXITCODE_VMPTRLD:
1999 case VMCS_EXITCODE_VMPTRST:
2000 case VMCS_EXITCODE_VMREAD:
2001 case VMCS_EXITCODE_VMRESUME:
2002 case VMCS_EXITCODE_VMWRITE:
2003 case VMCS_EXITCODE_VMXOFF:
2004 case VMCS_EXITCODE_VMXON:
2005 vmx_inject_ud(vcpu);
2006 exit->reason = NVMM_EXIT_NONE;
2007 break;
2008 case VMCS_EXITCODE_EPT_VIOLATION:
2009 vmx_exit_epf(mach, vcpu, exit);
2010 break;
2011 case VMCS_EXITCODE_INT_WINDOW:
2012 vmx_event_waitexit_disable(vcpu, false);
2013 exit->reason = NVMM_EXIT_INT_READY;
2014 break;
2015 case VMCS_EXITCODE_NMI_WINDOW:
2016 vmx_event_waitexit_disable(vcpu, true);
2017 exit->reason = NVMM_EXIT_NMI_READY;
2018 break;
2019 default:
2020 vmx_exit_invalid(exit, exitcode);
2021 break;
2022 }
2023
2024 /* If no reason to return to userland, keep rolling. */
2025 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2026 break;
2027 }
2028 if (curcpu()->ci_data.cpu_softints != 0) {
2029 break;
2030 }
2031 if (curlwp->l_flag & LW_USERRET) {
2032 break;
2033 }
2034 if (exit->reason != NVMM_EXIT_NONE) {
2035 break;
2036 }
2037 }
2038
2039 cpudata->vmcs_launched = launched;
2040
2041 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2042
2043 vmx_vcpu_guest_misc_leave(vcpu);
2044 vmx_vcpu_guest_dbregs_leave(vcpu);
2045
2046 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2047 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2048 vmx_vmread(VMCS_GUEST_RFLAGS);
2049 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2050 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2051 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2052 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2053 cpudata->int_window_exit;
2054 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2055 cpudata->nmi_window_exit;
2056 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2057 cpudata->evt_pending;
2058
2059 vmx_vmcs_leave(vcpu);
2060
2061 return 0;
2062 }
2063
2064 /* -------------------------------------------------------------------------- */
2065
2066 static int
2067 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2068 {
2069 struct pglist pglist;
2070 paddr_t _pa;
2071 vaddr_t _va;
2072 size_t i;
2073 int ret;
2074
2075 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2076 &pglist, 1, 0);
2077 if (ret != 0)
2078 return ENOMEM;
2079 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2080 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2081 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2082 if (_va == 0)
2083 goto error;
2084
2085 for (i = 0; i < npages; i++) {
2086 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2087 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2088 }
2089 pmap_update(pmap_kernel());
2090
2091 memset((void *)_va, 0, npages * PAGE_SIZE);
2092
2093 *pa = _pa;
2094 *va = _va;
2095 return 0;
2096
2097 error:
2098 for (i = 0; i < npages; i++) {
2099 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2100 }
2101 return ENOMEM;
2102 }
2103
2104 static void
2105 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2106 {
2107 size_t i;
2108
2109 pmap_kremove(va, npages * PAGE_SIZE);
2110 pmap_update(pmap_kernel());
2111 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2112 for (i = 0; i < npages; i++) {
2113 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2114 }
2115 }
2116
2117 /* -------------------------------------------------------------------------- */
2118
2119 static void
2120 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2121 {
2122 uint64_t byte;
2123 uint8_t bitoff;
2124
2125 if (msr < 0x00002000) {
2126 /* Range 1 */
2127 byte = ((msr - 0x00000000) / 8) + 0;
2128 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2129 /* Range 2 */
2130 byte = ((msr - 0xC0000000) / 8) + 1024;
2131 } else {
2132 panic("%s: wrong range", __func__);
2133 }
2134
2135 bitoff = (msr & 0x7);
2136
2137 if (read) {
2138 bitmap[byte] &= ~__BIT(bitoff);
2139 }
2140 if (write) {
2141 bitmap[2048 + byte] &= ~__BIT(bitoff);
2142 }
2143 }
2144
2145 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2146 #define VMX_SEG_ATTRIB_S __BIT(4)
2147 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2148 #define VMX_SEG_ATTRIB_P __BIT(7)
2149 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2150 #define VMX_SEG_ATTRIB_L __BIT(13)
2151 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2152 #define VMX_SEG_ATTRIB_G __BIT(15)
2153 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2154
2155 static void
2156 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2157 {
2158 uint64_t attrib;
2159
2160 attrib =
2161 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2162 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2163 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2164 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2165 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2166 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2167 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2168 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2169 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2170
2171 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2172 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2173 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2174 }
2175 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2176 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2177 }
2178
2179 static void
2180 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2181 {
2182 uint64_t selector = 0, attrib = 0, base, limit;
2183
2184 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2185 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2186 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2187 }
2188 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2189 base = vmx_vmread(vmx_guest_segs[idx].base);
2190
2191 segs[idx].selector = selector;
2192 segs[idx].limit = limit;
2193 segs[idx].base = base;
2194 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2195 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2196 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2197 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2198 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2199 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2200 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2201 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2202 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2203 segs[idx].attrib.p = 0;
2204 }
2205 }
2206
2207 static inline bool
2208 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2209 {
2210 uint64_t cr0, cr3, cr4, efer;
2211
2212 if (flags & NVMM_X64_STATE_CRS) {
2213 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2214 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2215 return true;
2216 }
2217 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2218 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2219 return true;
2220 }
2221 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2222 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2223 return true;
2224 }
2225 }
2226
2227 if (flags & NVMM_X64_STATE_MSRS) {
2228 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2229 if ((efer ^
2230 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2231 return true;
2232 }
2233 }
2234
2235 return false;
2236 }
2237
2238 static void
2239 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2240 {
2241 struct nvmm_comm_page *comm = vcpu->comm;
2242 const struct nvmm_x64_state *state = &comm->state;
2243 struct vmx_cpudata *cpudata = vcpu->cpudata;
2244 struct fxsave *fpustate;
2245 uint64_t ctls1, intstate;
2246 uint64_t flags;
2247
2248 flags = comm->state_wanted;
2249
2250 vmx_vmcs_enter(vcpu);
2251
2252 if (vmx_state_tlb_flush(state, flags)) {
2253 cpudata->gtlb_want_flush = true;
2254 }
2255
2256 if (flags & NVMM_X64_STATE_SEGS) {
2257 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2258 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2259 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2260 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2261 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2262 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2263 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2264 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2265 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2266 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2267 }
2268
2269 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2270 if (flags & NVMM_X64_STATE_GPRS) {
2271 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2272
2273 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2274 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2275 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2276 }
2277
2278 if (flags & NVMM_X64_STATE_CRS) {
2279 /*
2280 * CR0_NE and CR4_VMXE are mandatory.
2281 */
2282 vmx_vmwrite(VMCS_GUEST_CR0,
2283 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2284 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2285 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2286 vmx_vmwrite(VMCS_GUEST_CR4,
2287 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2288 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2289
2290 if (vmx_xcr0_mask != 0) {
2291 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2292 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2293 cpudata->gxcr0 &= vmx_xcr0_mask;
2294 cpudata->gxcr0 |= XCR0_X87;
2295 }
2296 }
2297
2298 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2299 if (flags & NVMM_X64_STATE_DRS) {
2300 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2301
2302 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2303 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2304 }
2305
2306 if (flags & NVMM_X64_STATE_MSRS) {
2307 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2308 state->msrs[NVMM_X64_MSR_STAR];
2309 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2310 state->msrs[NVMM_X64_MSR_LSTAR];
2311 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2312 state->msrs[NVMM_X64_MSR_CSTAR];
2313 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2314 state->msrs[NVMM_X64_MSR_SFMASK];
2315 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2316 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2317
2318 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2319 state->msrs[NVMM_X64_MSR_EFER]);
2320 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2321 state->msrs[NVMM_X64_MSR_PAT]);
2322 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2323 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2324 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2325 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2326 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2327 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2328
2329 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2330 cpudata->gtsc_want_update = true;
2331
2332 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2333 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2334 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2335 ctls1 |= ENTRY_CTLS_LONG_MODE;
2336 } else {
2337 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2338 }
2339 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2340 }
2341
2342 if (flags & NVMM_X64_STATE_INTR) {
2343 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2344 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2345 if (state->intr.int_shadow) {
2346 intstate |= INT_STATE_MOVSS;
2347 }
2348 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2349
2350 if (state->intr.int_window_exiting) {
2351 vmx_event_waitexit_enable(vcpu, false);
2352 } else {
2353 vmx_event_waitexit_disable(vcpu, false);
2354 }
2355
2356 if (state->intr.nmi_window_exiting) {
2357 vmx_event_waitexit_enable(vcpu, true);
2358 } else {
2359 vmx_event_waitexit_disable(vcpu, true);
2360 }
2361 }
2362
2363 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2364 if (flags & NVMM_X64_STATE_FPU) {
2365 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2366 sizeof(state->fpu));
2367
2368 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2369 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2370 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2371
2372 if (vmx_xcr0_mask != 0) {
2373 /* Reset XSTATE_BV, to force a reload. */
2374 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2375 }
2376 }
2377
2378 vmx_vmcs_leave(vcpu);
2379
2380 comm->state_wanted = 0;
2381 comm->state_cached |= flags;
2382 }
2383
2384 static void
2385 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2386 {
2387 struct nvmm_comm_page *comm = vcpu->comm;
2388 struct nvmm_x64_state *state = &comm->state;
2389 struct vmx_cpudata *cpudata = vcpu->cpudata;
2390 uint64_t intstate, flags;
2391
2392 flags = comm->state_wanted;
2393
2394 vmx_vmcs_enter(vcpu);
2395
2396 if (flags & NVMM_X64_STATE_SEGS) {
2397 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2398 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2399 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2400 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2401 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2402 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2403 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2404 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2405 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2406 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2407 }
2408
2409 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2410 if (flags & NVMM_X64_STATE_GPRS) {
2411 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2412
2413 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2414 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2415 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2416 }
2417
2418 if (flags & NVMM_X64_STATE_CRS) {
2419 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2420 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2421 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2422 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2423 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2424 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2425
2426 /* Hide VMXE. */
2427 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2428 }
2429
2430 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2431 if (flags & NVMM_X64_STATE_DRS) {
2432 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2433
2434 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2435 }
2436
2437 if (flags & NVMM_X64_STATE_MSRS) {
2438 state->msrs[NVMM_X64_MSR_STAR] =
2439 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2440 state->msrs[NVMM_X64_MSR_LSTAR] =
2441 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2442 state->msrs[NVMM_X64_MSR_CSTAR] =
2443 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2444 state->msrs[NVMM_X64_MSR_SFMASK] =
2445 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2446 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2447 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2448 state->msrs[NVMM_X64_MSR_EFER] =
2449 vmx_vmread(VMCS_GUEST_IA32_EFER);
2450 state->msrs[NVMM_X64_MSR_PAT] =
2451 vmx_vmread(VMCS_GUEST_IA32_PAT);
2452 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2453 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2454 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2455 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2456 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2457 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2458 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2459 }
2460
2461 if (flags & NVMM_X64_STATE_INTR) {
2462 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2463 state->intr.int_shadow =
2464 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2465 state->intr.int_window_exiting = cpudata->int_window_exit;
2466 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2467 state->intr.evt_pending = cpudata->evt_pending;
2468 }
2469
2470 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2471 if (flags & NVMM_X64_STATE_FPU) {
2472 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2473 sizeof(state->fpu));
2474 }
2475
2476 vmx_vmcs_leave(vcpu);
2477
2478 comm->state_wanted = 0;
2479 comm->state_cached |= flags;
2480 }
2481
2482 static void
2483 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2484 {
2485 vcpu->comm->state_wanted = flags;
2486 vmx_vcpu_getstate(vcpu);
2487 }
2488
2489 static void
2490 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2491 {
2492 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2493 vcpu->comm->state_commit = 0;
2494 vmx_vcpu_setstate(vcpu);
2495 }
2496
2497 /* -------------------------------------------------------------------------- */
2498
2499 static void
2500 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2501 {
2502 struct vmx_cpudata *cpudata = vcpu->cpudata;
2503 size_t i, oct, bit;
2504
2505 mutex_enter(&vmx_asidlock);
2506
2507 for (i = 0; i < vmx_maxasid; i++) {
2508 oct = i / 8;
2509 bit = i % 8;
2510
2511 if (vmx_asidmap[oct] & __BIT(bit)) {
2512 continue;
2513 }
2514
2515 cpudata->asid = i;
2516
2517 vmx_asidmap[oct] |= __BIT(bit);
2518 vmx_vmwrite(VMCS_VPID, i);
2519 mutex_exit(&vmx_asidlock);
2520 return;
2521 }
2522
2523 mutex_exit(&vmx_asidlock);
2524
2525 panic("%s: impossible", __func__);
2526 }
2527
2528 static void
2529 vmx_asid_free(struct nvmm_cpu *vcpu)
2530 {
2531 size_t oct, bit;
2532 uint64_t asid;
2533
2534 asid = vmx_vmread(VMCS_VPID);
2535
2536 oct = asid / 8;
2537 bit = asid % 8;
2538
2539 mutex_enter(&vmx_asidlock);
2540 vmx_asidmap[oct] &= ~__BIT(bit);
2541 mutex_exit(&vmx_asidlock);
2542 }
2543
2544 static void
2545 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2546 {
2547 struct vmx_cpudata *cpudata = vcpu->cpudata;
2548 struct vmcs *vmcs = cpudata->vmcs;
2549 struct msr_entry *gmsr = cpudata->gmsr;
2550 extern uint8_t vmx_resume_rip;
2551 uint64_t rev, eptp;
2552
2553 rev = vmx_get_revision();
2554
2555 memset(vmcs, 0, VMCS_SIZE);
2556 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2557 vmcs->abort = 0;
2558
2559 vmx_vmcs_enter(vcpu);
2560
2561 /* No link pointer. */
2562 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2563
2564 /* Install the CTLSs. */
2565 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2566 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2567 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2568 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2569 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2570
2571 /* Allow direct access to certain MSRs. */
2572 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2573 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2574 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2575 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2576 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2577 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2578 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2579 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2580 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2581 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2582 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2583 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2584 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2585 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2586 true, false);
2587 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2588
2589 /*
2590 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2591 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2592 */
2593 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2594 gmsr[VMX_MSRLIST_STAR].val = 0;
2595 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2596 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2597 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2598 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2599 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2600 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2601 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2602 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2603 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2604 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2605 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2606 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2607 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2608 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2609
2610 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2611 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2612 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2613
2614 /* Force CR4_VMXE to zero. */
2615 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2616
2617 /* Set the Host state for resuming. */
2618 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2619 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2620 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2621 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2622 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2623 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2624 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2625 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2626 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2627 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2628 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2629 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2630 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2631 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2632
2633 /* Generate ASID. */
2634 vmx_asid_alloc(vcpu);
2635
2636 /* Enable Extended Paging, 4-Level. */
2637 eptp =
2638 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2639 __SHIFTIN(4-1, EPTP_WALKLEN) |
2640 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2641 mach->vm->vm_map.pmap->pm_pdirpa[0];
2642 vmx_vmwrite(VMCS_EPTP, eptp);
2643
2644 /* Init IA32_MISC_ENABLE. */
2645 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2646 cpudata->gmsr_misc_enable &=
2647 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2648 cpudata->gmsr_misc_enable |=
2649 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2650
2651 /* Init XSAVE header. */
2652 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2653 cpudata->gfpu.xsh_xcomp_bv = 0;
2654
2655 /* These MSRs are static. */
2656 cpudata->star = rdmsr(MSR_STAR);
2657 cpudata->cstar = rdmsr(MSR_CSTAR);
2658 cpudata->sfmask = rdmsr(MSR_SFMASK);
2659
2660 /* Install the RESET state. */
2661 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2662 sizeof(nvmm_x86_reset_state));
2663 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2664 vcpu->comm->state_cached = 0;
2665 vmx_vcpu_setstate(vcpu);
2666
2667 vmx_vmcs_leave(vcpu);
2668 }
2669
2670 static int
2671 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2672 {
2673 struct vmx_cpudata *cpudata;
2674 int error;
2675
2676 /* Allocate the VMX cpudata. */
2677 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2678 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2679 UVM_KMF_WIRED|UVM_KMF_ZERO);
2680 vcpu->cpudata = cpudata;
2681
2682 /* VMCS */
2683 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2684 VMCS_NPAGES);
2685 if (error)
2686 goto error;
2687
2688 /* MSR Bitmap */
2689 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2690 MSRBM_NPAGES);
2691 if (error)
2692 goto error;
2693
2694 /* Guest MSR List */
2695 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2696 if (error)
2697 goto error;
2698
2699 kcpuset_create(&cpudata->htlb_want_flush, true);
2700
2701 /* Init the VCPU info. */
2702 vmx_vcpu_init(mach, vcpu);
2703
2704 return 0;
2705
2706 error:
2707 if (cpudata->vmcs_pa) {
2708 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2709 VMCS_NPAGES);
2710 }
2711 if (cpudata->msrbm_pa) {
2712 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2713 MSRBM_NPAGES);
2714 }
2715 if (cpudata->gmsr_pa) {
2716 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2717 }
2718
2719 kmem_free(cpudata, sizeof(*cpudata));
2720 return error;
2721 }
2722
2723 static void
2724 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2725 {
2726 struct vmx_cpudata *cpudata = vcpu->cpudata;
2727
2728 vmx_vmcs_enter(vcpu);
2729 vmx_asid_free(vcpu);
2730 vmx_vmcs_destroy(vcpu);
2731
2732 kcpuset_destroy(cpudata->htlb_want_flush);
2733
2734 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2735 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2736 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2737 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2738 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2739 }
2740
2741 /* -------------------------------------------------------------------------- */
2742
2743 static void
2744 vmx_tlb_flush(struct pmap *pm)
2745 {
2746 struct nvmm_machine *mach = pm->pm_data;
2747 struct vmx_machdata *machdata = mach->machdata;
2748
2749 atomic_inc_64(&machdata->mach_htlb_gen);
2750
2751 /* Generates IPIs, which cause #VMEXITs. */
2752 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2753 }
2754
2755 static void
2756 vmx_machine_create(struct nvmm_machine *mach)
2757 {
2758 struct pmap *pmap = mach->vm->vm_map.pmap;
2759 struct vmx_machdata *machdata;
2760
2761 /* Convert to EPT. */
2762 pmap_ept_transform(pmap);
2763
2764 /* Fill in pmap info. */
2765 pmap->pm_data = (void *)mach;
2766 pmap->pm_tlb_flush = vmx_tlb_flush;
2767
2768 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2769 mach->machdata = machdata;
2770
2771 /* Start with an hTLB flush everywhere. */
2772 machdata->mach_htlb_gen = 1;
2773 }
2774
2775 static void
2776 vmx_machine_destroy(struct nvmm_machine *mach)
2777 {
2778 struct vmx_machdata *machdata = mach->machdata;
2779
2780 kmem_free(machdata, sizeof(struct vmx_machdata));
2781 }
2782
2783 static int
2784 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2785 {
2786 struct nvmm_x86_conf_cpuid *cpuid = data;
2787 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2788 size_t i;
2789
2790 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2791 return EINVAL;
2792 }
2793
2794 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2795 (cpuid->set.ebx & cpuid->del.ebx) ||
2796 (cpuid->set.ecx & cpuid->del.ecx) ||
2797 (cpuid->set.edx & cpuid->del.edx))) {
2798 return EINVAL;
2799 }
2800
2801 /* If already here, replace. */
2802 for (i = 0; i < VMX_NCPUIDS; i++) {
2803 if (!machdata->cpuidpresent[i]) {
2804 continue;
2805 }
2806 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2807 memcpy(&machdata->cpuid[i], cpuid,
2808 sizeof(struct nvmm_x86_conf_cpuid));
2809 return 0;
2810 }
2811 }
2812
2813 /* Not here, insert. */
2814 for (i = 0; i < VMX_NCPUIDS; i++) {
2815 if (!machdata->cpuidpresent[i]) {
2816 machdata->cpuidpresent[i] = true;
2817 memcpy(&machdata->cpuid[i], cpuid,
2818 sizeof(struct nvmm_x86_conf_cpuid));
2819 return 0;
2820 }
2821 }
2822
2823 return ENOBUFS;
2824 }
2825
2826 /* -------------------------------------------------------------------------- */
2827
2828 static int
2829 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2830 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2831 {
2832 uint64_t basic, val, true_val;
2833 bool one_allowed, zero_allowed, has_true;
2834 size_t i;
2835
2836 basic = rdmsr(MSR_IA32_VMX_BASIC);
2837 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2838
2839 val = rdmsr(msr_ctls);
2840 if (has_true) {
2841 true_val = rdmsr(msr_true_ctls);
2842 } else {
2843 true_val = val;
2844 }
2845
2846 #define ONE_ALLOWED(msrval, bitoff) \
2847 ((msrval & __BIT(32 + bitoff)) != 0)
2848 #define ZERO_ALLOWED(msrval, bitoff) \
2849 ((msrval & __BIT(bitoff)) == 0)
2850
2851 for (i = 0; i < 32; i++) {
2852 one_allowed = ONE_ALLOWED(true_val, i);
2853 zero_allowed = ZERO_ALLOWED(true_val, i);
2854
2855 if (zero_allowed && !one_allowed) {
2856 if (set_one & __BIT(i))
2857 return -1;
2858 *res &= ~__BIT(i);
2859 } else if (one_allowed && !zero_allowed) {
2860 if (set_zero & __BIT(i))
2861 return -1;
2862 *res |= __BIT(i);
2863 } else {
2864 if (set_zero & __BIT(i)) {
2865 *res &= ~__BIT(i);
2866 } else if (set_one & __BIT(i)) {
2867 *res |= __BIT(i);
2868 } else if (!has_true) {
2869 *res &= ~__BIT(i);
2870 } else if (ZERO_ALLOWED(val, i)) {
2871 *res &= ~__BIT(i);
2872 } else if (ONE_ALLOWED(val, i)) {
2873 *res |= __BIT(i);
2874 } else {
2875 return -1;
2876 }
2877 }
2878 }
2879
2880 return 0;
2881 }
2882
2883 static bool
2884 vmx_ident(void)
2885 {
2886 uint64_t msr;
2887 int ret;
2888
2889 if (!(cpu_feature[1] & CPUID2_VMX)) {
2890 return false;
2891 }
2892
2893 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2894 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2895 return false;
2896 }
2897
2898 msr = rdmsr(MSR_IA32_VMX_BASIC);
2899 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2900 return false;
2901 }
2902 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2903 return false;
2904 }
2905
2906 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2907 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2908 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2909 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2910 if (ret == -1) {
2911 return false;
2912 }
2913
2914 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2915 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2916 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2917 if (ret == -1) {
2918 return false;
2919 }
2920
2921 /* Init the CTLSs right now, and check for errors. */
2922 ret = vmx_init_ctls(
2923 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2924 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2925 &vmx_pinbased_ctls);
2926 if (ret == -1) {
2927 return false;
2928 }
2929 ret = vmx_init_ctls(
2930 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2931 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2932 &vmx_procbased_ctls);
2933 if (ret == -1) {
2934 return false;
2935 }
2936 ret = vmx_init_ctls(
2937 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2938 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2939 &vmx_procbased_ctls2);
2940 if (ret == -1) {
2941 return false;
2942 }
2943 ret = vmx_init_ctls(
2944 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2945 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2946 &vmx_entry_ctls);
2947 if (ret == -1) {
2948 return false;
2949 }
2950 ret = vmx_init_ctls(
2951 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2952 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2953 &vmx_exit_ctls);
2954 if (ret == -1) {
2955 return false;
2956 }
2957
2958 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2959 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2960 return false;
2961 }
2962 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2963 return false;
2964 }
2965 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2966 return false;
2967 }
2968 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2969 pmap_ept_has_ad = true;
2970 } else {
2971 pmap_ept_has_ad = false;
2972 }
2973 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2974 return false;
2975 }
2976
2977 return true;
2978 }
2979
2980 static void
2981 vmx_init_asid(uint32_t maxasid)
2982 {
2983 size_t allocsz;
2984
2985 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2986
2987 vmx_maxasid = maxasid;
2988 allocsz = roundup(maxasid, 8) / 8;
2989 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2990
2991 /* ASID 0 is reserved for the host. */
2992 vmx_asidmap[0] |= __BIT(0);
2993 }
2994
2995 static void
2996 vmx_change_cpu(void *arg1, void *arg2)
2997 {
2998 struct cpu_info *ci = curcpu();
2999 bool enable = (bool)arg1;
3000 uint64_t cr4;
3001
3002 if (!enable) {
3003 vmx_vmxoff();
3004 }
3005
3006 cr4 = rcr4();
3007 if (enable) {
3008 cr4 |= CR4_VMXE;
3009 } else {
3010 cr4 &= ~CR4_VMXE;
3011 }
3012 lcr4(cr4);
3013
3014 if (enable) {
3015 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3016 }
3017 }
3018
3019 static void
3020 vmx_init_l1tf(void)
3021 {
3022 u_int descs[4];
3023 uint64_t msr;
3024
3025 if (cpuid_level < 7) {
3026 return;
3027 }
3028
3029 x86_cpuid(7, descs);
3030
3031 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3032 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3033 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3034 /* No mitigation needed. */
3035 return;
3036 }
3037 }
3038
3039 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3040 /* Enable hardware mitigation. */
3041 vmx_msrlist_entry_nmsr += 1;
3042 }
3043 }
3044
3045 static void
3046 vmx_init(void)
3047 {
3048 CPU_INFO_ITERATOR cii;
3049 struct cpu_info *ci;
3050 uint64_t xc, msr;
3051 struct vmxon *vmxon;
3052 uint32_t revision;
3053 paddr_t pa;
3054 vaddr_t va;
3055 int error;
3056
3057 /* Init the ASID bitmap (VPID). */
3058 vmx_init_asid(VPID_MAX);
3059
3060 /* Init the XCR0 mask. */
3061 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3062
3063 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3064 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3065 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3066 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3067 } else {
3068 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3069 }
3070 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3071 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3072 } else {
3073 vmx_ept_flush_op = VMX_INVEPT_ALL;
3074 }
3075 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3076 vmx_eptp_type = EPTP_TYPE_WB;
3077 } else {
3078 vmx_eptp_type = EPTP_TYPE_UC;
3079 }
3080
3081 /* Init the L1TF mitigation. */
3082 vmx_init_l1tf();
3083
3084 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3085 revision = vmx_get_revision();
3086
3087 for (CPU_INFO_FOREACH(cii, ci)) {
3088 error = vmx_memalloc(&pa, &va, 1);
3089 if (error) {
3090 panic("%s: out of memory", __func__);
3091 }
3092 vmxoncpu[cpu_index(ci)].pa = pa;
3093 vmxoncpu[cpu_index(ci)].va = va;
3094
3095 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3096 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3097 }
3098
3099 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3100 xc_wait(xc);
3101 }
3102
3103 static void
3104 vmx_fini_asid(void)
3105 {
3106 size_t allocsz;
3107
3108 allocsz = roundup(vmx_maxasid, 8) / 8;
3109 kmem_free(vmx_asidmap, allocsz);
3110
3111 mutex_destroy(&vmx_asidlock);
3112 }
3113
3114 static void
3115 vmx_fini(void)
3116 {
3117 uint64_t xc;
3118 size_t i;
3119
3120 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3121 xc_wait(xc);
3122
3123 for (i = 0; i < MAXCPUS; i++) {
3124 if (vmxoncpu[i].pa != 0)
3125 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3126 }
3127
3128 vmx_fini_asid();
3129 }
3130
3131 static void
3132 vmx_capability(struct nvmm_capability *cap)
3133 {
3134 cap->arch.xcr0_mask = vmx_xcr0_mask;
3135 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3136 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3137 }
3138
3139 const struct nvmm_impl nvmm_x86_vmx = {
3140 .ident = vmx_ident,
3141 .init = vmx_init,
3142 .fini = vmx_fini,
3143 .capability = vmx_capability,
3144 .conf_max = NVMM_X86_NCONF,
3145 .conf_sizes = vmx_conf_sizes,
3146 .state_size = sizeof(struct nvmm_x64_state),
3147 .machine_create = vmx_machine_create,
3148 .machine_destroy = vmx_machine_destroy,
3149 .machine_configure = vmx_machine_configure,
3150 .vcpu_create = vmx_vcpu_create,
3151 .vcpu_destroy = vmx_vcpu_destroy,
3152 .vcpu_setstate = vmx_vcpu_setstate,
3153 .vcpu_getstate = vmx_vcpu_getstate,
3154 .vcpu_inject = vmx_vcpu_inject,
3155 .vcpu_run = vmx_vcpu_run
3156 };
3157