nvmm_x86_vmx.c revision 1.36.2.3 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.36.2.3 2019/11/10 12:58:30 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.36.2.3 2019/11/10 12:58:30 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 volatile uint64_t mach_htlb_gen;
701 };
702
703 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
704 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
705 sizeof(struct nvmm_vcpu_conf_cpuid),
706 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
707 sizeof(struct nvmm_vcpu_conf_tpr)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736 bool ts_set;
737 struct xsave_header hfpu __aligned(64);
738
739 /* Intr state */
740 bool int_window_exit;
741 bool nmi_window_exit;
742 bool evt_pending;
743
744 /* Guest state */
745 struct msr_entry *gmsr;
746 paddr_t gmsr_pa;
747 uint64_t gmsr_misc_enable;
748 uint64_t gcr2;
749 uint64_t gcr8;
750 uint64_t gxcr0;
751 uint64_t gprs[NVMM_X64_NGPR];
752 uint64_t drs[NVMM_X64_NDR];
753 uint64_t gtsc;
754 struct xsave_header gfpu __aligned(64);
755
756 /* VCPU configuration. */
757 bool cpuidpresent[VMX_NCPUIDS];
758 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
759 struct nvmm_vcpu_conf_tpr tpr;
760 };
761
762 static const struct {
763 uint64_t selector;
764 uint64_t attrib;
765 uint64_t limit;
766 uint64_t base;
767 } vmx_guest_segs[NVMM_X64_NSEG] = {
768 [NVMM_X64_SEG_ES] = {
769 VMCS_GUEST_ES_SELECTOR,
770 VMCS_GUEST_ES_ACCESS_RIGHTS,
771 VMCS_GUEST_ES_LIMIT,
772 VMCS_GUEST_ES_BASE
773 },
774 [NVMM_X64_SEG_CS] = {
775 VMCS_GUEST_CS_SELECTOR,
776 VMCS_GUEST_CS_ACCESS_RIGHTS,
777 VMCS_GUEST_CS_LIMIT,
778 VMCS_GUEST_CS_BASE
779 },
780 [NVMM_X64_SEG_SS] = {
781 VMCS_GUEST_SS_SELECTOR,
782 VMCS_GUEST_SS_ACCESS_RIGHTS,
783 VMCS_GUEST_SS_LIMIT,
784 VMCS_GUEST_SS_BASE
785 },
786 [NVMM_X64_SEG_DS] = {
787 VMCS_GUEST_DS_SELECTOR,
788 VMCS_GUEST_DS_ACCESS_RIGHTS,
789 VMCS_GUEST_DS_LIMIT,
790 VMCS_GUEST_DS_BASE
791 },
792 [NVMM_X64_SEG_FS] = {
793 VMCS_GUEST_FS_SELECTOR,
794 VMCS_GUEST_FS_ACCESS_RIGHTS,
795 VMCS_GUEST_FS_LIMIT,
796 VMCS_GUEST_FS_BASE
797 },
798 [NVMM_X64_SEG_GS] = {
799 VMCS_GUEST_GS_SELECTOR,
800 VMCS_GUEST_GS_ACCESS_RIGHTS,
801 VMCS_GUEST_GS_LIMIT,
802 VMCS_GUEST_GS_BASE
803 },
804 [NVMM_X64_SEG_GDT] = {
805 0, /* doesn't exist */
806 0, /* doesn't exist */
807 VMCS_GUEST_GDTR_LIMIT,
808 VMCS_GUEST_GDTR_BASE
809 },
810 [NVMM_X64_SEG_IDT] = {
811 0, /* doesn't exist */
812 0, /* doesn't exist */
813 VMCS_GUEST_IDTR_LIMIT,
814 VMCS_GUEST_IDTR_BASE
815 },
816 [NVMM_X64_SEG_LDT] = {
817 VMCS_GUEST_LDTR_SELECTOR,
818 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
819 VMCS_GUEST_LDTR_LIMIT,
820 VMCS_GUEST_LDTR_BASE
821 },
822 [NVMM_X64_SEG_TR] = {
823 VMCS_GUEST_TR_SELECTOR,
824 VMCS_GUEST_TR_ACCESS_RIGHTS,
825 VMCS_GUEST_TR_LIMIT,
826 VMCS_GUEST_TR_BASE
827 }
828 };
829
830 /* -------------------------------------------------------------------------- */
831
832 static uint64_t
833 vmx_get_revision(void)
834 {
835 uint64_t msr;
836
837 msr = rdmsr(MSR_IA32_VMX_BASIC);
838 msr &= IA32_VMX_BASIC_IDENT;
839
840 return msr;
841 }
842
843 static void
844 vmx_vmclear_ipi(void *arg1, void *arg2)
845 {
846 paddr_t vmcs_pa = (paddr_t)arg1;
847 vmx_vmclear(&vmcs_pa);
848 }
849
850 static void
851 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
852 {
853 uint64_t xc;
854 int bound;
855
856 KASSERT(kpreempt_disabled());
857
858 bound = curlwp_bind();
859 kpreempt_enable();
860
861 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
862 xc_wait(xc);
863
864 kpreempt_disable();
865 curlwp_bindx(bound);
866 }
867
868 static void
869 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
870 {
871 struct vmx_cpudata *cpudata = vcpu->cpudata;
872 struct cpu_info *vmcs_ci;
873 paddr_t oldpa __diagused;
874
875 cpudata->vmcs_refcnt++;
876 if (cpudata->vmcs_refcnt > 1) {
877 #ifdef DIAGNOSTIC
878 KASSERT(kpreempt_disabled());
879 oldpa = vmx_vmptrst();
880 KASSERT(oldpa == cpudata->vmcs_pa);
881 #endif
882 return;
883 }
884
885 vmcs_ci = cpudata->vmcs_ci;
886 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
887
888 kpreempt_disable();
889
890 if (vmcs_ci == NULL) {
891 /* This VMCS is loaded for the first time. */
892 vmx_vmclear(&cpudata->vmcs_pa);
893 cpudata->vmcs_launched = false;
894 } else if (vmcs_ci != curcpu()) {
895 /* This VMCS is active on a remote CPU. */
896 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
897 cpudata->vmcs_launched = false;
898 } else {
899 /* This VMCS is active on curcpu, nothing to do. */
900 }
901
902 vmx_vmptrld(&cpudata->vmcs_pa);
903 }
904
905 static void
906 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
907 {
908 struct vmx_cpudata *cpudata = vcpu->cpudata;
909
910 KASSERT(kpreempt_disabled());
911 #ifdef DIAGNOSTIC
912 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
913 #endif
914 KASSERT(cpudata->vmcs_refcnt > 0);
915 cpudata->vmcs_refcnt--;
916
917 if (cpudata->vmcs_refcnt > 0) {
918 return;
919 }
920
921 cpudata->vmcs_ci = curcpu();
922 kpreempt_enable();
923 }
924
925 static void
926 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
927 {
928 struct vmx_cpudata *cpudata = vcpu->cpudata;
929
930 KASSERT(kpreempt_disabled());
931 #ifdef DIAGNOSTIC
932 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
933 #endif
934 KASSERT(cpudata->vmcs_refcnt == 1);
935 cpudata->vmcs_refcnt--;
936
937 vmx_vmclear(&cpudata->vmcs_pa);
938 kpreempt_enable();
939 }
940
941 /* -------------------------------------------------------------------------- */
942
943 static void
944 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
945 {
946 struct vmx_cpudata *cpudata = vcpu->cpudata;
947 uint64_t ctls1;
948
949 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
950
951 if (nmi) {
952 // XXX INT_STATE_NMI?
953 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
954 cpudata->nmi_window_exit = true;
955 } else {
956 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
957 cpudata->int_window_exit = true;
958 }
959
960 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
961 }
962
963 static void
964 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
965 {
966 struct vmx_cpudata *cpudata = vcpu->cpudata;
967 uint64_t ctls1;
968
969 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
970
971 if (nmi) {
972 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
973 cpudata->nmi_window_exit = false;
974 } else {
975 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
976 cpudata->int_window_exit = false;
977 }
978
979 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
980 }
981
982 static inline int
983 vmx_event_has_error(uint8_t vector)
984 {
985 switch (vector) {
986 case 8: /* #DF */
987 case 10: /* #TS */
988 case 11: /* #NP */
989 case 12: /* #SS */
990 case 13: /* #GP */
991 case 14: /* #PF */
992 case 17: /* #AC */
993 case 30: /* #SX */
994 return 1;
995 default:
996 return 0;
997 }
998 }
999
1000 static int
1001 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1002 {
1003 struct nvmm_comm_page *comm = vcpu->comm;
1004 struct vmx_cpudata *cpudata = vcpu->cpudata;
1005 int type = 0, err = 0, ret = EINVAL;
1006 u_int evtype;
1007 uint8_t vector;
1008 uint64_t info, error;
1009
1010 evtype = comm->event.type;
1011 vector = comm->event.vector;
1012 error = comm->event.u.excp.error;
1013 __insn_barrier();
1014
1015 vmx_vmcs_enter(vcpu);
1016
1017 switch (evtype) {
1018 case NVMM_VCPU_EVENT_EXCP:
1019 if (vector == 2 || vector >= 32)
1020 goto out;
1021 if (vector == 3 || vector == 0)
1022 goto out;
1023 type = INTR_TYPE_HW_EXC;
1024 err = vmx_event_has_error(vector);
1025 break;
1026 case NVMM_VCPU_EVENT_INTR:
1027 type = INTR_TYPE_EXT_INT;
1028 if (vector == 2) {
1029 type = INTR_TYPE_NMI;
1030 vmx_event_waitexit_enable(vcpu, true);
1031 }
1032 err = 0;
1033 break;
1034 default:
1035 goto out;
1036 }
1037
1038 info =
1039 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1040 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1041 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1042 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1043 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1044 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1045
1046 cpudata->evt_pending = true;
1047 ret = 0;
1048
1049 out:
1050 vmx_vmcs_leave(vcpu);
1051 return ret;
1052 }
1053
1054 static void
1055 vmx_inject_ud(struct nvmm_cpu *vcpu)
1056 {
1057 struct nvmm_comm_page *comm = vcpu->comm;
1058 int ret __diagused;
1059
1060 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1061 comm->event.vector = 6;
1062 comm->event.u.excp.error = 0;
1063
1064 ret = vmx_vcpu_inject(vcpu);
1065 KASSERT(ret == 0);
1066 }
1067
1068 static void
1069 vmx_inject_gp(struct nvmm_cpu *vcpu)
1070 {
1071 struct nvmm_comm_page *comm = vcpu->comm;
1072 int ret __diagused;
1073
1074 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1075 comm->event.vector = 13;
1076 comm->event.u.excp.error = 0;
1077
1078 ret = vmx_vcpu_inject(vcpu);
1079 KASSERT(ret == 0);
1080 }
1081
1082 static inline int
1083 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1084 {
1085 if (__predict_true(!vcpu->comm->event_commit)) {
1086 return 0;
1087 }
1088 vcpu->comm->event_commit = false;
1089 return vmx_vcpu_inject(vcpu);
1090 }
1091
1092 static inline void
1093 vmx_inkernel_advance(void)
1094 {
1095 uint64_t rip, inslen, intstate;
1096
1097 /*
1098 * Maybe we should also apply single-stepping and debug exceptions.
1099 * Matters for guest-ring3, because it can execute 'cpuid' under a
1100 * debugger.
1101 */
1102 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1103 rip = vmx_vmread(VMCS_GUEST_RIP);
1104 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1105 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1106 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1107 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1108 }
1109
1110 static void
1111 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1112 {
1113 exit->u.inv.hwcode = code;
1114 exit->reason = NVMM_VCPU_EXIT_INVALID;
1115 }
1116
1117 static void
1118 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1119 struct nvmm_vcpu_exit *exit)
1120 {
1121 uint64_t qual;
1122
1123 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1124
1125 if ((qual & INTR_INFO_VALID) == 0) {
1126 goto error;
1127 }
1128 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1129 goto error;
1130 }
1131
1132 exit->reason = NVMM_VCPU_EXIT_NONE;
1133 return;
1134
1135 error:
1136 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1137 }
1138
1139 static void
1140 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1141 {
1142 struct vmx_cpudata *cpudata = vcpu->cpudata;
1143 uint64_t cr4;
1144
1145 switch (eax) {
1146 case 0x00000001:
1147 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1148
1149 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1150 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1151 CPUID_LOCAL_APIC_ID);
1152
1153 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1154 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1155 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1156 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1157 }
1158
1159 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1160
1161 /* CPUID2_OSXSAVE depends on CR4. */
1162 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1163 if (!(cr4 & CR4_OSXSAVE)) {
1164 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1165 }
1166 break;
1167 case 0x00000005:
1168 case 0x00000006:
1169 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1170 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1171 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1172 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1173 break;
1174 case 0x00000007:
1175 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1176 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1177 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1178 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1179 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1180 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1181 }
1182 break;
1183 case 0x0000000A:
1184 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1186 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1187 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1188 break;
1189 case 0x0000000D:
1190 if (vmx_xcr0_mask == 0) {
1191 break;
1192 }
1193 switch (ecx) {
1194 case 0:
1195 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1196 if (cpudata->gxcr0 & XCR0_SSE) {
1197 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1198 } else {
1199 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1200 }
1201 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1202 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1203 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1204 break;
1205 case 1:
1206 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1207 break;
1208 }
1209 break;
1210 case 0x40000000:
1211 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1212 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1213 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1214 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1215 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1216 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1217 break;
1218 case 0x80000001:
1219 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1220 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1221 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1222 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1223 break;
1224 default:
1225 break;
1226 }
1227 }
1228
1229 static void
1230 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1231 {
1232 uint64_t inslen, rip;
1233
1234 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1235 rip = vmx_vmread(VMCS_GUEST_RIP);
1236 exit->u.insn.npc = rip + inslen;
1237 exit->reason = reason;
1238 }
1239
1240 static void
1241 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1242 struct nvmm_vcpu_exit *exit)
1243 {
1244 struct vmx_cpudata *cpudata = vcpu->cpudata;
1245 struct nvmm_vcpu_conf_cpuid *cpuid;
1246 uint64_t eax, ecx;
1247 u_int descs[4];
1248 size_t i;
1249
1250 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1251 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1252 x86_cpuid2(eax, ecx, descs);
1253
1254 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1255 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1256 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1257 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1258
1259 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1260
1261 for (i = 0; i < VMX_NCPUIDS; i++) {
1262 if (!cpudata->cpuidpresent[i]) {
1263 continue;
1264 }
1265 cpuid = &cpudata->cpuid[i];
1266 if (cpuid->leaf != eax) {
1267 continue;
1268 }
1269
1270 if (cpuid->exit) {
1271 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1272 return;
1273 }
1274 KASSERT(cpuid->mask);
1275
1276 /* del */
1277 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1278 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1279 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1280 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1281
1282 /* set */
1283 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1284 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1285 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1286 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1287
1288 break;
1289 }
1290
1291 vmx_inkernel_advance();
1292 exit->reason = NVMM_VCPU_EXIT_NONE;
1293 }
1294
1295 static void
1296 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1297 struct nvmm_vcpu_exit *exit)
1298 {
1299 struct vmx_cpudata *cpudata = vcpu->cpudata;
1300 uint64_t rflags;
1301
1302 if (cpudata->int_window_exit) {
1303 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1304 if (rflags & PSL_I) {
1305 vmx_event_waitexit_disable(vcpu, false);
1306 }
1307 }
1308
1309 vmx_inkernel_advance();
1310 exit->reason = NVMM_VCPU_EXIT_HALTED;
1311 }
1312
1313 #define VMX_QUAL_CR_NUM __BITS(3,0)
1314 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1315 #define CR_TYPE_WRITE 0
1316 #define CR_TYPE_READ 1
1317 #define CR_TYPE_CLTS 2
1318 #define CR_TYPE_LMSW 3
1319 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1320 #define VMX_QUAL_CR_GPR __BITS(11,8)
1321 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1322
1323 static inline int
1324 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1325 {
1326 /* Bits set to 1 in fixed0 are fixed to 1. */
1327 if ((crval & fixed0) != fixed0) {
1328 return -1;
1329 }
1330 /* Bits set to 0 in fixed1 are fixed to 0. */
1331 if (crval & ~fixed1) {
1332 return -1;
1333 }
1334 return 0;
1335 }
1336
1337 static int
1338 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1339 uint64_t qual)
1340 {
1341 struct vmx_cpudata *cpudata = vcpu->cpudata;
1342 uint64_t type, gpr, cr0;
1343 uint64_t efer, ctls1;
1344
1345 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1346 if (type != CR_TYPE_WRITE) {
1347 return -1;
1348 }
1349
1350 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1351 KASSERT(gpr < 16);
1352
1353 if (gpr == NVMM_X64_GPR_RSP) {
1354 gpr = vmx_vmread(VMCS_GUEST_RSP);
1355 } else {
1356 gpr = cpudata->gprs[gpr];
1357 }
1358
1359 cr0 = gpr | CR0_NE | CR0_ET;
1360 cr0 &= ~(CR0_NW|CR0_CD);
1361
1362 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1363 return -1;
1364 }
1365
1366 /*
1367 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1368 * from CR3.
1369 */
1370
1371 if (cr0 & CR0_PG) {
1372 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1373 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1374 if (efer & EFER_LME) {
1375 ctls1 |= ENTRY_CTLS_LONG_MODE;
1376 efer |= EFER_LMA;
1377 } else {
1378 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1379 efer &= ~EFER_LMA;
1380 }
1381 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1382 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1383 }
1384
1385 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1386 vmx_inkernel_advance();
1387 return 0;
1388 }
1389
1390 static int
1391 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1392 uint64_t qual)
1393 {
1394 struct vmx_cpudata *cpudata = vcpu->cpudata;
1395 uint64_t type, gpr, cr4;
1396
1397 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1398 if (type != CR_TYPE_WRITE) {
1399 return -1;
1400 }
1401
1402 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1403 KASSERT(gpr < 16);
1404
1405 if (gpr == NVMM_X64_GPR_RSP) {
1406 gpr = vmx_vmread(VMCS_GUEST_RSP);
1407 } else {
1408 gpr = cpudata->gprs[gpr];
1409 }
1410
1411 cr4 = gpr | CR4_VMXE;
1412
1413 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1414 return -1;
1415 }
1416
1417 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1418 vmx_inkernel_advance();
1419 return 0;
1420 }
1421
1422 static int
1423 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1424 uint64_t qual, struct nvmm_vcpu_exit *exit)
1425 {
1426 struct vmx_cpudata *cpudata = vcpu->cpudata;
1427 uint64_t type, gpr;
1428 bool write;
1429
1430 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1431 if (type == CR_TYPE_WRITE) {
1432 write = true;
1433 } else if (type == CR_TYPE_READ) {
1434 write = false;
1435 } else {
1436 return -1;
1437 }
1438
1439 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1440 KASSERT(gpr < 16);
1441
1442 if (write) {
1443 if (gpr == NVMM_X64_GPR_RSP) {
1444 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1445 } else {
1446 cpudata->gcr8 = cpudata->gprs[gpr];
1447 }
1448 if (cpudata->tpr.exit_changed) {
1449 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1450 }
1451 } else {
1452 if (gpr == NVMM_X64_GPR_RSP) {
1453 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1454 } else {
1455 cpudata->gprs[gpr] = cpudata->gcr8;
1456 }
1457 }
1458
1459 vmx_inkernel_advance();
1460 return 0;
1461 }
1462
1463 static void
1464 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1465 struct nvmm_vcpu_exit *exit)
1466 {
1467 uint64_t qual;
1468 int ret;
1469
1470 exit->reason = NVMM_VCPU_EXIT_NONE;
1471
1472 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1473
1474 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1475 case 0:
1476 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1477 break;
1478 case 4:
1479 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1480 break;
1481 case 8:
1482 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1483 break;
1484 default:
1485 ret = -1;
1486 break;
1487 }
1488
1489 if (ret == -1) {
1490 vmx_inject_gp(vcpu);
1491 }
1492 }
1493
1494 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1495 #define IO_SIZE_8 0
1496 #define IO_SIZE_16 1
1497 #define IO_SIZE_32 3
1498 #define VMX_QUAL_IO_IN __BIT(3)
1499 #define VMX_QUAL_IO_STR __BIT(4)
1500 #define VMX_QUAL_IO_REP __BIT(5)
1501 #define VMX_QUAL_IO_DX __BIT(6)
1502 #define VMX_QUAL_IO_PORT __BITS(31,16)
1503
1504 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1505 #define IO_ADRSIZE_16 0
1506 #define IO_ADRSIZE_32 1
1507 #define IO_ADRSIZE_64 2
1508 #define VMX_INFO_IO_SEG __BITS(17,15)
1509
1510 static void
1511 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1512 struct nvmm_vcpu_exit *exit)
1513 {
1514 uint64_t qual, info, inslen, rip;
1515
1516 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1517 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1518
1519 exit->reason = NVMM_VCPU_EXIT_IO;
1520
1521 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1522 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1523
1524 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1525 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1526
1527 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1528 exit->u.io.address_size = 8;
1529 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1530 exit->u.io.address_size = 4;
1531 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1532 exit->u.io.address_size = 2;
1533 }
1534
1535 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1536 exit->u.io.operand_size = 4;
1537 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1538 exit->u.io.operand_size = 2;
1539 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1540 exit->u.io.operand_size = 1;
1541 }
1542
1543 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1544 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1545
1546 if (exit->u.io.in && exit->u.io.str) {
1547 exit->u.io.seg = NVMM_X64_SEG_ES;
1548 }
1549
1550 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1551 rip = vmx_vmread(VMCS_GUEST_RIP);
1552 exit->u.io.npc = rip + inslen;
1553
1554 vmx_vcpu_state_provide(vcpu,
1555 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1556 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1557 }
1558
1559 static const uint64_t msr_ignore_list[] = {
1560 MSR_BIOS_SIGN,
1561 MSR_IA32_PLATFORM_ID
1562 };
1563
1564 static bool
1565 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1566 struct nvmm_vcpu_exit *exit)
1567 {
1568 struct vmx_cpudata *cpudata = vcpu->cpudata;
1569 uint64_t val;
1570 size_t i;
1571
1572 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1573 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1574 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1575 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1576 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1577 goto handled;
1578 }
1579 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1580 val = cpudata->gmsr_misc_enable;
1581 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1582 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1583 goto handled;
1584 }
1585 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1586 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1587 continue;
1588 val = 0;
1589 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1590 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1591 goto handled;
1592 }
1593 } else {
1594 if (exit->u.wrmsr.msr == MSR_TSC) {
1595 cpudata->gtsc = exit->u.wrmsr.val;
1596 cpudata->gtsc_want_update = true;
1597 goto handled;
1598 }
1599 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1600 val = exit->u.wrmsr.val;
1601 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1602 goto error;
1603 }
1604 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1605 goto handled;
1606 }
1607 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1608 /* Don't care. */
1609 goto handled;
1610 }
1611 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1612 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1613 continue;
1614 goto handled;
1615 }
1616 }
1617
1618 return false;
1619
1620 handled:
1621 vmx_inkernel_advance();
1622 return true;
1623
1624 error:
1625 vmx_inject_gp(vcpu);
1626 return true;
1627 }
1628
1629 static void
1630 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1631 struct nvmm_vcpu_exit *exit)
1632 {
1633 struct vmx_cpudata *cpudata = vcpu->cpudata;
1634 uint64_t inslen, rip;
1635
1636 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1637 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1638
1639 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1640 exit->reason = NVMM_VCPU_EXIT_NONE;
1641 return;
1642 }
1643
1644 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1645 rip = vmx_vmread(VMCS_GUEST_RIP);
1646 exit->u.rdmsr.npc = rip + inslen;
1647
1648 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1649 }
1650
1651 static void
1652 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1653 struct nvmm_vcpu_exit *exit)
1654 {
1655 struct vmx_cpudata *cpudata = vcpu->cpudata;
1656 uint64_t rdx, rax, inslen, rip;
1657
1658 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1659 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1660
1661 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1662 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1663 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1664
1665 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1666 exit->reason = NVMM_VCPU_EXIT_NONE;
1667 return;
1668 }
1669
1670 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1671 rip = vmx_vmread(VMCS_GUEST_RIP);
1672 exit->u.wrmsr.npc = rip + inslen;
1673
1674 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1675 }
1676
1677 static void
1678 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1679 struct nvmm_vcpu_exit *exit)
1680 {
1681 struct vmx_cpudata *cpudata = vcpu->cpudata;
1682 uint16_t val;
1683
1684 exit->reason = NVMM_VCPU_EXIT_NONE;
1685
1686 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1687 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1688
1689 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1690 goto error;
1691 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1692 goto error;
1693 } else if (__predict_false((val & XCR0_X87) == 0)) {
1694 goto error;
1695 }
1696
1697 cpudata->gxcr0 = val;
1698
1699 vmx_inkernel_advance();
1700 return;
1701
1702 error:
1703 vmx_inject_gp(vcpu);
1704 }
1705
1706 #define VMX_EPT_VIOLATION_READ __BIT(0)
1707 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1708 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1709
1710 static void
1711 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1712 struct nvmm_vcpu_exit *exit)
1713 {
1714 uint64_t perm;
1715 gpaddr_t gpa;
1716
1717 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1718
1719 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1720 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1721 if (perm & VMX_EPT_VIOLATION_WRITE)
1722 exit->u.mem.prot = PROT_WRITE;
1723 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1724 exit->u.mem.prot = PROT_EXEC;
1725 else
1726 exit->u.mem.prot = PROT_READ;
1727 exit->u.mem.gpa = gpa;
1728 exit->u.mem.inst_len = 0;
1729
1730 vmx_vcpu_state_provide(vcpu,
1731 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1732 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1733 }
1734
1735 /* -------------------------------------------------------------------------- */
1736
1737 static void
1738 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1739 {
1740 struct vmx_cpudata *cpudata = vcpu->cpudata;
1741
1742 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1743
1744 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1745 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1746
1747 if (vmx_xcr0_mask != 0) {
1748 cpudata->hxcr0 = rdxcr(0);
1749 wrxcr(0, cpudata->gxcr0);
1750 }
1751 }
1752
1753 static void
1754 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1755 {
1756 struct vmx_cpudata *cpudata = vcpu->cpudata;
1757
1758 if (vmx_xcr0_mask != 0) {
1759 cpudata->gxcr0 = rdxcr(0);
1760 wrxcr(0, cpudata->hxcr0);
1761 }
1762
1763 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1764 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1765
1766 if (cpudata->ts_set) {
1767 stts();
1768 }
1769 }
1770
1771 static void
1772 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1773 {
1774 struct vmx_cpudata *cpudata = vcpu->cpudata;
1775
1776 x86_dbregs_save(curlwp);
1777
1778 ldr7(0);
1779
1780 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1781 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1782 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1783 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1784 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1785 }
1786
1787 static void
1788 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1789 {
1790 struct vmx_cpudata *cpudata = vcpu->cpudata;
1791
1792 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1793 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1794 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1795 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1796 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1797
1798 x86_dbregs_restore(curlwp);
1799 }
1800
1801 static void
1802 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1803 {
1804 struct vmx_cpudata *cpudata = vcpu->cpudata;
1805
1806 /* This gets restored automatically by the CPU. */
1807 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1808 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1809 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1810
1811 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1812 }
1813
1814 static void
1815 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1816 {
1817 struct vmx_cpudata *cpudata = vcpu->cpudata;
1818
1819 wrmsr(MSR_STAR, cpudata->star);
1820 wrmsr(MSR_LSTAR, cpudata->lstar);
1821 wrmsr(MSR_CSTAR, cpudata->cstar);
1822 wrmsr(MSR_SFMASK, cpudata->sfmask);
1823 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1824 }
1825
1826 /* -------------------------------------------------------------------------- */
1827
1828 #define VMX_INVVPID_ADDRESS 0
1829 #define VMX_INVVPID_CONTEXT 1
1830 #define VMX_INVVPID_ALL 2
1831 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1832
1833 #define VMX_INVEPT_CONTEXT 1
1834 #define VMX_INVEPT_ALL 2
1835
1836 static inline void
1837 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1838 {
1839 struct vmx_cpudata *cpudata = vcpu->cpudata;
1840
1841 if (vcpu->hcpu_last != hcpu) {
1842 cpudata->gtlb_want_flush = true;
1843 }
1844 }
1845
1846 static inline void
1847 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1848 {
1849 struct vmx_cpudata *cpudata = vcpu->cpudata;
1850 struct ept_desc ept_desc;
1851
1852 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1853 return;
1854 }
1855
1856 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1857 ept_desc.mbz = 0;
1858 vmx_invept(vmx_ept_flush_op, &ept_desc);
1859 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1860 }
1861
1862 static inline uint64_t
1863 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1864 {
1865 struct ept_desc ept_desc;
1866 uint64_t machgen;
1867
1868 machgen = machdata->mach_htlb_gen;
1869 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1870 return machgen;
1871 }
1872
1873 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1874
1875 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1876 ept_desc.mbz = 0;
1877 vmx_invept(vmx_ept_flush_op, &ept_desc);
1878
1879 return machgen;
1880 }
1881
1882 static inline void
1883 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1884 {
1885 cpudata->vcpu_htlb_gen = machgen;
1886 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1887 }
1888
1889 static inline void
1890 vmx_exit_evt(struct vmx_cpudata *cpudata)
1891 {
1892 uint64_t info, err;
1893
1894 cpudata->evt_pending = false;
1895
1896 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1897 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1898 return;
1899 }
1900 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1901
1902 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1903 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1904
1905 cpudata->evt_pending = true;
1906 }
1907
1908 static int
1909 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1910 struct nvmm_vcpu_exit *exit)
1911 {
1912 struct nvmm_comm_page *comm = vcpu->comm;
1913 struct vmx_machdata *machdata = mach->machdata;
1914 struct vmx_cpudata *cpudata = vcpu->cpudata;
1915 struct vpid_desc vpid_desc;
1916 struct cpu_info *ci;
1917 uint64_t exitcode;
1918 uint64_t intstate;
1919 uint64_t machgen;
1920 int hcpu, s, ret;
1921 bool launched;
1922
1923 vmx_vmcs_enter(vcpu);
1924
1925 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1926 vmx_vmcs_leave(vcpu);
1927 return EINVAL;
1928 }
1929 vmx_vcpu_state_commit(vcpu);
1930 comm->state_cached = 0;
1931
1932 ci = curcpu();
1933 hcpu = cpu_number();
1934 launched = cpudata->vmcs_launched;
1935
1936 vmx_gtlb_catchup(vcpu, hcpu);
1937 vmx_htlb_catchup(vcpu, hcpu);
1938
1939 if (vcpu->hcpu_last != hcpu) {
1940 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1941 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1942 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1943 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1944 cpudata->gtsc_want_update = true;
1945 vcpu->hcpu_last = hcpu;
1946 }
1947
1948 vmx_vcpu_guest_dbregs_enter(vcpu);
1949 vmx_vcpu_guest_misc_enter(vcpu);
1950
1951 while (1) {
1952 if (cpudata->gtlb_want_flush) {
1953 vpid_desc.vpid = cpudata->asid;
1954 vpid_desc.addr = 0;
1955 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1956 cpudata->gtlb_want_flush = false;
1957 }
1958
1959 if (__predict_false(cpudata->gtsc_want_update)) {
1960 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1961 cpudata->gtsc_want_update = false;
1962 }
1963
1964 s = splhigh();
1965 machgen = vmx_htlb_flush(machdata, cpudata);
1966 vmx_vcpu_guest_fpu_enter(vcpu);
1967 lcr2(cpudata->gcr2);
1968 if (launched) {
1969 ret = vmx_vmresume(cpudata->gprs);
1970 } else {
1971 ret = vmx_vmlaunch(cpudata->gprs);
1972 }
1973 cpudata->gcr2 = rcr2();
1974 vmx_vcpu_guest_fpu_leave(vcpu);
1975 vmx_htlb_flush_ack(cpudata, machgen);
1976 splx(s);
1977
1978 if (__predict_false(ret != 0)) {
1979 vmx_exit_invalid(exit, -1);
1980 break;
1981 }
1982 vmx_exit_evt(cpudata);
1983
1984 launched = true;
1985
1986 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1987 exitcode &= __BITS(15,0);
1988
1989 switch (exitcode) {
1990 case VMCS_EXITCODE_EXC_NMI:
1991 vmx_exit_exc_nmi(mach, vcpu, exit);
1992 break;
1993 case VMCS_EXITCODE_EXT_INT:
1994 exit->reason = NVMM_VCPU_EXIT_NONE;
1995 break;
1996 case VMCS_EXITCODE_CPUID:
1997 vmx_exit_cpuid(mach, vcpu, exit);
1998 break;
1999 case VMCS_EXITCODE_HLT:
2000 vmx_exit_hlt(mach, vcpu, exit);
2001 break;
2002 case VMCS_EXITCODE_CR:
2003 vmx_exit_cr(mach, vcpu, exit);
2004 break;
2005 case VMCS_EXITCODE_IO:
2006 vmx_exit_io(mach, vcpu, exit);
2007 break;
2008 case VMCS_EXITCODE_RDMSR:
2009 vmx_exit_rdmsr(mach, vcpu, exit);
2010 break;
2011 case VMCS_EXITCODE_WRMSR:
2012 vmx_exit_wrmsr(mach, vcpu, exit);
2013 break;
2014 case VMCS_EXITCODE_SHUTDOWN:
2015 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2016 break;
2017 case VMCS_EXITCODE_MONITOR:
2018 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2019 break;
2020 case VMCS_EXITCODE_MWAIT:
2021 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2022 break;
2023 case VMCS_EXITCODE_XSETBV:
2024 vmx_exit_xsetbv(mach, vcpu, exit);
2025 break;
2026 case VMCS_EXITCODE_RDPMC:
2027 case VMCS_EXITCODE_RDTSCP:
2028 case VMCS_EXITCODE_INVVPID:
2029 case VMCS_EXITCODE_INVEPT:
2030 case VMCS_EXITCODE_VMCALL:
2031 case VMCS_EXITCODE_VMCLEAR:
2032 case VMCS_EXITCODE_VMLAUNCH:
2033 case VMCS_EXITCODE_VMPTRLD:
2034 case VMCS_EXITCODE_VMPTRST:
2035 case VMCS_EXITCODE_VMREAD:
2036 case VMCS_EXITCODE_VMRESUME:
2037 case VMCS_EXITCODE_VMWRITE:
2038 case VMCS_EXITCODE_VMXOFF:
2039 case VMCS_EXITCODE_VMXON:
2040 vmx_inject_ud(vcpu);
2041 exit->reason = NVMM_VCPU_EXIT_NONE;
2042 break;
2043 case VMCS_EXITCODE_EPT_VIOLATION:
2044 vmx_exit_epf(mach, vcpu, exit);
2045 break;
2046 case VMCS_EXITCODE_INT_WINDOW:
2047 vmx_event_waitexit_disable(vcpu, false);
2048 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2049 break;
2050 case VMCS_EXITCODE_NMI_WINDOW:
2051 vmx_event_waitexit_disable(vcpu, true);
2052 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2053 break;
2054 default:
2055 vmx_exit_invalid(exit, exitcode);
2056 break;
2057 }
2058
2059 /* If no reason to return to userland, keep rolling. */
2060 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2061 break;
2062 }
2063 if (curcpu()->ci_data.cpu_softints != 0) {
2064 break;
2065 }
2066 if (curlwp->l_flag & LW_USERRET) {
2067 break;
2068 }
2069 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2070 break;
2071 }
2072 }
2073
2074 cpudata->vmcs_launched = launched;
2075
2076 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2077
2078 vmx_vcpu_guest_misc_leave(vcpu);
2079 vmx_vcpu_guest_dbregs_leave(vcpu);
2080
2081 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2082 exit->exitstate.cr8 = cpudata->gcr8;
2083 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2084 exit->exitstate.int_shadow =
2085 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2086 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2087 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2088 exit->exitstate.evt_pending = cpudata->evt_pending;
2089
2090 vmx_vmcs_leave(vcpu);
2091
2092 return 0;
2093 }
2094
2095 /* -------------------------------------------------------------------------- */
2096
2097 static int
2098 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2099 {
2100 struct pglist pglist;
2101 paddr_t _pa;
2102 vaddr_t _va;
2103 size_t i;
2104 int ret;
2105
2106 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2107 &pglist, 1, 0);
2108 if (ret != 0)
2109 return ENOMEM;
2110 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2111 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2112 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2113 if (_va == 0)
2114 goto error;
2115
2116 for (i = 0; i < npages; i++) {
2117 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2118 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2119 }
2120 pmap_update(pmap_kernel());
2121
2122 memset((void *)_va, 0, npages * PAGE_SIZE);
2123
2124 *pa = _pa;
2125 *va = _va;
2126 return 0;
2127
2128 error:
2129 for (i = 0; i < npages; i++) {
2130 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2131 }
2132 return ENOMEM;
2133 }
2134
2135 static void
2136 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2137 {
2138 size_t i;
2139
2140 pmap_kremove(va, npages * PAGE_SIZE);
2141 pmap_update(pmap_kernel());
2142 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2143 for (i = 0; i < npages; i++) {
2144 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2145 }
2146 }
2147
2148 /* -------------------------------------------------------------------------- */
2149
2150 static void
2151 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2152 {
2153 uint64_t byte;
2154 uint8_t bitoff;
2155
2156 if (msr < 0x00002000) {
2157 /* Range 1 */
2158 byte = ((msr - 0x00000000) / 8) + 0;
2159 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2160 /* Range 2 */
2161 byte = ((msr - 0xC0000000) / 8) + 1024;
2162 } else {
2163 panic("%s: wrong range", __func__);
2164 }
2165
2166 bitoff = (msr & 0x7);
2167
2168 if (read) {
2169 bitmap[byte] &= ~__BIT(bitoff);
2170 }
2171 if (write) {
2172 bitmap[2048 + byte] &= ~__BIT(bitoff);
2173 }
2174 }
2175
2176 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2177 #define VMX_SEG_ATTRIB_S __BIT(4)
2178 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2179 #define VMX_SEG_ATTRIB_P __BIT(7)
2180 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2181 #define VMX_SEG_ATTRIB_L __BIT(13)
2182 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2183 #define VMX_SEG_ATTRIB_G __BIT(15)
2184 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2185
2186 static void
2187 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2188 {
2189 uint64_t attrib;
2190
2191 attrib =
2192 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2193 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2194 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2195 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2196 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2197 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2198 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2199 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2200 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2201
2202 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2203 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2204 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2205 }
2206 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2207 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2208 }
2209
2210 static void
2211 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2212 {
2213 uint64_t selector = 0, attrib = 0, base, limit;
2214
2215 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2216 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2217 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2218 }
2219 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2220 base = vmx_vmread(vmx_guest_segs[idx].base);
2221
2222 segs[idx].selector = selector;
2223 segs[idx].limit = limit;
2224 segs[idx].base = base;
2225 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2226 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2227 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2228 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2229 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2230 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2231 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2232 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2233 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2234 segs[idx].attrib.p = 0;
2235 }
2236 }
2237
2238 static inline bool
2239 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2240 {
2241 uint64_t cr0, cr3, cr4, efer;
2242
2243 if (flags & NVMM_X64_STATE_CRS) {
2244 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2245 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2246 return true;
2247 }
2248 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2249 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2250 return true;
2251 }
2252 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2253 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2254 return true;
2255 }
2256 }
2257
2258 if (flags & NVMM_X64_STATE_MSRS) {
2259 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2260 if ((efer ^
2261 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2262 return true;
2263 }
2264 }
2265
2266 return false;
2267 }
2268
2269 static void
2270 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2271 {
2272 struct nvmm_comm_page *comm = vcpu->comm;
2273 const struct nvmm_x64_state *state = &comm->state;
2274 struct vmx_cpudata *cpudata = vcpu->cpudata;
2275 struct fxsave *fpustate;
2276 uint64_t ctls1, intstate;
2277 uint64_t flags;
2278
2279 flags = comm->state_wanted;
2280
2281 vmx_vmcs_enter(vcpu);
2282
2283 if (vmx_state_tlb_flush(state, flags)) {
2284 cpudata->gtlb_want_flush = true;
2285 }
2286
2287 if (flags & NVMM_X64_STATE_SEGS) {
2288 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2289 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2290 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2291 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2292 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2293 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2294 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2295 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2296 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2297 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2298 }
2299
2300 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2301 if (flags & NVMM_X64_STATE_GPRS) {
2302 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2303
2304 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2305 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2306 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2307 }
2308
2309 if (flags & NVMM_X64_STATE_CRS) {
2310 /*
2311 * CR0_NE and CR4_VMXE are mandatory.
2312 */
2313 vmx_vmwrite(VMCS_GUEST_CR0,
2314 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2315 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2316 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2317 vmx_vmwrite(VMCS_GUEST_CR4,
2318 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2319 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2320
2321 if (vmx_xcr0_mask != 0) {
2322 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2323 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2324 cpudata->gxcr0 &= vmx_xcr0_mask;
2325 cpudata->gxcr0 |= XCR0_X87;
2326 }
2327 }
2328
2329 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2330 if (flags & NVMM_X64_STATE_DRS) {
2331 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2332
2333 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2334 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2335 }
2336
2337 if (flags & NVMM_X64_STATE_MSRS) {
2338 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2339 state->msrs[NVMM_X64_MSR_STAR];
2340 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2341 state->msrs[NVMM_X64_MSR_LSTAR];
2342 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2343 state->msrs[NVMM_X64_MSR_CSTAR];
2344 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2345 state->msrs[NVMM_X64_MSR_SFMASK];
2346 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2347 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2348
2349 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2350 state->msrs[NVMM_X64_MSR_EFER]);
2351 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2352 state->msrs[NVMM_X64_MSR_PAT]);
2353 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2354 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2355 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2356 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2357 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2358 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2359
2360 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2361 cpudata->gtsc_want_update = true;
2362
2363 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2364 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2365 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2366 ctls1 |= ENTRY_CTLS_LONG_MODE;
2367 } else {
2368 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2369 }
2370 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2371 }
2372
2373 if (flags & NVMM_X64_STATE_INTR) {
2374 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2375 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2376 if (state->intr.int_shadow) {
2377 intstate |= INT_STATE_MOVSS;
2378 }
2379 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2380
2381 if (state->intr.int_window_exiting) {
2382 vmx_event_waitexit_enable(vcpu, false);
2383 } else {
2384 vmx_event_waitexit_disable(vcpu, false);
2385 }
2386
2387 if (state->intr.nmi_window_exiting) {
2388 vmx_event_waitexit_enable(vcpu, true);
2389 } else {
2390 vmx_event_waitexit_disable(vcpu, true);
2391 }
2392 }
2393
2394 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2395 if (flags & NVMM_X64_STATE_FPU) {
2396 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2397 sizeof(state->fpu));
2398
2399 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2400 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2401 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2402
2403 if (vmx_xcr0_mask != 0) {
2404 /* Reset XSTATE_BV, to force a reload. */
2405 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2406 }
2407 }
2408
2409 vmx_vmcs_leave(vcpu);
2410
2411 comm->state_wanted = 0;
2412 comm->state_cached |= flags;
2413 }
2414
2415 static void
2416 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2417 {
2418 struct nvmm_comm_page *comm = vcpu->comm;
2419 struct nvmm_x64_state *state = &comm->state;
2420 struct vmx_cpudata *cpudata = vcpu->cpudata;
2421 uint64_t intstate, flags;
2422
2423 flags = comm->state_wanted;
2424
2425 vmx_vmcs_enter(vcpu);
2426
2427 if (flags & NVMM_X64_STATE_SEGS) {
2428 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2429 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2430 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2431 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2432 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2433 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2434 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2435 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2436 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2437 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2438 }
2439
2440 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2441 if (flags & NVMM_X64_STATE_GPRS) {
2442 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2443
2444 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2445 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2446 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2447 }
2448
2449 if (flags & NVMM_X64_STATE_CRS) {
2450 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2451 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2452 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2453 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2454 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2455 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2456
2457 /* Hide VMXE. */
2458 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2459 }
2460
2461 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2462 if (flags & NVMM_X64_STATE_DRS) {
2463 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2464
2465 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2466 }
2467
2468 if (flags & NVMM_X64_STATE_MSRS) {
2469 state->msrs[NVMM_X64_MSR_STAR] =
2470 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2471 state->msrs[NVMM_X64_MSR_LSTAR] =
2472 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2473 state->msrs[NVMM_X64_MSR_CSTAR] =
2474 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2475 state->msrs[NVMM_X64_MSR_SFMASK] =
2476 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2477 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2478 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2479 state->msrs[NVMM_X64_MSR_EFER] =
2480 vmx_vmread(VMCS_GUEST_IA32_EFER);
2481 state->msrs[NVMM_X64_MSR_PAT] =
2482 vmx_vmread(VMCS_GUEST_IA32_PAT);
2483 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2484 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2485 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2486 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2487 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2488 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2489 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2490 }
2491
2492 if (flags & NVMM_X64_STATE_INTR) {
2493 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2494 state->intr.int_shadow =
2495 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2496 state->intr.int_window_exiting = cpudata->int_window_exit;
2497 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2498 state->intr.evt_pending = cpudata->evt_pending;
2499 }
2500
2501 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2502 if (flags & NVMM_X64_STATE_FPU) {
2503 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2504 sizeof(state->fpu));
2505 }
2506
2507 vmx_vmcs_leave(vcpu);
2508
2509 comm->state_wanted = 0;
2510 comm->state_cached |= flags;
2511 }
2512
2513 static void
2514 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2515 {
2516 vcpu->comm->state_wanted = flags;
2517 vmx_vcpu_getstate(vcpu);
2518 }
2519
2520 static void
2521 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2522 {
2523 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2524 vcpu->comm->state_commit = 0;
2525 vmx_vcpu_setstate(vcpu);
2526 }
2527
2528 /* -------------------------------------------------------------------------- */
2529
2530 static void
2531 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2532 {
2533 struct vmx_cpudata *cpudata = vcpu->cpudata;
2534 size_t i, oct, bit;
2535
2536 mutex_enter(&vmx_asidlock);
2537
2538 for (i = 0; i < vmx_maxasid; i++) {
2539 oct = i / 8;
2540 bit = i % 8;
2541
2542 if (vmx_asidmap[oct] & __BIT(bit)) {
2543 continue;
2544 }
2545
2546 cpudata->asid = i;
2547
2548 vmx_asidmap[oct] |= __BIT(bit);
2549 vmx_vmwrite(VMCS_VPID, i);
2550 mutex_exit(&vmx_asidlock);
2551 return;
2552 }
2553
2554 mutex_exit(&vmx_asidlock);
2555
2556 panic("%s: impossible", __func__);
2557 }
2558
2559 static void
2560 vmx_asid_free(struct nvmm_cpu *vcpu)
2561 {
2562 size_t oct, bit;
2563 uint64_t asid;
2564
2565 asid = vmx_vmread(VMCS_VPID);
2566
2567 oct = asid / 8;
2568 bit = asid % 8;
2569
2570 mutex_enter(&vmx_asidlock);
2571 vmx_asidmap[oct] &= ~__BIT(bit);
2572 mutex_exit(&vmx_asidlock);
2573 }
2574
2575 static void
2576 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2577 {
2578 struct vmx_cpudata *cpudata = vcpu->cpudata;
2579 struct vmcs *vmcs = cpudata->vmcs;
2580 struct msr_entry *gmsr = cpudata->gmsr;
2581 extern uint8_t vmx_resume_rip;
2582 uint64_t rev, eptp;
2583
2584 rev = vmx_get_revision();
2585
2586 memset(vmcs, 0, VMCS_SIZE);
2587 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2588 vmcs->abort = 0;
2589
2590 vmx_vmcs_enter(vcpu);
2591
2592 /* No link pointer. */
2593 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2594
2595 /* Install the CTLSs. */
2596 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2597 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2598 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2599 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2600 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2601
2602 /* Allow direct access to certain MSRs. */
2603 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2604 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2605 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2606 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2607 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2608 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2609 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2610 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2611 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2612 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2613 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2614 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2615 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2616 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2617 true, false);
2618 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2619
2620 /*
2621 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2622 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2623 */
2624 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2625 gmsr[VMX_MSRLIST_STAR].val = 0;
2626 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2627 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2628 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2629 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2630 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2631 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2632 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2633 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2634 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2635 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2636 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2637 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2638 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2639 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2640
2641 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2642 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2643 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2644
2645 /* Force CR4_VMXE to zero. */
2646 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2647
2648 /* Set the Host state for resuming. */
2649 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2650 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2651 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2652 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2653 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2654 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2655 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2656 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2657 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2658 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2659 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2660 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2661 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2662 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2663
2664 /* Generate ASID. */
2665 vmx_asid_alloc(vcpu);
2666
2667 /* Enable Extended Paging, 4-Level. */
2668 eptp =
2669 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2670 __SHIFTIN(4-1, EPTP_WALKLEN) |
2671 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2672 mach->vm->vm_map.pmap->pm_pdirpa[0];
2673 vmx_vmwrite(VMCS_EPTP, eptp);
2674
2675 /* Init IA32_MISC_ENABLE. */
2676 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2677 cpudata->gmsr_misc_enable &=
2678 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2679 cpudata->gmsr_misc_enable |=
2680 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2681
2682 /* Init XSAVE header. */
2683 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2684 cpudata->gfpu.xsh_xcomp_bv = 0;
2685
2686 /* These MSRs are static. */
2687 cpudata->star = rdmsr(MSR_STAR);
2688 cpudata->lstar = rdmsr(MSR_LSTAR);
2689 cpudata->cstar = rdmsr(MSR_CSTAR);
2690 cpudata->sfmask = rdmsr(MSR_SFMASK);
2691
2692 /* Install the RESET state. */
2693 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2694 sizeof(nvmm_x86_reset_state));
2695 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2696 vcpu->comm->state_cached = 0;
2697 vmx_vcpu_setstate(vcpu);
2698
2699 vmx_vmcs_leave(vcpu);
2700 }
2701
2702 static int
2703 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2704 {
2705 struct vmx_cpudata *cpudata;
2706 int error;
2707
2708 /* Allocate the VMX cpudata. */
2709 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2710 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2711 UVM_KMF_WIRED|UVM_KMF_ZERO);
2712 vcpu->cpudata = cpudata;
2713
2714 /* VMCS */
2715 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2716 VMCS_NPAGES);
2717 if (error)
2718 goto error;
2719
2720 /* MSR Bitmap */
2721 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2722 MSRBM_NPAGES);
2723 if (error)
2724 goto error;
2725
2726 /* Guest MSR List */
2727 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2728 if (error)
2729 goto error;
2730
2731 kcpuset_create(&cpudata->htlb_want_flush, true);
2732
2733 /* Init the VCPU info. */
2734 vmx_vcpu_init(mach, vcpu);
2735
2736 return 0;
2737
2738 error:
2739 if (cpudata->vmcs_pa) {
2740 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2741 VMCS_NPAGES);
2742 }
2743 if (cpudata->msrbm_pa) {
2744 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2745 MSRBM_NPAGES);
2746 }
2747 if (cpudata->gmsr_pa) {
2748 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2749 }
2750
2751 kmem_free(cpudata, sizeof(*cpudata));
2752 return error;
2753 }
2754
2755 static void
2756 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2757 {
2758 struct vmx_cpudata *cpudata = vcpu->cpudata;
2759
2760 vmx_vmcs_enter(vcpu);
2761 vmx_asid_free(vcpu);
2762 vmx_vmcs_destroy(vcpu);
2763
2764 kcpuset_destroy(cpudata->htlb_want_flush);
2765
2766 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2767 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2768 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2769 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2770 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2771 }
2772
2773 /* -------------------------------------------------------------------------- */
2774
2775 static int
2776 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2777 {
2778 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2779 size_t i;
2780
2781 if (__predict_false(cpuid->mask && cpuid->exit)) {
2782 return EINVAL;
2783 }
2784 if (__predict_false(cpuid->mask &&
2785 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2786 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2787 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2788 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2789 return EINVAL;
2790 }
2791
2792 /* If unset, delete, to restore the default behavior. */
2793 if (!cpuid->mask && !cpuid->exit) {
2794 for (i = 0; i < VMX_NCPUIDS; i++) {
2795 if (!cpudata->cpuidpresent[i]) {
2796 continue;
2797 }
2798 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2799 cpudata->cpuidpresent[i] = false;
2800 }
2801 }
2802 return 0;
2803 }
2804
2805 /* If already here, replace. */
2806 for (i = 0; i < VMX_NCPUIDS; i++) {
2807 if (!cpudata->cpuidpresent[i]) {
2808 continue;
2809 }
2810 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2811 memcpy(&cpudata->cpuid[i], cpuid,
2812 sizeof(struct nvmm_vcpu_conf_cpuid));
2813 return 0;
2814 }
2815 }
2816
2817 /* Not here, insert. */
2818 for (i = 0; i < VMX_NCPUIDS; i++) {
2819 if (!cpudata->cpuidpresent[i]) {
2820 cpudata->cpuidpresent[i] = true;
2821 memcpy(&cpudata->cpuid[i], cpuid,
2822 sizeof(struct nvmm_vcpu_conf_cpuid));
2823 return 0;
2824 }
2825 }
2826
2827 return ENOBUFS;
2828 }
2829
2830 static int
2831 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2832 {
2833 struct nvmm_vcpu_conf_tpr *tpr = data;
2834
2835 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2836 return 0;
2837 }
2838
2839 static int
2840 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2841 {
2842 struct vmx_cpudata *cpudata = vcpu->cpudata;
2843
2844 switch (op) {
2845 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2846 return vmx_vcpu_configure_cpuid(cpudata, data);
2847 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2848 return vmx_vcpu_configure_tpr(cpudata, data);
2849 default:
2850 return EINVAL;
2851 }
2852 }
2853
2854 /* -------------------------------------------------------------------------- */
2855
2856 static void
2857 vmx_tlb_flush(struct pmap *pm)
2858 {
2859 struct nvmm_machine *mach = pm->pm_data;
2860 struct vmx_machdata *machdata = mach->machdata;
2861
2862 atomic_inc_64(&machdata->mach_htlb_gen);
2863
2864 /* Generates IPIs, which cause #VMEXITs. */
2865 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2866 }
2867
2868 static void
2869 vmx_machine_create(struct nvmm_machine *mach)
2870 {
2871 struct pmap *pmap = mach->vm->vm_map.pmap;
2872 struct vmx_machdata *machdata;
2873
2874 /* Convert to EPT. */
2875 pmap_ept_transform(pmap);
2876
2877 /* Fill in pmap info. */
2878 pmap->pm_data = (void *)mach;
2879 pmap->pm_tlb_flush = vmx_tlb_flush;
2880
2881 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2882 mach->machdata = machdata;
2883
2884 /* Start with an hTLB flush everywhere. */
2885 machdata->mach_htlb_gen = 1;
2886 }
2887
2888 static void
2889 vmx_machine_destroy(struct nvmm_machine *mach)
2890 {
2891 struct vmx_machdata *machdata = mach->machdata;
2892
2893 kmem_free(machdata, sizeof(struct vmx_machdata));
2894 }
2895
2896 static int
2897 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2898 {
2899 panic("%s: impossible", __func__);
2900 }
2901
2902 /* -------------------------------------------------------------------------- */
2903
2904 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2905 ((msrval & __BIT(32 + bitoff)) != 0)
2906 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2907 ((msrval & __BIT(bitoff)) == 0)
2908
2909 static int
2910 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
2911 {
2912 uint64_t basic, val, true_val;
2913 bool has_true;
2914 size_t i;
2915
2916 basic = rdmsr(MSR_IA32_VMX_BASIC);
2917 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2918
2919 val = rdmsr(msr_ctls);
2920 if (has_true) {
2921 true_val = rdmsr(msr_true_ctls);
2922 } else {
2923 true_val = val;
2924 }
2925
2926 for (i = 0; i < 32; i++) {
2927 if (!(set_one & __BIT(i))) {
2928 continue;
2929 }
2930 if (!CTLS_ONE_ALLOWED(true_val, i)) {
2931 return -1;
2932 }
2933 }
2934
2935 return 0;
2936 }
2937
2938 static int
2939 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2940 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2941 {
2942 uint64_t basic, val, true_val;
2943 bool one_allowed, zero_allowed, has_true;
2944 size_t i;
2945
2946 basic = rdmsr(MSR_IA32_VMX_BASIC);
2947 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2948
2949 val = rdmsr(msr_ctls);
2950 if (has_true) {
2951 true_val = rdmsr(msr_true_ctls);
2952 } else {
2953 true_val = val;
2954 }
2955
2956 for (i = 0; i < 32; i++) {
2957 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
2958 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
2959
2960 if (zero_allowed && !one_allowed) {
2961 if (set_one & __BIT(i))
2962 return -1;
2963 *res &= ~__BIT(i);
2964 } else if (one_allowed && !zero_allowed) {
2965 if (set_zero & __BIT(i))
2966 return -1;
2967 *res |= __BIT(i);
2968 } else {
2969 if (set_zero & __BIT(i)) {
2970 *res &= ~__BIT(i);
2971 } else if (set_one & __BIT(i)) {
2972 *res |= __BIT(i);
2973 } else if (!has_true) {
2974 *res &= ~__BIT(i);
2975 } else if (CTLS_ZERO_ALLOWED(val, i)) {
2976 *res &= ~__BIT(i);
2977 } else if (CTLS_ONE_ALLOWED(val, i)) {
2978 *res |= __BIT(i);
2979 } else {
2980 return -1;
2981 }
2982 }
2983 }
2984
2985 return 0;
2986 }
2987
2988 static bool
2989 vmx_ident(void)
2990 {
2991 uint64_t msr;
2992 int ret;
2993
2994 if (!(cpu_feature[1] & CPUID2_VMX)) {
2995 return false;
2996 }
2997
2998 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2999 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3000 return false;
3001 }
3002 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3003 return false;
3004 }
3005
3006 msr = rdmsr(MSR_IA32_VMX_BASIC);
3007 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3008 return false;
3009 }
3010 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3011 return false;
3012 }
3013
3014 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3015 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3016 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3017 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3018 if (ret == -1) {
3019 return false;
3020 }
3021
3022 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3023 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3024 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3025 if (ret == -1) {
3026 return false;
3027 }
3028
3029 /* Init the CTLSs right now, and check for errors. */
3030 ret = vmx_init_ctls(
3031 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3032 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3033 &vmx_pinbased_ctls);
3034 if (ret == -1) {
3035 return false;
3036 }
3037 ret = vmx_init_ctls(
3038 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3039 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3040 &vmx_procbased_ctls);
3041 if (ret == -1) {
3042 return false;
3043 }
3044 ret = vmx_init_ctls(
3045 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3046 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3047 &vmx_procbased_ctls2);
3048 if (ret == -1) {
3049 return false;
3050 }
3051 ret = vmx_check_ctls(
3052 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3053 PROC_CTLS2_INVPCID_ENABLE);
3054 if (ret != -1) {
3055 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3056 }
3057 ret = vmx_init_ctls(
3058 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3059 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3060 &vmx_entry_ctls);
3061 if (ret == -1) {
3062 return false;
3063 }
3064 ret = vmx_init_ctls(
3065 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3066 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3067 &vmx_exit_ctls);
3068 if (ret == -1) {
3069 return false;
3070 }
3071
3072 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3073 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3074 return false;
3075 }
3076 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3077 return false;
3078 }
3079 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3080 return false;
3081 }
3082 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3083 pmap_ept_has_ad = true;
3084 } else {
3085 pmap_ept_has_ad = false;
3086 }
3087 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3088 return false;
3089 }
3090
3091 return true;
3092 }
3093
3094 static void
3095 vmx_init_asid(uint32_t maxasid)
3096 {
3097 size_t allocsz;
3098
3099 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3100
3101 vmx_maxasid = maxasid;
3102 allocsz = roundup(maxasid, 8) / 8;
3103 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3104
3105 /* ASID 0 is reserved for the host. */
3106 vmx_asidmap[0] |= __BIT(0);
3107 }
3108
3109 static void
3110 vmx_change_cpu(void *arg1, void *arg2)
3111 {
3112 struct cpu_info *ci = curcpu();
3113 bool enable = (bool)arg1;
3114 uint64_t cr4;
3115
3116 if (!enable) {
3117 vmx_vmxoff();
3118 }
3119
3120 cr4 = rcr4();
3121 if (enable) {
3122 cr4 |= CR4_VMXE;
3123 } else {
3124 cr4 &= ~CR4_VMXE;
3125 }
3126 lcr4(cr4);
3127
3128 if (enable) {
3129 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3130 }
3131 }
3132
3133 static void
3134 vmx_init_l1tf(void)
3135 {
3136 u_int descs[4];
3137 uint64_t msr;
3138
3139 if (cpuid_level < 7) {
3140 return;
3141 }
3142
3143 x86_cpuid(7, descs);
3144
3145 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3146 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3147 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3148 /* No mitigation needed. */
3149 return;
3150 }
3151 }
3152
3153 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3154 /* Enable hardware mitigation. */
3155 vmx_msrlist_entry_nmsr += 1;
3156 }
3157 }
3158
3159 static void
3160 vmx_init(void)
3161 {
3162 CPU_INFO_ITERATOR cii;
3163 struct cpu_info *ci;
3164 uint64_t xc, msr;
3165 struct vmxon *vmxon;
3166 uint32_t revision;
3167 paddr_t pa;
3168 vaddr_t va;
3169 int error;
3170
3171 /* Init the ASID bitmap (VPID). */
3172 vmx_init_asid(VPID_MAX);
3173
3174 /* Init the XCR0 mask. */
3175 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3176
3177 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3178 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3179 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3180 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3181 } else {
3182 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3183 }
3184 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3185 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3186 } else {
3187 vmx_ept_flush_op = VMX_INVEPT_ALL;
3188 }
3189 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3190 vmx_eptp_type = EPTP_TYPE_WB;
3191 } else {
3192 vmx_eptp_type = EPTP_TYPE_UC;
3193 }
3194
3195 /* Init the L1TF mitigation. */
3196 vmx_init_l1tf();
3197
3198 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3199 revision = vmx_get_revision();
3200
3201 for (CPU_INFO_FOREACH(cii, ci)) {
3202 error = vmx_memalloc(&pa, &va, 1);
3203 if (error) {
3204 panic("%s: out of memory", __func__);
3205 }
3206 vmxoncpu[cpu_index(ci)].pa = pa;
3207 vmxoncpu[cpu_index(ci)].va = va;
3208
3209 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3210 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3211 }
3212
3213 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3214 xc_wait(xc);
3215 }
3216
3217 static void
3218 vmx_fini_asid(void)
3219 {
3220 size_t allocsz;
3221
3222 allocsz = roundup(vmx_maxasid, 8) / 8;
3223 kmem_free(vmx_asidmap, allocsz);
3224
3225 mutex_destroy(&vmx_asidlock);
3226 }
3227
3228 static void
3229 vmx_fini(void)
3230 {
3231 uint64_t xc;
3232 size_t i;
3233
3234 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3235 xc_wait(xc);
3236
3237 for (i = 0; i < MAXCPUS; i++) {
3238 if (vmxoncpu[i].pa != 0)
3239 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3240 }
3241
3242 vmx_fini_asid();
3243 }
3244
3245 static void
3246 vmx_capability(struct nvmm_capability *cap)
3247 {
3248 cap->arch.mach_conf_support = 0;
3249 cap->arch.vcpu_conf_support =
3250 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3251 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3252 cap->arch.xcr0_mask = vmx_xcr0_mask;
3253 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3254 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3255 }
3256
3257 const struct nvmm_impl nvmm_x86_vmx = {
3258 .ident = vmx_ident,
3259 .init = vmx_init,
3260 .fini = vmx_fini,
3261 .capability = vmx_capability,
3262 .mach_conf_max = NVMM_X86_MACH_NCONF,
3263 .mach_conf_sizes = NULL,
3264 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3265 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3266 .state_size = sizeof(struct nvmm_x64_state),
3267 .machine_create = vmx_machine_create,
3268 .machine_destroy = vmx_machine_destroy,
3269 .machine_configure = vmx_machine_configure,
3270 .vcpu_create = vmx_vcpu_create,
3271 .vcpu_destroy = vmx_vcpu_destroy,
3272 .vcpu_configure = vmx_vcpu_configure,
3273 .vcpu_setstate = vmx_vcpu_setstate,
3274 .vcpu_getstate = vmx_vcpu_getstate,
3275 .vcpu_inject = vmx_vcpu_inject,
3276 .vcpu_run = vmx_vcpu_run
3277 };
3278