nvmm_x86_vmx.c revision 1.36.2.7 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.36.2.7 2020/05/21 10:52:58 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.36.2.7 2020/05/21 10:52:58 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 static inline paddr_t
139 vmx_vmptrst(void)
140 {
141 paddr_t pa;
142
143 asm volatile (
144 "vmptrst %[pa];"
145 :
146 : [pa] "m" (*(paddr_t *)&pa)
147 : "memory"
148 );
149
150 return pa;
151 }
152
153 static inline void
154 vmx_vmptrld(paddr_t *pa)
155 {
156 asm volatile (
157 "vmptrld %[pa];"
158 "jz vmx_insn_failvalid;"
159 "jc vmx_insn_failinvalid;"
160 :
161 : [pa] "m" (*pa)
162 : "memory", "cc"
163 );
164 }
165
166 static inline void
167 vmx_vmclear(paddr_t *pa)
168 {
169 asm volatile (
170 "vmclear %[pa];"
171 "jz vmx_insn_failvalid;"
172 "jc vmx_insn_failinvalid;"
173 :
174 : [pa] "m" (*pa)
175 : "memory", "cc"
176 );
177 }
178
179 #define MSR_IA32_FEATURE_CONTROL 0x003A
180 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
181 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
182 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
183
184 #define MSR_IA32_VMX_BASIC 0x0480
185 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
186 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
187 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
188 #define IA32_VMX_BASIC_DUAL __BIT(49)
189 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
190 #define MEM_TYPE_UC 0
191 #define MEM_TYPE_WB 6
192 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
193 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
194
195 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
196 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
197 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
198 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
199 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
200
201 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
202 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
203 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
204 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
205
206 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
207 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
208 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
209 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
210
211 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
212 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
213 #define IA32_VMX_EPT_VPID_UC __BIT(8)
214 #define IA32_VMX_EPT_VPID_WB __BIT(14)
215 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
216 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
217 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
218 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
219 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
220 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
221 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
222 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
223 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
224
225 /* -------------------------------------------------------------------------- */
226
227 /* 16-bit control fields */
228 #define VMCS_VPID 0x00000000
229 #define VMCS_PIR_VECTOR 0x00000002
230 #define VMCS_EPTP_INDEX 0x00000004
231 /* 16-bit guest-state fields */
232 #define VMCS_GUEST_ES_SELECTOR 0x00000800
233 #define VMCS_GUEST_CS_SELECTOR 0x00000802
234 #define VMCS_GUEST_SS_SELECTOR 0x00000804
235 #define VMCS_GUEST_DS_SELECTOR 0x00000806
236 #define VMCS_GUEST_FS_SELECTOR 0x00000808
237 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
238 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
239 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
240 #define VMCS_GUEST_INTR_STATUS 0x00000810
241 #define VMCS_PML_INDEX 0x00000812
242 /* 16-bit host-state fields */
243 #define VMCS_HOST_ES_SELECTOR 0x00000C00
244 #define VMCS_HOST_CS_SELECTOR 0x00000C02
245 #define VMCS_HOST_SS_SELECTOR 0x00000C04
246 #define VMCS_HOST_DS_SELECTOR 0x00000C06
247 #define VMCS_HOST_FS_SELECTOR 0x00000C08
248 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
249 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
250 /* 64-bit control fields */
251 #define VMCS_IO_BITMAP_A 0x00002000
252 #define VMCS_IO_BITMAP_B 0x00002002
253 #define VMCS_MSR_BITMAP 0x00002004
254 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
255 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
256 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
257 #define VMCS_EXECUTIVE_VMCS 0x0000200C
258 #define VMCS_PML_ADDRESS 0x0000200E
259 #define VMCS_TSC_OFFSET 0x00002010
260 #define VMCS_VIRTUAL_APIC 0x00002012
261 #define VMCS_APIC_ACCESS 0x00002014
262 #define VMCS_PIR_DESC 0x00002016
263 #define VMCS_VM_CONTROL 0x00002018
264 #define VMCS_EPTP 0x0000201A
265 #define EPTP_TYPE __BITS(2,0)
266 #define EPTP_TYPE_UC 0
267 #define EPTP_TYPE_WB 6
268 #define EPTP_WALKLEN __BITS(5,3)
269 #define EPTP_FLAGS_AD __BIT(6)
270 #define EPTP_PHYSADDR __BITS(63,12)
271 #define VMCS_EOI_EXIT0 0x0000201C
272 #define VMCS_EOI_EXIT1 0x0000201E
273 #define VMCS_EOI_EXIT2 0x00002020
274 #define VMCS_EOI_EXIT3 0x00002022
275 #define VMCS_EPTP_LIST 0x00002024
276 #define VMCS_VMREAD_BITMAP 0x00002026
277 #define VMCS_VMWRITE_BITMAP 0x00002028
278 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
279 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
280 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
281 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
282 #define VMCS_TSC_MULTIPLIER 0x00002032
283 /* 64-bit read-only fields */
284 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
285 /* 64-bit guest-state fields */
286 #define VMCS_LINK_POINTER 0x00002800
287 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
288 #define VMCS_GUEST_IA32_PAT 0x00002804
289 #define VMCS_GUEST_IA32_EFER 0x00002806
290 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
291 #define VMCS_GUEST_PDPTE0 0x0000280A
292 #define VMCS_GUEST_PDPTE1 0x0000280C
293 #define VMCS_GUEST_PDPTE2 0x0000280E
294 #define VMCS_GUEST_PDPTE3 0x00002810
295 #define VMCS_GUEST_BNDCFGS 0x00002812
296 /* 64-bit host-state fields */
297 #define VMCS_HOST_IA32_PAT 0x00002C00
298 #define VMCS_HOST_IA32_EFER 0x00002C02
299 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
300 /* 32-bit control fields */
301 #define VMCS_PINBASED_CTLS 0x00004000
302 #define PIN_CTLS_INT_EXITING __BIT(0)
303 #define PIN_CTLS_NMI_EXITING __BIT(3)
304 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
305 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
306 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
307 #define VMCS_PROCBASED_CTLS 0x00004002
308 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
309 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
310 #define PROC_CTLS_HLT_EXITING __BIT(7)
311 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
312 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
313 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
314 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
315 #define PROC_CTLS_RCR3_EXITING __BIT(15)
316 #define PROC_CTLS_LCR3_EXITING __BIT(16)
317 #define PROC_CTLS_RCR8_EXITING __BIT(19)
318 #define PROC_CTLS_LCR8_EXITING __BIT(20)
319 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
320 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
321 #define PROC_CTLS_DR_EXITING __BIT(23)
322 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
323 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
324 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
325 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
326 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
327 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
328 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
329 #define VMCS_EXCEPTION_BITMAP 0x00004004
330 #define VMCS_PF_ERROR_MASK 0x00004006
331 #define VMCS_PF_ERROR_MATCH 0x00004008
332 #define VMCS_CR3_TARGET_COUNT 0x0000400A
333 #define VMCS_EXIT_CTLS 0x0000400C
334 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
335 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
336 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
337 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
338 #define EXIT_CTLS_SAVE_PAT __BIT(18)
339 #define EXIT_CTLS_LOAD_PAT __BIT(19)
340 #define EXIT_CTLS_SAVE_EFER __BIT(20)
341 #define EXIT_CTLS_LOAD_EFER __BIT(21)
342 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
343 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
344 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
345 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
346 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
347 #define VMCS_ENTRY_CTLS 0x00004012
348 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
349 #define ENTRY_CTLS_LONG_MODE __BIT(9)
350 #define ENTRY_CTLS_SMM __BIT(10)
351 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
352 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
353 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
354 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
355 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
356 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
357 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
358 #define VMCS_ENTRY_INTR_INFO 0x00004016
359 #define INTR_INFO_VECTOR __BITS(7,0)
360 #define INTR_INFO_TYPE __BITS(10,8)
361 #define INTR_TYPE_EXT_INT 0
362 #define INTR_TYPE_NMI 2
363 #define INTR_TYPE_HW_EXC 3
364 #define INTR_TYPE_SW_INT 4
365 #define INTR_TYPE_PRIV_SW_EXC 5
366 #define INTR_TYPE_SW_EXC 6
367 #define INTR_TYPE_OTHER 7
368 #define INTR_INFO_ERROR __BIT(11)
369 #define INTR_INFO_VALID __BIT(31)
370 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
371 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
372 #define VMCS_TPR_THRESHOLD 0x0000401C
373 #define VMCS_PROCBASED_CTLS2 0x0000401E
374 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
375 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
376 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
377 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
378 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
379 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
380 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
381 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
382 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
383 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
384 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
385 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
386 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
387 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
388 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
389 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
390 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
391 #define PROC_CTLS2_PML_ENABLE __BIT(17)
392 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
393 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
394 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
395 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
396 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
397 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
398 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
399 #define VMCS_PLE_GAP 0x00004020
400 #define VMCS_PLE_WINDOW 0x00004022
401 /* 32-bit read-only data fields */
402 #define VMCS_INSTRUCTION_ERROR 0x00004400
403 #define VMCS_EXIT_REASON 0x00004402
404 #define VMCS_EXIT_INTR_INFO 0x00004404
405 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
406 #define VMCS_IDT_VECTORING_INFO 0x00004408
407 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
408 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
409 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
410 /* 32-bit guest-state fields */
411 #define VMCS_GUEST_ES_LIMIT 0x00004800
412 #define VMCS_GUEST_CS_LIMIT 0x00004802
413 #define VMCS_GUEST_SS_LIMIT 0x00004804
414 #define VMCS_GUEST_DS_LIMIT 0x00004806
415 #define VMCS_GUEST_FS_LIMIT 0x00004808
416 #define VMCS_GUEST_GS_LIMIT 0x0000480A
417 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
418 #define VMCS_GUEST_TR_LIMIT 0x0000480E
419 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
420 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
421 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
422 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
423 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
424 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
425 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
426 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
427 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
428 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
429 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
430 #define INT_STATE_STI __BIT(0)
431 #define INT_STATE_MOVSS __BIT(1)
432 #define INT_STATE_SMI __BIT(2)
433 #define INT_STATE_NMI __BIT(3)
434 #define INT_STATE_ENCLAVE __BIT(4)
435 #define VMCS_GUEST_ACTIVITY 0x00004826
436 #define VMCS_GUEST_SMBASE 0x00004828
437 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
438 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
439 /* 32-bit host state fields */
440 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
441 /* Natural-Width control fields */
442 #define VMCS_CR0_MASK 0x00006000
443 #define VMCS_CR4_MASK 0x00006002
444 #define VMCS_CR0_SHADOW 0x00006004
445 #define VMCS_CR4_SHADOW 0x00006006
446 #define VMCS_CR3_TARGET0 0x00006008
447 #define VMCS_CR3_TARGET1 0x0000600A
448 #define VMCS_CR3_TARGET2 0x0000600C
449 #define VMCS_CR3_TARGET3 0x0000600E
450 /* Natural-Width read-only fields */
451 #define VMCS_EXIT_QUALIFICATION 0x00006400
452 #define VMCS_IO_RCX 0x00006402
453 #define VMCS_IO_RSI 0x00006404
454 #define VMCS_IO_RDI 0x00006406
455 #define VMCS_IO_RIP 0x00006408
456 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
457 /* Natural-Width guest-state fields */
458 #define VMCS_GUEST_CR0 0x00006800
459 #define VMCS_GUEST_CR3 0x00006802
460 #define VMCS_GUEST_CR4 0x00006804
461 #define VMCS_GUEST_ES_BASE 0x00006806
462 #define VMCS_GUEST_CS_BASE 0x00006808
463 #define VMCS_GUEST_SS_BASE 0x0000680A
464 #define VMCS_GUEST_DS_BASE 0x0000680C
465 #define VMCS_GUEST_FS_BASE 0x0000680E
466 #define VMCS_GUEST_GS_BASE 0x00006810
467 #define VMCS_GUEST_LDTR_BASE 0x00006812
468 #define VMCS_GUEST_TR_BASE 0x00006814
469 #define VMCS_GUEST_GDTR_BASE 0x00006816
470 #define VMCS_GUEST_IDTR_BASE 0x00006818
471 #define VMCS_GUEST_DR7 0x0000681A
472 #define VMCS_GUEST_RSP 0x0000681C
473 #define VMCS_GUEST_RIP 0x0000681E
474 #define VMCS_GUEST_RFLAGS 0x00006820
475 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
476 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
477 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
478 /* Natural-Width host-state fields */
479 #define VMCS_HOST_CR0 0x00006C00
480 #define VMCS_HOST_CR3 0x00006C02
481 #define VMCS_HOST_CR4 0x00006C04
482 #define VMCS_HOST_FS_BASE 0x00006C06
483 #define VMCS_HOST_GS_BASE 0x00006C08
484 #define VMCS_HOST_TR_BASE 0x00006C0A
485 #define VMCS_HOST_GDTR_BASE 0x00006C0C
486 #define VMCS_HOST_IDTR_BASE 0x00006C0E
487 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
488 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
489 #define VMCS_HOST_RSP 0x00006C14
490 #define VMCS_HOST_RIP 0x00006c16
491
492 /* VMX basic exit reasons. */
493 #define VMCS_EXITCODE_EXC_NMI 0
494 #define VMCS_EXITCODE_EXT_INT 1
495 #define VMCS_EXITCODE_SHUTDOWN 2
496 #define VMCS_EXITCODE_INIT 3
497 #define VMCS_EXITCODE_SIPI 4
498 #define VMCS_EXITCODE_SMI 5
499 #define VMCS_EXITCODE_OTHER_SMI 6
500 #define VMCS_EXITCODE_INT_WINDOW 7
501 #define VMCS_EXITCODE_NMI_WINDOW 8
502 #define VMCS_EXITCODE_TASK_SWITCH 9
503 #define VMCS_EXITCODE_CPUID 10
504 #define VMCS_EXITCODE_GETSEC 11
505 #define VMCS_EXITCODE_HLT 12
506 #define VMCS_EXITCODE_INVD 13
507 #define VMCS_EXITCODE_INVLPG 14
508 #define VMCS_EXITCODE_RDPMC 15
509 #define VMCS_EXITCODE_RDTSC 16
510 #define VMCS_EXITCODE_RSM 17
511 #define VMCS_EXITCODE_VMCALL 18
512 #define VMCS_EXITCODE_VMCLEAR 19
513 #define VMCS_EXITCODE_VMLAUNCH 20
514 #define VMCS_EXITCODE_VMPTRLD 21
515 #define VMCS_EXITCODE_VMPTRST 22
516 #define VMCS_EXITCODE_VMREAD 23
517 #define VMCS_EXITCODE_VMRESUME 24
518 #define VMCS_EXITCODE_VMWRITE 25
519 #define VMCS_EXITCODE_VMXOFF 26
520 #define VMCS_EXITCODE_VMXON 27
521 #define VMCS_EXITCODE_CR 28
522 #define VMCS_EXITCODE_DR 29
523 #define VMCS_EXITCODE_IO 30
524 #define VMCS_EXITCODE_RDMSR 31
525 #define VMCS_EXITCODE_WRMSR 32
526 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
527 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
528 #define VMCS_EXITCODE_MWAIT 36
529 #define VMCS_EXITCODE_TRAP_FLAG 37
530 #define VMCS_EXITCODE_MONITOR 39
531 #define VMCS_EXITCODE_PAUSE 40
532 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
533 #define VMCS_EXITCODE_TPR_BELOW 43
534 #define VMCS_EXITCODE_APIC_ACCESS 44
535 #define VMCS_EXITCODE_VEOI 45
536 #define VMCS_EXITCODE_GDTR_IDTR 46
537 #define VMCS_EXITCODE_LDTR_TR 47
538 #define VMCS_EXITCODE_EPT_VIOLATION 48
539 #define VMCS_EXITCODE_EPT_MISCONFIG 49
540 #define VMCS_EXITCODE_INVEPT 50
541 #define VMCS_EXITCODE_RDTSCP 51
542 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
543 #define VMCS_EXITCODE_INVVPID 53
544 #define VMCS_EXITCODE_WBINVD 54
545 #define VMCS_EXITCODE_XSETBV 55
546 #define VMCS_EXITCODE_APIC_WRITE 56
547 #define VMCS_EXITCODE_RDRAND 57
548 #define VMCS_EXITCODE_INVPCID 58
549 #define VMCS_EXITCODE_VMFUNC 59
550 #define VMCS_EXITCODE_ENCLS 60
551 #define VMCS_EXITCODE_RDSEED 61
552 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
553 #define VMCS_EXITCODE_XSAVES 63
554 #define VMCS_EXITCODE_XRSTORS 64
555
556 /* -------------------------------------------------------------------------- */
557
558 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
559 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
560
561 #define VMX_MSRLIST_STAR 0
562 #define VMX_MSRLIST_LSTAR 1
563 #define VMX_MSRLIST_CSTAR 2
564 #define VMX_MSRLIST_SFMASK 3
565 #define VMX_MSRLIST_KERNELGSBASE 4
566 #define VMX_MSRLIST_EXIT_NMSR 5
567 #define VMX_MSRLIST_L1DFLUSH 5
568
569 /* On entry, we may do +1 to include L1DFLUSH. */
570 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
571
572 struct vmxon {
573 uint32_t ident;
574 #define VMXON_IDENT_REVISION __BITS(30,0)
575
576 uint8_t data[PAGE_SIZE - 4];
577 } __packed;
578
579 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
580
581 struct vmxoncpu {
582 vaddr_t va;
583 paddr_t pa;
584 };
585
586 static struct vmxoncpu vmxoncpu[MAXCPUS];
587
588 struct vmcs {
589 uint32_t ident;
590 #define VMCS_IDENT_REVISION __BITS(30,0)
591 #define VMCS_IDENT_SHADOW __BIT(31)
592
593 uint32_t abort;
594 uint8_t data[PAGE_SIZE - 8];
595 } __packed;
596
597 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
598
599 struct msr_entry {
600 uint32_t msr;
601 uint32_t rsvd;
602 uint64_t val;
603 } __packed;
604
605 #define VPID_MAX 0xFFFF
606
607 /* Make sure we never run out of VPIDs. */
608 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
609
610 static uint64_t vmx_tlb_flush_op __read_mostly;
611 static uint64_t vmx_ept_flush_op __read_mostly;
612 static uint64_t vmx_eptp_type __read_mostly;
613
614 static uint64_t vmx_pinbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls __read_mostly;
616 static uint64_t vmx_procbased_ctls2 __read_mostly;
617 static uint64_t vmx_entry_ctls __read_mostly;
618 static uint64_t vmx_exit_ctls __read_mostly;
619
620 static uint64_t vmx_cr0_fixed0 __read_mostly;
621 static uint64_t vmx_cr0_fixed1 __read_mostly;
622 static uint64_t vmx_cr4_fixed0 __read_mostly;
623 static uint64_t vmx_cr4_fixed1 __read_mostly;
624
625 extern bool pmap_ept_has_ad;
626
627 #define VMX_PINBASED_CTLS_ONE \
628 (PIN_CTLS_INT_EXITING| \
629 PIN_CTLS_NMI_EXITING| \
630 PIN_CTLS_VIRTUAL_NMIS)
631
632 #define VMX_PINBASED_CTLS_ZERO 0
633
634 #define VMX_PROCBASED_CTLS_ONE \
635 (PROC_CTLS_USE_TSC_OFFSETTING| \
636 PROC_CTLS_HLT_EXITING| \
637 PROC_CTLS_MWAIT_EXITING | \
638 PROC_CTLS_RDPMC_EXITING | \
639 PROC_CTLS_RCR8_EXITING | \
640 PROC_CTLS_LCR8_EXITING | \
641 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
642 PROC_CTLS_USE_MSR_BITMAPS | \
643 PROC_CTLS_MONITOR_EXITING | \
644 PROC_CTLS_ACTIVATE_CTLS2)
645
646 #define VMX_PROCBASED_CTLS_ZERO \
647 (PROC_CTLS_RCR3_EXITING| \
648 PROC_CTLS_LCR3_EXITING)
649
650 #define VMX_PROCBASED_CTLS2_ONE \
651 (PROC_CTLS2_ENABLE_EPT| \
652 PROC_CTLS2_ENABLE_VPID| \
653 PROC_CTLS2_UNRESTRICTED_GUEST)
654
655 #define VMX_PROCBASED_CTLS2_ZERO 0
656
657 #define VMX_ENTRY_CTLS_ONE \
658 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
659 ENTRY_CTLS_LOAD_EFER| \
660 ENTRY_CTLS_LOAD_PAT)
661
662 #define VMX_ENTRY_CTLS_ZERO \
663 (ENTRY_CTLS_SMM| \
664 ENTRY_CTLS_DISABLE_DUAL)
665
666 #define VMX_EXIT_CTLS_ONE \
667 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
668 EXIT_CTLS_HOST_LONG_MODE| \
669 EXIT_CTLS_SAVE_PAT| \
670 EXIT_CTLS_LOAD_PAT| \
671 EXIT_CTLS_SAVE_EFER| \
672 EXIT_CTLS_LOAD_EFER)
673
674 #define VMX_EXIT_CTLS_ZERO 0
675
676 static uint8_t *vmx_asidmap __read_mostly;
677 static uint32_t vmx_maxasid __read_mostly;
678 static kmutex_t vmx_asidlock __cacheline_aligned;
679
680 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
681 static uint64_t vmx_xcr0_mask __read_mostly;
682
683 #define VMX_NCPUIDS 32
684
685 #define VMCS_NPAGES 1
686 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
687
688 #define MSRBM_NPAGES 1
689 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
690
691 #define EFER_TLB_FLUSH \
692 (EFER_NXE|EFER_LMA|EFER_LME)
693 #define CR0_TLB_FLUSH \
694 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
695 #define CR4_TLB_FLUSH \
696 (CR4_PGE|CR4_PAE|CR4_PSE)
697
698 /* -------------------------------------------------------------------------- */
699
700 struct vmx_machdata {
701 volatile uint64_t mach_htlb_gen;
702 };
703
704 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
705 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
706 sizeof(struct nvmm_vcpu_conf_cpuid),
707 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
708 sizeof(struct nvmm_vcpu_conf_tpr)
709 };
710
711 struct vmx_cpudata {
712 /* General */
713 uint64_t asid;
714 bool gtlb_want_flush;
715 bool gtsc_want_update;
716 uint64_t vcpu_htlb_gen;
717 kcpuset_t *htlb_want_flush;
718
719 /* VMCS */
720 struct vmcs *vmcs;
721 paddr_t vmcs_pa;
722 size_t vmcs_refcnt;
723 struct cpu_info *vmcs_ci;
724 bool vmcs_launched;
725
726 /* MSR bitmap */
727 uint8_t *msrbm;
728 paddr_t msrbm_pa;
729
730 /* Host state */
731 uint64_t hxcr0;
732 uint64_t star;
733 uint64_t lstar;
734 uint64_t cstar;
735 uint64_t sfmask;
736 uint64_t kernelgsbase;
737 bool ts_set;
738 struct xsave_header hfpu __aligned(64);
739
740 /* Intr state */
741 bool int_window_exit;
742 bool nmi_window_exit;
743 bool evt_pending;
744
745 /* Guest state */
746 struct msr_entry *gmsr;
747 paddr_t gmsr_pa;
748 uint64_t gmsr_misc_enable;
749 uint64_t gcr2;
750 uint64_t gcr8;
751 uint64_t gxcr0;
752 uint64_t gprs[NVMM_X64_NGPR];
753 uint64_t drs[NVMM_X64_NDR];
754 uint64_t gtsc;
755 struct xsave_header gfpu __aligned(64);
756
757 /* VCPU configuration. */
758 bool cpuidpresent[VMX_NCPUIDS];
759 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
760 struct nvmm_vcpu_conf_tpr tpr;
761 };
762
763 static const struct {
764 uint64_t selector;
765 uint64_t attrib;
766 uint64_t limit;
767 uint64_t base;
768 } vmx_guest_segs[NVMM_X64_NSEG] = {
769 [NVMM_X64_SEG_ES] = {
770 VMCS_GUEST_ES_SELECTOR,
771 VMCS_GUEST_ES_ACCESS_RIGHTS,
772 VMCS_GUEST_ES_LIMIT,
773 VMCS_GUEST_ES_BASE
774 },
775 [NVMM_X64_SEG_CS] = {
776 VMCS_GUEST_CS_SELECTOR,
777 VMCS_GUEST_CS_ACCESS_RIGHTS,
778 VMCS_GUEST_CS_LIMIT,
779 VMCS_GUEST_CS_BASE
780 },
781 [NVMM_X64_SEG_SS] = {
782 VMCS_GUEST_SS_SELECTOR,
783 VMCS_GUEST_SS_ACCESS_RIGHTS,
784 VMCS_GUEST_SS_LIMIT,
785 VMCS_GUEST_SS_BASE
786 },
787 [NVMM_X64_SEG_DS] = {
788 VMCS_GUEST_DS_SELECTOR,
789 VMCS_GUEST_DS_ACCESS_RIGHTS,
790 VMCS_GUEST_DS_LIMIT,
791 VMCS_GUEST_DS_BASE
792 },
793 [NVMM_X64_SEG_FS] = {
794 VMCS_GUEST_FS_SELECTOR,
795 VMCS_GUEST_FS_ACCESS_RIGHTS,
796 VMCS_GUEST_FS_LIMIT,
797 VMCS_GUEST_FS_BASE
798 },
799 [NVMM_X64_SEG_GS] = {
800 VMCS_GUEST_GS_SELECTOR,
801 VMCS_GUEST_GS_ACCESS_RIGHTS,
802 VMCS_GUEST_GS_LIMIT,
803 VMCS_GUEST_GS_BASE
804 },
805 [NVMM_X64_SEG_GDT] = {
806 0, /* doesn't exist */
807 0, /* doesn't exist */
808 VMCS_GUEST_GDTR_LIMIT,
809 VMCS_GUEST_GDTR_BASE
810 },
811 [NVMM_X64_SEG_IDT] = {
812 0, /* doesn't exist */
813 0, /* doesn't exist */
814 VMCS_GUEST_IDTR_LIMIT,
815 VMCS_GUEST_IDTR_BASE
816 },
817 [NVMM_X64_SEG_LDT] = {
818 VMCS_GUEST_LDTR_SELECTOR,
819 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
820 VMCS_GUEST_LDTR_LIMIT,
821 VMCS_GUEST_LDTR_BASE
822 },
823 [NVMM_X64_SEG_TR] = {
824 VMCS_GUEST_TR_SELECTOR,
825 VMCS_GUEST_TR_ACCESS_RIGHTS,
826 VMCS_GUEST_TR_LIMIT,
827 VMCS_GUEST_TR_BASE
828 }
829 };
830
831 /* -------------------------------------------------------------------------- */
832
833 static uint64_t
834 vmx_get_revision(void)
835 {
836 uint64_t msr;
837
838 msr = rdmsr(MSR_IA32_VMX_BASIC);
839 msr &= IA32_VMX_BASIC_IDENT;
840
841 return msr;
842 }
843
844 static void
845 vmx_vmclear_ipi(void *arg1, void *arg2)
846 {
847 paddr_t vmcs_pa = (paddr_t)arg1;
848 vmx_vmclear(&vmcs_pa);
849 }
850
851 static void
852 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
853 {
854 uint64_t xc;
855 int bound;
856
857 KASSERT(kpreempt_disabled());
858
859 bound = curlwp_bind();
860 kpreempt_enable();
861
862 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
863 xc_wait(xc);
864
865 kpreempt_disable();
866 curlwp_bindx(bound);
867 }
868
869 static void
870 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
871 {
872 struct vmx_cpudata *cpudata = vcpu->cpudata;
873 struct cpu_info *vmcs_ci;
874 paddr_t oldpa __diagused;
875
876 cpudata->vmcs_refcnt++;
877 if (cpudata->vmcs_refcnt > 1) {
878 #ifdef DIAGNOSTIC
879 KASSERT(kpreempt_disabled());
880 oldpa = vmx_vmptrst();
881 KASSERT(oldpa == cpudata->vmcs_pa);
882 #endif
883 return;
884 }
885
886 vmcs_ci = cpudata->vmcs_ci;
887 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
888
889 kpreempt_disable();
890
891 if (vmcs_ci == NULL) {
892 /* This VMCS is loaded for the first time. */
893 vmx_vmclear(&cpudata->vmcs_pa);
894 cpudata->vmcs_launched = false;
895 } else if (vmcs_ci != curcpu()) {
896 /* This VMCS is active on a remote CPU. */
897 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
898 cpudata->vmcs_launched = false;
899 } else {
900 /* This VMCS is active on curcpu, nothing to do. */
901 }
902
903 vmx_vmptrld(&cpudata->vmcs_pa);
904 }
905
906 static void
907 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
908 {
909 struct vmx_cpudata *cpudata = vcpu->cpudata;
910
911 KASSERT(kpreempt_disabled());
912 #ifdef DIAGNOSTIC
913 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
914 #endif
915 KASSERT(cpudata->vmcs_refcnt > 0);
916 cpudata->vmcs_refcnt--;
917
918 if (cpudata->vmcs_refcnt > 0) {
919 return;
920 }
921
922 cpudata->vmcs_ci = curcpu();
923 kpreempt_enable();
924 }
925
926 static void
927 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
928 {
929 struct vmx_cpudata *cpudata = vcpu->cpudata;
930
931 KASSERT(kpreempt_disabled());
932 #ifdef DIAGNOSTIC
933 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
934 #endif
935 KASSERT(cpudata->vmcs_refcnt == 1);
936 cpudata->vmcs_refcnt--;
937
938 vmx_vmclear(&cpudata->vmcs_pa);
939 kpreempt_enable();
940 }
941
942 /* -------------------------------------------------------------------------- */
943
944 static void
945 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
946 {
947 struct vmx_cpudata *cpudata = vcpu->cpudata;
948 uint64_t ctls1;
949
950 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
951
952 if (nmi) {
953 // XXX INT_STATE_NMI?
954 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
955 cpudata->nmi_window_exit = true;
956 } else {
957 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
958 cpudata->int_window_exit = true;
959 }
960
961 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
962 }
963
964 static void
965 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
966 {
967 struct vmx_cpudata *cpudata = vcpu->cpudata;
968 uint64_t ctls1;
969
970 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
971
972 if (nmi) {
973 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
974 cpudata->nmi_window_exit = false;
975 } else {
976 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
977 cpudata->int_window_exit = false;
978 }
979
980 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
981 }
982
983 static inline int
984 vmx_event_has_error(uint8_t vector)
985 {
986 switch (vector) {
987 case 8: /* #DF */
988 case 10: /* #TS */
989 case 11: /* #NP */
990 case 12: /* #SS */
991 case 13: /* #GP */
992 case 14: /* #PF */
993 case 17: /* #AC */
994 case 30: /* #SX */
995 return 1;
996 default:
997 return 0;
998 }
999 }
1000
1001 static int
1002 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1003 {
1004 struct nvmm_comm_page *comm = vcpu->comm;
1005 struct vmx_cpudata *cpudata = vcpu->cpudata;
1006 int type = 0, err = 0, ret = EINVAL;
1007 u_int evtype;
1008 uint8_t vector;
1009 uint64_t info, error;
1010
1011 evtype = comm->event.type;
1012 vector = comm->event.vector;
1013 error = comm->event.u.excp.error;
1014 __insn_barrier();
1015
1016 vmx_vmcs_enter(vcpu);
1017
1018 switch (evtype) {
1019 case NVMM_VCPU_EVENT_EXCP:
1020 if (vector == 2 || vector >= 32)
1021 goto out;
1022 if (vector == 3 || vector == 0)
1023 goto out;
1024 type = INTR_TYPE_HW_EXC;
1025 err = vmx_event_has_error(vector);
1026 break;
1027 case NVMM_VCPU_EVENT_INTR:
1028 type = INTR_TYPE_EXT_INT;
1029 if (vector == 2) {
1030 type = INTR_TYPE_NMI;
1031 vmx_event_waitexit_enable(vcpu, true);
1032 }
1033 err = 0;
1034 break;
1035 default:
1036 goto out;
1037 }
1038
1039 info =
1040 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1041 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1042 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1043 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1044 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1045 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1046
1047 cpudata->evt_pending = true;
1048 ret = 0;
1049
1050 out:
1051 vmx_vmcs_leave(vcpu);
1052 return ret;
1053 }
1054
1055 static void
1056 vmx_inject_ud(struct nvmm_cpu *vcpu)
1057 {
1058 struct nvmm_comm_page *comm = vcpu->comm;
1059 int ret __diagused;
1060
1061 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1062 comm->event.vector = 6;
1063 comm->event.u.excp.error = 0;
1064
1065 ret = vmx_vcpu_inject(vcpu);
1066 KASSERT(ret == 0);
1067 }
1068
1069 static void
1070 vmx_inject_gp(struct nvmm_cpu *vcpu)
1071 {
1072 struct nvmm_comm_page *comm = vcpu->comm;
1073 int ret __diagused;
1074
1075 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1076 comm->event.vector = 13;
1077 comm->event.u.excp.error = 0;
1078
1079 ret = vmx_vcpu_inject(vcpu);
1080 KASSERT(ret == 0);
1081 }
1082
1083 static inline int
1084 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1085 {
1086 if (__predict_true(!vcpu->comm->event_commit)) {
1087 return 0;
1088 }
1089 vcpu->comm->event_commit = false;
1090 return vmx_vcpu_inject(vcpu);
1091 }
1092
1093 static inline void
1094 vmx_inkernel_advance(void)
1095 {
1096 uint64_t rip, inslen, intstate;
1097
1098 /*
1099 * Maybe we should also apply single-stepping and debug exceptions.
1100 * Matters for guest-ring3, because it can execute 'cpuid' under a
1101 * debugger.
1102 */
1103 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1104 rip = vmx_vmread(VMCS_GUEST_RIP);
1105 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1106 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1107 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1108 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1109 }
1110
1111 static void
1112 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1113 {
1114 exit->u.inv.hwcode = code;
1115 exit->reason = NVMM_VCPU_EXIT_INVALID;
1116 }
1117
1118 static void
1119 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1120 struct nvmm_vcpu_exit *exit)
1121 {
1122 uint64_t qual;
1123
1124 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1125
1126 if ((qual & INTR_INFO_VALID) == 0) {
1127 goto error;
1128 }
1129 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1130 goto error;
1131 }
1132
1133 exit->reason = NVMM_VCPU_EXIT_NONE;
1134 return;
1135
1136 error:
1137 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1138 }
1139
1140 #define VMX_CPUID_MAX_BASIC 0x16
1141 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1142 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1143 static uint32_t vmx_cpuid_max_basic __read_mostly;
1144
1145 static void
1146 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1147 {
1148 u_int descs[4];
1149
1150 x86_cpuid2(eax, ecx, descs);
1151 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1152 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1153 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1154 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1155 }
1156
1157 static void
1158 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1159 uint64_t eax, uint64_t ecx)
1160 {
1161 struct vmx_cpudata *cpudata = vcpu->cpudata;
1162 unsigned int ncpus;
1163 uint64_t cr4;
1164
1165 if (eax < 0x40000000) {
1166 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1167 eax = vmx_cpuid_max_basic;
1168 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1169 }
1170 } else if (eax < 0x80000000) {
1171 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1172 eax = vmx_cpuid_max_basic;
1173 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1174 }
1175 }
1176
1177 switch (eax) {
1178 case 0x00000000:
1179 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1180 break;
1181 case 0x00000001:
1182 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1183
1184 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1185 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1186 CPUID_LOCAL_APIC_ID);
1187
1188 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1189 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1190 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1191 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1192 }
1193
1194 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1195
1196 /* CPUID2_OSXSAVE depends on CR4. */
1197 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1198 if (!(cr4 & CR4_OSXSAVE)) {
1199 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1200 }
1201 break;
1202 case 0x00000002:
1203 break;
1204 case 0x00000003:
1205 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1206 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1207 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1208 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1209 break;
1210 case 0x00000004: /* Deterministic Cache Parameters */
1211 break; /* TODO? */
1212 case 0x00000005: /* MONITOR/MWAIT */
1213 case 0x00000006: /* Thermal and Power Management */
1214 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1215 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1216 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1217 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1218 break;
1219 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1220 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1221 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1222 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1223 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1224 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1225 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1226 }
1227 break;
1228 case 0x00000008: /* Empty */
1229 case 0x00000009: /* Direct Cache Access Information */
1230 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1231 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1232 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1233 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1234 break;
1235 case 0x0000000A: /* Architectural Performance Monitoring */
1236 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1237 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1238 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1239 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1240 break;
1241 case 0x0000000B: /* Extended Topology Enumeration */
1242 switch (ecx) {
1243 case 0: /* Threads */
1244 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1245 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1246 cpudata->gprs[NVMM_X64_GPR_RCX] =
1247 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1248 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1249 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1250 break;
1251 case 1: /* Cores */
1252 ncpus = atomic_load_relaxed(&mach->ncpus);
1253 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1254 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1255 cpudata->gprs[NVMM_X64_GPR_RCX] =
1256 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1257 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1258 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1259 break;
1260 default:
1261 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1262 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1263 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1264 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1265 break;
1266 }
1267 break;
1268 case 0x0000000C: /* Empty */
1269 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1270 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1271 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1272 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1273 break;
1274 case 0x0000000D: /* Processor Extended State Enumeration */
1275 if (vmx_xcr0_mask == 0) {
1276 break;
1277 }
1278 switch (ecx) {
1279 case 0:
1280 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1281 if (cpudata->gxcr0 & XCR0_SSE) {
1282 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1283 } else {
1284 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1285 }
1286 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1287 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1288 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1289 break;
1290 case 1:
1291 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1292 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1293 CPUID_PES1_XGETBV);
1294 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1295 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1296 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1297 break;
1298 default:
1299 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1300 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1301 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1302 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1303 break;
1304 }
1305 break;
1306 case 0x0000000E: /* Empty */
1307 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1308 case 0x00000010: /* Intel RDT Allocation Enumeration */
1309 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1310 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1311 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1312 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1313 break;
1314 case 0x00000011: /* Empty */
1315 case 0x00000012: /* Intel SGX Capability Enumeration */
1316 case 0x00000013: /* Empty */
1317 case 0x00000014: /* Intel Processor Trace Enumeration */
1318 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1319 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1320 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1321 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1322 break;
1323 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1324 case 0x00000016: /* Processor Frequency Information */
1325 break;
1326
1327 case 0x40000000: /* Hypervisor Information */
1328 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1329 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1330 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1331 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1332 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1333 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1334 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1335 break;
1336
1337 case 0x80000001:
1338 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1339 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1340 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1341 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1342 break;
1343 case 0x80000002: /* Processor Brand String */
1344 case 0x80000003: /* Processor Brand String */
1345 case 0x80000004: /* Processor Brand String */
1346 case 0x80000005: /* Reserved Zero */
1347 case 0x80000006: /* Cache Information */
1348 case 0x80000007: /* TSC Information */
1349 case 0x80000008: /* Address Sizes */
1350 break;
1351
1352 default:
1353 break;
1354 }
1355 }
1356
1357 static void
1358 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1359 {
1360 uint64_t inslen, rip;
1361
1362 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1363 rip = vmx_vmread(VMCS_GUEST_RIP);
1364 exit->u.insn.npc = rip + inslen;
1365 exit->reason = reason;
1366 }
1367
1368 static void
1369 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1370 struct nvmm_vcpu_exit *exit)
1371 {
1372 struct vmx_cpudata *cpudata = vcpu->cpudata;
1373 struct nvmm_vcpu_conf_cpuid *cpuid;
1374 uint64_t eax, ecx;
1375 size_t i;
1376
1377 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1378 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1379 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1380 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1381
1382 for (i = 0; i < VMX_NCPUIDS; i++) {
1383 if (!cpudata->cpuidpresent[i]) {
1384 continue;
1385 }
1386 cpuid = &cpudata->cpuid[i];
1387 if (cpuid->leaf != eax) {
1388 continue;
1389 }
1390
1391 if (cpuid->exit) {
1392 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1393 return;
1394 }
1395 KASSERT(cpuid->mask);
1396
1397 /* del */
1398 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1399 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1400 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1401 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1402
1403 /* set */
1404 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1405 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1406 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1407 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1408
1409 break;
1410 }
1411
1412 vmx_inkernel_advance();
1413 exit->reason = NVMM_VCPU_EXIT_NONE;
1414 }
1415
1416 static void
1417 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1418 struct nvmm_vcpu_exit *exit)
1419 {
1420 struct vmx_cpudata *cpudata = vcpu->cpudata;
1421 uint64_t rflags;
1422
1423 if (cpudata->int_window_exit) {
1424 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1425 if (rflags & PSL_I) {
1426 vmx_event_waitexit_disable(vcpu, false);
1427 }
1428 }
1429
1430 vmx_inkernel_advance();
1431 exit->reason = NVMM_VCPU_EXIT_HALTED;
1432 }
1433
1434 #define VMX_QUAL_CR_NUM __BITS(3,0)
1435 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1436 #define CR_TYPE_WRITE 0
1437 #define CR_TYPE_READ 1
1438 #define CR_TYPE_CLTS 2
1439 #define CR_TYPE_LMSW 3
1440 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1441 #define VMX_QUAL_CR_GPR __BITS(11,8)
1442 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1443
1444 static inline int
1445 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1446 {
1447 /* Bits set to 1 in fixed0 are fixed to 1. */
1448 if ((crval & fixed0) != fixed0) {
1449 return -1;
1450 }
1451 /* Bits set to 0 in fixed1 are fixed to 0. */
1452 if (crval & ~fixed1) {
1453 return -1;
1454 }
1455 return 0;
1456 }
1457
1458 static int
1459 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1460 uint64_t qual)
1461 {
1462 struct vmx_cpudata *cpudata = vcpu->cpudata;
1463 uint64_t type, gpr, cr0;
1464 uint64_t efer, ctls1;
1465
1466 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1467 if (type != CR_TYPE_WRITE) {
1468 return -1;
1469 }
1470
1471 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1472 KASSERT(gpr < 16);
1473
1474 if (gpr == NVMM_X64_GPR_RSP) {
1475 gpr = vmx_vmread(VMCS_GUEST_RSP);
1476 } else {
1477 gpr = cpudata->gprs[gpr];
1478 }
1479
1480 cr0 = gpr | CR0_NE | CR0_ET;
1481 cr0 &= ~(CR0_NW|CR0_CD);
1482
1483 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1484 return -1;
1485 }
1486
1487 /*
1488 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1489 * from CR3.
1490 */
1491
1492 if (cr0 & CR0_PG) {
1493 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1494 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1495 if (efer & EFER_LME) {
1496 ctls1 |= ENTRY_CTLS_LONG_MODE;
1497 efer |= EFER_LMA;
1498 } else {
1499 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1500 efer &= ~EFER_LMA;
1501 }
1502 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1503 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1504 }
1505
1506 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1507 vmx_inkernel_advance();
1508 return 0;
1509 }
1510
1511 static int
1512 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1513 uint64_t qual)
1514 {
1515 struct vmx_cpudata *cpudata = vcpu->cpudata;
1516 uint64_t type, gpr, cr4;
1517
1518 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1519 if (type != CR_TYPE_WRITE) {
1520 return -1;
1521 }
1522
1523 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1524 KASSERT(gpr < 16);
1525
1526 if (gpr == NVMM_X64_GPR_RSP) {
1527 gpr = vmx_vmread(VMCS_GUEST_RSP);
1528 } else {
1529 gpr = cpudata->gprs[gpr];
1530 }
1531
1532 cr4 = gpr | CR4_VMXE;
1533
1534 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1535 return -1;
1536 }
1537
1538 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1539 vmx_inkernel_advance();
1540 return 0;
1541 }
1542
1543 static int
1544 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1545 uint64_t qual, struct nvmm_vcpu_exit *exit)
1546 {
1547 struct vmx_cpudata *cpudata = vcpu->cpudata;
1548 uint64_t type, gpr;
1549 bool write;
1550
1551 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1552 if (type == CR_TYPE_WRITE) {
1553 write = true;
1554 } else if (type == CR_TYPE_READ) {
1555 write = false;
1556 } else {
1557 return -1;
1558 }
1559
1560 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1561 KASSERT(gpr < 16);
1562
1563 if (write) {
1564 if (gpr == NVMM_X64_GPR_RSP) {
1565 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1566 } else {
1567 cpudata->gcr8 = cpudata->gprs[gpr];
1568 }
1569 if (cpudata->tpr.exit_changed) {
1570 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1571 }
1572 } else {
1573 if (gpr == NVMM_X64_GPR_RSP) {
1574 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1575 } else {
1576 cpudata->gprs[gpr] = cpudata->gcr8;
1577 }
1578 }
1579
1580 vmx_inkernel_advance();
1581 return 0;
1582 }
1583
1584 static void
1585 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1586 struct nvmm_vcpu_exit *exit)
1587 {
1588 uint64_t qual;
1589 int ret;
1590
1591 exit->reason = NVMM_VCPU_EXIT_NONE;
1592
1593 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1594
1595 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1596 case 0:
1597 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1598 break;
1599 case 4:
1600 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1601 break;
1602 case 8:
1603 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1604 break;
1605 default:
1606 ret = -1;
1607 break;
1608 }
1609
1610 if (ret == -1) {
1611 vmx_inject_gp(vcpu);
1612 }
1613 }
1614
1615 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1616 #define IO_SIZE_8 0
1617 #define IO_SIZE_16 1
1618 #define IO_SIZE_32 3
1619 #define VMX_QUAL_IO_IN __BIT(3)
1620 #define VMX_QUAL_IO_STR __BIT(4)
1621 #define VMX_QUAL_IO_REP __BIT(5)
1622 #define VMX_QUAL_IO_DX __BIT(6)
1623 #define VMX_QUAL_IO_PORT __BITS(31,16)
1624
1625 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1626 #define IO_ADRSIZE_16 0
1627 #define IO_ADRSIZE_32 1
1628 #define IO_ADRSIZE_64 2
1629 #define VMX_INFO_IO_SEG __BITS(17,15)
1630
1631 static void
1632 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1633 struct nvmm_vcpu_exit *exit)
1634 {
1635 uint64_t qual, info, inslen, rip;
1636
1637 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1638 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1639
1640 exit->reason = NVMM_VCPU_EXIT_IO;
1641
1642 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1643 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1644
1645 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1646 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1647
1648 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1649 exit->u.io.address_size = 8;
1650 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1651 exit->u.io.address_size = 4;
1652 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1653 exit->u.io.address_size = 2;
1654 }
1655
1656 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1657 exit->u.io.operand_size = 4;
1658 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1659 exit->u.io.operand_size = 2;
1660 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1661 exit->u.io.operand_size = 1;
1662 }
1663
1664 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1665 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1666
1667 if (exit->u.io.in && exit->u.io.str) {
1668 exit->u.io.seg = NVMM_X64_SEG_ES;
1669 }
1670
1671 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1672 rip = vmx_vmread(VMCS_GUEST_RIP);
1673 exit->u.io.npc = rip + inslen;
1674
1675 vmx_vcpu_state_provide(vcpu,
1676 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1677 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1678 }
1679
1680 static const uint64_t msr_ignore_list[] = {
1681 MSR_BIOS_SIGN,
1682 MSR_IA32_PLATFORM_ID
1683 };
1684
1685 static bool
1686 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1687 struct nvmm_vcpu_exit *exit)
1688 {
1689 struct vmx_cpudata *cpudata = vcpu->cpudata;
1690 uint64_t val;
1691 size_t i;
1692
1693 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1694 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1695 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1696 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1697 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1698 goto handled;
1699 }
1700 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1701 val = cpudata->gmsr_misc_enable;
1702 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1703 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1704 goto handled;
1705 }
1706 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1707 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1708 continue;
1709 val = 0;
1710 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1711 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1712 goto handled;
1713 }
1714 } else {
1715 if (exit->u.wrmsr.msr == MSR_TSC) {
1716 cpudata->gtsc = exit->u.wrmsr.val;
1717 cpudata->gtsc_want_update = true;
1718 goto handled;
1719 }
1720 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1721 val = exit->u.wrmsr.val;
1722 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1723 goto error;
1724 }
1725 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1726 goto handled;
1727 }
1728 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1729 /* Don't care. */
1730 goto handled;
1731 }
1732 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1733 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1734 continue;
1735 goto handled;
1736 }
1737 }
1738
1739 return false;
1740
1741 handled:
1742 vmx_inkernel_advance();
1743 return true;
1744
1745 error:
1746 vmx_inject_gp(vcpu);
1747 return true;
1748 }
1749
1750 static void
1751 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1752 struct nvmm_vcpu_exit *exit)
1753 {
1754 struct vmx_cpudata *cpudata = vcpu->cpudata;
1755 uint64_t inslen, rip;
1756
1757 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1758 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1759
1760 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1761 exit->reason = NVMM_VCPU_EXIT_NONE;
1762 return;
1763 }
1764
1765 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1766 rip = vmx_vmread(VMCS_GUEST_RIP);
1767 exit->u.rdmsr.npc = rip + inslen;
1768
1769 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1770 }
1771
1772 static void
1773 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1774 struct nvmm_vcpu_exit *exit)
1775 {
1776 struct vmx_cpudata *cpudata = vcpu->cpudata;
1777 uint64_t rdx, rax, inslen, rip;
1778
1779 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1780 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1781
1782 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1783 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1784 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1785
1786 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1787 exit->reason = NVMM_VCPU_EXIT_NONE;
1788 return;
1789 }
1790
1791 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1792 rip = vmx_vmread(VMCS_GUEST_RIP);
1793 exit->u.wrmsr.npc = rip + inslen;
1794
1795 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1796 }
1797
1798 static void
1799 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1800 struct nvmm_vcpu_exit *exit)
1801 {
1802 struct vmx_cpudata *cpudata = vcpu->cpudata;
1803 uint64_t val;
1804
1805 exit->reason = NVMM_VCPU_EXIT_NONE;
1806
1807 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1808 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1809
1810 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1811 goto error;
1812 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1813 goto error;
1814 } else if (__predict_false((val & XCR0_X87) == 0)) {
1815 goto error;
1816 }
1817
1818 cpudata->gxcr0 = val;
1819
1820 vmx_inkernel_advance();
1821 return;
1822
1823 error:
1824 vmx_inject_gp(vcpu);
1825 }
1826
1827 #define VMX_EPT_VIOLATION_READ __BIT(0)
1828 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1829 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1830
1831 static void
1832 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1833 struct nvmm_vcpu_exit *exit)
1834 {
1835 uint64_t perm;
1836 gpaddr_t gpa;
1837
1838 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1839
1840 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1841 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1842 if (perm & VMX_EPT_VIOLATION_WRITE)
1843 exit->u.mem.prot = PROT_WRITE;
1844 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1845 exit->u.mem.prot = PROT_EXEC;
1846 else
1847 exit->u.mem.prot = PROT_READ;
1848 exit->u.mem.gpa = gpa;
1849 exit->u.mem.inst_len = 0;
1850
1851 vmx_vcpu_state_provide(vcpu,
1852 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1853 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1854 }
1855
1856 /* -------------------------------------------------------------------------- */
1857
1858 static void
1859 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1860 {
1861 struct vmx_cpudata *cpudata = vcpu->cpudata;
1862
1863 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1864
1865 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1866 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1867
1868 if (vmx_xcr0_mask != 0) {
1869 cpudata->hxcr0 = rdxcr(0);
1870 wrxcr(0, cpudata->gxcr0);
1871 }
1872 }
1873
1874 static void
1875 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1876 {
1877 struct vmx_cpudata *cpudata = vcpu->cpudata;
1878
1879 if (vmx_xcr0_mask != 0) {
1880 cpudata->gxcr0 = rdxcr(0);
1881 wrxcr(0, cpudata->hxcr0);
1882 }
1883
1884 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1885 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1886
1887 if (cpudata->ts_set) {
1888 stts();
1889 }
1890 }
1891
1892 static void
1893 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1894 {
1895 struct vmx_cpudata *cpudata = vcpu->cpudata;
1896
1897 x86_dbregs_save(curlwp);
1898
1899 ldr7(0);
1900
1901 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1902 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1903 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1904 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1905 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1906 }
1907
1908 static void
1909 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1910 {
1911 struct vmx_cpudata *cpudata = vcpu->cpudata;
1912
1913 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1914 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1915 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1916 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1917 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1918
1919 x86_dbregs_restore(curlwp);
1920 }
1921
1922 static void
1923 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1924 {
1925 struct vmx_cpudata *cpudata = vcpu->cpudata;
1926
1927 /* This gets restored automatically by the CPU. */
1928 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1929 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1930 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1931
1932 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1933 }
1934
1935 static void
1936 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1937 {
1938 struct vmx_cpudata *cpudata = vcpu->cpudata;
1939
1940 wrmsr(MSR_STAR, cpudata->star);
1941 wrmsr(MSR_LSTAR, cpudata->lstar);
1942 wrmsr(MSR_CSTAR, cpudata->cstar);
1943 wrmsr(MSR_SFMASK, cpudata->sfmask);
1944 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1945 }
1946
1947 /* -------------------------------------------------------------------------- */
1948
1949 #define VMX_INVVPID_ADDRESS 0
1950 #define VMX_INVVPID_CONTEXT 1
1951 #define VMX_INVVPID_ALL 2
1952 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1953
1954 #define VMX_INVEPT_CONTEXT 1
1955 #define VMX_INVEPT_ALL 2
1956
1957 static inline void
1958 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1959 {
1960 struct vmx_cpudata *cpudata = vcpu->cpudata;
1961
1962 if (vcpu->hcpu_last != hcpu) {
1963 cpudata->gtlb_want_flush = true;
1964 }
1965 }
1966
1967 static inline void
1968 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1969 {
1970 struct vmx_cpudata *cpudata = vcpu->cpudata;
1971 struct ept_desc ept_desc;
1972
1973 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1974 return;
1975 }
1976
1977 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1978 ept_desc.mbz = 0;
1979 vmx_invept(vmx_ept_flush_op, &ept_desc);
1980 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1981 }
1982
1983 static inline uint64_t
1984 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1985 {
1986 struct ept_desc ept_desc;
1987 uint64_t machgen;
1988
1989 machgen = machdata->mach_htlb_gen;
1990 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1991 return machgen;
1992 }
1993
1994 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1995
1996 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1997 ept_desc.mbz = 0;
1998 vmx_invept(vmx_ept_flush_op, &ept_desc);
1999
2000 return machgen;
2001 }
2002
2003 static inline void
2004 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2005 {
2006 cpudata->vcpu_htlb_gen = machgen;
2007 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2008 }
2009
2010 static inline void
2011 vmx_exit_evt(struct vmx_cpudata *cpudata)
2012 {
2013 uint64_t info, err, inslen;
2014
2015 cpudata->evt_pending = false;
2016
2017 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2018 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2019 return;
2020 }
2021 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2022
2023 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2024 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2025
2026 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2027 case INTR_TYPE_SW_INT:
2028 case INTR_TYPE_PRIV_SW_EXC:
2029 case INTR_TYPE_SW_EXC:
2030 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2031 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2032 }
2033
2034 cpudata->evt_pending = true;
2035 }
2036
2037 static int
2038 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2039 struct nvmm_vcpu_exit *exit)
2040 {
2041 struct nvmm_comm_page *comm = vcpu->comm;
2042 struct vmx_machdata *machdata = mach->machdata;
2043 struct vmx_cpudata *cpudata = vcpu->cpudata;
2044 struct vpid_desc vpid_desc;
2045 struct cpu_info *ci;
2046 uint64_t exitcode;
2047 uint64_t intstate;
2048 uint64_t machgen;
2049 int hcpu, s, ret;
2050 bool launched;
2051
2052 vmx_vmcs_enter(vcpu);
2053
2054 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2055 vmx_vmcs_leave(vcpu);
2056 return EINVAL;
2057 }
2058 vmx_vcpu_state_commit(vcpu);
2059 comm->state_cached = 0;
2060
2061 ci = curcpu();
2062 hcpu = cpu_number();
2063 launched = cpudata->vmcs_launched;
2064
2065 vmx_gtlb_catchup(vcpu, hcpu);
2066 vmx_htlb_catchup(vcpu, hcpu);
2067
2068 if (vcpu->hcpu_last != hcpu) {
2069 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2070 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2071 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2072 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2073 cpudata->gtsc_want_update = true;
2074 vcpu->hcpu_last = hcpu;
2075 }
2076
2077 vmx_vcpu_guest_dbregs_enter(vcpu);
2078 vmx_vcpu_guest_misc_enter(vcpu);
2079
2080 while (1) {
2081 if (cpudata->gtlb_want_flush) {
2082 vpid_desc.vpid = cpudata->asid;
2083 vpid_desc.addr = 0;
2084 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2085 cpudata->gtlb_want_flush = false;
2086 }
2087
2088 if (__predict_false(cpudata->gtsc_want_update)) {
2089 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2090 cpudata->gtsc_want_update = false;
2091 }
2092
2093 s = splhigh();
2094 machgen = vmx_htlb_flush(machdata, cpudata);
2095 vmx_vcpu_guest_fpu_enter(vcpu);
2096 lcr2(cpudata->gcr2);
2097 if (launched) {
2098 ret = vmx_vmresume(cpudata->gprs);
2099 } else {
2100 ret = vmx_vmlaunch(cpudata->gprs);
2101 }
2102 cpudata->gcr2 = rcr2();
2103 vmx_vcpu_guest_fpu_leave(vcpu);
2104 vmx_htlb_flush_ack(cpudata, machgen);
2105 splx(s);
2106
2107 if (__predict_false(ret != 0)) {
2108 vmx_exit_invalid(exit, -1);
2109 break;
2110 }
2111 vmx_exit_evt(cpudata);
2112
2113 launched = true;
2114
2115 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2116 exitcode &= __BITS(15,0);
2117
2118 switch (exitcode) {
2119 case VMCS_EXITCODE_EXC_NMI:
2120 vmx_exit_exc_nmi(mach, vcpu, exit);
2121 break;
2122 case VMCS_EXITCODE_EXT_INT:
2123 exit->reason = NVMM_VCPU_EXIT_NONE;
2124 break;
2125 case VMCS_EXITCODE_CPUID:
2126 vmx_exit_cpuid(mach, vcpu, exit);
2127 break;
2128 case VMCS_EXITCODE_HLT:
2129 vmx_exit_hlt(mach, vcpu, exit);
2130 break;
2131 case VMCS_EXITCODE_CR:
2132 vmx_exit_cr(mach, vcpu, exit);
2133 break;
2134 case VMCS_EXITCODE_IO:
2135 vmx_exit_io(mach, vcpu, exit);
2136 break;
2137 case VMCS_EXITCODE_RDMSR:
2138 vmx_exit_rdmsr(mach, vcpu, exit);
2139 break;
2140 case VMCS_EXITCODE_WRMSR:
2141 vmx_exit_wrmsr(mach, vcpu, exit);
2142 break;
2143 case VMCS_EXITCODE_SHUTDOWN:
2144 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2145 break;
2146 case VMCS_EXITCODE_MONITOR:
2147 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2148 break;
2149 case VMCS_EXITCODE_MWAIT:
2150 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2151 break;
2152 case VMCS_EXITCODE_XSETBV:
2153 vmx_exit_xsetbv(mach, vcpu, exit);
2154 break;
2155 case VMCS_EXITCODE_RDPMC:
2156 case VMCS_EXITCODE_RDTSCP:
2157 case VMCS_EXITCODE_INVVPID:
2158 case VMCS_EXITCODE_INVEPT:
2159 case VMCS_EXITCODE_VMCALL:
2160 case VMCS_EXITCODE_VMCLEAR:
2161 case VMCS_EXITCODE_VMLAUNCH:
2162 case VMCS_EXITCODE_VMPTRLD:
2163 case VMCS_EXITCODE_VMPTRST:
2164 case VMCS_EXITCODE_VMREAD:
2165 case VMCS_EXITCODE_VMRESUME:
2166 case VMCS_EXITCODE_VMWRITE:
2167 case VMCS_EXITCODE_VMXOFF:
2168 case VMCS_EXITCODE_VMXON:
2169 vmx_inject_ud(vcpu);
2170 exit->reason = NVMM_VCPU_EXIT_NONE;
2171 break;
2172 case VMCS_EXITCODE_EPT_VIOLATION:
2173 vmx_exit_epf(mach, vcpu, exit);
2174 break;
2175 case VMCS_EXITCODE_INT_WINDOW:
2176 vmx_event_waitexit_disable(vcpu, false);
2177 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2178 break;
2179 case VMCS_EXITCODE_NMI_WINDOW:
2180 vmx_event_waitexit_disable(vcpu, true);
2181 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2182 break;
2183 default:
2184 vmx_exit_invalid(exit, exitcode);
2185 break;
2186 }
2187
2188 /* If no reason to return to userland, keep rolling. */
2189 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2190 break;
2191 }
2192 if (curcpu()->ci_data.cpu_softints != 0) {
2193 break;
2194 }
2195 if (curlwp->l_flag & LW_USERRET) {
2196 break;
2197 }
2198 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2199 break;
2200 }
2201 }
2202
2203 cpudata->vmcs_launched = launched;
2204
2205 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2206
2207 vmx_vcpu_guest_misc_leave(vcpu);
2208 vmx_vcpu_guest_dbregs_leave(vcpu);
2209
2210 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2211 exit->exitstate.cr8 = cpudata->gcr8;
2212 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2213 exit->exitstate.int_shadow =
2214 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2215 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2216 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2217 exit->exitstate.evt_pending = cpudata->evt_pending;
2218
2219 vmx_vmcs_leave(vcpu);
2220
2221 return 0;
2222 }
2223
2224 /* -------------------------------------------------------------------------- */
2225
2226 static int
2227 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2228 {
2229 struct pglist pglist;
2230 paddr_t _pa;
2231 vaddr_t _va;
2232 size_t i;
2233 int ret;
2234
2235 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2236 &pglist, 1, 0);
2237 if (ret != 0)
2238 return ENOMEM;
2239 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2240 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2241 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2242 if (_va == 0)
2243 goto error;
2244
2245 for (i = 0; i < npages; i++) {
2246 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2247 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2248 }
2249 pmap_update(pmap_kernel());
2250
2251 memset((void *)_va, 0, npages * PAGE_SIZE);
2252
2253 *pa = _pa;
2254 *va = _va;
2255 return 0;
2256
2257 error:
2258 for (i = 0; i < npages; i++) {
2259 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2260 }
2261 return ENOMEM;
2262 }
2263
2264 static void
2265 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2266 {
2267 size_t i;
2268
2269 pmap_kremove(va, npages * PAGE_SIZE);
2270 pmap_update(pmap_kernel());
2271 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2272 for (i = 0; i < npages; i++) {
2273 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2274 }
2275 }
2276
2277 /* -------------------------------------------------------------------------- */
2278
2279 static void
2280 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2281 {
2282 uint64_t byte;
2283 uint8_t bitoff;
2284
2285 if (msr < 0x00002000) {
2286 /* Range 1 */
2287 byte = ((msr - 0x00000000) / 8) + 0;
2288 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2289 /* Range 2 */
2290 byte = ((msr - 0xC0000000) / 8) + 1024;
2291 } else {
2292 panic("%s: wrong range", __func__);
2293 }
2294
2295 bitoff = (msr & 0x7);
2296
2297 if (read) {
2298 bitmap[byte] &= ~__BIT(bitoff);
2299 }
2300 if (write) {
2301 bitmap[2048 + byte] &= ~__BIT(bitoff);
2302 }
2303 }
2304
2305 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2306 #define VMX_SEG_ATTRIB_S __BIT(4)
2307 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2308 #define VMX_SEG_ATTRIB_P __BIT(7)
2309 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2310 #define VMX_SEG_ATTRIB_L __BIT(13)
2311 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2312 #define VMX_SEG_ATTRIB_G __BIT(15)
2313 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2314
2315 static void
2316 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2317 {
2318 uint64_t attrib;
2319
2320 attrib =
2321 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2322 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2323 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2324 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2325 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2326 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2327 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2328 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2329 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2330
2331 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2332 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2333 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2334 }
2335 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2336 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2337 }
2338
2339 static void
2340 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2341 {
2342 uint64_t selector = 0, attrib = 0, base, limit;
2343
2344 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2345 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2346 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2347 }
2348 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2349 base = vmx_vmread(vmx_guest_segs[idx].base);
2350
2351 segs[idx].selector = selector;
2352 segs[idx].limit = limit;
2353 segs[idx].base = base;
2354 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2355 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2356 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2357 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2358 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2359 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2360 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2361 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2362 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2363 segs[idx].attrib.p = 0;
2364 }
2365 }
2366
2367 static inline bool
2368 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2369 {
2370 uint64_t cr0, cr3, cr4, efer;
2371
2372 if (flags & NVMM_X64_STATE_CRS) {
2373 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2374 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2375 return true;
2376 }
2377 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2378 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2379 return true;
2380 }
2381 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2382 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2383 return true;
2384 }
2385 }
2386
2387 if (flags & NVMM_X64_STATE_MSRS) {
2388 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2389 if ((efer ^
2390 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2391 return true;
2392 }
2393 }
2394
2395 return false;
2396 }
2397
2398 static void
2399 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2400 {
2401 struct nvmm_comm_page *comm = vcpu->comm;
2402 const struct nvmm_x64_state *state = &comm->state;
2403 struct vmx_cpudata *cpudata = vcpu->cpudata;
2404 struct fxsave *fpustate;
2405 uint64_t ctls1, intstate;
2406 uint64_t flags;
2407
2408 flags = comm->state_wanted;
2409
2410 vmx_vmcs_enter(vcpu);
2411
2412 if (vmx_state_tlb_flush(state, flags)) {
2413 cpudata->gtlb_want_flush = true;
2414 }
2415
2416 if (flags & NVMM_X64_STATE_SEGS) {
2417 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2418 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2419 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2420 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2421 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2422 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2423 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2424 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2425 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2426 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2427 }
2428
2429 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2430 if (flags & NVMM_X64_STATE_GPRS) {
2431 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2432
2433 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2434 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2435 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2436 }
2437
2438 if (flags & NVMM_X64_STATE_CRS) {
2439 /*
2440 * CR0_NE and CR4_VMXE are mandatory.
2441 */
2442 vmx_vmwrite(VMCS_GUEST_CR0,
2443 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2444 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2445 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2446 vmx_vmwrite(VMCS_GUEST_CR4,
2447 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2448 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2449
2450 if (vmx_xcr0_mask != 0) {
2451 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2452 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2453 cpudata->gxcr0 &= vmx_xcr0_mask;
2454 cpudata->gxcr0 |= XCR0_X87;
2455 }
2456 }
2457
2458 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2459 if (flags & NVMM_X64_STATE_DRS) {
2460 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2461
2462 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2463 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2464 }
2465
2466 if (flags & NVMM_X64_STATE_MSRS) {
2467 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2468 state->msrs[NVMM_X64_MSR_STAR];
2469 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2470 state->msrs[NVMM_X64_MSR_LSTAR];
2471 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2472 state->msrs[NVMM_X64_MSR_CSTAR];
2473 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2474 state->msrs[NVMM_X64_MSR_SFMASK];
2475 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2476 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2477
2478 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2479 state->msrs[NVMM_X64_MSR_EFER]);
2480 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2481 state->msrs[NVMM_X64_MSR_PAT]);
2482 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2483 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2484 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2485 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2486 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2487 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2488
2489 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2490 cpudata->gtsc_want_update = true;
2491
2492 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2493 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2494 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2495 ctls1 |= ENTRY_CTLS_LONG_MODE;
2496 } else {
2497 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2498 }
2499 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2500 }
2501
2502 if (flags & NVMM_X64_STATE_INTR) {
2503 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2504 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2505 if (state->intr.int_shadow) {
2506 intstate |= INT_STATE_MOVSS;
2507 }
2508 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2509
2510 if (state->intr.int_window_exiting) {
2511 vmx_event_waitexit_enable(vcpu, false);
2512 } else {
2513 vmx_event_waitexit_disable(vcpu, false);
2514 }
2515
2516 if (state->intr.nmi_window_exiting) {
2517 vmx_event_waitexit_enable(vcpu, true);
2518 } else {
2519 vmx_event_waitexit_disable(vcpu, true);
2520 }
2521 }
2522
2523 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2524 if (flags & NVMM_X64_STATE_FPU) {
2525 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2526 sizeof(state->fpu));
2527
2528 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2529 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2530 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2531
2532 if (vmx_xcr0_mask != 0) {
2533 /* Reset XSTATE_BV, to force a reload. */
2534 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2535 }
2536 }
2537
2538 vmx_vmcs_leave(vcpu);
2539
2540 comm->state_wanted = 0;
2541 comm->state_cached |= flags;
2542 }
2543
2544 static void
2545 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2546 {
2547 struct nvmm_comm_page *comm = vcpu->comm;
2548 struct nvmm_x64_state *state = &comm->state;
2549 struct vmx_cpudata *cpudata = vcpu->cpudata;
2550 uint64_t intstate, flags;
2551
2552 flags = comm->state_wanted;
2553
2554 vmx_vmcs_enter(vcpu);
2555
2556 if (flags & NVMM_X64_STATE_SEGS) {
2557 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2558 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2559 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2560 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2561 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2562 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2563 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2564 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2565 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2566 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2567 }
2568
2569 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2570 if (flags & NVMM_X64_STATE_GPRS) {
2571 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2572
2573 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2574 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2575 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2576 }
2577
2578 if (flags & NVMM_X64_STATE_CRS) {
2579 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2580 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2581 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2582 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2583 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2584 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2585
2586 /* Hide VMXE. */
2587 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2588 }
2589
2590 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2591 if (flags & NVMM_X64_STATE_DRS) {
2592 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2593
2594 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2595 }
2596
2597 if (flags & NVMM_X64_STATE_MSRS) {
2598 state->msrs[NVMM_X64_MSR_STAR] =
2599 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2600 state->msrs[NVMM_X64_MSR_LSTAR] =
2601 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2602 state->msrs[NVMM_X64_MSR_CSTAR] =
2603 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2604 state->msrs[NVMM_X64_MSR_SFMASK] =
2605 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2606 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2607 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2608 state->msrs[NVMM_X64_MSR_EFER] =
2609 vmx_vmread(VMCS_GUEST_IA32_EFER);
2610 state->msrs[NVMM_X64_MSR_PAT] =
2611 vmx_vmread(VMCS_GUEST_IA32_PAT);
2612 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2613 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2614 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2615 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2616 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2617 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2618 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2619 }
2620
2621 if (flags & NVMM_X64_STATE_INTR) {
2622 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2623 state->intr.int_shadow =
2624 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2625 state->intr.int_window_exiting = cpudata->int_window_exit;
2626 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2627 state->intr.evt_pending = cpudata->evt_pending;
2628 }
2629
2630 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2631 if (flags & NVMM_X64_STATE_FPU) {
2632 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2633 sizeof(state->fpu));
2634 }
2635
2636 vmx_vmcs_leave(vcpu);
2637
2638 comm->state_wanted = 0;
2639 comm->state_cached |= flags;
2640 }
2641
2642 static void
2643 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2644 {
2645 vcpu->comm->state_wanted = flags;
2646 vmx_vcpu_getstate(vcpu);
2647 }
2648
2649 static void
2650 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2651 {
2652 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2653 vcpu->comm->state_commit = 0;
2654 vmx_vcpu_setstate(vcpu);
2655 }
2656
2657 /* -------------------------------------------------------------------------- */
2658
2659 static void
2660 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2661 {
2662 struct vmx_cpudata *cpudata = vcpu->cpudata;
2663 size_t i, oct, bit;
2664
2665 mutex_enter(&vmx_asidlock);
2666
2667 for (i = 0; i < vmx_maxasid; i++) {
2668 oct = i / 8;
2669 bit = i % 8;
2670
2671 if (vmx_asidmap[oct] & __BIT(bit)) {
2672 continue;
2673 }
2674
2675 cpudata->asid = i;
2676
2677 vmx_asidmap[oct] |= __BIT(bit);
2678 vmx_vmwrite(VMCS_VPID, i);
2679 mutex_exit(&vmx_asidlock);
2680 return;
2681 }
2682
2683 mutex_exit(&vmx_asidlock);
2684
2685 panic("%s: impossible", __func__);
2686 }
2687
2688 static void
2689 vmx_asid_free(struct nvmm_cpu *vcpu)
2690 {
2691 size_t oct, bit;
2692 uint64_t asid;
2693
2694 asid = vmx_vmread(VMCS_VPID);
2695
2696 oct = asid / 8;
2697 bit = asid % 8;
2698
2699 mutex_enter(&vmx_asidlock);
2700 vmx_asidmap[oct] &= ~__BIT(bit);
2701 mutex_exit(&vmx_asidlock);
2702 }
2703
2704 static void
2705 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2706 {
2707 struct vmx_cpudata *cpudata = vcpu->cpudata;
2708 struct vmcs *vmcs = cpudata->vmcs;
2709 struct msr_entry *gmsr = cpudata->gmsr;
2710 extern uint8_t vmx_resume_rip;
2711 uint64_t rev, eptp;
2712
2713 rev = vmx_get_revision();
2714
2715 memset(vmcs, 0, VMCS_SIZE);
2716 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2717 vmcs->abort = 0;
2718
2719 vmx_vmcs_enter(vcpu);
2720
2721 /* No link pointer. */
2722 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2723
2724 /* Install the CTLSs. */
2725 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2726 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2727 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2728 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2729 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2730
2731 /* Allow direct access to certain MSRs. */
2732 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2733 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2734 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2735 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2736 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2737 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2738 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2739 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2740 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2741 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2742 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2743 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2744 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2745 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2746 true, false);
2747 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2748
2749 /*
2750 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2751 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2752 */
2753 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2754 gmsr[VMX_MSRLIST_STAR].val = 0;
2755 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2756 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2757 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2758 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2759 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2760 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2761 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2762 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2763 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2764 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2765 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2766 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2767 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2768 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2769
2770 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2771 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2772 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2773
2774 /* Force CR4_VMXE to zero. */
2775 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2776
2777 /* Set the Host state for resuming. */
2778 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2779 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2780 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2781 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2782 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2783 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2784 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2785 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2786 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2787 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2788 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2789 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2790 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2791 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2792
2793 /* Generate ASID. */
2794 vmx_asid_alloc(vcpu);
2795
2796 /* Enable Extended Paging, 4-Level. */
2797 eptp =
2798 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2799 __SHIFTIN(4-1, EPTP_WALKLEN) |
2800 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2801 mach->vm->vm_map.pmap->pm_pdirpa[0];
2802 vmx_vmwrite(VMCS_EPTP, eptp);
2803
2804 /* Init IA32_MISC_ENABLE. */
2805 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2806 cpudata->gmsr_misc_enable &=
2807 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2808 cpudata->gmsr_misc_enable |=
2809 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2810
2811 /* Init XSAVE header. */
2812 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2813 cpudata->gfpu.xsh_xcomp_bv = 0;
2814
2815 /* These MSRs are static. */
2816 cpudata->star = rdmsr(MSR_STAR);
2817 cpudata->lstar = rdmsr(MSR_LSTAR);
2818 cpudata->cstar = rdmsr(MSR_CSTAR);
2819 cpudata->sfmask = rdmsr(MSR_SFMASK);
2820
2821 /* Install the RESET state. */
2822 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2823 sizeof(nvmm_x86_reset_state));
2824 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2825 vcpu->comm->state_cached = 0;
2826 vmx_vcpu_setstate(vcpu);
2827
2828 vmx_vmcs_leave(vcpu);
2829 }
2830
2831 static int
2832 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2833 {
2834 struct vmx_cpudata *cpudata;
2835 int error;
2836
2837 /* Allocate the VMX cpudata. */
2838 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2839 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2840 UVM_KMF_WIRED|UVM_KMF_ZERO);
2841 vcpu->cpudata = cpudata;
2842
2843 /* VMCS */
2844 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2845 VMCS_NPAGES);
2846 if (error)
2847 goto error;
2848
2849 /* MSR Bitmap */
2850 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2851 MSRBM_NPAGES);
2852 if (error)
2853 goto error;
2854
2855 /* Guest MSR List */
2856 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2857 if (error)
2858 goto error;
2859
2860 kcpuset_create(&cpudata->htlb_want_flush, true);
2861
2862 /* Init the VCPU info. */
2863 vmx_vcpu_init(mach, vcpu);
2864
2865 return 0;
2866
2867 error:
2868 if (cpudata->vmcs_pa) {
2869 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2870 VMCS_NPAGES);
2871 }
2872 if (cpudata->msrbm_pa) {
2873 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2874 MSRBM_NPAGES);
2875 }
2876 if (cpudata->gmsr_pa) {
2877 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2878 }
2879
2880 kmem_free(cpudata, sizeof(*cpudata));
2881 return error;
2882 }
2883
2884 static void
2885 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2886 {
2887 struct vmx_cpudata *cpudata = vcpu->cpudata;
2888
2889 vmx_vmcs_enter(vcpu);
2890 vmx_asid_free(vcpu);
2891 vmx_vmcs_destroy(vcpu);
2892
2893 kcpuset_destroy(cpudata->htlb_want_flush);
2894
2895 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2896 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2897 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2898 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2899 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2900 }
2901
2902 /* -------------------------------------------------------------------------- */
2903
2904 static int
2905 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2906 {
2907 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2908 size_t i;
2909
2910 if (__predict_false(cpuid->mask && cpuid->exit)) {
2911 return EINVAL;
2912 }
2913 if (__predict_false(cpuid->mask &&
2914 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2915 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2916 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2917 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2918 return EINVAL;
2919 }
2920
2921 /* If unset, delete, to restore the default behavior. */
2922 if (!cpuid->mask && !cpuid->exit) {
2923 for (i = 0; i < VMX_NCPUIDS; i++) {
2924 if (!cpudata->cpuidpresent[i]) {
2925 continue;
2926 }
2927 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2928 cpudata->cpuidpresent[i] = false;
2929 }
2930 }
2931 return 0;
2932 }
2933
2934 /* If already here, replace. */
2935 for (i = 0; i < VMX_NCPUIDS; i++) {
2936 if (!cpudata->cpuidpresent[i]) {
2937 continue;
2938 }
2939 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2940 memcpy(&cpudata->cpuid[i], cpuid,
2941 sizeof(struct nvmm_vcpu_conf_cpuid));
2942 return 0;
2943 }
2944 }
2945
2946 /* Not here, insert. */
2947 for (i = 0; i < VMX_NCPUIDS; i++) {
2948 if (!cpudata->cpuidpresent[i]) {
2949 cpudata->cpuidpresent[i] = true;
2950 memcpy(&cpudata->cpuid[i], cpuid,
2951 sizeof(struct nvmm_vcpu_conf_cpuid));
2952 return 0;
2953 }
2954 }
2955
2956 return ENOBUFS;
2957 }
2958
2959 static int
2960 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2961 {
2962 struct nvmm_vcpu_conf_tpr *tpr = data;
2963
2964 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2965 return 0;
2966 }
2967
2968 static int
2969 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2970 {
2971 struct vmx_cpudata *cpudata = vcpu->cpudata;
2972
2973 switch (op) {
2974 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2975 return vmx_vcpu_configure_cpuid(cpudata, data);
2976 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2977 return vmx_vcpu_configure_tpr(cpudata, data);
2978 default:
2979 return EINVAL;
2980 }
2981 }
2982
2983 /* -------------------------------------------------------------------------- */
2984
2985 static void
2986 vmx_tlb_flush(struct pmap *pm)
2987 {
2988 struct nvmm_machine *mach = pm->pm_data;
2989 struct vmx_machdata *machdata = mach->machdata;
2990
2991 atomic_inc_64(&machdata->mach_htlb_gen);
2992
2993 /* Generates IPIs, which cause #VMEXITs. */
2994 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2995 }
2996
2997 static void
2998 vmx_machine_create(struct nvmm_machine *mach)
2999 {
3000 struct pmap *pmap = mach->vm->vm_map.pmap;
3001 struct vmx_machdata *machdata;
3002
3003 /* Convert to EPT. */
3004 pmap_ept_transform(pmap);
3005
3006 /* Fill in pmap info. */
3007 pmap->pm_data = (void *)mach;
3008 pmap->pm_tlb_flush = vmx_tlb_flush;
3009
3010 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3011 mach->machdata = machdata;
3012
3013 /* Start with an hTLB flush everywhere. */
3014 machdata->mach_htlb_gen = 1;
3015 }
3016
3017 static void
3018 vmx_machine_destroy(struct nvmm_machine *mach)
3019 {
3020 struct vmx_machdata *machdata = mach->machdata;
3021
3022 kmem_free(machdata, sizeof(struct vmx_machdata));
3023 }
3024
3025 static int
3026 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3027 {
3028 panic("%s: impossible", __func__);
3029 }
3030
3031 /* -------------------------------------------------------------------------- */
3032
3033 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3034 ((msrval & __BIT(32 + bitoff)) != 0)
3035 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3036 ((msrval & __BIT(bitoff)) == 0)
3037
3038 static int
3039 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3040 {
3041 uint64_t basic, val, true_val;
3042 bool has_true;
3043 size_t i;
3044
3045 basic = rdmsr(MSR_IA32_VMX_BASIC);
3046 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3047
3048 val = rdmsr(msr_ctls);
3049 if (has_true) {
3050 true_val = rdmsr(msr_true_ctls);
3051 } else {
3052 true_val = val;
3053 }
3054
3055 for (i = 0; i < 32; i++) {
3056 if (!(set_one & __BIT(i))) {
3057 continue;
3058 }
3059 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3060 return -1;
3061 }
3062 }
3063
3064 return 0;
3065 }
3066
3067 static int
3068 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3069 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3070 {
3071 uint64_t basic, val, true_val;
3072 bool one_allowed, zero_allowed, has_true;
3073 size_t i;
3074
3075 basic = rdmsr(MSR_IA32_VMX_BASIC);
3076 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3077
3078 val = rdmsr(msr_ctls);
3079 if (has_true) {
3080 true_val = rdmsr(msr_true_ctls);
3081 } else {
3082 true_val = val;
3083 }
3084
3085 for (i = 0; i < 32; i++) {
3086 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3087 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3088
3089 if (zero_allowed && !one_allowed) {
3090 if (set_one & __BIT(i))
3091 return -1;
3092 *res &= ~__BIT(i);
3093 } else if (one_allowed && !zero_allowed) {
3094 if (set_zero & __BIT(i))
3095 return -1;
3096 *res |= __BIT(i);
3097 } else {
3098 if (set_zero & __BIT(i)) {
3099 *res &= ~__BIT(i);
3100 } else if (set_one & __BIT(i)) {
3101 *res |= __BIT(i);
3102 } else if (!has_true) {
3103 *res &= ~__BIT(i);
3104 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3105 *res &= ~__BIT(i);
3106 } else if (CTLS_ONE_ALLOWED(val, i)) {
3107 *res |= __BIT(i);
3108 } else {
3109 return -1;
3110 }
3111 }
3112 }
3113
3114 return 0;
3115 }
3116
3117 static bool
3118 vmx_ident(void)
3119 {
3120 uint64_t msr;
3121 int ret;
3122
3123 if (!(cpu_feature[1] & CPUID2_VMX)) {
3124 return false;
3125 }
3126
3127 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3128 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3129 printf("NVMM: VMX disabled in BIOS\n");
3130 return false;
3131 }
3132 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3133 printf("NVMM: VMX disabled in BIOS\n");
3134 return false;
3135 }
3136
3137 msr = rdmsr(MSR_IA32_VMX_BASIC);
3138 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3139 printf("NVMM: I/O reporting not supported\n");
3140 return false;
3141 }
3142 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3143 printf("NVMM: WB memory not supported\n");
3144 return false;
3145 }
3146
3147 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3148 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3149 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3150 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3151 if (ret == -1) {
3152 printf("NVMM: CR0 requirements not satisfied\n");
3153 return false;
3154 }
3155
3156 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3157 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3158 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3159 if (ret == -1) {
3160 printf("NVMM: CR4 requirements not satisfied\n");
3161 return false;
3162 }
3163
3164 /* Init the CTLSs right now, and check for errors. */
3165 ret = vmx_init_ctls(
3166 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3167 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3168 &vmx_pinbased_ctls);
3169 if (ret == -1) {
3170 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3171 return false;
3172 }
3173 ret = vmx_init_ctls(
3174 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3175 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3176 &vmx_procbased_ctls);
3177 if (ret == -1) {
3178 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3179 return false;
3180 }
3181 ret = vmx_init_ctls(
3182 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3183 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3184 &vmx_procbased_ctls2);
3185 if (ret == -1) {
3186 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3187 return false;
3188 }
3189 ret = vmx_check_ctls(
3190 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3191 PROC_CTLS2_INVPCID_ENABLE);
3192 if (ret != -1) {
3193 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3194 }
3195 ret = vmx_init_ctls(
3196 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3197 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3198 &vmx_entry_ctls);
3199 if (ret == -1) {
3200 printf("NVMM: entry-ctls requirements not satisfied\n");
3201 return false;
3202 }
3203 ret = vmx_init_ctls(
3204 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3205 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3206 &vmx_exit_ctls);
3207 if (ret == -1) {
3208 printf("NVMM: exit-ctls requirements not satisfied\n");
3209 return false;
3210 }
3211
3212 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3213 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3214 printf("NVMM: 4-level page tree not supported\n");
3215 return false;
3216 }
3217 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3218 printf("NVMM: INVEPT not supported\n");
3219 return false;
3220 }
3221 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3222 printf("NVMM: INVVPID not supported\n");
3223 return false;
3224 }
3225 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3226 pmap_ept_has_ad = true;
3227 } else {
3228 pmap_ept_has_ad = false;
3229 }
3230 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3231 printf("NVMM: EPT UC/WB memory types not supported\n");
3232 return false;
3233 }
3234
3235 return true;
3236 }
3237
3238 static void
3239 vmx_init_asid(uint32_t maxasid)
3240 {
3241 size_t allocsz;
3242
3243 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3244
3245 vmx_maxasid = maxasid;
3246 allocsz = roundup(maxasid, 8) / 8;
3247 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3248
3249 /* ASID 0 is reserved for the host. */
3250 vmx_asidmap[0] |= __BIT(0);
3251 }
3252
3253 static void
3254 vmx_change_cpu(void *arg1, void *arg2)
3255 {
3256 struct cpu_info *ci = curcpu();
3257 bool enable = (bool)arg1;
3258 uint64_t cr4;
3259
3260 if (!enable) {
3261 vmx_vmxoff();
3262 }
3263
3264 cr4 = rcr4();
3265 if (enable) {
3266 cr4 |= CR4_VMXE;
3267 } else {
3268 cr4 &= ~CR4_VMXE;
3269 }
3270 lcr4(cr4);
3271
3272 if (enable) {
3273 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3274 }
3275 }
3276
3277 static void
3278 vmx_init_l1tf(void)
3279 {
3280 u_int descs[4];
3281 uint64_t msr;
3282
3283 if (cpuid_level < 7) {
3284 return;
3285 }
3286
3287 x86_cpuid(7, descs);
3288
3289 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3290 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3291 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3292 /* No mitigation needed. */
3293 return;
3294 }
3295 }
3296
3297 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3298 /* Enable hardware mitigation. */
3299 vmx_msrlist_entry_nmsr += 1;
3300 }
3301 }
3302
3303 static void
3304 vmx_init(void)
3305 {
3306 CPU_INFO_ITERATOR cii;
3307 struct cpu_info *ci;
3308 uint64_t xc, msr;
3309 struct vmxon *vmxon;
3310 uint32_t revision;
3311 paddr_t pa;
3312 vaddr_t va;
3313 int error;
3314
3315 /* Init the ASID bitmap (VPID). */
3316 vmx_init_asid(VPID_MAX);
3317
3318 /* Init the XCR0 mask. */
3319 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3320
3321 /* Init the max CPUID leaves. */
3322 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3323
3324 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3325 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3326 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3327 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3328 } else {
3329 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3330 }
3331 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3332 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3333 } else {
3334 vmx_ept_flush_op = VMX_INVEPT_ALL;
3335 }
3336 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3337 vmx_eptp_type = EPTP_TYPE_WB;
3338 } else {
3339 vmx_eptp_type = EPTP_TYPE_UC;
3340 }
3341
3342 /* Init the L1TF mitigation. */
3343 vmx_init_l1tf();
3344
3345 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3346 revision = vmx_get_revision();
3347
3348 for (CPU_INFO_FOREACH(cii, ci)) {
3349 error = vmx_memalloc(&pa, &va, 1);
3350 if (error) {
3351 panic("%s: out of memory", __func__);
3352 }
3353 vmxoncpu[cpu_index(ci)].pa = pa;
3354 vmxoncpu[cpu_index(ci)].va = va;
3355
3356 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3357 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3358 }
3359
3360 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3361 xc_wait(xc);
3362 }
3363
3364 static void
3365 vmx_fini_asid(void)
3366 {
3367 size_t allocsz;
3368
3369 allocsz = roundup(vmx_maxasid, 8) / 8;
3370 kmem_free(vmx_asidmap, allocsz);
3371
3372 mutex_destroy(&vmx_asidlock);
3373 }
3374
3375 static void
3376 vmx_fini(void)
3377 {
3378 uint64_t xc;
3379 size_t i;
3380
3381 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3382 xc_wait(xc);
3383
3384 for (i = 0; i < MAXCPUS; i++) {
3385 if (vmxoncpu[i].pa != 0)
3386 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3387 }
3388
3389 vmx_fini_asid();
3390 }
3391
3392 static void
3393 vmx_capability(struct nvmm_capability *cap)
3394 {
3395 cap->arch.mach_conf_support = 0;
3396 cap->arch.vcpu_conf_support =
3397 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3398 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3399 cap->arch.xcr0_mask = vmx_xcr0_mask;
3400 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3401 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3402 }
3403
3404 const struct nvmm_impl nvmm_x86_vmx = {
3405 .ident = vmx_ident,
3406 .init = vmx_init,
3407 .fini = vmx_fini,
3408 .capability = vmx_capability,
3409 .mach_conf_max = NVMM_X86_MACH_NCONF,
3410 .mach_conf_sizes = NULL,
3411 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3412 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3413 .state_size = sizeof(struct nvmm_x64_state),
3414 .machine_create = vmx_machine_create,
3415 .machine_destroy = vmx_machine_destroy,
3416 .machine_configure = vmx_machine_configure,
3417 .vcpu_create = vmx_vcpu_create,
3418 .vcpu_destroy = vmx_vcpu_destroy,
3419 .vcpu_configure = vmx_vcpu_configure,
3420 .vcpu_setstate = vmx_vcpu_setstate,
3421 .vcpu_getstate = vmx_vcpu_getstate,
3422 .vcpu_inject = vmx_vcpu_inject,
3423 .vcpu_run = vmx_vcpu_run
3424 };
3425