nvmm_x86_vmx.c revision 1.36.2.10 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.36.2.10 2020/08/18 09:29:52 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.36.2.10 2020/08/18 09:29:52 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 #ifdef DIAGNOSTIC
139 static inline paddr_t
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153 #endif
154
155 static inline void
156 vmx_vmptrld(paddr_t *pa)
157 {
158 asm volatile (
159 "vmptrld %[pa];"
160 "jz vmx_insn_failvalid;"
161 "jc vmx_insn_failinvalid;"
162 :
163 : [pa] "m" (*pa)
164 : "memory", "cc"
165 );
166 }
167
168 static inline void
169 vmx_vmclear(paddr_t *pa)
170 {
171 asm volatile (
172 "vmclear %[pa];"
173 "jz vmx_insn_failvalid;"
174 "jc vmx_insn_failinvalid;"
175 :
176 : [pa] "m" (*pa)
177 : "memory", "cc"
178 );
179 }
180
181 #define MSR_IA32_FEATURE_CONTROL 0x003A
182 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
183 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
184 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
185
186 #define MSR_IA32_VMX_BASIC 0x0480
187 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
188 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
189 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
190 #define IA32_VMX_BASIC_DUAL __BIT(49)
191 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
192 #define MEM_TYPE_UC 0
193 #define MEM_TYPE_WB 6
194 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
195 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
196
197 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
198 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
199 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
200 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
201 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
202
203 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
204 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
205 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
206 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
207
208 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
209 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
210 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
211 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
212
213 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
214 #define IA32_VMX_EPT_VPID_XO __BIT(0)
215 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
216 #define IA32_VMX_EPT_VPID_UC __BIT(8)
217 #define IA32_VMX_EPT_VPID_WB __BIT(14)
218 #define IA32_VMX_EPT_VPID_2MB __BIT(16)
219 #define IA32_VMX_EPT_VPID_1GB __BIT(17)
220 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
221 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
222 #define IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO __BIT(22)
223 #define IA32_VMX_EPT_VPID_SHSTK __BIT(23)
224 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
225 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
226 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
227 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
228 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
229 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
230 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
231
232 /* -------------------------------------------------------------------------- */
233
234 /* 16-bit control fields */
235 #define VMCS_VPID 0x00000000
236 #define VMCS_PIR_VECTOR 0x00000002
237 #define VMCS_EPTP_INDEX 0x00000004
238 /* 16-bit guest-state fields */
239 #define VMCS_GUEST_ES_SELECTOR 0x00000800
240 #define VMCS_GUEST_CS_SELECTOR 0x00000802
241 #define VMCS_GUEST_SS_SELECTOR 0x00000804
242 #define VMCS_GUEST_DS_SELECTOR 0x00000806
243 #define VMCS_GUEST_FS_SELECTOR 0x00000808
244 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
245 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
246 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
247 #define VMCS_GUEST_INTR_STATUS 0x00000810
248 #define VMCS_PML_INDEX 0x00000812
249 /* 16-bit host-state fields */
250 #define VMCS_HOST_ES_SELECTOR 0x00000C00
251 #define VMCS_HOST_CS_SELECTOR 0x00000C02
252 #define VMCS_HOST_SS_SELECTOR 0x00000C04
253 #define VMCS_HOST_DS_SELECTOR 0x00000C06
254 #define VMCS_HOST_FS_SELECTOR 0x00000C08
255 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
256 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
257 /* 64-bit control fields */
258 #define VMCS_IO_BITMAP_A 0x00002000
259 #define VMCS_IO_BITMAP_B 0x00002002
260 #define VMCS_MSR_BITMAP 0x00002004
261 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
262 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
263 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
264 #define VMCS_EXECUTIVE_VMCS 0x0000200C
265 #define VMCS_PML_ADDRESS 0x0000200E
266 #define VMCS_TSC_OFFSET 0x00002010
267 #define VMCS_VIRTUAL_APIC 0x00002012
268 #define VMCS_APIC_ACCESS 0x00002014
269 #define VMCS_PIR_DESC 0x00002016
270 #define VMCS_VM_CONTROL 0x00002018
271 #define VMCS_EPTP 0x0000201A
272 #define EPTP_TYPE __BITS(2,0)
273 #define EPTP_TYPE_UC 0
274 #define EPTP_TYPE_WB 6
275 #define EPTP_WALKLEN __BITS(5,3)
276 #define EPTP_FLAGS_AD __BIT(6)
277 #define EPTP_SSS __BIT(7)
278 #define EPTP_PHYSADDR __BITS(63,12)
279 #define VMCS_EOI_EXIT0 0x0000201C
280 #define VMCS_EOI_EXIT1 0x0000201E
281 #define VMCS_EOI_EXIT2 0x00002020
282 #define VMCS_EOI_EXIT3 0x00002022
283 #define VMCS_EPTP_LIST 0x00002024
284 #define VMCS_VMREAD_BITMAP 0x00002026
285 #define VMCS_VMWRITE_BITMAP 0x00002028
286 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
287 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
288 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
289 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
290 #define VMCS_TSC_MULTIPLIER 0x00002032
291 #define VMCS_ENCLV_EXIT_BITMAP 0x00002036
292 /* 64-bit read-only fields */
293 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
294 /* 64-bit guest-state fields */
295 #define VMCS_LINK_POINTER 0x00002800
296 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
297 #define VMCS_GUEST_IA32_PAT 0x00002804
298 #define VMCS_GUEST_IA32_EFER 0x00002806
299 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
300 #define VMCS_GUEST_PDPTE0 0x0000280A
301 #define VMCS_GUEST_PDPTE1 0x0000280C
302 #define VMCS_GUEST_PDPTE2 0x0000280E
303 #define VMCS_GUEST_PDPTE3 0x00002810
304 #define VMCS_GUEST_BNDCFGS 0x00002812
305 #define VMCS_GUEST_RTIT_CTL 0x00002814
306 #define VMCS_GUEST_PKRS 0x00002818
307 /* 64-bit host-state fields */
308 #define VMCS_HOST_IA32_PAT 0x00002C00
309 #define VMCS_HOST_IA32_EFER 0x00002C02
310 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
311 #define VMCS_HOST_IA32_PKRS 0x00002C06
312 /* 32-bit control fields */
313 #define VMCS_PINBASED_CTLS 0x00004000
314 #define PIN_CTLS_INT_EXITING __BIT(0)
315 #define PIN_CTLS_NMI_EXITING __BIT(3)
316 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
317 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
318 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
319 #define VMCS_PROCBASED_CTLS 0x00004002
320 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
321 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
322 #define PROC_CTLS_HLT_EXITING __BIT(7)
323 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
324 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
325 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
326 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
327 #define PROC_CTLS_RCR3_EXITING __BIT(15)
328 #define PROC_CTLS_LCR3_EXITING __BIT(16)
329 #define PROC_CTLS_RCR8_EXITING __BIT(19)
330 #define PROC_CTLS_LCR8_EXITING __BIT(20)
331 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
332 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
333 #define PROC_CTLS_DR_EXITING __BIT(23)
334 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
335 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
336 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
337 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
338 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
339 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
340 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
341 #define VMCS_EXCEPTION_BITMAP 0x00004004
342 #define VMCS_PF_ERROR_MASK 0x00004006
343 #define VMCS_PF_ERROR_MATCH 0x00004008
344 #define VMCS_CR3_TARGET_COUNT 0x0000400A
345 #define VMCS_EXIT_CTLS 0x0000400C
346 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
347 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
348 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
349 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
350 #define EXIT_CTLS_SAVE_PAT __BIT(18)
351 #define EXIT_CTLS_LOAD_PAT __BIT(19)
352 #define EXIT_CTLS_SAVE_EFER __BIT(20)
353 #define EXIT_CTLS_LOAD_EFER __BIT(21)
354 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
355 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
356 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
357 #define EXIT_CTLS_CLEAR_RTIT_CTL __BIT(25)
358 #define EXIT_CTLS_LOAD_CET __BIT(28)
359 #define EXIT_CTLS_LOAD_PKRS __BIT(29)
360 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
361 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
362 #define VMCS_ENTRY_CTLS 0x00004012
363 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
364 #define ENTRY_CTLS_LONG_MODE __BIT(9)
365 #define ENTRY_CTLS_SMM __BIT(10)
366 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
367 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
368 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
369 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
370 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
371 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
372 #define ENTRY_CTLS_LOAD_RTIT_CTL __BIT(18)
373 #define ENTRY_CTLS_LOAD_CET __BIT(20)
374 #define ENTRY_CTLS_LOAD_PKRS __BIT(22)
375 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
376 #define VMCS_ENTRY_INTR_INFO 0x00004016
377 #define INTR_INFO_VECTOR __BITS(7,0)
378 #define INTR_INFO_TYPE __BITS(10,8)
379 #define INTR_TYPE_EXT_INT 0
380 #define INTR_TYPE_NMI 2
381 #define INTR_TYPE_HW_EXC 3
382 #define INTR_TYPE_SW_INT 4
383 #define INTR_TYPE_PRIV_SW_EXC 5
384 #define INTR_TYPE_SW_EXC 6
385 #define INTR_TYPE_OTHER 7
386 #define INTR_INFO_ERROR __BIT(11)
387 #define INTR_INFO_VALID __BIT(31)
388 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
389 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
390 #define VMCS_TPR_THRESHOLD 0x0000401C
391 #define VMCS_PROCBASED_CTLS2 0x0000401E
392 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
393 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
394 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
395 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
396 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
397 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
398 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
399 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
400 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
401 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
402 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
403 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
404 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
405 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
406 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
407 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
408 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
409 #define PROC_CTLS2_PML_ENABLE __BIT(17)
410 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
411 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
412 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
413 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
414 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
415 #define PROC_CTLS2_PT_USES_GPA __BIT(24)
416 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
417 #define PROC_CTLS2_WAIT_PAUSE_ENABLE __BIT(26)
418 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
419 #define VMCS_PLE_GAP 0x00004020
420 #define VMCS_PLE_WINDOW 0x00004022
421 /* 32-bit read-only data fields */
422 #define VMCS_INSTRUCTION_ERROR 0x00004400
423 #define VMCS_EXIT_REASON 0x00004402
424 #define VMCS_EXIT_INTR_INFO 0x00004404
425 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
426 #define VMCS_IDT_VECTORING_INFO 0x00004408
427 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
428 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
429 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
430 /* 32-bit guest-state fields */
431 #define VMCS_GUEST_ES_LIMIT 0x00004800
432 #define VMCS_GUEST_CS_LIMIT 0x00004802
433 #define VMCS_GUEST_SS_LIMIT 0x00004804
434 #define VMCS_GUEST_DS_LIMIT 0x00004806
435 #define VMCS_GUEST_FS_LIMIT 0x00004808
436 #define VMCS_GUEST_GS_LIMIT 0x0000480A
437 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
438 #define VMCS_GUEST_TR_LIMIT 0x0000480E
439 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
440 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
441 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
442 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
443 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
444 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
445 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
446 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
447 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
448 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
449 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
450 #define INT_STATE_STI __BIT(0)
451 #define INT_STATE_MOVSS __BIT(1)
452 #define INT_STATE_SMI __BIT(2)
453 #define INT_STATE_NMI __BIT(3)
454 #define INT_STATE_ENCLAVE __BIT(4)
455 #define VMCS_GUEST_ACTIVITY 0x00004826
456 #define VMCS_GUEST_SMBASE 0x00004828
457 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
458 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
459 /* 32-bit host state fields */
460 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
461 /* Natural-Width control fields */
462 #define VMCS_CR0_MASK 0x00006000
463 #define VMCS_CR4_MASK 0x00006002
464 #define VMCS_CR0_SHADOW 0x00006004
465 #define VMCS_CR4_SHADOW 0x00006006
466 #define VMCS_CR3_TARGET0 0x00006008
467 #define VMCS_CR3_TARGET1 0x0000600A
468 #define VMCS_CR3_TARGET2 0x0000600C
469 #define VMCS_CR3_TARGET3 0x0000600E
470 /* Natural-Width read-only fields */
471 #define VMCS_EXIT_QUALIFICATION 0x00006400
472 #define VMCS_IO_RCX 0x00006402
473 #define VMCS_IO_RSI 0x00006404
474 #define VMCS_IO_RDI 0x00006406
475 #define VMCS_IO_RIP 0x00006408
476 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
477 /* Natural-Width guest-state fields */
478 #define VMCS_GUEST_CR0 0x00006800
479 #define VMCS_GUEST_CR3 0x00006802
480 #define VMCS_GUEST_CR4 0x00006804
481 #define VMCS_GUEST_ES_BASE 0x00006806
482 #define VMCS_GUEST_CS_BASE 0x00006808
483 #define VMCS_GUEST_SS_BASE 0x0000680A
484 #define VMCS_GUEST_DS_BASE 0x0000680C
485 #define VMCS_GUEST_FS_BASE 0x0000680E
486 #define VMCS_GUEST_GS_BASE 0x00006810
487 #define VMCS_GUEST_LDTR_BASE 0x00006812
488 #define VMCS_GUEST_TR_BASE 0x00006814
489 #define VMCS_GUEST_GDTR_BASE 0x00006816
490 #define VMCS_GUEST_IDTR_BASE 0x00006818
491 #define VMCS_GUEST_DR7 0x0000681A
492 #define VMCS_GUEST_RSP 0x0000681C
493 #define VMCS_GUEST_RIP 0x0000681E
494 #define VMCS_GUEST_RFLAGS 0x00006820
495 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
496 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
497 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
498 #define VMCS_GUEST_IA32_S_CET 0x00006828
499 #define VMCS_GUEST_SSP 0x0000682A
500 #define VMCS_GUEST_IA32_INTR_SSP_TABLE 0x0000682C
501 /* Natural-Width host-state fields */
502 #define VMCS_HOST_CR0 0x00006C00
503 #define VMCS_HOST_CR3 0x00006C02
504 #define VMCS_HOST_CR4 0x00006C04
505 #define VMCS_HOST_FS_BASE 0x00006C06
506 #define VMCS_HOST_GS_BASE 0x00006C08
507 #define VMCS_HOST_TR_BASE 0x00006C0A
508 #define VMCS_HOST_GDTR_BASE 0x00006C0C
509 #define VMCS_HOST_IDTR_BASE 0x00006C0E
510 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
511 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
512 #define VMCS_HOST_RSP 0x00006C14
513 #define VMCS_HOST_RIP 0x00006C16
514 #define VMCS_HOST_IA32_S_CET 0x00006C18
515 #define VMCS_HOST_SSP 0x00006C1A
516 #define VMCS_HOST_IA32_INTR_SSP_TABLE 0x00006C1C
517
518 /* VMX basic exit reasons. */
519 #define VMCS_EXITCODE_EXC_NMI 0
520 #define VMCS_EXITCODE_EXT_INT 1
521 #define VMCS_EXITCODE_SHUTDOWN 2
522 #define VMCS_EXITCODE_INIT 3
523 #define VMCS_EXITCODE_SIPI 4
524 #define VMCS_EXITCODE_SMI 5
525 #define VMCS_EXITCODE_OTHER_SMI 6
526 #define VMCS_EXITCODE_INT_WINDOW 7
527 #define VMCS_EXITCODE_NMI_WINDOW 8
528 #define VMCS_EXITCODE_TASK_SWITCH 9
529 #define VMCS_EXITCODE_CPUID 10
530 #define VMCS_EXITCODE_GETSEC 11
531 #define VMCS_EXITCODE_HLT 12
532 #define VMCS_EXITCODE_INVD 13
533 #define VMCS_EXITCODE_INVLPG 14
534 #define VMCS_EXITCODE_RDPMC 15
535 #define VMCS_EXITCODE_RDTSC 16
536 #define VMCS_EXITCODE_RSM 17
537 #define VMCS_EXITCODE_VMCALL 18
538 #define VMCS_EXITCODE_VMCLEAR 19
539 #define VMCS_EXITCODE_VMLAUNCH 20
540 #define VMCS_EXITCODE_VMPTRLD 21
541 #define VMCS_EXITCODE_VMPTRST 22
542 #define VMCS_EXITCODE_VMREAD 23
543 #define VMCS_EXITCODE_VMRESUME 24
544 #define VMCS_EXITCODE_VMWRITE 25
545 #define VMCS_EXITCODE_VMXOFF 26
546 #define VMCS_EXITCODE_VMXON 27
547 #define VMCS_EXITCODE_CR 28
548 #define VMCS_EXITCODE_DR 29
549 #define VMCS_EXITCODE_IO 30
550 #define VMCS_EXITCODE_RDMSR 31
551 #define VMCS_EXITCODE_WRMSR 32
552 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
553 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
554 #define VMCS_EXITCODE_MWAIT 36
555 #define VMCS_EXITCODE_TRAP_FLAG 37
556 #define VMCS_EXITCODE_MONITOR 39
557 #define VMCS_EXITCODE_PAUSE 40
558 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
559 #define VMCS_EXITCODE_TPR_BELOW 43
560 #define VMCS_EXITCODE_APIC_ACCESS 44
561 #define VMCS_EXITCODE_VEOI 45
562 #define VMCS_EXITCODE_GDTR_IDTR 46
563 #define VMCS_EXITCODE_LDTR_TR 47
564 #define VMCS_EXITCODE_EPT_VIOLATION 48
565 #define VMCS_EXITCODE_EPT_MISCONFIG 49
566 #define VMCS_EXITCODE_INVEPT 50
567 #define VMCS_EXITCODE_RDTSCP 51
568 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
569 #define VMCS_EXITCODE_INVVPID 53
570 #define VMCS_EXITCODE_WBINVD 54
571 #define VMCS_EXITCODE_XSETBV 55
572 #define VMCS_EXITCODE_APIC_WRITE 56
573 #define VMCS_EXITCODE_RDRAND 57
574 #define VMCS_EXITCODE_INVPCID 58
575 #define VMCS_EXITCODE_VMFUNC 59
576 #define VMCS_EXITCODE_ENCLS 60
577 #define VMCS_EXITCODE_RDSEED 61
578 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
579 #define VMCS_EXITCODE_XSAVES 63
580 #define VMCS_EXITCODE_XRSTORS 64
581 #define VMCS_EXITCODE_SPP 66
582 #define VMCS_EXITCODE_UMWAIT 67
583 #define VMCS_EXITCODE_TPAUSE 68
584
585 /* -------------------------------------------------------------------------- */
586
587 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
588 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
589
590 #define VMX_MSRLIST_STAR 0
591 #define VMX_MSRLIST_LSTAR 1
592 #define VMX_MSRLIST_CSTAR 2
593 #define VMX_MSRLIST_SFMASK 3
594 #define VMX_MSRLIST_KERNELGSBASE 4
595 #define VMX_MSRLIST_EXIT_NMSR 5
596 #define VMX_MSRLIST_L1DFLUSH 5
597
598 /* On entry, we may do +1 to include L1DFLUSH. */
599 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
600
601 struct vmxon {
602 uint32_t ident;
603 #define VMXON_IDENT_REVISION __BITS(30,0)
604
605 uint8_t data[PAGE_SIZE - 4];
606 } __packed;
607
608 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
609
610 struct vmxoncpu {
611 vaddr_t va;
612 paddr_t pa;
613 };
614
615 static struct vmxoncpu vmxoncpu[MAXCPUS];
616
617 struct vmcs {
618 uint32_t ident;
619 #define VMCS_IDENT_REVISION __BITS(30,0)
620 #define VMCS_IDENT_SHADOW __BIT(31)
621
622 uint32_t abort;
623 uint8_t data[PAGE_SIZE - 8];
624 } __packed;
625
626 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
627
628 struct msr_entry {
629 uint32_t msr;
630 uint32_t rsvd;
631 uint64_t val;
632 } __packed;
633
634 #define VPID_MAX 0xFFFF
635
636 /* Make sure we never run out of VPIDs. */
637 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
638
639 static uint64_t vmx_tlb_flush_op __read_mostly;
640 static uint64_t vmx_ept_flush_op __read_mostly;
641 static uint64_t vmx_eptp_type __read_mostly;
642
643 static uint64_t vmx_pinbased_ctls __read_mostly;
644 static uint64_t vmx_procbased_ctls __read_mostly;
645 static uint64_t vmx_procbased_ctls2 __read_mostly;
646 static uint64_t vmx_entry_ctls __read_mostly;
647 static uint64_t vmx_exit_ctls __read_mostly;
648
649 static uint64_t vmx_cr0_fixed0 __read_mostly;
650 static uint64_t vmx_cr0_fixed1 __read_mostly;
651 static uint64_t vmx_cr4_fixed0 __read_mostly;
652 static uint64_t vmx_cr4_fixed1 __read_mostly;
653
654 extern bool pmap_ept_has_ad;
655
656 #define VMX_PINBASED_CTLS_ONE \
657 (PIN_CTLS_INT_EXITING| \
658 PIN_CTLS_NMI_EXITING| \
659 PIN_CTLS_VIRTUAL_NMIS)
660
661 #define VMX_PINBASED_CTLS_ZERO 0
662
663 #define VMX_PROCBASED_CTLS_ONE \
664 (PROC_CTLS_USE_TSC_OFFSETTING| \
665 PROC_CTLS_HLT_EXITING| \
666 PROC_CTLS_MWAIT_EXITING | \
667 PROC_CTLS_RDPMC_EXITING | \
668 PROC_CTLS_RCR8_EXITING | \
669 PROC_CTLS_LCR8_EXITING | \
670 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
671 PROC_CTLS_USE_MSR_BITMAPS | \
672 PROC_CTLS_MONITOR_EXITING | \
673 PROC_CTLS_ACTIVATE_CTLS2)
674
675 #define VMX_PROCBASED_CTLS_ZERO \
676 (PROC_CTLS_RCR3_EXITING| \
677 PROC_CTLS_LCR3_EXITING)
678
679 #define VMX_PROCBASED_CTLS2_ONE \
680 (PROC_CTLS2_ENABLE_EPT| \
681 PROC_CTLS2_ENABLE_VPID| \
682 PROC_CTLS2_UNRESTRICTED_GUEST)
683
684 #define VMX_PROCBASED_CTLS2_ZERO 0
685
686 #define VMX_ENTRY_CTLS_ONE \
687 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
688 ENTRY_CTLS_LOAD_EFER| \
689 ENTRY_CTLS_LOAD_PAT)
690
691 #define VMX_ENTRY_CTLS_ZERO \
692 (ENTRY_CTLS_SMM| \
693 ENTRY_CTLS_DISABLE_DUAL)
694
695 #define VMX_EXIT_CTLS_ONE \
696 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
697 EXIT_CTLS_HOST_LONG_MODE| \
698 EXIT_CTLS_SAVE_PAT| \
699 EXIT_CTLS_LOAD_PAT| \
700 EXIT_CTLS_SAVE_EFER| \
701 EXIT_CTLS_LOAD_EFER)
702
703 #define VMX_EXIT_CTLS_ZERO 0
704
705 static uint8_t *vmx_asidmap __read_mostly;
706 static uint32_t vmx_maxasid __read_mostly;
707 static kmutex_t vmx_asidlock __cacheline_aligned;
708
709 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
710 static uint64_t vmx_xcr0_mask __read_mostly;
711
712 #define VMX_NCPUIDS 32
713
714 #define VMCS_NPAGES 1
715 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
716
717 #define MSRBM_NPAGES 1
718 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
719
720 #define EFER_TLB_FLUSH \
721 (EFER_NXE|EFER_LMA|EFER_LME)
722 #define CR0_TLB_FLUSH \
723 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
724 #define CR4_TLB_FLUSH \
725 (CR4_PGE|CR4_PAE|CR4_PSE)
726
727 /* -------------------------------------------------------------------------- */
728
729 struct vmx_machdata {
730 volatile uint64_t mach_htlb_gen;
731 };
732
733 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
734 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
735 sizeof(struct nvmm_vcpu_conf_cpuid),
736 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
737 sizeof(struct nvmm_vcpu_conf_tpr)
738 };
739
740 struct vmx_cpudata {
741 /* General */
742 uint64_t asid;
743 bool gtlb_want_flush;
744 bool gtsc_want_update;
745 uint64_t vcpu_htlb_gen;
746 kcpuset_t *htlb_want_flush;
747
748 /* VMCS */
749 struct vmcs *vmcs;
750 paddr_t vmcs_pa;
751 size_t vmcs_refcnt;
752 struct cpu_info *vmcs_ci;
753 bool vmcs_launched;
754
755 /* MSR bitmap */
756 uint8_t *msrbm;
757 paddr_t msrbm_pa;
758
759 /* Host state */
760 uint64_t hxcr0;
761 uint64_t star;
762 uint64_t lstar;
763 uint64_t cstar;
764 uint64_t sfmask;
765 uint64_t kernelgsbase;
766 bool ts_set;
767 struct xsave_header hfpu __aligned(64);
768
769 /* Intr state */
770 bool int_window_exit;
771 bool nmi_window_exit;
772 bool evt_pending;
773
774 /* Guest state */
775 struct msr_entry *gmsr;
776 paddr_t gmsr_pa;
777 uint64_t gmsr_misc_enable;
778 uint64_t gcr2;
779 uint64_t gcr8;
780 uint64_t gxcr0;
781 uint64_t gprs[NVMM_X64_NGPR];
782 uint64_t drs[NVMM_X64_NDR];
783 uint64_t gtsc;
784 struct xsave_header gfpu __aligned(64);
785
786 /* VCPU configuration. */
787 bool cpuidpresent[VMX_NCPUIDS];
788 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
789 struct nvmm_vcpu_conf_tpr tpr;
790 };
791
792 static const struct {
793 uint64_t selector;
794 uint64_t attrib;
795 uint64_t limit;
796 uint64_t base;
797 } vmx_guest_segs[NVMM_X64_NSEG] = {
798 [NVMM_X64_SEG_ES] = {
799 VMCS_GUEST_ES_SELECTOR,
800 VMCS_GUEST_ES_ACCESS_RIGHTS,
801 VMCS_GUEST_ES_LIMIT,
802 VMCS_GUEST_ES_BASE
803 },
804 [NVMM_X64_SEG_CS] = {
805 VMCS_GUEST_CS_SELECTOR,
806 VMCS_GUEST_CS_ACCESS_RIGHTS,
807 VMCS_GUEST_CS_LIMIT,
808 VMCS_GUEST_CS_BASE
809 },
810 [NVMM_X64_SEG_SS] = {
811 VMCS_GUEST_SS_SELECTOR,
812 VMCS_GUEST_SS_ACCESS_RIGHTS,
813 VMCS_GUEST_SS_LIMIT,
814 VMCS_GUEST_SS_BASE
815 },
816 [NVMM_X64_SEG_DS] = {
817 VMCS_GUEST_DS_SELECTOR,
818 VMCS_GUEST_DS_ACCESS_RIGHTS,
819 VMCS_GUEST_DS_LIMIT,
820 VMCS_GUEST_DS_BASE
821 },
822 [NVMM_X64_SEG_FS] = {
823 VMCS_GUEST_FS_SELECTOR,
824 VMCS_GUEST_FS_ACCESS_RIGHTS,
825 VMCS_GUEST_FS_LIMIT,
826 VMCS_GUEST_FS_BASE
827 },
828 [NVMM_X64_SEG_GS] = {
829 VMCS_GUEST_GS_SELECTOR,
830 VMCS_GUEST_GS_ACCESS_RIGHTS,
831 VMCS_GUEST_GS_LIMIT,
832 VMCS_GUEST_GS_BASE
833 },
834 [NVMM_X64_SEG_GDT] = {
835 0, /* doesn't exist */
836 0, /* doesn't exist */
837 VMCS_GUEST_GDTR_LIMIT,
838 VMCS_GUEST_GDTR_BASE
839 },
840 [NVMM_X64_SEG_IDT] = {
841 0, /* doesn't exist */
842 0, /* doesn't exist */
843 VMCS_GUEST_IDTR_LIMIT,
844 VMCS_GUEST_IDTR_BASE
845 },
846 [NVMM_X64_SEG_LDT] = {
847 VMCS_GUEST_LDTR_SELECTOR,
848 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
849 VMCS_GUEST_LDTR_LIMIT,
850 VMCS_GUEST_LDTR_BASE
851 },
852 [NVMM_X64_SEG_TR] = {
853 VMCS_GUEST_TR_SELECTOR,
854 VMCS_GUEST_TR_ACCESS_RIGHTS,
855 VMCS_GUEST_TR_LIMIT,
856 VMCS_GUEST_TR_BASE
857 }
858 };
859
860 /* -------------------------------------------------------------------------- */
861
862 static uint64_t
863 vmx_get_revision(void)
864 {
865 uint64_t msr;
866
867 msr = rdmsr(MSR_IA32_VMX_BASIC);
868 msr &= IA32_VMX_BASIC_IDENT;
869
870 return msr;
871 }
872
873 static void
874 vmx_vmclear_ipi(void *arg1, void *arg2)
875 {
876 paddr_t vmcs_pa = (paddr_t)arg1;
877 vmx_vmclear(&vmcs_pa);
878 }
879
880 static void
881 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
882 {
883 uint64_t xc;
884 int bound;
885
886 KASSERT(kpreempt_disabled());
887
888 bound = curlwp_bind();
889 kpreempt_enable();
890
891 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
892 xc_wait(xc);
893
894 kpreempt_disable();
895 curlwp_bindx(bound);
896 }
897
898 static void
899 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
900 {
901 struct vmx_cpudata *cpudata = vcpu->cpudata;
902 struct cpu_info *vmcs_ci;
903
904 cpudata->vmcs_refcnt++;
905 if (cpudata->vmcs_refcnt > 1) {
906 KASSERT(kpreempt_disabled());
907 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
908 return;
909 }
910
911 vmcs_ci = cpudata->vmcs_ci;
912 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
913
914 kpreempt_disable();
915
916 if (vmcs_ci == NULL) {
917 /* This VMCS is loaded for the first time. */
918 vmx_vmclear(&cpudata->vmcs_pa);
919 cpudata->vmcs_launched = false;
920 } else if (vmcs_ci != curcpu()) {
921 /* This VMCS is active on a remote CPU. */
922 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
923 cpudata->vmcs_launched = false;
924 } else {
925 /* This VMCS is active on curcpu, nothing to do. */
926 }
927
928 vmx_vmptrld(&cpudata->vmcs_pa);
929 }
930
931 static void
932 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
933 {
934 struct vmx_cpudata *cpudata = vcpu->cpudata;
935
936 KASSERT(kpreempt_disabled());
937 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
938 KASSERT(cpudata->vmcs_refcnt > 0);
939 cpudata->vmcs_refcnt--;
940
941 if (cpudata->vmcs_refcnt > 0) {
942 return;
943 }
944
945 cpudata->vmcs_ci = curcpu();
946 kpreempt_enable();
947 }
948
949 static void
950 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
951 {
952 struct vmx_cpudata *cpudata = vcpu->cpudata;
953
954 KASSERT(kpreempt_disabled());
955 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
956 KASSERT(cpudata->vmcs_refcnt == 1);
957 cpudata->vmcs_refcnt--;
958
959 vmx_vmclear(&cpudata->vmcs_pa);
960 kpreempt_enable();
961 }
962
963 /* -------------------------------------------------------------------------- */
964
965 static void
966 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
967 {
968 struct vmx_cpudata *cpudata = vcpu->cpudata;
969 uint64_t ctls1;
970
971 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
972
973 if (nmi) {
974 // XXX INT_STATE_NMI?
975 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
976 cpudata->nmi_window_exit = true;
977 } else {
978 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
979 cpudata->int_window_exit = true;
980 }
981
982 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
983 }
984
985 static void
986 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
987 {
988 struct vmx_cpudata *cpudata = vcpu->cpudata;
989 uint64_t ctls1;
990
991 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
992
993 if (nmi) {
994 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
995 cpudata->nmi_window_exit = false;
996 } else {
997 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
998 cpudata->int_window_exit = false;
999 }
1000
1001 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1002 }
1003
1004 static inline int
1005 vmx_event_has_error(uint8_t vector)
1006 {
1007 switch (vector) {
1008 case 8: /* #DF */
1009 case 10: /* #TS */
1010 case 11: /* #NP */
1011 case 12: /* #SS */
1012 case 13: /* #GP */
1013 case 14: /* #PF */
1014 case 17: /* #AC */
1015 case 30: /* #SX */
1016 return 1;
1017 default:
1018 return 0;
1019 }
1020 }
1021
1022 static int
1023 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1024 {
1025 struct nvmm_comm_page *comm = vcpu->comm;
1026 struct vmx_cpudata *cpudata = vcpu->cpudata;
1027 int type = 0, err = 0, ret = EINVAL;
1028 u_int evtype;
1029 uint8_t vector;
1030 uint64_t info, error;
1031
1032 evtype = comm->event.type;
1033 vector = comm->event.vector;
1034 error = comm->event.u.excp.error;
1035 __insn_barrier();
1036
1037 vmx_vmcs_enter(vcpu);
1038
1039 switch (evtype) {
1040 case NVMM_VCPU_EVENT_EXCP:
1041 if (vector == 2 || vector >= 32)
1042 goto out;
1043 if (vector == 3 || vector == 0)
1044 goto out;
1045 type = INTR_TYPE_HW_EXC;
1046 err = vmx_event_has_error(vector);
1047 break;
1048 case NVMM_VCPU_EVENT_INTR:
1049 type = INTR_TYPE_EXT_INT;
1050 if (vector == 2) {
1051 type = INTR_TYPE_NMI;
1052 vmx_event_waitexit_enable(vcpu, true);
1053 }
1054 err = 0;
1055 break;
1056 default:
1057 goto out;
1058 }
1059
1060 info =
1061 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1062 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1063 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1064 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1065 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1066 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1067
1068 cpudata->evt_pending = true;
1069 ret = 0;
1070
1071 out:
1072 vmx_vmcs_leave(vcpu);
1073 return ret;
1074 }
1075
1076 static void
1077 vmx_inject_ud(struct nvmm_cpu *vcpu)
1078 {
1079 struct nvmm_comm_page *comm = vcpu->comm;
1080 int ret __diagused;
1081
1082 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1083 comm->event.vector = 6;
1084 comm->event.u.excp.error = 0;
1085
1086 ret = vmx_vcpu_inject(vcpu);
1087 KASSERT(ret == 0);
1088 }
1089
1090 static void
1091 vmx_inject_gp(struct nvmm_cpu *vcpu)
1092 {
1093 struct nvmm_comm_page *comm = vcpu->comm;
1094 int ret __diagused;
1095
1096 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1097 comm->event.vector = 13;
1098 comm->event.u.excp.error = 0;
1099
1100 ret = vmx_vcpu_inject(vcpu);
1101 KASSERT(ret == 0);
1102 }
1103
1104 static inline int
1105 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1106 {
1107 if (__predict_true(!vcpu->comm->event_commit)) {
1108 return 0;
1109 }
1110 vcpu->comm->event_commit = false;
1111 return vmx_vcpu_inject(vcpu);
1112 }
1113
1114 static inline void
1115 vmx_inkernel_advance(void)
1116 {
1117 uint64_t rip, inslen, intstate;
1118
1119 /*
1120 * Maybe we should also apply single-stepping and debug exceptions.
1121 * Matters for guest-ring3, because it can execute 'cpuid' under a
1122 * debugger.
1123 */
1124 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1125 rip = vmx_vmread(VMCS_GUEST_RIP);
1126 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1127 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1128 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1129 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1130 }
1131
1132 static void
1133 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1134 {
1135 exit->u.inv.hwcode = code;
1136 exit->reason = NVMM_VCPU_EXIT_INVALID;
1137 }
1138
1139 static void
1140 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1141 struct nvmm_vcpu_exit *exit)
1142 {
1143 uint64_t qual;
1144
1145 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1146
1147 if ((qual & INTR_INFO_VALID) == 0) {
1148 goto error;
1149 }
1150 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1151 goto error;
1152 }
1153
1154 exit->reason = NVMM_VCPU_EXIT_NONE;
1155 return;
1156
1157 error:
1158 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1159 }
1160
1161 #define VMX_CPUID_MAX_BASIC 0x16
1162 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1163 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1164 static uint32_t vmx_cpuid_max_basic __read_mostly;
1165
1166 static void
1167 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1168 {
1169 u_int descs[4];
1170
1171 x86_cpuid2(eax, ecx, descs);
1172 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1173 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1174 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1175 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1176 }
1177
1178 static void
1179 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1180 uint64_t eax, uint64_t ecx)
1181 {
1182 struct vmx_cpudata *cpudata = vcpu->cpudata;
1183 unsigned int ncpus;
1184 uint64_t cr4;
1185
1186 if (eax < 0x40000000) {
1187 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1188 eax = vmx_cpuid_max_basic;
1189 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1190 }
1191 } else if (eax < 0x80000000) {
1192 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1193 eax = vmx_cpuid_max_basic;
1194 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1195 }
1196 }
1197
1198 switch (eax) {
1199 case 0x00000000:
1200 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1201 break;
1202 case 0x00000001:
1203 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1204
1205 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1206 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1207 CPUID_LOCAL_APIC_ID);
1208
1209 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1210 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1211 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1212 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1213 }
1214
1215 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1216
1217 /* CPUID2_OSXSAVE depends on CR4. */
1218 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1219 if (!(cr4 & CR4_OSXSAVE)) {
1220 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1221 }
1222 break;
1223 case 0x00000002:
1224 break;
1225 case 0x00000003:
1226 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1227 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1228 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1229 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1230 break;
1231 case 0x00000004: /* Deterministic Cache Parameters */
1232 break; /* TODO? */
1233 case 0x00000005: /* MONITOR/MWAIT */
1234 case 0x00000006: /* Thermal and Power Management */
1235 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1236 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1237 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1238 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1239 break;
1240 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1241 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1242 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1243 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1244 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1245 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1246 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1247 }
1248 break;
1249 case 0x00000008: /* Empty */
1250 case 0x00000009: /* Direct Cache Access Information */
1251 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1252 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1253 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1254 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1255 break;
1256 case 0x0000000A: /* Architectural Performance Monitoring */
1257 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1258 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1259 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1260 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1261 break;
1262 case 0x0000000B: /* Extended Topology Enumeration */
1263 switch (ecx) {
1264 case 0: /* Threads */
1265 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1266 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1267 cpudata->gprs[NVMM_X64_GPR_RCX] =
1268 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1269 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1270 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1271 break;
1272 case 1: /* Cores */
1273 ncpus = atomic_load_relaxed(&mach->ncpus);
1274 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1275 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1276 cpudata->gprs[NVMM_X64_GPR_RCX] =
1277 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1278 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1279 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1280 break;
1281 default:
1282 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1283 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1284 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1285 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1286 break;
1287 }
1288 break;
1289 case 0x0000000C: /* Empty */
1290 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1291 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1292 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1293 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1294 break;
1295 case 0x0000000D: /* Processor Extended State Enumeration */
1296 if (vmx_xcr0_mask == 0) {
1297 break;
1298 }
1299 switch (ecx) {
1300 case 0:
1301 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1302 if (cpudata->gxcr0 & XCR0_SSE) {
1303 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1304 } else {
1305 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1306 }
1307 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1308 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1309 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1310 break;
1311 case 1:
1312 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1313 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1314 CPUID_PES1_XGETBV);
1315 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1316 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1317 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1318 break;
1319 default:
1320 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1321 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1322 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1323 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1324 break;
1325 }
1326 break;
1327 case 0x0000000E: /* Empty */
1328 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1329 case 0x00000010: /* Intel RDT Allocation Enumeration */
1330 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1331 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1332 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1333 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1334 break;
1335 case 0x00000011: /* Empty */
1336 case 0x00000012: /* Intel SGX Capability Enumeration */
1337 case 0x00000013: /* Empty */
1338 case 0x00000014: /* Intel Processor Trace Enumeration */
1339 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1340 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1341 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1342 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1343 break;
1344 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1345 case 0x00000016: /* Processor Frequency Information */
1346 break;
1347
1348 case 0x40000000: /* Hypervisor Information */
1349 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1350 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1351 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1352 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1353 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1354 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1355 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1356 break;
1357
1358 case 0x80000001:
1359 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1360 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1361 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1362 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1363 break;
1364 case 0x80000002: /* Processor Brand String */
1365 case 0x80000003: /* Processor Brand String */
1366 case 0x80000004: /* Processor Brand String */
1367 case 0x80000005: /* Reserved Zero */
1368 case 0x80000006: /* Cache Information */
1369 case 0x80000007: /* TSC Information */
1370 case 0x80000008: /* Address Sizes */
1371 break;
1372
1373 default:
1374 break;
1375 }
1376 }
1377
1378 static void
1379 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1380 {
1381 uint64_t inslen, rip;
1382
1383 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1384 rip = vmx_vmread(VMCS_GUEST_RIP);
1385 exit->u.insn.npc = rip + inslen;
1386 exit->reason = reason;
1387 }
1388
1389 static void
1390 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1391 struct nvmm_vcpu_exit *exit)
1392 {
1393 struct vmx_cpudata *cpudata = vcpu->cpudata;
1394 struct nvmm_vcpu_conf_cpuid *cpuid;
1395 uint64_t eax, ecx;
1396 size_t i;
1397
1398 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1399 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1400 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1401 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1402
1403 for (i = 0; i < VMX_NCPUIDS; i++) {
1404 if (!cpudata->cpuidpresent[i]) {
1405 continue;
1406 }
1407 cpuid = &cpudata->cpuid[i];
1408 if (cpuid->leaf != eax) {
1409 continue;
1410 }
1411
1412 if (cpuid->exit) {
1413 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1414 return;
1415 }
1416 KASSERT(cpuid->mask);
1417
1418 /* del */
1419 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1420 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1421 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1422 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1423
1424 /* set */
1425 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1426 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1427 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1428 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1429
1430 break;
1431 }
1432
1433 vmx_inkernel_advance();
1434 exit->reason = NVMM_VCPU_EXIT_NONE;
1435 }
1436
1437 static void
1438 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1439 struct nvmm_vcpu_exit *exit)
1440 {
1441 struct vmx_cpudata *cpudata = vcpu->cpudata;
1442 uint64_t rflags;
1443
1444 if (cpudata->int_window_exit) {
1445 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1446 if (rflags & PSL_I) {
1447 vmx_event_waitexit_disable(vcpu, false);
1448 }
1449 }
1450
1451 vmx_inkernel_advance();
1452 exit->reason = NVMM_VCPU_EXIT_HALTED;
1453 }
1454
1455 #define VMX_QUAL_CR_NUM __BITS(3,0)
1456 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1457 #define CR_TYPE_WRITE 0
1458 #define CR_TYPE_READ 1
1459 #define CR_TYPE_CLTS 2
1460 #define CR_TYPE_LMSW 3
1461 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1462 #define VMX_QUAL_CR_GPR __BITS(11,8)
1463 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1464
1465 static inline int
1466 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1467 {
1468 /* Bits set to 1 in fixed0 are fixed to 1. */
1469 if ((crval & fixed0) != fixed0) {
1470 return -1;
1471 }
1472 /* Bits set to 0 in fixed1 are fixed to 0. */
1473 if (crval & ~fixed1) {
1474 return -1;
1475 }
1476 return 0;
1477 }
1478
1479 static int
1480 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1481 uint64_t qual)
1482 {
1483 struct vmx_cpudata *cpudata = vcpu->cpudata;
1484 uint64_t type, gpr, cr0;
1485 uint64_t efer, ctls1;
1486
1487 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1488 if (type != CR_TYPE_WRITE) {
1489 return -1;
1490 }
1491
1492 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1493 KASSERT(gpr < 16);
1494
1495 if (gpr == NVMM_X64_GPR_RSP) {
1496 gpr = vmx_vmread(VMCS_GUEST_RSP);
1497 } else {
1498 gpr = cpudata->gprs[gpr];
1499 }
1500
1501 cr0 = gpr | CR0_NE | CR0_ET;
1502 cr0 &= ~(CR0_NW|CR0_CD);
1503
1504 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1505 return -1;
1506 }
1507
1508 /*
1509 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1510 * from CR3.
1511 */
1512
1513 if (cr0 & CR0_PG) {
1514 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1515 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1516 if (efer & EFER_LME) {
1517 ctls1 |= ENTRY_CTLS_LONG_MODE;
1518 efer |= EFER_LMA;
1519 } else {
1520 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1521 efer &= ~EFER_LMA;
1522 }
1523 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1524 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1525 }
1526
1527 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1528 vmx_inkernel_advance();
1529 return 0;
1530 }
1531
1532 static int
1533 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1534 uint64_t qual)
1535 {
1536 struct vmx_cpudata *cpudata = vcpu->cpudata;
1537 uint64_t type, gpr, cr4;
1538
1539 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1540 if (type != CR_TYPE_WRITE) {
1541 return -1;
1542 }
1543
1544 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1545 KASSERT(gpr < 16);
1546
1547 if (gpr == NVMM_X64_GPR_RSP) {
1548 gpr = vmx_vmread(VMCS_GUEST_RSP);
1549 } else {
1550 gpr = cpudata->gprs[gpr];
1551 }
1552
1553 cr4 = gpr | CR4_VMXE;
1554
1555 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1556 return -1;
1557 }
1558
1559 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1560 vmx_inkernel_advance();
1561 return 0;
1562 }
1563
1564 static int
1565 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1566 uint64_t qual, struct nvmm_vcpu_exit *exit)
1567 {
1568 struct vmx_cpudata *cpudata = vcpu->cpudata;
1569 uint64_t type, gpr;
1570 bool write;
1571
1572 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1573 if (type == CR_TYPE_WRITE) {
1574 write = true;
1575 } else if (type == CR_TYPE_READ) {
1576 write = false;
1577 } else {
1578 return -1;
1579 }
1580
1581 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1582 KASSERT(gpr < 16);
1583
1584 if (write) {
1585 if (gpr == NVMM_X64_GPR_RSP) {
1586 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1587 } else {
1588 cpudata->gcr8 = cpudata->gprs[gpr];
1589 }
1590 if (cpudata->tpr.exit_changed) {
1591 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1592 }
1593 } else {
1594 if (gpr == NVMM_X64_GPR_RSP) {
1595 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1596 } else {
1597 cpudata->gprs[gpr] = cpudata->gcr8;
1598 }
1599 }
1600
1601 vmx_inkernel_advance();
1602 return 0;
1603 }
1604
1605 static void
1606 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1607 struct nvmm_vcpu_exit *exit)
1608 {
1609 uint64_t qual;
1610 int ret;
1611
1612 exit->reason = NVMM_VCPU_EXIT_NONE;
1613
1614 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1615
1616 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1617 case 0:
1618 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1619 break;
1620 case 4:
1621 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1622 break;
1623 case 8:
1624 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1625 break;
1626 default:
1627 ret = -1;
1628 break;
1629 }
1630
1631 if (ret == -1) {
1632 vmx_inject_gp(vcpu);
1633 }
1634 }
1635
1636 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1637 #define IO_SIZE_8 0
1638 #define IO_SIZE_16 1
1639 #define IO_SIZE_32 3
1640 #define VMX_QUAL_IO_IN __BIT(3)
1641 #define VMX_QUAL_IO_STR __BIT(4)
1642 #define VMX_QUAL_IO_REP __BIT(5)
1643 #define VMX_QUAL_IO_DX __BIT(6)
1644 #define VMX_QUAL_IO_PORT __BITS(31,16)
1645
1646 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1647 #define IO_ADRSIZE_16 0
1648 #define IO_ADRSIZE_32 1
1649 #define IO_ADRSIZE_64 2
1650 #define VMX_INFO_IO_SEG __BITS(17,15)
1651
1652 static void
1653 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1654 struct nvmm_vcpu_exit *exit)
1655 {
1656 uint64_t qual, info, inslen, rip;
1657
1658 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1659 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1660
1661 exit->reason = NVMM_VCPU_EXIT_IO;
1662
1663 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1664 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1665
1666 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1667 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1668
1669 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1670 exit->u.io.address_size = 8;
1671 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1672 exit->u.io.address_size = 4;
1673 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1674 exit->u.io.address_size = 2;
1675 }
1676
1677 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1678 exit->u.io.operand_size = 4;
1679 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1680 exit->u.io.operand_size = 2;
1681 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1682 exit->u.io.operand_size = 1;
1683 }
1684
1685 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1686 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1687
1688 if (exit->u.io.in && exit->u.io.str) {
1689 exit->u.io.seg = NVMM_X64_SEG_ES;
1690 }
1691
1692 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1693 rip = vmx_vmread(VMCS_GUEST_RIP);
1694 exit->u.io.npc = rip + inslen;
1695
1696 vmx_vcpu_state_provide(vcpu,
1697 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1698 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1699 }
1700
1701 static const uint64_t msr_ignore_list[] = {
1702 MSR_BIOS_SIGN,
1703 MSR_IA32_PLATFORM_ID
1704 };
1705
1706 static bool
1707 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1708 struct nvmm_vcpu_exit *exit)
1709 {
1710 struct vmx_cpudata *cpudata = vcpu->cpudata;
1711 uint64_t val;
1712 size_t i;
1713
1714 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1715 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1716 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1717 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1718 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1719 goto handled;
1720 }
1721 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1722 val = cpudata->gmsr_misc_enable;
1723 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1724 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1725 goto handled;
1726 }
1727 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1728 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1729 continue;
1730 val = 0;
1731 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1732 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1733 goto handled;
1734 }
1735 } else {
1736 if (exit->u.wrmsr.msr == MSR_TSC) {
1737 cpudata->gtsc = exit->u.wrmsr.val;
1738 cpudata->gtsc_want_update = true;
1739 goto handled;
1740 }
1741 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1742 val = exit->u.wrmsr.val;
1743 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1744 goto error;
1745 }
1746 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1747 goto handled;
1748 }
1749 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1750 /* Don't care. */
1751 goto handled;
1752 }
1753 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1754 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1755 continue;
1756 goto handled;
1757 }
1758 }
1759
1760 return false;
1761
1762 handled:
1763 vmx_inkernel_advance();
1764 return true;
1765
1766 error:
1767 vmx_inject_gp(vcpu);
1768 return true;
1769 }
1770
1771 static void
1772 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1773 struct nvmm_vcpu_exit *exit)
1774 {
1775 struct vmx_cpudata *cpudata = vcpu->cpudata;
1776 uint64_t inslen, rip;
1777
1778 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1779 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1780
1781 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1782 exit->reason = NVMM_VCPU_EXIT_NONE;
1783 return;
1784 }
1785
1786 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1787 rip = vmx_vmread(VMCS_GUEST_RIP);
1788 exit->u.rdmsr.npc = rip + inslen;
1789
1790 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1791 }
1792
1793 static void
1794 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1795 struct nvmm_vcpu_exit *exit)
1796 {
1797 struct vmx_cpudata *cpudata = vcpu->cpudata;
1798 uint64_t rdx, rax, inslen, rip;
1799
1800 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1801 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1802
1803 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1804 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1805 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1806
1807 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1808 exit->reason = NVMM_VCPU_EXIT_NONE;
1809 return;
1810 }
1811
1812 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1813 rip = vmx_vmread(VMCS_GUEST_RIP);
1814 exit->u.wrmsr.npc = rip + inslen;
1815
1816 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1817 }
1818
1819 static void
1820 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1821 struct nvmm_vcpu_exit *exit)
1822 {
1823 struct vmx_cpudata *cpudata = vcpu->cpudata;
1824 uint64_t val;
1825
1826 exit->reason = NVMM_VCPU_EXIT_NONE;
1827
1828 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1829 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1830
1831 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1832 goto error;
1833 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1834 goto error;
1835 } else if (__predict_false((val & XCR0_X87) == 0)) {
1836 goto error;
1837 }
1838
1839 cpudata->gxcr0 = val;
1840
1841 vmx_inkernel_advance();
1842 return;
1843
1844 error:
1845 vmx_inject_gp(vcpu);
1846 }
1847
1848 #define VMX_EPT_VIOLATION_READ __BIT(0)
1849 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1850 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1851
1852 static void
1853 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1854 struct nvmm_vcpu_exit *exit)
1855 {
1856 uint64_t perm;
1857 gpaddr_t gpa;
1858
1859 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1860
1861 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1862 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1863 if (perm & VMX_EPT_VIOLATION_WRITE)
1864 exit->u.mem.prot = PROT_WRITE;
1865 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1866 exit->u.mem.prot = PROT_EXEC;
1867 else
1868 exit->u.mem.prot = PROT_READ;
1869 exit->u.mem.gpa = gpa;
1870 exit->u.mem.inst_len = 0;
1871
1872 vmx_vcpu_state_provide(vcpu,
1873 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1874 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1875 }
1876
1877 /* -------------------------------------------------------------------------- */
1878
1879 static void
1880 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1881 {
1882 struct vmx_cpudata *cpudata = vcpu->cpudata;
1883
1884 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1885
1886 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1887 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1888
1889 if (vmx_xcr0_mask != 0) {
1890 cpudata->hxcr0 = rdxcr(0);
1891 wrxcr(0, cpudata->gxcr0);
1892 }
1893 }
1894
1895 static void
1896 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1897 {
1898 struct vmx_cpudata *cpudata = vcpu->cpudata;
1899
1900 if (vmx_xcr0_mask != 0) {
1901 cpudata->gxcr0 = rdxcr(0);
1902 wrxcr(0, cpudata->hxcr0);
1903 }
1904
1905 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1906 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1907
1908 if (cpudata->ts_set) {
1909 stts();
1910 }
1911 }
1912
1913 static void
1914 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1915 {
1916 struct vmx_cpudata *cpudata = vcpu->cpudata;
1917
1918 x86_dbregs_save(curlwp);
1919
1920 ldr7(0);
1921
1922 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1923 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1924 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1925 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1926 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1927 }
1928
1929 static void
1930 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1931 {
1932 struct vmx_cpudata *cpudata = vcpu->cpudata;
1933
1934 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1935 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1936 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1937 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1938 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1939
1940 x86_dbregs_restore(curlwp);
1941 }
1942
1943 static void
1944 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1945 {
1946 struct vmx_cpudata *cpudata = vcpu->cpudata;
1947
1948 /* This gets restored automatically by the CPU. */
1949 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1950 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1951 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1952
1953 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1954 }
1955
1956 static void
1957 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1958 {
1959 struct vmx_cpudata *cpudata = vcpu->cpudata;
1960
1961 wrmsr(MSR_STAR, cpudata->star);
1962 wrmsr(MSR_LSTAR, cpudata->lstar);
1963 wrmsr(MSR_CSTAR, cpudata->cstar);
1964 wrmsr(MSR_SFMASK, cpudata->sfmask);
1965 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1966 }
1967
1968 /* -------------------------------------------------------------------------- */
1969
1970 #define VMX_INVVPID_ADDRESS 0
1971 #define VMX_INVVPID_CONTEXT 1
1972 #define VMX_INVVPID_ALL 2
1973 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1974
1975 #define VMX_INVEPT_CONTEXT 1
1976 #define VMX_INVEPT_ALL 2
1977
1978 static inline void
1979 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1980 {
1981 struct vmx_cpudata *cpudata = vcpu->cpudata;
1982
1983 if (vcpu->hcpu_last != hcpu) {
1984 cpudata->gtlb_want_flush = true;
1985 }
1986 }
1987
1988 static inline void
1989 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1990 {
1991 struct vmx_cpudata *cpudata = vcpu->cpudata;
1992 struct ept_desc ept_desc;
1993
1994 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1995 return;
1996 }
1997
1998 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1999 ept_desc.mbz = 0;
2000 vmx_invept(vmx_ept_flush_op, &ept_desc);
2001 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
2002 }
2003
2004 static inline uint64_t
2005 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
2006 {
2007 struct ept_desc ept_desc;
2008 uint64_t machgen;
2009
2010 machgen = machdata->mach_htlb_gen;
2011 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2012 return machgen;
2013 }
2014
2015 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
2016
2017 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2018 ept_desc.mbz = 0;
2019 vmx_invept(vmx_ept_flush_op, &ept_desc);
2020
2021 return machgen;
2022 }
2023
2024 static inline void
2025 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2026 {
2027 cpudata->vcpu_htlb_gen = machgen;
2028 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2029 }
2030
2031 static inline void
2032 vmx_exit_evt(struct vmx_cpudata *cpudata)
2033 {
2034 uint64_t info, err, inslen;
2035
2036 cpudata->evt_pending = false;
2037
2038 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2039 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2040 return;
2041 }
2042 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2043
2044 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2045 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2046
2047 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2048 case INTR_TYPE_SW_INT:
2049 case INTR_TYPE_PRIV_SW_EXC:
2050 case INTR_TYPE_SW_EXC:
2051 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2052 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2053 }
2054
2055 cpudata->evt_pending = true;
2056 }
2057
2058 static int
2059 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2060 struct nvmm_vcpu_exit *exit)
2061 {
2062 struct nvmm_comm_page *comm = vcpu->comm;
2063 struct vmx_machdata *machdata = mach->machdata;
2064 struct vmx_cpudata *cpudata = vcpu->cpudata;
2065 struct vpid_desc vpid_desc;
2066 struct cpu_info *ci;
2067 uint64_t exitcode;
2068 uint64_t intstate;
2069 uint64_t machgen;
2070 int hcpu, s, ret;
2071 bool launched;
2072
2073 vmx_vmcs_enter(vcpu);
2074
2075 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2076 vmx_vmcs_leave(vcpu);
2077 return EINVAL;
2078 }
2079 vmx_vcpu_state_commit(vcpu);
2080 comm->state_cached = 0;
2081
2082 ci = curcpu();
2083 hcpu = cpu_number();
2084 launched = cpudata->vmcs_launched;
2085
2086 vmx_gtlb_catchup(vcpu, hcpu);
2087 vmx_htlb_catchup(vcpu, hcpu);
2088
2089 if (vcpu->hcpu_last != hcpu) {
2090 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2091 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2092 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2093 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2094 cpudata->gtsc_want_update = true;
2095 vcpu->hcpu_last = hcpu;
2096 }
2097
2098 vmx_vcpu_guest_dbregs_enter(vcpu);
2099 vmx_vcpu_guest_misc_enter(vcpu);
2100
2101 while (1) {
2102 if (cpudata->gtlb_want_flush) {
2103 vpid_desc.vpid = cpudata->asid;
2104 vpid_desc.addr = 0;
2105 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2106 cpudata->gtlb_want_flush = false;
2107 }
2108
2109 if (__predict_false(cpudata->gtsc_want_update)) {
2110 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2111 cpudata->gtsc_want_update = false;
2112 }
2113
2114 s = splhigh();
2115 machgen = vmx_htlb_flush(machdata, cpudata);
2116 vmx_vcpu_guest_fpu_enter(vcpu);
2117 lcr2(cpudata->gcr2);
2118 if (launched) {
2119 ret = vmx_vmresume(cpudata->gprs);
2120 } else {
2121 ret = vmx_vmlaunch(cpudata->gprs);
2122 }
2123 cpudata->gcr2 = rcr2();
2124 vmx_vcpu_guest_fpu_leave(vcpu);
2125 vmx_htlb_flush_ack(cpudata, machgen);
2126 splx(s);
2127
2128 if (__predict_false(ret != 0)) {
2129 vmx_exit_invalid(exit, -1);
2130 break;
2131 }
2132 vmx_exit_evt(cpudata);
2133
2134 launched = true;
2135
2136 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2137 exitcode &= __BITS(15,0);
2138
2139 switch (exitcode) {
2140 case VMCS_EXITCODE_EXC_NMI:
2141 vmx_exit_exc_nmi(mach, vcpu, exit);
2142 break;
2143 case VMCS_EXITCODE_EXT_INT:
2144 exit->reason = NVMM_VCPU_EXIT_NONE;
2145 break;
2146 case VMCS_EXITCODE_CPUID:
2147 vmx_exit_cpuid(mach, vcpu, exit);
2148 break;
2149 case VMCS_EXITCODE_HLT:
2150 vmx_exit_hlt(mach, vcpu, exit);
2151 break;
2152 case VMCS_EXITCODE_CR:
2153 vmx_exit_cr(mach, vcpu, exit);
2154 break;
2155 case VMCS_EXITCODE_IO:
2156 vmx_exit_io(mach, vcpu, exit);
2157 break;
2158 case VMCS_EXITCODE_RDMSR:
2159 vmx_exit_rdmsr(mach, vcpu, exit);
2160 break;
2161 case VMCS_EXITCODE_WRMSR:
2162 vmx_exit_wrmsr(mach, vcpu, exit);
2163 break;
2164 case VMCS_EXITCODE_SHUTDOWN:
2165 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2166 break;
2167 case VMCS_EXITCODE_MONITOR:
2168 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2169 break;
2170 case VMCS_EXITCODE_MWAIT:
2171 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2172 break;
2173 case VMCS_EXITCODE_XSETBV:
2174 vmx_exit_xsetbv(mach, vcpu, exit);
2175 break;
2176 case VMCS_EXITCODE_RDPMC:
2177 case VMCS_EXITCODE_RDTSCP:
2178 case VMCS_EXITCODE_INVVPID:
2179 case VMCS_EXITCODE_INVEPT:
2180 case VMCS_EXITCODE_VMCALL:
2181 case VMCS_EXITCODE_VMCLEAR:
2182 case VMCS_EXITCODE_VMLAUNCH:
2183 case VMCS_EXITCODE_VMPTRLD:
2184 case VMCS_EXITCODE_VMPTRST:
2185 case VMCS_EXITCODE_VMREAD:
2186 case VMCS_EXITCODE_VMRESUME:
2187 case VMCS_EXITCODE_VMWRITE:
2188 case VMCS_EXITCODE_VMXOFF:
2189 case VMCS_EXITCODE_VMXON:
2190 vmx_inject_ud(vcpu);
2191 exit->reason = NVMM_VCPU_EXIT_NONE;
2192 break;
2193 case VMCS_EXITCODE_EPT_VIOLATION:
2194 vmx_exit_epf(mach, vcpu, exit);
2195 break;
2196 case VMCS_EXITCODE_INT_WINDOW:
2197 vmx_event_waitexit_disable(vcpu, false);
2198 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2199 break;
2200 case VMCS_EXITCODE_NMI_WINDOW:
2201 vmx_event_waitexit_disable(vcpu, true);
2202 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2203 break;
2204 default:
2205 vmx_exit_invalid(exit, exitcode);
2206 break;
2207 }
2208
2209 /* If no reason to return to userland, keep rolling. */
2210 if (nvmm_return_needed()) {
2211 break;
2212 }
2213 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2214 break;
2215 }
2216 }
2217
2218 cpudata->vmcs_launched = launched;
2219
2220 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2221
2222 vmx_vcpu_guest_misc_leave(vcpu);
2223 vmx_vcpu_guest_dbregs_leave(vcpu);
2224
2225 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2226 exit->exitstate.cr8 = cpudata->gcr8;
2227 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2228 exit->exitstate.int_shadow =
2229 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2230 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2231 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2232 exit->exitstate.evt_pending = cpudata->evt_pending;
2233
2234 vmx_vmcs_leave(vcpu);
2235
2236 return 0;
2237 }
2238
2239 /* -------------------------------------------------------------------------- */
2240
2241 static int
2242 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2243 {
2244 struct pglist pglist;
2245 paddr_t _pa;
2246 vaddr_t _va;
2247 size_t i;
2248 int ret;
2249
2250 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2251 &pglist, 1, 0);
2252 if (ret != 0)
2253 return ENOMEM;
2254 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2255 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2256 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2257 if (_va == 0)
2258 goto error;
2259
2260 for (i = 0; i < npages; i++) {
2261 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2262 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2263 }
2264 pmap_update(pmap_kernel());
2265
2266 memset((void *)_va, 0, npages * PAGE_SIZE);
2267
2268 *pa = _pa;
2269 *va = _va;
2270 return 0;
2271
2272 error:
2273 for (i = 0; i < npages; i++) {
2274 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2275 }
2276 return ENOMEM;
2277 }
2278
2279 static void
2280 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2281 {
2282 size_t i;
2283
2284 pmap_kremove(va, npages * PAGE_SIZE);
2285 pmap_update(pmap_kernel());
2286 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2287 for (i = 0; i < npages; i++) {
2288 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2289 }
2290 }
2291
2292 /* -------------------------------------------------------------------------- */
2293
2294 static void
2295 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2296 {
2297 uint64_t byte;
2298 uint8_t bitoff;
2299
2300 if (msr < 0x00002000) {
2301 /* Range 1 */
2302 byte = ((msr - 0x00000000) / 8) + 0;
2303 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2304 /* Range 2 */
2305 byte = ((msr - 0xC0000000) / 8) + 1024;
2306 } else {
2307 panic("%s: wrong range", __func__);
2308 }
2309
2310 bitoff = (msr & 0x7);
2311
2312 if (read) {
2313 bitmap[byte] &= ~__BIT(bitoff);
2314 }
2315 if (write) {
2316 bitmap[2048 + byte] &= ~__BIT(bitoff);
2317 }
2318 }
2319
2320 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2321 #define VMX_SEG_ATTRIB_S __BIT(4)
2322 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2323 #define VMX_SEG_ATTRIB_P __BIT(7)
2324 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2325 #define VMX_SEG_ATTRIB_L __BIT(13)
2326 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2327 #define VMX_SEG_ATTRIB_G __BIT(15)
2328 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2329
2330 static void
2331 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2332 {
2333 uint64_t attrib;
2334
2335 attrib =
2336 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2337 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2338 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2339 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2340 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2341 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2342 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2343 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2344 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2345
2346 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2347 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2348 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2349 }
2350 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2351 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2352 }
2353
2354 static void
2355 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2356 {
2357 uint64_t selector = 0, attrib = 0, base, limit;
2358
2359 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2360 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2361 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2362 }
2363 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2364 base = vmx_vmread(vmx_guest_segs[idx].base);
2365
2366 segs[idx].selector = selector;
2367 segs[idx].limit = limit;
2368 segs[idx].base = base;
2369 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2370 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2371 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2372 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2373 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2374 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2375 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2376 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2377 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2378 segs[idx].attrib.p = 0;
2379 }
2380 }
2381
2382 static inline bool
2383 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2384 {
2385 uint64_t cr0, cr3, cr4, efer;
2386
2387 if (flags & NVMM_X64_STATE_CRS) {
2388 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2389 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2390 return true;
2391 }
2392 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2393 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2394 return true;
2395 }
2396 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2397 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2398 return true;
2399 }
2400 }
2401
2402 if (flags & NVMM_X64_STATE_MSRS) {
2403 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2404 if ((efer ^
2405 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2406 return true;
2407 }
2408 }
2409
2410 return false;
2411 }
2412
2413 static void
2414 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2415 {
2416 struct nvmm_comm_page *comm = vcpu->comm;
2417 const struct nvmm_x64_state *state = &comm->state;
2418 struct vmx_cpudata *cpudata = vcpu->cpudata;
2419 struct fxsave *fpustate;
2420 uint64_t ctls1, intstate;
2421 uint64_t flags;
2422
2423 flags = comm->state_wanted;
2424
2425 vmx_vmcs_enter(vcpu);
2426
2427 if (vmx_state_tlb_flush(state, flags)) {
2428 cpudata->gtlb_want_flush = true;
2429 }
2430
2431 if (flags & NVMM_X64_STATE_SEGS) {
2432 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2433 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2434 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2435 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2436 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2437 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2438 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2439 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2440 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2441 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2442 }
2443
2444 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2445 if (flags & NVMM_X64_STATE_GPRS) {
2446 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2447
2448 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2449 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2450 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2451 }
2452
2453 if (flags & NVMM_X64_STATE_CRS) {
2454 /*
2455 * CR0_NE and CR4_VMXE are mandatory.
2456 */
2457 vmx_vmwrite(VMCS_GUEST_CR0,
2458 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2459 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2460 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2461 vmx_vmwrite(VMCS_GUEST_CR4,
2462 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2463 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2464
2465 if (vmx_xcr0_mask != 0) {
2466 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2467 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2468 cpudata->gxcr0 &= vmx_xcr0_mask;
2469 cpudata->gxcr0 |= XCR0_X87;
2470 }
2471 }
2472
2473 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2474 if (flags & NVMM_X64_STATE_DRS) {
2475 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2476
2477 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2478 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2479 }
2480
2481 if (flags & NVMM_X64_STATE_MSRS) {
2482 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2483 state->msrs[NVMM_X64_MSR_STAR];
2484 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2485 state->msrs[NVMM_X64_MSR_LSTAR];
2486 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2487 state->msrs[NVMM_X64_MSR_CSTAR];
2488 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2489 state->msrs[NVMM_X64_MSR_SFMASK];
2490 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2491 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2492
2493 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2494 state->msrs[NVMM_X64_MSR_EFER]);
2495 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2496 state->msrs[NVMM_X64_MSR_PAT]);
2497 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2498 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2499 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2500 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2501 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2502 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2503
2504 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2505 cpudata->gtsc_want_update = true;
2506
2507 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2508 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2509 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2510 ctls1 |= ENTRY_CTLS_LONG_MODE;
2511 } else {
2512 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2513 }
2514 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2515 }
2516
2517 if (flags & NVMM_X64_STATE_INTR) {
2518 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2519 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2520 if (state->intr.int_shadow) {
2521 intstate |= INT_STATE_MOVSS;
2522 }
2523 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2524
2525 if (state->intr.int_window_exiting) {
2526 vmx_event_waitexit_enable(vcpu, false);
2527 } else {
2528 vmx_event_waitexit_disable(vcpu, false);
2529 }
2530
2531 if (state->intr.nmi_window_exiting) {
2532 vmx_event_waitexit_enable(vcpu, true);
2533 } else {
2534 vmx_event_waitexit_disable(vcpu, true);
2535 }
2536 }
2537
2538 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2539 if (flags & NVMM_X64_STATE_FPU) {
2540 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2541 sizeof(state->fpu));
2542
2543 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2544 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2545 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2546
2547 if (vmx_xcr0_mask != 0) {
2548 /* Reset XSTATE_BV, to force a reload. */
2549 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2550 }
2551 }
2552
2553 vmx_vmcs_leave(vcpu);
2554
2555 comm->state_wanted = 0;
2556 comm->state_cached |= flags;
2557 }
2558
2559 static void
2560 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2561 {
2562 struct nvmm_comm_page *comm = vcpu->comm;
2563 struct nvmm_x64_state *state = &comm->state;
2564 struct vmx_cpudata *cpudata = vcpu->cpudata;
2565 uint64_t intstate, flags;
2566
2567 flags = comm->state_wanted;
2568
2569 vmx_vmcs_enter(vcpu);
2570
2571 if (flags & NVMM_X64_STATE_SEGS) {
2572 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2573 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2574 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2575 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2576 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2577 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2578 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2579 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2580 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2581 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2582 }
2583
2584 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2585 if (flags & NVMM_X64_STATE_GPRS) {
2586 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2587
2588 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2589 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2590 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2591 }
2592
2593 if (flags & NVMM_X64_STATE_CRS) {
2594 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2595 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2596 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2597 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2598 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2599 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2600
2601 /* Hide VMXE. */
2602 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2603 }
2604
2605 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2606 if (flags & NVMM_X64_STATE_DRS) {
2607 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2608
2609 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2610 }
2611
2612 if (flags & NVMM_X64_STATE_MSRS) {
2613 state->msrs[NVMM_X64_MSR_STAR] =
2614 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2615 state->msrs[NVMM_X64_MSR_LSTAR] =
2616 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2617 state->msrs[NVMM_X64_MSR_CSTAR] =
2618 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2619 state->msrs[NVMM_X64_MSR_SFMASK] =
2620 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2621 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2622 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2623 state->msrs[NVMM_X64_MSR_EFER] =
2624 vmx_vmread(VMCS_GUEST_IA32_EFER);
2625 state->msrs[NVMM_X64_MSR_PAT] =
2626 vmx_vmread(VMCS_GUEST_IA32_PAT);
2627 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2628 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2629 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2630 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2631 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2632 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2633 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2634 }
2635
2636 if (flags & NVMM_X64_STATE_INTR) {
2637 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2638 state->intr.int_shadow =
2639 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2640 state->intr.int_window_exiting = cpudata->int_window_exit;
2641 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2642 state->intr.evt_pending = cpudata->evt_pending;
2643 }
2644
2645 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2646 if (flags & NVMM_X64_STATE_FPU) {
2647 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2648 sizeof(state->fpu));
2649 }
2650
2651 vmx_vmcs_leave(vcpu);
2652
2653 comm->state_wanted = 0;
2654 comm->state_cached |= flags;
2655 }
2656
2657 static void
2658 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2659 {
2660 vcpu->comm->state_wanted = flags;
2661 vmx_vcpu_getstate(vcpu);
2662 }
2663
2664 static void
2665 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2666 {
2667 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2668 vcpu->comm->state_commit = 0;
2669 vmx_vcpu_setstate(vcpu);
2670 }
2671
2672 /* -------------------------------------------------------------------------- */
2673
2674 static void
2675 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2676 {
2677 struct vmx_cpudata *cpudata = vcpu->cpudata;
2678 size_t i, oct, bit;
2679
2680 mutex_enter(&vmx_asidlock);
2681
2682 for (i = 0; i < vmx_maxasid; i++) {
2683 oct = i / 8;
2684 bit = i % 8;
2685
2686 if (vmx_asidmap[oct] & __BIT(bit)) {
2687 continue;
2688 }
2689
2690 cpudata->asid = i;
2691
2692 vmx_asidmap[oct] |= __BIT(bit);
2693 vmx_vmwrite(VMCS_VPID, i);
2694 mutex_exit(&vmx_asidlock);
2695 return;
2696 }
2697
2698 mutex_exit(&vmx_asidlock);
2699
2700 panic("%s: impossible", __func__);
2701 }
2702
2703 static void
2704 vmx_asid_free(struct nvmm_cpu *vcpu)
2705 {
2706 size_t oct, bit;
2707 uint64_t asid;
2708
2709 asid = vmx_vmread(VMCS_VPID);
2710
2711 oct = asid / 8;
2712 bit = asid % 8;
2713
2714 mutex_enter(&vmx_asidlock);
2715 vmx_asidmap[oct] &= ~__BIT(bit);
2716 mutex_exit(&vmx_asidlock);
2717 }
2718
2719 static void
2720 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2721 {
2722 struct vmx_cpudata *cpudata = vcpu->cpudata;
2723 struct vmcs *vmcs = cpudata->vmcs;
2724 struct msr_entry *gmsr = cpudata->gmsr;
2725 extern uint8_t vmx_resume_rip;
2726 uint64_t rev, eptp;
2727
2728 rev = vmx_get_revision();
2729
2730 memset(vmcs, 0, VMCS_SIZE);
2731 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2732 vmcs->abort = 0;
2733
2734 vmx_vmcs_enter(vcpu);
2735
2736 /* No link pointer. */
2737 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2738
2739 /* Install the CTLSs. */
2740 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2741 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2742 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2743 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2744 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2745
2746 /* Allow direct access to certain MSRs. */
2747 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2748 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2749 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2750 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2751 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2752 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2753 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2754 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2755 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2756 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2757 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2758 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2759 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2760 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2761 true, false);
2762 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2763
2764 /*
2765 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2766 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2767 */
2768 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2769 gmsr[VMX_MSRLIST_STAR].val = 0;
2770 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2771 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2772 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2773 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2774 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2775 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2776 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2777 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2778 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2779 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2780 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2781 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2782 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2783 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2784
2785 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2786 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2787 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2788
2789 /* Force CR4_VMXE to zero. */
2790 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2791
2792 /* Set the Host state for resuming. */
2793 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2794 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2795 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2796 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2797 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2798 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2799 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2800 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2801 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2802 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2803 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2804 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2805 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2806 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2807
2808 /* Generate ASID. */
2809 vmx_asid_alloc(vcpu);
2810
2811 /* Enable Extended Paging, 4-Level. */
2812 eptp =
2813 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2814 __SHIFTIN(4-1, EPTP_WALKLEN) |
2815 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2816 mach->vm->vm_map.pmap->pm_pdirpa[0];
2817 vmx_vmwrite(VMCS_EPTP, eptp);
2818
2819 /* Init IA32_MISC_ENABLE. */
2820 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2821 cpudata->gmsr_misc_enable &=
2822 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2823 cpudata->gmsr_misc_enable |=
2824 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2825
2826 /* Init XSAVE header. */
2827 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2828 cpudata->gfpu.xsh_xcomp_bv = 0;
2829
2830 /* These MSRs are static. */
2831 cpudata->star = rdmsr(MSR_STAR);
2832 cpudata->lstar = rdmsr(MSR_LSTAR);
2833 cpudata->cstar = rdmsr(MSR_CSTAR);
2834 cpudata->sfmask = rdmsr(MSR_SFMASK);
2835
2836 /* Install the RESET state. */
2837 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2838 sizeof(nvmm_x86_reset_state));
2839 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2840 vcpu->comm->state_cached = 0;
2841 vmx_vcpu_setstate(vcpu);
2842
2843 vmx_vmcs_leave(vcpu);
2844 }
2845
2846 static int
2847 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2848 {
2849 struct vmx_cpudata *cpudata;
2850 int error;
2851
2852 /* Allocate the VMX cpudata. */
2853 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2854 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2855 UVM_KMF_WIRED|UVM_KMF_ZERO);
2856 vcpu->cpudata = cpudata;
2857
2858 /* VMCS */
2859 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2860 VMCS_NPAGES);
2861 if (error)
2862 goto error;
2863
2864 /* MSR Bitmap */
2865 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2866 MSRBM_NPAGES);
2867 if (error)
2868 goto error;
2869
2870 /* Guest MSR List */
2871 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2872 if (error)
2873 goto error;
2874
2875 kcpuset_create(&cpudata->htlb_want_flush, true);
2876
2877 /* Init the VCPU info. */
2878 vmx_vcpu_init(mach, vcpu);
2879
2880 return 0;
2881
2882 error:
2883 if (cpudata->vmcs_pa) {
2884 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2885 VMCS_NPAGES);
2886 }
2887 if (cpudata->msrbm_pa) {
2888 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2889 MSRBM_NPAGES);
2890 }
2891 if (cpudata->gmsr_pa) {
2892 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2893 }
2894
2895 kmem_free(cpudata, sizeof(*cpudata));
2896 return error;
2897 }
2898
2899 static void
2900 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2901 {
2902 struct vmx_cpudata *cpudata = vcpu->cpudata;
2903
2904 vmx_vmcs_enter(vcpu);
2905 vmx_asid_free(vcpu);
2906 vmx_vmcs_destroy(vcpu);
2907
2908 kcpuset_destroy(cpudata->htlb_want_flush);
2909
2910 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2911 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2912 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2913 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2914 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2915 }
2916
2917 /* -------------------------------------------------------------------------- */
2918
2919 static int
2920 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2921 {
2922 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2923 size_t i;
2924
2925 if (__predict_false(cpuid->mask && cpuid->exit)) {
2926 return EINVAL;
2927 }
2928 if (__predict_false(cpuid->mask &&
2929 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2930 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2931 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2932 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2933 return EINVAL;
2934 }
2935
2936 /* If unset, delete, to restore the default behavior. */
2937 if (!cpuid->mask && !cpuid->exit) {
2938 for (i = 0; i < VMX_NCPUIDS; i++) {
2939 if (!cpudata->cpuidpresent[i]) {
2940 continue;
2941 }
2942 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2943 cpudata->cpuidpresent[i] = false;
2944 }
2945 }
2946 return 0;
2947 }
2948
2949 /* If already here, replace. */
2950 for (i = 0; i < VMX_NCPUIDS; i++) {
2951 if (!cpudata->cpuidpresent[i]) {
2952 continue;
2953 }
2954 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2955 memcpy(&cpudata->cpuid[i], cpuid,
2956 sizeof(struct nvmm_vcpu_conf_cpuid));
2957 return 0;
2958 }
2959 }
2960
2961 /* Not here, insert. */
2962 for (i = 0; i < VMX_NCPUIDS; i++) {
2963 if (!cpudata->cpuidpresent[i]) {
2964 cpudata->cpuidpresent[i] = true;
2965 memcpy(&cpudata->cpuid[i], cpuid,
2966 sizeof(struct nvmm_vcpu_conf_cpuid));
2967 return 0;
2968 }
2969 }
2970
2971 return ENOBUFS;
2972 }
2973
2974 static int
2975 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2976 {
2977 struct nvmm_vcpu_conf_tpr *tpr = data;
2978
2979 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2980 return 0;
2981 }
2982
2983 static int
2984 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2985 {
2986 struct vmx_cpudata *cpudata = vcpu->cpudata;
2987
2988 switch (op) {
2989 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2990 return vmx_vcpu_configure_cpuid(cpudata, data);
2991 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2992 return vmx_vcpu_configure_tpr(cpudata, data);
2993 default:
2994 return EINVAL;
2995 }
2996 }
2997
2998 /* -------------------------------------------------------------------------- */
2999
3000 static void
3001 vmx_tlb_flush(struct pmap *pm)
3002 {
3003 struct nvmm_machine *mach = pm->pm_data;
3004 struct vmx_machdata *machdata = mach->machdata;
3005
3006 atomic_inc_64(&machdata->mach_htlb_gen);
3007
3008 /* Generates IPIs, which cause #VMEXITs. */
3009 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
3010 }
3011
3012 static void
3013 vmx_machine_create(struct nvmm_machine *mach)
3014 {
3015 struct pmap *pmap = mach->vm->vm_map.pmap;
3016 struct vmx_machdata *machdata;
3017
3018 /* Convert to EPT. */
3019 pmap_ept_transform(pmap);
3020
3021 /* Fill in pmap info. */
3022 pmap->pm_data = (void *)mach;
3023 pmap->pm_tlb_flush = vmx_tlb_flush;
3024
3025 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3026 mach->machdata = machdata;
3027
3028 /* Start with an hTLB flush everywhere. */
3029 machdata->mach_htlb_gen = 1;
3030 }
3031
3032 static void
3033 vmx_machine_destroy(struct nvmm_machine *mach)
3034 {
3035 struct vmx_machdata *machdata = mach->machdata;
3036
3037 kmem_free(machdata, sizeof(struct vmx_machdata));
3038 }
3039
3040 static int
3041 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3042 {
3043 panic("%s: impossible", __func__);
3044 }
3045
3046 /* -------------------------------------------------------------------------- */
3047
3048 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3049 ((msrval & __BIT(32 + bitoff)) != 0)
3050 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3051 ((msrval & __BIT(bitoff)) == 0)
3052
3053 static int
3054 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3055 {
3056 uint64_t basic, val, true_val;
3057 bool has_true;
3058 size_t i;
3059
3060 basic = rdmsr(MSR_IA32_VMX_BASIC);
3061 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3062
3063 val = rdmsr(msr_ctls);
3064 if (has_true) {
3065 true_val = rdmsr(msr_true_ctls);
3066 } else {
3067 true_val = val;
3068 }
3069
3070 for (i = 0; i < 32; i++) {
3071 if (!(set_one & __BIT(i))) {
3072 continue;
3073 }
3074 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3075 return -1;
3076 }
3077 }
3078
3079 return 0;
3080 }
3081
3082 static int
3083 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3084 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3085 {
3086 uint64_t basic, val, true_val;
3087 bool one_allowed, zero_allowed, has_true;
3088 size_t i;
3089
3090 basic = rdmsr(MSR_IA32_VMX_BASIC);
3091 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3092
3093 val = rdmsr(msr_ctls);
3094 if (has_true) {
3095 true_val = rdmsr(msr_true_ctls);
3096 } else {
3097 true_val = val;
3098 }
3099
3100 for (i = 0; i < 32; i++) {
3101 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3102 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3103
3104 if (zero_allowed && !one_allowed) {
3105 if (set_one & __BIT(i))
3106 return -1;
3107 *res &= ~__BIT(i);
3108 } else if (one_allowed && !zero_allowed) {
3109 if (set_zero & __BIT(i))
3110 return -1;
3111 *res |= __BIT(i);
3112 } else {
3113 if (set_zero & __BIT(i)) {
3114 *res &= ~__BIT(i);
3115 } else if (set_one & __BIT(i)) {
3116 *res |= __BIT(i);
3117 } else if (!has_true) {
3118 *res &= ~__BIT(i);
3119 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3120 *res &= ~__BIT(i);
3121 } else if (CTLS_ONE_ALLOWED(val, i)) {
3122 *res |= __BIT(i);
3123 } else {
3124 return -1;
3125 }
3126 }
3127 }
3128
3129 return 0;
3130 }
3131
3132 static bool
3133 vmx_ident(void)
3134 {
3135 uint64_t msr;
3136 int ret;
3137
3138 if (!(cpu_feature[1] & CPUID2_VMX)) {
3139 return false;
3140 }
3141
3142 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3143 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3144 printf("NVMM: VMX disabled in BIOS\n");
3145 return false;
3146 }
3147 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3148 printf("NVMM: VMX disabled in BIOS\n");
3149 return false;
3150 }
3151
3152 msr = rdmsr(MSR_IA32_VMX_BASIC);
3153 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3154 printf("NVMM: I/O reporting not supported\n");
3155 return false;
3156 }
3157 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3158 printf("NVMM: WB memory not supported\n");
3159 return false;
3160 }
3161
3162 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3163 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3164 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3165 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3166 if (ret == -1) {
3167 printf("NVMM: CR0 requirements not satisfied\n");
3168 return false;
3169 }
3170
3171 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3172 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3173 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3174 if (ret == -1) {
3175 printf("NVMM: CR4 requirements not satisfied\n");
3176 return false;
3177 }
3178
3179 /* Init the CTLSs right now, and check for errors. */
3180 ret = vmx_init_ctls(
3181 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3182 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3183 &vmx_pinbased_ctls);
3184 if (ret == -1) {
3185 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3186 return false;
3187 }
3188 ret = vmx_init_ctls(
3189 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3190 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3191 &vmx_procbased_ctls);
3192 if (ret == -1) {
3193 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3194 return false;
3195 }
3196 ret = vmx_init_ctls(
3197 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3198 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3199 &vmx_procbased_ctls2);
3200 if (ret == -1) {
3201 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3202 return false;
3203 }
3204 ret = vmx_check_ctls(
3205 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3206 PROC_CTLS2_INVPCID_ENABLE);
3207 if (ret != -1) {
3208 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3209 }
3210 ret = vmx_init_ctls(
3211 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3212 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3213 &vmx_entry_ctls);
3214 if (ret == -1) {
3215 printf("NVMM: entry-ctls requirements not satisfied\n");
3216 return false;
3217 }
3218 ret = vmx_init_ctls(
3219 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3220 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3221 &vmx_exit_ctls);
3222 if (ret == -1) {
3223 printf("NVMM: exit-ctls requirements not satisfied\n");
3224 return false;
3225 }
3226
3227 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3228 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3229 printf("NVMM: 4-level page tree not supported\n");
3230 return false;
3231 }
3232 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3233 printf("NVMM: INVEPT not supported\n");
3234 return false;
3235 }
3236 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3237 printf("NVMM: INVVPID not supported\n");
3238 return false;
3239 }
3240 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3241 pmap_ept_has_ad = true;
3242 } else {
3243 pmap_ept_has_ad = false;
3244 }
3245 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3246 printf("NVMM: EPT UC/WB memory types not supported\n");
3247 return false;
3248 }
3249
3250 return true;
3251 }
3252
3253 static void
3254 vmx_init_asid(uint32_t maxasid)
3255 {
3256 size_t allocsz;
3257
3258 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3259
3260 vmx_maxasid = maxasid;
3261 allocsz = roundup(maxasid, 8) / 8;
3262 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3263
3264 /* ASID 0 is reserved for the host. */
3265 vmx_asidmap[0] |= __BIT(0);
3266 }
3267
3268 static void
3269 vmx_change_cpu(void *arg1, void *arg2)
3270 {
3271 struct cpu_info *ci = curcpu();
3272 bool enable = arg1 != NULL;
3273 uint64_t cr4;
3274
3275 if (!enable) {
3276 vmx_vmxoff();
3277 }
3278
3279 cr4 = rcr4();
3280 if (enable) {
3281 cr4 |= CR4_VMXE;
3282 } else {
3283 cr4 &= ~CR4_VMXE;
3284 }
3285 lcr4(cr4);
3286
3287 if (enable) {
3288 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3289 }
3290 }
3291
3292 static void
3293 vmx_init_l1tf(void)
3294 {
3295 u_int descs[4];
3296 uint64_t msr;
3297
3298 if (cpuid_level < 7) {
3299 return;
3300 }
3301
3302 x86_cpuid(7, descs);
3303
3304 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3305 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3306 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3307 /* No mitigation needed. */
3308 return;
3309 }
3310 }
3311
3312 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3313 /* Enable hardware mitigation. */
3314 vmx_msrlist_entry_nmsr += 1;
3315 }
3316 }
3317
3318 static void
3319 vmx_init(void)
3320 {
3321 CPU_INFO_ITERATOR cii;
3322 struct cpu_info *ci;
3323 uint64_t xc, msr;
3324 struct vmxon *vmxon;
3325 uint32_t revision;
3326 paddr_t pa;
3327 vaddr_t va;
3328 int error;
3329
3330 /* Init the ASID bitmap (VPID). */
3331 vmx_init_asid(VPID_MAX);
3332
3333 /* Init the XCR0 mask. */
3334 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3335
3336 /* Init the max CPUID leaves. */
3337 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3338
3339 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3340 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3341 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3342 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3343 } else {
3344 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3345 }
3346 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3347 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3348 } else {
3349 vmx_ept_flush_op = VMX_INVEPT_ALL;
3350 }
3351 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3352 vmx_eptp_type = EPTP_TYPE_WB;
3353 } else {
3354 vmx_eptp_type = EPTP_TYPE_UC;
3355 }
3356
3357 /* Init the L1TF mitigation. */
3358 vmx_init_l1tf();
3359
3360 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3361 revision = vmx_get_revision();
3362
3363 for (CPU_INFO_FOREACH(cii, ci)) {
3364 error = vmx_memalloc(&pa, &va, 1);
3365 if (error) {
3366 panic("%s: out of memory", __func__);
3367 }
3368 vmxoncpu[cpu_index(ci)].pa = pa;
3369 vmxoncpu[cpu_index(ci)].va = va;
3370
3371 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3372 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3373 }
3374
3375 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3376 xc_wait(xc);
3377 }
3378
3379 static void
3380 vmx_fini_asid(void)
3381 {
3382 size_t allocsz;
3383
3384 allocsz = roundup(vmx_maxasid, 8) / 8;
3385 kmem_free(vmx_asidmap, allocsz);
3386
3387 mutex_destroy(&vmx_asidlock);
3388 }
3389
3390 static void
3391 vmx_fini(void)
3392 {
3393 uint64_t xc;
3394 size_t i;
3395
3396 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3397 xc_wait(xc);
3398
3399 for (i = 0; i < MAXCPUS; i++) {
3400 if (vmxoncpu[i].pa != 0)
3401 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3402 }
3403
3404 vmx_fini_asid();
3405 }
3406
3407 static void
3408 vmx_capability(struct nvmm_capability *cap)
3409 {
3410 cap->arch.mach_conf_support = 0;
3411 cap->arch.vcpu_conf_support =
3412 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3413 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3414 cap->arch.xcr0_mask = vmx_xcr0_mask;
3415 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3416 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3417 }
3418
3419 const struct nvmm_impl nvmm_x86_vmx = {
3420 .name = "x86-vmx",
3421 .ident = vmx_ident,
3422 .init = vmx_init,
3423 .fini = vmx_fini,
3424 .capability = vmx_capability,
3425 .mach_conf_max = NVMM_X86_MACH_NCONF,
3426 .mach_conf_sizes = NULL,
3427 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3428 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3429 .state_size = sizeof(struct nvmm_x64_state),
3430 .machine_create = vmx_machine_create,
3431 .machine_destroy = vmx_machine_destroy,
3432 .machine_configure = vmx_machine_configure,
3433 .vcpu_create = vmx_vcpu_create,
3434 .vcpu_destroy = vmx_vcpu_destroy,
3435 .vcpu_configure = vmx_vcpu_configure,
3436 .vcpu_setstate = vmx_vcpu_setstate,
3437 .vcpu_getstate = vmx_vcpu_getstate,
3438 .vcpu_inject = vmx_vcpu_inject,
3439 .vcpu_run = vmx_vcpu_run
3440 };
3441