nvmm_x86_vmx.c revision 1.36.2.9 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.36.2.9 2020/08/05 15:18:24 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.36.2.9 2020/08/05 15:18:24 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 #ifdef DIAGNOSTIC
139 static inline paddr_t
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153 #endif
154
155 static inline void
156 vmx_vmptrld(paddr_t *pa)
157 {
158 asm volatile (
159 "vmptrld %[pa];"
160 "jz vmx_insn_failvalid;"
161 "jc vmx_insn_failinvalid;"
162 :
163 : [pa] "m" (*pa)
164 : "memory", "cc"
165 );
166 }
167
168 static inline void
169 vmx_vmclear(paddr_t *pa)
170 {
171 asm volatile (
172 "vmclear %[pa];"
173 "jz vmx_insn_failvalid;"
174 "jc vmx_insn_failinvalid;"
175 :
176 : [pa] "m" (*pa)
177 : "memory", "cc"
178 );
179 }
180
181 #define MSR_IA32_FEATURE_CONTROL 0x003A
182 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
183 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
184 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
185
186 #define MSR_IA32_VMX_BASIC 0x0480
187 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
188 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
189 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
190 #define IA32_VMX_BASIC_DUAL __BIT(49)
191 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
192 #define MEM_TYPE_UC 0
193 #define MEM_TYPE_WB 6
194 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
195 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
196
197 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
198 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
199 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
200 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
201 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
202
203 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
204 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
205 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
206 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
207
208 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
209 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
210 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
211 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
212
213 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
214 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
215 #define IA32_VMX_EPT_VPID_UC __BIT(8)
216 #define IA32_VMX_EPT_VPID_WB __BIT(14)
217 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
218 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
219 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
220 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
221 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
222 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
223 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
224 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
225 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
226
227 /* -------------------------------------------------------------------------- */
228
229 /* 16-bit control fields */
230 #define VMCS_VPID 0x00000000
231 #define VMCS_PIR_VECTOR 0x00000002
232 #define VMCS_EPTP_INDEX 0x00000004
233 /* 16-bit guest-state fields */
234 #define VMCS_GUEST_ES_SELECTOR 0x00000800
235 #define VMCS_GUEST_CS_SELECTOR 0x00000802
236 #define VMCS_GUEST_SS_SELECTOR 0x00000804
237 #define VMCS_GUEST_DS_SELECTOR 0x00000806
238 #define VMCS_GUEST_FS_SELECTOR 0x00000808
239 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
240 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
241 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
242 #define VMCS_GUEST_INTR_STATUS 0x00000810
243 #define VMCS_PML_INDEX 0x00000812
244 /* 16-bit host-state fields */
245 #define VMCS_HOST_ES_SELECTOR 0x00000C00
246 #define VMCS_HOST_CS_SELECTOR 0x00000C02
247 #define VMCS_HOST_SS_SELECTOR 0x00000C04
248 #define VMCS_HOST_DS_SELECTOR 0x00000C06
249 #define VMCS_HOST_FS_SELECTOR 0x00000C08
250 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
251 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
252 /* 64-bit control fields */
253 #define VMCS_IO_BITMAP_A 0x00002000
254 #define VMCS_IO_BITMAP_B 0x00002002
255 #define VMCS_MSR_BITMAP 0x00002004
256 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
257 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
258 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
259 #define VMCS_EXECUTIVE_VMCS 0x0000200C
260 #define VMCS_PML_ADDRESS 0x0000200E
261 #define VMCS_TSC_OFFSET 0x00002010
262 #define VMCS_VIRTUAL_APIC 0x00002012
263 #define VMCS_APIC_ACCESS 0x00002014
264 #define VMCS_PIR_DESC 0x00002016
265 #define VMCS_VM_CONTROL 0x00002018
266 #define VMCS_EPTP 0x0000201A
267 #define EPTP_TYPE __BITS(2,0)
268 #define EPTP_TYPE_UC 0
269 #define EPTP_TYPE_WB 6
270 #define EPTP_WALKLEN __BITS(5,3)
271 #define EPTP_FLAGS_AD __BIT(6)
272 #define EPTP_PHYSADDR __BITS(63,12)
273 #define VMCS_EOI_EXIT0 0x0000201C
274 #define VMCS_EOI_EXIT1 0x0000201E
275 #define VMCS_EOI_EXIT2 0x00002020
276 #define VMCS_EOI_EXIT3 0x00002022
277 #define VMCS_EPTP_LIST 0x00002024
278 #define VMCS_VMREAD_BITMAP 0x00002026
279 #define VMCS_VMWRITE_BITMAP 0x00002028
280 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
281 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
282 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
283 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
284 #define VMCS_TSC_MULTIPLIER 0x00002032
285 /* 64-bit read-only fields */
286 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
287 /* 64-bit guest-state fields */
288 #define VMCS_LINK_POINTER 0x00002800
289 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
290 #define VMCS_GUEST_IA32_PAT 0x00002804
291 #define VMCS_GUEST_IA32_EFER 0x00002806
292 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
293 #define VMCS_GUEST_PDPTE0 0x0000280A
294 #define VMCS_GUEST_PDPTE1 0x0000280C
295 #define VMCS_GUEST_PDPTE2 0x0000280E
296 #define VMCS_GUEST_PDPTE3 0x00002810
297 #define VMCS_GUEST_BNDCFGS 0x00002812
298 /* 64-bit host-state fields */
299 #define VMCS_HOST_IA32_PAT 0x00002C00
300 #define VMCS_HOST_IA32_EFER 0x00002C02
301 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
302 /* 32-bit control fields */
303 #define VMCS_PINBASED_CTLS 0x00004000
304 #define PIN_CTLS_INT_EXITING __BIT(0)
305 #define PIN_CTLS_NMI_EXITING __BIT(3)
306 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
307 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
308 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
309 #define VMCS_PROCBASED_CTLS 0x00004002
310 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
311 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
312 #define PROC_CTLS_HLT_EXITING __BIT(7)
313 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
314 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
315 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
316 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
317 #define PROC_CTLS_RCR3_EXITING __BIT(15)
318 #define PROC_CTLS_LCR3_EXITING __BIT(16)
319 #define PROC_CTLS_RCR8_EXITING __BIT(19)
320 #define PROC_CTLS_LCR8_EXITING __BIT(20)
321 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
322 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
323 #define PROC_CTLS_DR_EXITING __BIT(23)
324 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
325 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
326 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
327 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
328 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
329 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
330 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
331 #define VMCS_EXCEPTION_BITMAP 0x00004004
332 #define VMCS_PF_ERROR_MASK 0x00004006
333 #define VMCS_PF_ERROR_MATCH 0x00004008
334 #define VMCS_CR3_TARGET_COUNT 0x0000400A
335 #define VMCS_EXIT_CTLS 0x0000400C
336 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
337 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
338 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
339 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
340 #define EXIT_CTLS_SAVE_PAT __BIT(18)
341 #define EXIT_CTLS_LOAD_PAT __BIT(19)
342 #define EXIT_CTLS_SAVE_EFER __BIT(20)
343 #define EXIT_CTLS_LOAD_EFER __BIT(21)
344 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
345 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
346 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
347 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
348 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
349 #define VMCS_ENTRY_CTLS 0x00004012
350 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
351 #define ENTRY_CTLS_LONG_MODE __BIT(9)
352 #define ENTRY_CTLS_SMM __BIT(10)
353 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
354 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
355 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
356 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
357 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
358 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
359 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
360 #define VMCS_ENTRY_INTR_INFO 0x00004016
361 #define INTR_INFO_VECTOR __BITS(7,0)
362 #define INTR_INFO_TYPE __BITS(10,8)
363 #define INTR_TYPE_EXT_INT 0
364 #define INTR_TYPE_NMI 2
365 #define INTR_TYPE_HW_EXC 3
366 #define INTR_TYPE_SW_INT 4
367 #define INTR_TYPE_PRIV_SW_EXC 5
368 #define INTR_TYPE_SW_EXC 6
369 #define INTR_TYPE_OTHER 7
370 #define INTR_INFO_ERROR __BIT(11)
371 #define INTR_INFO_VALID __BIT(31)
372 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
373 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
374 #define VMCS_TPR_THRESHOLD 0x0000401C
375 #define VMCS_PROCBASED_CTLS2 0x0000401E
376 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
377 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
378 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
379 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
380 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
381 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
382 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
383 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
384 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
385 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
386 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
387 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
388 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
389 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
390 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
391 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
392 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
393 #define PROC_CTLS2_PML_ENABLE __BIT(17)
394 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
395 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
396 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
397 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
398 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
399 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
400 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
401 #define VMCS_PLE_GAP 0x00004020
402 #define VMCS_PLE_WINDOW 0x00004022
403 /* 32-bit read-only data fields */
404 #define VMCS_INSTRUCTION_ERROR 0x00004400
405 #define VMCS_EXIT_REASON 0x00004402
406 #define VMCS_EXIT_INTR_INFO 0x00004404
407 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
408 #define VMCS_IDT_VECTORING_INFO 0x00004408
409 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
410 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
411 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
412 /* 32-bit guest-state fields */
413 #define VMCS_GUEST_ES_LIMIT 0x00004800
414 #define VMCS_GUEST_CS_LIMIT 0x00004802
415 #define VMCS_GUEST_SS_LIMIT 0x00004804
416 #define VMCS_GUEST_DS_LIMIT 0x00004806
417 #define VMCS_GUEST_FS_LIMIT 0x00004808
418 #define VMCS_GUEST_GS_LIMIT 0x0000480A
419 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
420 #define VMCS_GUEST_TR_LIMIT 0x0000480E
421 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
422 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
423 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
424 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
425 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
426 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
427 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
428 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
429 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
430 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
431 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
432 #define INT_STATE_STI __BIT(0)
433 #define INT_STATE_MOVSS __BIT(1)
434 #define INT_STATE_SMI __BIT(2)
435 #define INT_STATE_NMI __BIT(3)
436 #define INT_STATE_ENCLAVE __BIT(4)
437 #define VMCS_GUEST_ACTIVITY 0x00004826
438 #define VMCS_GUEST_SMBASE 0x00004828
439 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
440 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
441 /* 32-bit host state fields */
442 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
443 /* Natural-Width control fields */
444 #define VMCS_CR0_MASK 0x00006000
445 #define VMCS_CR4_MASK 0x00006002
446 #define VMCS_CR0_SHADOW 0x00006004
447 #define VMCS_CR4_SHADOW 0x00006006
448 #define VMCS_CR3_TARGET0 0x00006008
449 #define VMCS_CR3_TARGET1 0x0000600A
450 #define VMCS_CR3_TARGET2 0x0000600C
451 #define VMCS_CR3_TARGET3 0x0000600E
452 /* Natural-Width read-only fields */
453 #define VMCS_EXIT_QUALIFICATION 0x00006400
454 #define VMCS_IO_RCX 0x00006402
455 #define VMCS_IO_RSI 0x00006404
456 #define VMCS_IO_RDI 0x00006406
457 #define VMCS_IO_RIP 0x00006408
458 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
459 /* Natural-Width guest-state fields */
460 #define VMCS_GUEST_CR0 0x00006800
461 #define VMCS_GUEST_CR3 0x00006802
462 #define VMCS_GUEST_CR4 0x00006804
463 #define VMCS_GUEST_ES_BASE 0x00006806
464 #define VMCS_GUEST_CS_BASE 0x00006808
465 #define VMCS_GUEST_SS_BASE 0x0000680A
466 #define VMCS_GUEST_DS_BASE 0x0000680C
467 #define VMCS_GUEST_FS_BASE 0x0000680E
468 #define VMCS_GUEST_GS_BASE 0x00006810
469 #define VMCS_GUEST_LDTR_BASE 0x00006812
470 #define VMCS_GUEST_TR_BASE 0x00006814
471 #define VMCS_GUEST_GDTR_BASE 0x00006816
472 #define VMCS_GUEST_IDTR_BASE 0x00006818
473 #define VMCS_GUEST_DR7 0x0000681A
474 #define VMCS_GUEST_RSP 0x0000681C
475 #define VMCS_GUEST_RIP 0x0000681E
476 #define VMCS_GUEST_RFLAGS 0x00006820
477 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
478 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
479 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
480 /* Natural-Width host-state fields */
481 #define VMCS_HOST_CR0 0x00006C00
482 #define VMCS_HOST_CR3 0x00006C02
483 #define VMCS_HOST_CR4 0x00006C04
484 #define VMCS_HOST_FS_BASE 0x00006C06
485 #define VMCS_HOST_GS_BASE 0x00006C08
486 #define VMCS_HOST_TR_BASE 0x00006C0A
487 #define VMCS_HOST_GDTR_BASE 0x00006C0C
488 #define VMCS_HOST_IDTR_BASE 0x00006C0E
489 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
490 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
491 #define VMCS_HOST_RSP 0x00006C14
492 #define VMCS_HOST_RIP 0x00006C16
493
494 /* VMX basic exit reasons. */
495 #define VMCS_EXITCODE_EXC_NMI 0
496 #define VMCS_EXITCODE_EXT_INT 1
497 #define VMCS_EXITCODE_SHUTDOWN 2
498 #define VMCS_EXITCODE_INIT 3
499 #define VMCS_EXITCODE_SIPI 4
500 #define VMCS_EXITCODE_SMI 5
501 #define VMCS_EXITCODE_OTHER_SMI 6
502 #define VMCS_EXITCODE_INT_WINDOW 7
503 #define VMCS_EXITCODE_NMI_WINDOW 8
504 #define VMCS_EXITCODE_TASK_SWITCH 9
505 #define VMCS_EXITCODE_CPUID 10
506 #define VMCS_EXITCODE_GETSEC 11
507 #define VMCS_EXITCODE_HLT 12
508 #define VMCS_EXITCODE_INVD 13
509 #define VMCS_EXITCODE_INVLPG 14
510 #define VMCS_EXITCODE_RDPMC 15
511 #define VMCS_EXITCODE_RDTSC 16
512 #define VMCS_EXITCODE_RSM 17
513 #define VMCS_EXITCODE_VMCALL 18
514 #define VMCS_EXITCODE_VMCLEAR 19
515 #define VMCS_EXITCODE_VMLAUNCH 20
516 #define VMCS_EXITCODE_VMPTRLD 21
517 #define VMCS_EXITCODE_VMPTRST 22
518 #define VMCS_EXITCODE_VMREAD 23
519 #define VMCS_EXITCODE_VMRESUME 24
520 #define VMCS_EXITCODE_VMWRITE 25
521 #define VMCS_EXITCODE_VMXOFF 26
522 #define VMCS_EXITCODE_VMXON 27
523 #define VMCS_EXITCODE_CR 28
524 #define VMCS_EXITCODE_DR 29
525 #define VMCS_EXITCODE_IO 30
526 #define VMCS_EXITCODE_RDMSR 31
527 #define VMCS_EXITCODE_WRMSR 32
528 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
529 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
530 #define VMCS_EXITCODE_MWAIT 36
531 #define VMCS_EXITCODE_TRAP_FLAG 37
532 #define VMCS_EXITCODE_MONITOR 39
533 #define VMCS_EXITCODE_PAUSE 40
534 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
535 #define VMCS_EXITCODE_TPR_BELOW 43
536 #define VMCS_EXITCODE_APIC_ACCESS 44
537 #define VMCS_EXITCODE_VEOI 45
538 #define VMCS_EXITCODE_GDTR_IDTR 46
539 #define VMCS_EXITCODE_LDTR_TR 47
540 #define VMCS_EXITCODE_EPT_VIOLATION 48
541 #define VMCS_EXITCODE_EPT_MISCONFIG 49
542 #define VMCS_EXITCODE_INVEPT 50
543 #define VMCS_EXITCODE_RDTSCP 51
544 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
545 #define VMCS_EXITCODE_INVVPID 53
546 #define VMCS_EXITCODE_WBINVD 54
547 #define VMCS_EXITCODE_XSETBV 55
548 #define VMCS_EXITCODE_APIC_WRITE 56
549 #define VMCS_EXITCODE_RDRAND 57
550 #define VMCS_EXITCODE_INVPCID 58
551 #define VMCS_EXITCODE_VMFUNC 59
552 #define VMCS_EXITCODE_ENCLS 60
553 #define VMCS_EXITCODE_RDSEED 61
554 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
555 #define VMCS_EXITCODE_XSAVES 63
556 #define VMCS_EXITCODE_XRSTORS 64
557
558 /* -------------------------------------------------------------------------- */
559
560 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
561 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
562
563 #define VMX_MSRLIST_STAR 0
564 #define VMX_MSRLIST_LSTAR 1
565 #define VMX_MSRLIST_CSTAR 2
566 #define VMX_MSRLIST_SFMASK 3
567 #define VMX_MSRLIST_KERNELGSBASE 4
568 #define VMX_MSRLIST_EXIT_NMSR 5
569 #define VMX_MSRLIST_L1DFLUSH 5
570
571 /* On entry, we may do +1 to include L1DFLUSH. */
572 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
573
574 struct vmxon {
575 uint32_t ident;
576 #define VMXON_IDENT_REVISION __BITS(30,0)
577
578 uint8_t data[PAGE_SIZE - 4];
579 } __packed;
580
581 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
582
583 struct vmxoncpu {
584 vaddr_t va;
585 paddr_t pa;
586 };
587
588 static struct vmxoncpu vmxoncpu[MAXCPUS];
589
590 struct vmcs {
591 uint32_t ident;
592 #define VMCS_IDENT_REVISION __BITS(30,0)
593 #define VMCS_IDENT_SHADOW __BIT(31)
594
595 uint32_t abort;
596 uint8_t data[PAGE_SIZE - 8];
597 } __packed;
598
599 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
600
601 struct msr_entry {
602 uint32_t msr;
603 uint32_t rsvd;
604 uint64_t val;
605 } __packed;
606
607 #define VPID_MAX 0xFFFF
608
609 /* Make sure we never run out of VPIDs. */
610 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
611
612 static uint64_t vmx_tlb_flush_op __read_mostly;
613 static uint64_t vmx_ept_flush_op __read_mostly;
614 static uint64_t vmx_eptp_type __read_mostly;
615
616 static uint64_t vmx_pinbased_ctls __read_mostly;
617 static uint64_t vmx_procbased_ctls __read_mostly;
618 static uint64_t vmx_procbased_ctls2 __read_mostly;
619 static uint64_t vmx_entry_ctls __read_mostly;
620 static uint64_t vmx_exit_ctls __read_mostly;
621
622 static uint64_t vmx_cr0_fixed0 __read_mostly;
623 static uint64_t vmx_cr0_fixed1 __read_mostly;
624 static uint64_t vmx_cr4_fixed0 __read_mostly;
625 static uint64_t vmx_cr4_fixed1 __read_mostly;
626
627 extern bool pmap_ept_has_ad;
628
629 #define VMX_PINBASED_CTLS_ONE \
630 (PIN_CTLS_INT_EXITING| \
631 PIN_CTLS_NMI_EXITING| \
632 PIN_CTLS_VIRTUAL_NMIS)
633
634 #define VMX_PINBASED_CTLS_ZERO 0
635
636 #define VMX_PROCBASED_CTLS_ONE \
637 (PROC_CTLS_USE_TSC_OFFSETTING| \
638 PROC_CTLS_HLT_EXITING| \
639 PROC_CTLS_MWAIT_EXITING | \
640 PROC_CTLS_RDPMC_EXITING | \
641 PROC_CTLS_RCR8_EXITING | \
642 PROC_CTLS_LCR8_EXITING | \
643 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
644 PROC_CTLS_USE_MSR_BITMAPS | \
645 PROC_CTLS_MONITOR_EXITING | \
646 PROC_CTLS_ACTIVATE_CTLS2)
647
648 #define VMX_PROCBASED_CTLS_ZERO \
649 (PROC_CTLS_RCR3_EXITING| \
650 PROC_CTLS_LCR3_EXITING)
651
652 #define VMX_PROCBASED_CTLS2_ONE \
653 (PROC_CTLS2_ENABLE_EPT| \
654 PROC_CTLS2_ENABLE_VPID| \
655 PROC_CTLS2_UNRESTRICTED_GUEST)
656
657 #define VMX_PROCBASED_CTLS2_ZERO 0
658
659 #define VMX_ENTRY_CTLS_ONE \
660 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
661 ENTRY_CTLS_LOAD_EFER| \
662 ENTRY_CTLS_LOAD_PAT)
663
664 #define VMX_ENTRY_CTLS_ZERO \
665 (ENTRY_CTLS_SMM| \
666 ENTRY_CTLS_DISABLE_DUAL)
667
668 #define VMX_EXIT_CTLS_ONE \
669 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
670 EXIT_CTLS_HOST_LONG_MODE| \
671 EXIT_CTLS_SAVE_PAT| \
672 EXIT_CTLS_LOAD_PAT| \
673 EXIT_CTLS_SAVE_EFER| \
674 EXIT_CTLS_LOAD_EFER)
675
676 #define VMX_EXIT_CTLS_ZERO 0
677
678 static uint8_t *vmx_asidmap __read_mostly;
679 static uint32_t vmx_maxasid __read_mostly;
680 static kmutex_t vmx_asidlock __cacheline_aligned;
681
682 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
683 static uint64_t vmx_xcr0_mask __read_mostly;
684
685 #define VMX_NCPUIDS 32
686
687 #define VMCS_NPAGES 1
688 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
689
690 #define MSRBM_NPAGES 1
691 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
692
693 #define EFER_TLB_FLUSH \
694 (EFER_NXE|EFER_LMA|EFER_LME)
695 #define CR0_TLB_FLUSH \
696 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
697 #define CR4_TLB_FLUSH \
698 (CR4_PGE|CR4_PAE|CR4_PSE)
699
700 /* -------------------------------------------------------------------------- */
701
702 struct vmx_machdata {
703 volatile uint64_t mach_htlb_gen;
704 };
705
706 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
707 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
708 sizeof(struct nvmm_vcpu_conf_cpuid),
709 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
710 sizeof(struct nvmm_vcpu_conf_tpr)
711 };
712
713 struct vmx_cpudata {
714 /* General */
715 uint64_t asid;
716 bool gtlb_want_flush;
717 bool gtsc_want_update;
718 uint64_t vcpu_htlb_gen;
719 kcpuset_t *htlb_want_flush;
720
721 /* VMCS */
722 struct vmcs *vmcs;
723 paddr_t vmcs_pa;
724 size_t vmcs_refcnt;
725 struct cpu_info *vmcs_ci;
726 bool vmcs_launched;
727
728 /* MSR bitmap */
729 uint8_t *msrbm;
730 paddr_t msrbm_pa;
731
732 /* Host state */
733 uint64_t hxcr0;
734 uint64_t star;
735 uint64_t lstar;
736 uint64_t cstar;
737 uint64_t sfmask;
738 uint64_t kernelgsbase;
739 bool ts_set;
740 struct xsave_header hfpu __aligned(64);
741
742 /* Intr state */
743 bool int_window_exit;
744 bool nmi_window_exit;
745 bool evt_pending;
746
747 /* Guest state */
748 struct msr_entry *gmsr;
749 paddr_t gmsr_pa;
750 uint64_t gmsr_misc_enable;
751 uint64_t gcr2;
752 uint64_t gcr8;
753 uint64_t gxcr0;
754 uint64_t gprs[NVMM_X64_NGPR];
755 uint64_t drs[NVMM_X64_NDR];
756 uint64_t gtsc;
757 struct xsave_header gfpu __aligned(64);
758
759 /* VCPU configuration. */
760 bool cpuidpresent[VMX_NCPUIDS];
761 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
762 struct nvmm_vcpu_conf_tpr tpr;
763 };
764
765 static const struct {
766 uint64_t selector;
767 uint64_t attrib;
768 uint64_t limit;
769 uint64_t base;
770 } vmx_guest_segs[NVMM_X64_NSEG] = {
771 [NVMM_X64_SEG_ES] = {
772 VMCS_GUEST_ES_SELECTOR,
773 VMCS_GUEST_ES_ACCESS_RIGHTS,
774 VMCS_GUEST_ES_LIMIT,
775 VMCS_GUEST_ES_BASE
776 },
777 [NVMM_X64_SEG_CS] = {
778 VMCS_GUEST_CS_SELECTOR,
779 VMCS_GUEST_CS_ACCESS_RIGHTS,
780 VMCS_GUEST_CS_LIMIT,
781 VMCS_GUEST_CS_BASE
782 },
783 [NVMM_X64_SEG_SS] = {
784 VMCS_GUEST_SS_SELECTOR,
785 VMCS_GUEST_SS_ACCESS_RIGHTS,
786 VMCS_GUEST_SS_LIMIT,
787 VMCS_GUEST_SS_BASE
788 },
789 [NVMM_X64_SEG_DS] = {
790 VMCS_GUEST_DS_SELECTOR,
791 VMCS_GUEST_DS_ACCESS_RIGHTS,
792 VMCS_GUEST_DS_LIMIT,
793 VMCS_GUEST_DS_BASE
794 },
795 [NVMM_X64_SEG_FS] = {
796 VMCS_GUEST_FS_SELECTOR,
797 VMCS_GUEST_FS_ACCESS_RIGHTS,
798 VMCS_GUEST_FS_LIMIT,
799 VMCS_GUEST_FS_BASE
800 },
801 [NVMM_X64_SEG_GS] = {
802 VMCS_GUEST_GS_SELECTOR,
803 VMCS_GUEST_GS_ACCESS_RIGHTS,
804 VMCS_GUEST_GS_LIMIT,
805 VMCS_GUEST_GS_BASE
806 },
807 [NVMM_X64_SEG_GDT] = {
808 0, /* doesn't exist */
809 0, /* doesn't exist */
810 VMCS_GUEST_GDTR_LIMIT,
811 VMCS_GUEST_GDTR_BASE
812 },
813 [NVMM_X64_SEG_IDT] = {
814 0, /* doesn't exist */
815 0, /* doesn't exist */
816 VMCS_GUEST_IDTR_LIMIT,
817 VMCS_GUEST_IDTR_BASE
818 },
819 [NVMM_X64_SEG_LDT] = {
820 VMCS_GUEST_LDTR_SELECTOR,
821 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
822 VMCS_GUEST_LDTR_LIMIT,
823 VMCS_GUEST_LDTR_BASE
824 },
825 [NVMM_X64_SEG_TR] = {
826 VMCS_GUEST_TR_SELECTOR,
827 VMCS_GUEST_TR_ACCESS_RIGHTS,
828 VMCS_GUEST_TR_LIMIT,
829 VMCS_GUEST_TR_BASE
830 }
831 };
832
833 /* -------------------------------------------------------------------------- */
834
835 static uint64_t
836 vmx_get_revision(void)
837 {
838 uint64_t msr;
839
840 msr = rdmsr(MSR_IA32_VMX_BASIC);
841 msr &= IA32_VMX_BASIC_IDENT;
842
843 return msr;
844 }
845
846 static void
847 vmx_vmclear_ipi(void *arg1, void *arg2)
848 {
849 paddr_t vmcs_pa = (paddr_t)arg1;
850 vmx_vmclear(&vmcs_pa);
851 }
852
853 static void
854 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
855 {
856 uint64_t xc;
857 int bound;
858
859 KASSERT(kpreempt_disabled());
860
861 bound = curlwp_bind();
862 kpreempt_enable();
863
864 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
865 xc_wait(xc);
866
867 kpreempt_disable();
868 curlwp_bindx(bound);
869 }
870
871 static void
872 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
873 {
874 struct vmx_cpudata *cpudata = vcpu->cpudata;
875 struct cpu_info *vmcs_ci;
876
877 cpudata->vmcs_refcnt++;
878 if (cpudata->vmcs_refcnt > 1) {
879 KASSERT(kpreempt_disabled());
880 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
881 return;
882 }
883
884 vmcs_ci = cpudata->vmcs_ci;
885 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
886
887 kpreempt_disable();
888
889 if (vmcs_ci == NULL) {
890 /* This VMCS is loaded for the first time. */
891 vmx_vmclear(&cpudata->vmcs_pa);
892 cpudata->vmcs_launched = false;
893 } else if (vmcs_ci != curcpu()) {
894 /* This VMCS is active on a remote CPU. */
895 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
896 cpudata->vmcs_launched = false;
897 } else {
898 /* This VMCS is active on curcpu, nothing to do. */
899 }
900
901 vmx_vmptrld(&cpudata->vmcs_pa);
902 }
903
904 static void
905 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
906 {
907 struct vmx_cpudata *cpudata = vcpu->cpudata;
908
909 KASSERT(kpreempt_disabled());
910 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
911 KASSERT(cpudata->vmcs_refcnt > 0);
912 cpudata->vmcs_refcnt--;
913
914 if (cpudata->vmcs_refcnt > 0) {
915 return;
916 }
917
918 cpudata->vmcs_ci = curcpu();
919 kpreempt_enable();
920 }
921
922 static void
923 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
924 {
925 struct vmx_cpudata *cpudata = vcpu->cpudata;
926
927 KASSERT(kpreempt_disabled());
928 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
929 KASSERT(cpudata->vmcs_refcnt == 1);
930 cpudata->vmcs_refcnt--;
931
932 vmx_vmclear(&cpudata->vmcs_pa);
933 kpreempt_enable();
934 }
935
936 /* -------------------------------------------------------------------------- */
937
938 static void
939 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
940 {
941 struct vmx_cpudata *cpudata = vcpu->cpudata;
942 uint64_t ctls1;
943
944 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
945
946 if (nmi) {
947 // XXX INT_STATE_NMI?
948 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
949 cpudata->nmi_window_exit = true;
950 } else {
951 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
952 cpudata->int_window_exit = true;
953 }
954
955 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
956 }
957
958 static void
959 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
960 {
961 struct vmx_cpudata *cpudata = vcpu->cpudata;
962 uint64_t ctls1;
963
964 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
965
966 if (nmi) {
967 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
968 cpudata->nmi_window_exit = false;
969 } else {
970 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
971 cpudata->int_window_exit = false;
972 }
973
974 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
975 }
976
977 static inline int
978 vmx_event_has_error(uint8_t vector)
979 {
980 switch (vector) {
981 case 8: /* #DF */
982 case 10: /* #TS */
983 case 11: /* #NP */
984 case 12: /* #SS */
985 case 13: /* #GP */
986 case 14: /* #PF */
987 case 17: /* #AC */
988 case 30: /* #SX */
989 return 1;
990 default:
991 return 0;
992 }
993 }
994
995 static int
996 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
997 {
998 struct nvmm_comm_page *comm = vcpu->comm;
999 struct vmx_cpudata *cpudata = vcpu->cpudata;
1000 int type = 0, err = 0, ret = EINVAL;
1001 u_int evtype;
1002 uint8_t vector;
1003 uint64_t info, error;
1004
1005 evtype = comm->event.type;
1006 vector = comm->event.vector;
1007 error = comm->event.u.excp.error;
1008 __insn_barrier();
1009
1010 vmx_vmcs_enter(vcpu);
1011
1012 switch (evtype) {
1013 case NVMM_VCPU_EVENT_EXCP:
1014 if (vector == 2 || vector >= 32)
1015 goto out;
1016 if (vector == 3 || vector == 0)
1017 goto out;
1018 type = INTR_TYPE_HW_EXC;
1019 err = vmx_event_has_error(vector);
1020 break;
1021 case NVMM_VCPU_EVENT_INTR:
1022 type = INTR_TYPE_EXT_INT;
1023 if (vector == 2) {
1024 type = INTR_TYPE_NMI;
1025 vmx_event_waitexit_enable(vcpu, true);
1026 }
1027 err = 0;
1028 break;
1029 default:
1030 goto out;
1031 }
1032
1033 info =
1034 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1035 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1036 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1037 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1038 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1039 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1040
1041 cpudata->evt_pending = true;
1042 ret = 0;
1043
1044 out:
1045 vmx_vmcs_leave(vcpu);
1046 return ret;
1047 }
1048
1049 static void
1050 vmx_inject_ud(struct nvmm_cpu *vcpu)
1051 {
1052 struct nvmm_comm_page *comm = vcpu->comm;
1053 int ret __diagused;
1054
1055 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1056 comm->event.vector = 6;
1057 comm->event.u.excp.error = 0;
1058
1059 ret = vmx_vcpu_inject(vcpu);
1060 KASSERT(ret == 0);
1061 }
1062
1063 static void
1064 vmx_inject_gp(struct nvmm_cpu *vcpu)
1065 {
1066 struct nvmm_comm_page *comm = vcpu->comm;
1067 int ret __diagused;
1068
1069 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1070 comm->event.vector = 13;
1071 comm->event.u.excp.error = 0;
1072
1073 ret = vmx_vcpu_inject(vcpu);
1074 KASSERT(ret == 0);
1075 }
1076
1077 static inline int
1078 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1079 {
1080 if (__predict_true(!vcpu->comm->event_commit)) {
1081 return 0;
1082 }
1083 vcpu->comm->event_commit = false;
1084 return vmx_vcpu_inject(vcpu);
1085 }
1086
1087 static inline void
1088 vmx_inkernel_advance(void)
1089 {
1090 uint64_t rip, inslen, intstate;
1091
1092 /*
1093 * Maybe we should also apply single-stepping and debug exceptions.
1094 * Matters for guest-ring3, because it can execute 'cpuid' under a
1095 * debugger.
1096 */
1097 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1098 rip = vmx_vmread(VMCS_GUEST_RIP);
1099 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1100 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1101 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1102 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1103 }
1104
1105 static void
1106 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1107 {
1108 exit->u.inv.hwcode = code;
1109 exit->reason = NVMM_VCPU_EXIT_INVALID;
1110 }
1111
1112 static void
1113 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1114 struct nvmm_vcpu_exit *exit)
1115 {
1116 uint64_t qual;
1117
1118 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1119
1120 if ((qual & INTR_INFO_VALID) == 0) {
1121 goto error;
1122 }
1123 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1124 goto error;
1125 }
1126
1127 exit->reason = NVMM_VCPU_EXIT_NONE;
1128 return;
1129
1130 error:
1131 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1132 }
1133
1134 #define VMX_CPUID_MAX_BASIC 0x16
1135 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1136 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1137 static uint32_t vmx_cpuid_max_basic __read_mostly;
1138
1139 static void
1140 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1141 {
1142 u_int descs[4];
1143
1144 x86_cpuid2(eax, ecx, descs);
1145 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1146 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1147 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1148 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1149 }
1150
1151 static void
1152 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1153 uint64_t eax, uint64_t ecx)
1154 {
1155 struct vmx_cpudata *cpudata = vcpu->cpudata;
1156 unsigned int ncpus;
1157 uint64_t cr4;
1158
1159 if (eax < 0x40000000) {
1160 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1161 eax = vmx_cpuid_max_basic;
1162 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1163 }
1164 } else if (eax < 0x80000000) {
1165 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1166 eax = vmx_cpuid_max_basic;
1167 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1168 }
1169 }
1170
1171 switch (eax) {
1172 case 0x00000000:
1173 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1174 break;
1175 case 0x00000001:
1176 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1177
1178 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1179 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1180 CPUID_LOCAL_APIC_ID);
1181
1182 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1183 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1184 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1185 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1186 }
1187
1188 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1189
1190 /* CPUID2_OSXSAVE depends on CR4. */
1191 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1192 if (!(cr4 & CR4_OSXSAVE)) {
1193 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1194 }
1195 break;
1196 case 0x00000002:
1197 break;
1198 case 0x00000003:
1199 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1200 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1201 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1202 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1203 break;
1204 case 0x00000004: /* Deterministic Cache Parameters */
1205 break; /* TODO? */
1206 case 0x00000005: /* MONITOR/MWAIT */
1207 case 0x00000006: /* Thermal and Power Management */
1208 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1209 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1210 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1211 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1212 break;
1213 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1214 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1215 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1216 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1217 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1218 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1219 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1220 }
1221 break;
1222 case 0x00000008: /* Empty */
1223 case 0x00000009: /* Direct Cache Access Information */
1224 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1225 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1226 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1227 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1228 break;
1229 case 0x0000000A: /* Architectural Performance Monitoring */
1230 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1231 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1232 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1233 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1234 break;
1235 case 0x0000000B: /* Extended Topology Enumeration */
1236 switch (ecx) {
1237 case 0: /* Threads */
1238 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1239 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1240 cpudata->gprs[NVMM_X64_GPR_RCX] =
1241 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1242 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1243 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1244 break;
1245 case 1: /* Cores */
1246 ncpus = atomic_load_relaxed(&mach->ncpus);
1247 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1248 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1249 cpudata->gprs[NVMM_X64_GPR_RCX] =
1250 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1251 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1252 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1253 break;
1254 default:
1255 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1256 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1257 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1258 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1259 break;
1260 }
1261 break;
1262 case 0x0000000C: /* Empty */
1263 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1264 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1265 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1266 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1267 break;
1268 case 0x0000000D: /* Processor Extended State Enumeration */
1269 if (vmx_xcr0_mask == 0) {
1270 break;
1271 }
1272 switch (ecx) {
1273 case 0:
1274 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1275 if (cpudata->gxcr0 & XCR0_SSE) {
1276 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1277 } else {
1278 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1279 }
1280 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1281 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1282 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1283 break;
1284 case 1:
1285 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1286 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1287 CPUID_PES1_XGETBV);
1288 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1289 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1290 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1291 break;
1292 default:
1293 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1294 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1295 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1296 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1297 break;
1298 }
1299 break;
1300 case 0x0000000E: /* Empty */
1301 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1302 case 0x00000010: /* Intel RDT Allocation Enumeration */
1303 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1304 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1305 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1306 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1307 break;
1308 case 0x00000011: /* Empty */
1309 case 0x00000012: /* Intel SGX Capability Enumeration */
1310 case 0x00000013: /* Empty */
1311 case 0x00000014: /* Intel Processor Trace Enumeration */
1312 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1313 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1314 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1315 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1316 break;
1317 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1318 case 0x00000016: /* Processor Frequency Information */
1319 break;
1320
1321 case 0x40000000: /* Hypervisor Information */
1322 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1323 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1324 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1325 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1326 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1327 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1328 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1329 break;
1330
1331 case 0x80000001:
1332 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1333 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1334 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1335 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1336 break;
1337 case 0x80000002: /* Processor Brand String */
1338 case 0x80000003: /* Processor Brand String */
1339 case 0x80000004: /* Processor Brand String */
1340 case 0x80000005: /* Reserved Zero */
1341 case 0x80000006: /* Cache Information */
1342 case 0x80000007: /* TSC Information */
1343 case 0x80000008: /* Address Sizes */
1344 break;
1345
1346 default:
1347 break;
1348 }
1349 }
1350
1351 static void
1352 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1353 {
1354 uint64_t inslen, rip;
1355
1356 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1357 rip = vmx_vmread(VMCS_GUEST_RIP);
1358 exit->u.insn.npc = rip + inslen;
1359 exit->reason = reason;
1360 }
1361
1362 static void
1363 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1364 struct nvmm_vcpu_exit *exit)
1365 {
1366 struct vmx_cpudata *cpudata = vcpu->cpudata;
1367 struct nvmm_vcpu_conf_cpuid *cpuid;
1368 uint64_t eax, ecx;
1369 size_t i;
1370
1371 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1372 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1373 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1374 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1375
1376 for (i = 0; i < VMX_NCPUIDS; i++) {
1377 if (!cpudata->cpuidpresent[i]) {
1378 continue;
1379 }
1380 cpuid = &cpudata->cpuid[i];
1381 if (cpuid->leaf != eax) {
1382 continue;
1383 }
1384
1385 if (cpuid->exit) {
1386 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1387 return;
1388 }
1389 KASSERT(cpuid->mask);
1390
1391 /* del */
1392 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1393 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1394 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1395 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1396
1397 /* set */
1398 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1399 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1400 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1401 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1402
1403 break;
1404 }
1405
1406 vmx_inkernel_advance();
1407 exit->reason = NVMM_VCPU_EXIT_NONE;
1408 }
1409
1410 static void
1411 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1412 struct nvmm_vcpu_exit *exit)
1413 {
1414 struct vmx_cpudata *cpudata = vcpu->cpudata;
1415 uint64_t rflags;
1416
1417 if (cpudata->int_window_exit) {
1418 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1419 if (rflags & PSL_I) {
1420 vmx_event_waitexit_disable(vcpu, false);
1421 }
1422 }
1423
1424 vmx_inkernel_advance();
1425 exit->reason = NVMM_VCPU_EXIT_HALTED;
1426 }
1427
1428 #define VMX_QUAL_CR_NUM __BITS(3,0)
1429 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1430 #define CR_TYPE_WRITE 0
1431 #define CR_TYPE_READ 1
1432 #define CR_TYPE_CLTS 2
1433 #define CR_TYPE_LMSW 3
1434 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1435 #define VMX_QUAL_CR_GPR __BITS(11,8)
1436 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1437
1438 static inline int
1439 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1440 {
1441 /* Bits set to 1 in fixed0 are fixed to 1. */
1442 if ((crval & fixed0) != fixed0) {
1443 return -1;
1444 }
1445 /* Bits set to 0 in fixed1 are fixed to 0. */
1446 if (crval & ~fixed1) {
1447 return -1;
1448 }
1449 return 0;
1450 }
1451
1452 static int
1453 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1454 uint64_t qual)
1455 {
1456 struct vmx_cpudata *cpudata = vcpu->cpudata;
1457 uint64_t type, gpr, cr0;
1458 uint64_t efer, ctls1;
1459
1460 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1461 if (type != CR_TYPE_WRITE) {
1462 return -1;
1463 }
1464
1465 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1466 KASSERT(gpr < 16);
1467
1468 if (gpr == NVMM_X64_GPR_RSP) {
1469 gpr = vmx_vmread(VMCS_GUEST_RSP);
1470 } else {
1471 gpr = cpudata->gprs[gpr];
1472 }
1473
1474 cr0 = gpr | CR0_NE | CR0_ET;
1475 cr0 &= ~(CR0_NW|CR0_CD);
1476
1477 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1478 return -1;
1479 }
1480
1481 /*
1482 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1483 * from CR3.
1484 */
1485
1486 if (cr0 & CR0_PG) {
1487 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1488 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1489 if (efer & EFER_LME) {
1490 ctls1 |= ENTRY_CTLS_LONG_MODE;
1491 efer |= EFER_LMA;
1492 } else {
1493 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1494 efer &= ~EFER_LMA;
1495 }
1496 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1497 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1498 }
1499
1500 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1501 vmx_inkernel_advance();
1502 return 0;
1503 }
1504
1505 static int
1506 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1507 uint64_t qual)
1508 {
1509 struct vmx_cpudata *cpudata = vcpu->cpudata;
1510 uint64_t type, gpr, cr4;
1511
1512 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1513 if (type != CR_TYPE_WRITE) {
1514 return -1;
1515 }
1516
1517 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1518 KASSERT(gpr < 16);
1519
1520 if (gpr == NVMM_X64_GPR_RSP) {
1521 gpr = vmx_vmread(VMCS_GUEST_RSP);
1522 } else {
1523 gpr = cpudata->gprs[gpr];
1524 }
1525
1526 cr4 = gpr | CR4_VMXE;
1527
1528 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1529 return -1;
1530 }
1531
1532 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1533 vmx_inkernel_advance();
1534 return 0;
1535 }
1536
1537 static int
1538 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1539 uint64_t qual, struct nvmm_vcpu_exit *exit)
1540 {
1541 struct vmx_cpudata *cpudata = vcpu->cpudata;
1542 uint64_t type, gpr;
1543 bool write;
1544
1545 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1546 if (type == CR_TYPE_WRITE) {
1547 write = true;
1548 } else if (type == CR_TYPE_READ) {
1549 write = false;
1550 } else {
1551 return -1;
1552 }
1553
1554 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1555 KASSERT(gpr < 16);
1556
1557 if (write) {
1558 if (gpr == NVMM_X64_GPR_RSP) {
1559 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1560 } else {
1561 cpudata->gcr8 = cpudata->gprs[gpr];
1562 }
1563 if (cpudata->tpr.exit_changed) {
1564 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1565 }
1566 } else {
1567 if (gpr == NVMM_X64_GPR_RSP) {
1568 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1569 } else {
1570 cpudata->gprs[gpr] = cpudata->gcr8;
1571 }
1572 }
1573
1574 vmx_inkernel_advance();
1575 return 0;
1576 }
1577
1578 static void
1579 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1580 struct nvmm_vcpu_exit *exit)
1581 {
1582 uint64_t qual;
1583 int ret;
1584
1585 exit->reason = NVMM_VCPU_EXIT_NONE;
1586
1587 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1588
1589 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1590 case 0:
1591 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1592 break;
1593 case 4:
1594 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1595 break;
1596 case 8:
1597 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1598 break;
1599 default:
1600 ret = -1;
1601 break;
1602 }
1603
1604 if (ret == -1) {
1605 vmx_inject_gp(vcpu);
1606 }
1607 }
1608
1609 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1610 #define IO_SIZE_8 0
1611 #define IO_SIZE_16 1
1612 #define IO_SIZE_32 3
1613 #define VMX_QUAL_IO_IN __BIT(3)
1614 #define VMX_QUAL_IO_STR __BIT(4)
1615 #define VMX_QUAL_IO_REP __BIT(5)
1616 #define VMX_QUAL_IO_DX __BIT(6)
1617 #define VMX_QUAL_IO_PORT __BITS(31,16)
1618
1619 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1620 #define IO_ADRSIZE_16 0
1621 #define IO_ADRSIZE_32 1
1622 #define IO_ADRSIZE_64 2
1623 #define VMX_INFO_IO_SEG __BITS(17,15)
1624
1625 static void
1626 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1627 struct nvmm_vcpu_exit *exit)
1628 {
1629 uint64_t qual, info, inslen, rip;
1630
1631 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1632 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1633
1634 exit->reason = NVMM_VCPU_EXIT_IO;
1635
1636 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1637 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1638
1639 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1640 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1641
1642 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1643 exit->u.io.address_size = 8;
1644 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1645 exit->u.io.address_size = 4;
1646 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1647 exit->u.io.address_size = 2;
1648 }
1649
1650 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1651 exit->u.io.operand_size = 4;
1652 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1653 exit->u.io.operand_size = 2;
1654 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1655 exit->u.io.operand_size = 1;
1656 }
1657
1658 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1659 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1660
1661 if (exit->u.io.in && exit->u.io.str) {
1662 exit->u.io.seg = NVMM_X64_SEG_ES;
1663 }
1664
1665 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1666 rip = vmx_vmread(VMCS_GUEST_RIP);
1667 exit->u.io.npc = rip + inslen;
1668
1669 vmx_vcpu_state_provide(vcpu,
1670 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1671 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1672 }
1673
1674 static const uint64_t msr_ignore_list[] = {
1675 MSR_BIOS_SIGN,
1676 MSR_IA32_PLATFORM_ID
1677 };
1678
1679 static bool
1680 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1681 struct nvmm_vcpu_exit *exit)
1682 {
1683 struct vmx_cpudata *cpudata = vcpu->cpudata;
1684 uint64_t val;
1685 size_t i;
1686
1687 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1688 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1689 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1690 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1691 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1692 goto handled;
1693 }
1694 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1695 val = cpudata->gmsr_misc_enable;
1696 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1697 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1698 goto handled;
1699 }
1700 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1701 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1702 continue;
1703 val = 0;
1704 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1705 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1706 goto handled;
1707 }
1708 } else {
1709 if (exit->u.wrmsr.msr == MSR_TSC) {
1710 cpudata->gtsc = exit->u.wrmsr.val;
1711 cpudata->gtsc_want_update = true;
1712 goto handled;
1713 }
1714 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1715 val = exit->u.wrmsr.val;
1716 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1717 goto error;
1718 }
1719 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1720 goto handled;
1721 }
1722 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1723 /* Don't care. */
1724 goto handled;
1725 }
1726 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1727 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1728 continue;
1729 goto handled;
1730 }
1731 }
1732
1733 return false;
1734
1735 handled:
1736 vmx_inkernel_advance();
1737 return true;
1738
1739 error:
1740 vmx_inject_gp(vcpu);
1741 return true;
1742 }
1743
1744 static void
1745 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1746 struct nvmm_vcpu_exit *exit)
1747 {
1748 struct vmx_cpudata *cpudata = vcpu->cpudata;
1749 uint64_t inslen, rip;
1750
1751 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1752 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1753
1754 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1755 exit->reason = NVMM_VCPU_EXIT_NONE;
1756 return;
1757 }
1758
1759 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1760 rip = vmx_vmread(VMCS_GUEST_RIP);
1761 exit->u.rdmsr.npc = rip + inslen;
1762
1763 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1764 }
1765
1766 static void
1767 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1768 struct nvmm_vcpu_exit *exit)
1769 {
1770 struct vmx_cpudata *cpudata = vcpu->cpudata;
1771 uint64_t rdx, rax, inslen, rip;
1772
1773 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1774 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1775
1776 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1777 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1778 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1779
1780 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1781 exit->reason = NVMM_VCPU_EXIT_NONE;
1782 return;
1783 }
1784
1785 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1786 rip = vmx_vmread(VMCS_GUEST_RIP);
1787 exit->u.wrmsr.npc = rip + inslen;
1788
1789 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1790 }
1791
1792 static void
1793 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1794 struct nvmm_vcpu_exit *exit)
1795 {
1796 struct vmx_cpudata *cpudata = vcpu->cpudata;
1797 uint64_t val;
1798
1799 exit->reason = NVMM_VCPU_EXIT_NONE;
1800
1801 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1802 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1803
1804 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1805 goto error;
1806 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1807 goto error;
1808 } else if (__predict_false((val & XCR0_X87) == 0)) {
1809 goto error;
1810 }
1811
1812 cpudata->gxcr0 = val;
1813
1814 vmx_inkernel_advance();
1815 return;
1816
1817 error:
1818 vmx_inject_gp(vcpu);
1819 }
1820
1821 #define VMX_EPT_VIOLATION_READ __BIT(0)
1822 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1823 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1824
1825 static void
1826 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1827 struct nvmm_vcpu_exit *exit)
1828 {
1829 uint64_t perm;
1830 gpaddr_t gpa;
1831
1832 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1833
1834 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1835 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1836 if (perm & VMX_EPT_VIOLATION_WRITE)
1837 exit->u.mem.prot = PROT_WRITE;
1838 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1839 exit->u.mem.prot = PROT_EXEC;
1840 else
1841 exit->u.mem.prot = PROT_READ;
1842 exit->u.mem.gpa = gpa;
1843 exit->u.mem.inst_len = 0;
1844
1845 vmx_vcpu_state_provide(vcpu,
1846 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1847 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1848 }
1849
1850 /* -------------------------------------------------------------------------- */
1851
1852 static void
1853 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1854 {
1855 struct vmx_cpudata *cpudata = vcpu->cpudata;
1856
1857 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1858
1859 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1860 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1861
1862 if (vmx_xcr0_mask != 0) {
1863 cpudata->hxcr0 = rdxcr(0);
1864 wrxcr(0, cpudata->gxcr0);
1865 }
1866 }
1867
1868 static void
1869 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1870 {
1871 struct vmx_cpudata *cpudata = vcpu->cpudata;
1872
1873 if (vmx_xcr0_mask != 0) {
1874 cpudata->gxcr0 = rdxcr(0);
1875 wrxcr(0, cpudata->hxcr0);
1876 }
1877
1878 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1879 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1880
1881 if (cpudata->ts_set) {
1882 stts();
1883 }
1884 }
1885
1886 static void
1887 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1888 {
1889 struct vmx_cpudata *cpudata = vcpu->cpudata;
1890
1891 x86_dbregs_save(curlwp);
1892
1893 ldr7(0);
1894
1895 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1896 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1897 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1898 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1899 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1900 }
1901
1902 static void
1903 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1904 {
1905 struct vmx_cpudata *cpudata = vcpu->cpudata;
1906
1907 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1908 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1909 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1910 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1911 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1912
1913 x86_dbregs_restore(curlwp);
1914 }
1915
1916 static void
1917 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1918 {
1919 struct vmx_cpudata *cpudata = vcpu->cpudata;
1920
1921 /* This gets restored automatically by the CPU. */
1922 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1923 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1924 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1925
1926 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1927 }
1928
1929 static void
1930 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1931 {
1932 struct vmx_cpudata *cpudata = vcpu->cpudata;
1933
1934 wrmsr(MSR_STAR, cpudata->star);
1935 wrmsr(MSR_LSTAR, cpudata->lstar);
1936 wrmsr(MSR_CSTAR, cpudata->cstar);
1937 wrmsr(MSR_SFMASK, cpudata->sfmask);
1938 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1939 }
1940
1941 /* -------------------------------------------------------------------------- */
1942
1943 #define VMX_INVVPID_ADDRESS 0
1944 #define VMX_INVVPID_CONTEXT 1
1945 #define VMX_INVVPID_ALL 2
1946 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1947
1948 #define VMX_INVEPT_CONTEXT 1
1949 #define VMX_INVEPT_ALL 2
1950
1951 static inline void
1952 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1953 {
1954 struct vmx_cpudata *cpudata = vcpu->cpudata;
1955
1956 if (vcpu->hcpu_last != hcpu) {
1957 cpudata->gtlb_want_flush = true;
1958 }
1959 }
1960
1961 static inline void
1962 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1963 {
1964 struct vmx_cpudata *cpudata = vcpu->cpudata;
1965 struct ept_desc ept_desc;
1966
1967 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1968 return;
1969 }
1970
1971 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1972 ept_desc.mbz = 0;
1973 vmx_invept(vmx_ept_flush_op, &ept_desc);
1974 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1975 }
1976
1977 static inline uint64_t
1978 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1979 {
1980 struct ept_desc ept_desc;
1981 uint64_t machgen;
1982
1983 machgen = machdata->mach_htlb_gen;
1984 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1985 return machgen;
1986 }
1987
1988 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1989
1990 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1991 ept_desc.mbz = 0;
1992 vmx_invept(vmx_ept_flush_op, &ept_desc);
1993
1994 return machgen;
1995 }
1996
1997 static inline void
1998 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1999 {
2000 cpudata->vcpu_htlb_gen = machgen;
2001 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2002 }
2003
2004 static inline void
2005 vmx_exit_evt(struct vmx_cpudata *cpudata)
2006 {
2007 uint64_t info, err, inslen;
2008
2009 cpudata->evt_pending = false;
2010
2011 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2012 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2013 return;
2014 }
2015 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2016
2017 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2018 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2019
2020 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2021 case INTR_TYPE_SW_INT:
2022 case INTR_TYPE_PRIV_SW_EXC:
2023 case INTR_TYPE_SW_EXC:
2024 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2025 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2026 }
2027
2028 cpudata->evt_pending = true;
2029 }
2030
2031 static int
2032 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2033 struct nvmm_vcpu_exit *exit)
2034 {
2035 struct nvmm_comm_page *comm = vcpu->comm;
2036 struct vmx_machdata *machdata = mach->machdata;
2037 struct vmx_cpudata *cpudata = vcpu->cpudata;
2038 struct vpid_desc vpid_desc;
2039 struct cpu_info *ci;
2040 uint64_t exitcode;
2041 uint64_t intstate;
2042 uint64_t machgen;
2043 int hcpu, s, ret;
2044 bool launched;
2045
2046 vmx_vmcs_enter(vcpu);
2047
2048 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2049 vmx_vmcs_leave(vcpu);
2050 return EINVAL;
2051 }
2052 vmx_vcpu_state_commit(vcpu);
2053 comm->state_cached = 0;
2054
2055 ci = curcpu();
2056 hcpu = cpu_number();
2057 launched = cpudata->vmcs_launched;
2058
2059 vmx_gtlb_catchup(vcpu, hcpu);
2060 vmx_htlb_catchup(vcpu, hcpu);
2061
2062 if (vcpu->hcpu_last != hcpu) {
2063 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2064 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2065 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2066 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2067 cpudata->gtsc_want_update = true;
2068 vcpu->hcpu_last = hcpu;
2069 }
2070
2071 vmx_vcpu_guest_dbregs_enter(vcpu);
2072 vmx_vcpu_guest_misc_enter(vcpu);
2073
2074 while (1) {
2075 if (cpudata->gtlb_want_flush) {
2076 vpid_desc.vpid = cpudata->asid;
2077 vpid_desc.addr = 0;
2078 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2079 cpudata->gtlb_want_flush = false;
2080 }
2081
2082 if (__predict_false(cpudata->gtsc_want_update)) {
2083 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2084 cpudata->gtsc_want_update = false;
2085 }
2086
2087 s = splhigh();
2088 machgen = vmx_htlb_flush(machdata, cpudata);
2089 vmx_vcpu_guest_fpu_enter(vcpu);
2090 lcr2(cpudata->gcr2);
2091 if (launched) {
2092 ret = vmx_vmresume(cpudata->gprs);
2093 } else {
2094 ret = vmx_vmlaunch(cpudata->gprs);
2095 }
2096 cpudata->gcr2 = rcr2();
2097 vmx_vcpu_guest_fpu_leave(vcpu);
2098 vmx_htlb_flush_ack(cpudata, machgen);
2099 splx(s);
2100
2101 if (__predict_false(ret != 0)) {
2102 vmx_exit_invalid(exit, -1);
2103 break;
2104 }
2105 vmx_exit_evt(cpudata);
2106
2107 launched = true;
2108
2109 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2110 exitcode &= __BITS(15,0);
2111
2112 switch (exitcode) {
2113 case VMCS_EXITCODE_EXC_NMI:
2114 vmx_exit_exc_nmi(mach, vcpu, exit);
2115 break;
2116 case VMCS_EXITCODE_EXT_INT:
2117 exit->reason = NVMM_VCPU_EXIT_NONE;
2118 break;
2119 case VMCS_EXITCODE_CPUID:
2120 vmx_exit_cpuid(mach, vcpu, exit);
2121 break;
2122 case VMCS_EXITCODE_HLT:
2123 vmx_exit_hlt(mach, vcpu, exit);
2124 break;
2125 case VMCS_EXITCODE_CR:
2126 vmx_exit_cr(mach, vcpu, exit);
2127 break;
2128 case VMCS_EXITCODE_IO:
2129 vmx_exit_io(mach, vcpu, exit);
2130 break;
2131 case VMCS_EXITCODE_RDMSR:
2132 vmx_exit_rdmsr(mach, vcpu, exit);
2133 break;
2134 case VMCS_EXITCODE_WRMSR:
2135 vmx_exit_wrmsr(mach, vcpu, exit);
2136 break;
2137 case VMCS_EXITCODE_SHUTDOWN:
2138 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2139 break;
2140 case VMCS_EXITCODE_MONITOR:
2141 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2142 break;
2143 case VMCS_EXITCODE_MWAIT:
2144 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2145 break;
2146 case VMCS_EXITCODE_XSETBV:
2147 vmx_exit_xsetbv(mach, vcpu, exit);
2148 break;
2149 case VMCS_EXITCODE_RDPMC:
2150 case VMCS_EXITCODE_RDTSCP:
2151 case VMCS_EXITCODE_INVVPID:
2152 case VMCS_EXITCODE_INVEPT:
2153 case VMCS_EXITCODE_VMCALL:
2154 case VMCS_EXITCODE_VMCLEAR:
2155 case VMCS_EXITCODE_VMLAUNCH:
2156 case VMCS_EXITCODE_VMPTRLD:
2157 case VMCS_EXITCODE_VMPTRST:
2158 case VMCS_EXITCODE_VMREAD:
2159 case VMCS_EXITCODE_VMRESUME:
2160 case VMCS_EXITCODE_VMWRITE:
2161 case VMCS_EXITCODE_VMXOFF:
2162 case VMCS_EXITCODE_VMXON:
2163 vmx_inject_ud(vcpu);
2164 exit->reason = NVMM_VCPU_EXIT_NONE;
2165 break;
2166 case VMCS_EXITCODE_EPT_VIOLATION:
2167 vmx_exit_epf(mach, vcpu, exit);
2168 break;
2169 case VMCS_EXITCODE_INT_WINDOW:
2170 vmx_event_waitexit_disable(vcpu, false);
2171 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2172 break;
2173 case VMCS_EXITCODE_NMI_WINDOW:
2174 vmx_event_waitexit_disable(vcpu, true);
2175 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2176 break;
2177 default:
2178 vmx_exit_invalid(exit, exitcode);
2179 break;
2180 }
2181
2182 /* If no reason to return to userland, keep rolling. */
2183 if (nvmm_return_needed()) {
2184 break;
2185 }
2186 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2187 break;
2188 }
2189 }
2190
2191 cpudata->vmcs_launched = launched;
2192
2193 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2194
2195 vmx_vcpu_guest_misc_leave(vcpu);
2196 vmx_vcpu_guest_dbregs_leave(vcpu);
2197
2198 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2199 exit->exitstate.cr8 = cpudata->gcr8;
2200 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2201 exit->exitstate.int_shadow =
2202 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2203 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2204 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2205 exit->exitstate.evt_pending = cpudata->evt_pending;
2206
2207 vmx_vmcs_leave(vcpu);
2208
2209 return 0;
2210 }
2211
2212 /* -------------------------------------------------------------------------- */
2213
2214 static int
2215 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2216 {
2217 struct pglist pglist;
2218 paddr_t _pa;
2219 vaddr_t _va;
2220 size_t i;
2221 int ret;
2222
2223 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2224 &pglist, 1, 0);
2225 if (ret != 0)
2226 return ENOMEM;
2227 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2228 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2229 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2230 if (_va == 0)
2231 goto error;
2232
2233 for (i = 0; i < npages; i++) {
2234 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2235 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2236 }
2237 pmap_update(pmap_kernel());
2238
2239 memset((void *)_va, 0, npages * PAGE_SIZE);
2240
2241 *pa = _pa;
2242 *va = _va;
2243 return 0;
2244
2245 error:
2246 for (i = 0; i < npages; i++) {
2247 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2248 }
2249 return ENOMEM;
2250 }
2251
2252 static void
2253 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2254 {
2255 size_t i;
2256
2257 pmap_kremove(va, npages * PAGE_SIZE);
2258 pmap_update(pmap_kernel());
2259 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2260 for (i = 0; i < npages; i++) {
2261 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2262 }
2263 }
2264
2265 /* -------------------------------------------------------------------------- */
2266
2267 static void
2268 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2269 {
2270 uint64_t byte;
2271 uint8_t bitoff;
2272
2273 if (msr < 0x00002000) {
2274 /* Range 1 */
2275 byte = ((msr - 0x00000000) / 8) + 0;
2276 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2277 /* Range 2 */
2278 byte = ((msr - 0xC0000000) / 8) + 1024;
2279 } else {
2280 panic("%s: wrong range", __func__);
2281 }
2282
2283 bitoff = (msr & 0x7);
2284
2285 if (read) {
2286 bitmap[byte] &= ~__BIT(bitoff);
2287 }
2288 if (write) {
2289 bitmap[2048 + byte] &= ~__BIT(bitoff);
2290 }
2291 }
2292
2293 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2294 #define VMX_SEG_ATTRIB_S __BIT(4)
2295 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2296 #define VMX_SEG_ATTRIB_P __BIT(7)
2297 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2298 #define VMX_SEG_ATTRIB_L __BIT(13)
2299 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2300 #define VMX_SEG_ATTRIB_G __BIT(15)
2301 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2302
2303 static void
2304 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2305 {
2306 uint64_t attrib;
2307
2308 attrib =
2309 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2310 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2311 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2312 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2313 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2314 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2315 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2316 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2317 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2318
2319 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2320 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2321 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2322 }
2323 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2324 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2325 }
2326
2327 static void
2328 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2329 {
2330 uint64_t selector = 0, attrib = 0, base, limit;
2331
2332 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2333 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2334 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2335 }
2336 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2337 base = vmx_vmread(vmx_guest_segs[idx].base);
2338
2339 segs[idx].selector = selector;
2340 segs[idx].limit = limit;
2341 segs[idx].base = base;
2342 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2343 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2344 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2345 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2346 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2347 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2348 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2349 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2350 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2351 segs[idx].attrib.p = 0;
2352 }
2353 }
2354
2355 static inline bool
2356 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2357 {
2358 uint64_t cr0, cr3, cr4, efer;
2359
2360 if (flags & NVMM_X64_STATE_CRS) {
2361 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2362 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2363 return true;
2364 }
2365 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2366 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2367 return true;
2368 }
2369 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2370 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2371 return true;
2372 }
2373 }
2374
2375 if (flags & NVMM_X64_STATE_MSRS) {
2376 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2377 if ((efer ^
2378 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2379 return true;
2380 }
2381 }
2382
2383 return false;
2384 }
2385
2386 static void
2387 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2388 {
2389 struct nvmm_comm_page *comm = vcpu->comm;
2390 const struct nvmm_x64_state *state = &comm->state;
2391 struct vmx_cpudata *cpudata = vcpu->cpudata;
2392 struct fxsave *fpustate;
2393 uint64_t ctls1, intstate;
2394 uint64_t flags;
2395
2396 flags = comm->state_wanted;
2397
2398 vmx_vmcs_enter(vcpu);
2399
2400 if (vmx_state_tlb_flush(state, flags)) {
2401 cpudata->gtlb_want_flush = true;
2402 }
2403
2404 if (flags & NVMM_X64_STATE_SEGS) {
2405 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2406 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2407 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2408 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2409 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2410 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2411 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2412 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2413 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2414 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2415 }
2416
2417 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2418 if (flags & NVMM_X64_STATE_GPRS) {
2419 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2420
2421 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2422 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2423 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2424 }
2425
2426 if (flags & NVMM_X64_STATE_CRS) {
2427 /*
2428 * CR0_NE and CR4_VMXE are mandatory.
2429 */
2430 vmx_vmwrite(VMCS_GUEST_CR0,
2431 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2432 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2433 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2434 vmx_vmwrite(VMCS_GUEST_CR4,
2435 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2436 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2437
2438 if (vmx_xcr0_mask != 0) {
2439 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2440 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2441 cpudata->gxcr0 &= vmx_xcr0_mask;
2442 cpudata->gxcr0 |= XCR0_X87;
2443 }
2444 }
2445
2446 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2447 if (flags & NVMM_X64_STATE_DRS) {
2448 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2449
2450 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2451 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2452 }
2453
2454 if (flags & NVMM_X64_STATE_MSRS) {
2455 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2456 state->msrs[NVMM_X64_MSR_STAR];
2457 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2458 state->msrs[NVMM_X64_MSR_LSTAR];
2459 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2460 state->msrs[NVMM_X64_MSR_CSTAR];
2461 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2462 state->msrs[NVMM_X64_MSR_SFMASK];
2463 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2464 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2465
2466 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2467 state->msrs[NVMM_X64_MSR_EFER]);
2468 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2469 state->msrs[NVMM_X64_MSR_PAT]);
2470 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2471 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2472 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2473 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2474 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2475 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2476
2477 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2478 cpudata->gtsc_want_update = true;
2479
2480 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2481 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2482 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2483 ctls1 |= ENTRY_CTLS_LONG_MODE;
2484 } else {
2485 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2486 }
2487 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2488 }
2489
2490 if (flags & NVMM_X64_STATE_INTR) {
2491 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2492 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2493 if (state->intr.int_shadow) {
2494 intstate |= INT_STATE_MOVSS;
2495 }
2496 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2497
2498 if (state->intr.int_window_exiting) {
2499 vmx_event_waitexit_enable(vcpu, false);
2500 } else {
2501 vmx_event_waitexit_disable(vcpu, false);
2502 }
2503
2504 if (state->intr.nmi_window_exiting) {
2505 vmx_event_waitexit_enable(vcpu, true);
2506 } else {
2507 vmx_event_waitexit_disable(vcpu, true);
2508 }
2509 }
2510
2511 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2512 if (flags & NVMM_X64_STATE_FPU) {
2513 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2514 sizeof(state->fpu));
2515
2516 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2517 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2518 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2519
2520 if (vmx_xcr0_mask != 0) {
2521 /* Reset XSTATE_BV, to force a reload. */
2522 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2523 }
2524 }
2525
2526 vmx_vmcs_leave(vcpu);
2527
2528 comm->state_wanted = 0;
2529 comm->state_cached |= flags;
2530 }
2531
2532 static void
2533 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2534 {
2535 struct nvmm_comm_page *comm = vcpu->comm;
2536 struct nvmm_x64_state *state = &comm->state;
2537 struct vmx_cpudata *cpudata = vcpu->cpudata;
2538 uint64_t intstate, flags;
2539
2540 flags = comm->state_wanted;
2541
2542 vmx_vmcs_enter(vcpu);
2543
2544 if (flags & NVMM_X64_STATE_SEGS) {
2545 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2546 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2547 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2548 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2549 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2550 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2551 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2552 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2553 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2554 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2555 }
2556
2557 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2558 if (flags & NVMM_X64_STATE_GPRS) {
2559 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2560
2561 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2562 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2563 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2564 }
2565
2566 if (flags & NVMM_X64_STATE_CRS) {
2567 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2568 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2569 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2570 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2571 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2572 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2573
2574 /* Hide VMXE. */
2575 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2576 }
2577
2578 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2579 if (flags & NVMM_X64_STATE_DRS) {
2580 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2581
2582 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2583 }
2584
2585 if (flags & NVMM_X64_STATE_MSRS) {
2586 state->msrs[NVMM_X64_MSR_STAR] =
2587 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2588 state->msrs[NVMM_X64_MSR_LSTAR] =
2589 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2590 state->msrs[NVMM_X64_MSR_CSTAR] =
2591 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2592 state->msrs[NVMM_X64_MSR_SFMASK] =
2593 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2594 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2595 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2596 state->msrs[NVMM_X64_MSR_EFER] =
2597 vmx_vmread(VMCS_GUEST_IA32_EFER);
2598 state->msrs[NVMM_X64_MSR_PAT] =
2599 vmx_vmread(VMCS_GUEST_IA32_PAT);
2600 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2601 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2602 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2603 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2604 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2605 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2606 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2607 }
2608
2609 if (flags & NVMM_X64_STATE_INTR) {
2610 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2611 state->intr.int_shadow =
2612 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2613 state->intr.int_window_exiting = cpudata->int_window_exit;
2614 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2615 state->intr.evt_pending = cpudata->evt_pending;
2616 }
2617
2618 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2619 if (flags & NVMM_X64_STATE_FPU) {
2620 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2621 sizeof(state->fpu));
2622 }
2623
2624 vmx_vmcs_leave(vcpu);
2625
2626 comm->state_wanted = 0;
2627 comm->state_cached |= flags;
2628 }
2629
2630 static void
2631 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2632 {
2633 vcpu->comm->state_wanted = flags;
2634 vmx_vcpu_getstate(vcpu);
2635 }
2636
2637 static void
2638 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2639 {
2640 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2641 vcpu->comm->state_commit = 0;
2642 vmx_vcpu_setstate(vcpu);
2643 }
2644
2645 /* -------------------------------------------------------------------------- */
2646
2647 static void
2648 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2649 {
2650 struct vmx_cpudata *cpudata = vcpu->cpudata;
2651 size_t i, oct, bit;
2652
2653 mutex_enter(&vmx_asidlock);
2654
2655 for (i = 0; i < vmx_maxasid; i++) {
2656 oct = i / 8;
2657 bit = i % 8;
2658
2659 if (vmx_asidmap[oct] & __BIT(bit)) {
2660 continue;
2661 }
2662
2663 cpudata->asid = i;
2664
2665 vmx_asidmap[oct] |= __BIT(bit);
2666 vmx_vmwrite(VMCS_VPID, i);
2667 mutex_exit(&vmx_asidlock);
2668 return;
2669 }
2670
2671 mutex_exit(&vmx_asidlock);
2672
2673 panic("%s: impossible", __func__);
2674 }
2675
2676 static void
2677 vmx_asid_free(struct nvmm_cpu *vcpu)
2678 {
2679 size_t oct, bit;
2680 uint64_t asid;
2681
2682 asid = vmx_vmread(VMCS_VPID);
2683
2684 oct = asid / 8;
2685 bit = asid % 8;
2686
2687 mutex_enter(&vmx_asidlock);
2688 vmx_asidmap[oct] &= ~__BIT(bit);
2689 mutex_exit(&vmx_asidlock);
2690 }
2691
2692 static void
2693 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2694 {
2695 struct vmx_cpudata *cpudata = vcpu->cpudata;
2696 struct vmcs *vmcs = cpudata->vmcs;
2697 struct msr_entry *gmsr = cpudata->gmsr;
2698 extern uint8_t vmx_resume_rip;
2699 uint64_t rev, eptp;
2700
2701 rev = vmx_get_revision();
2702
2703 memset(vmcs, 0, VMCS_SIZE);
2704 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2705 vmcs->abort = 0;
2706
2707 vmx_vmcs_enter(vcpu);
2708
2709 /* No link pointer. */
2710 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2711
2712 /* Install the CTLSs. */
2713 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2714 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2715 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2716 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2717 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2718
2719 /* Allow direct access to certain MSRs. */
2720 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2721 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2722 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2723 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2724 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2725 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2726 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2727 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2728 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2729 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2730 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2731 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2732 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2733 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2734 true, false);
2735 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2736
2737 /*
2738 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2739 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2740 */
2741 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2742 gmsr[VMX_MSRLIST_STAR].val = 0;
2743 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2744 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2745 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2746 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2747 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2748 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2749 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2750 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2751 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2752 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2753 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2754 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2755 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2756 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2757
2758 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2759 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2760 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2761
2762 /* Force CR4_VMXE to zero. */
2763 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2764
2765 /* Set the Host state for resuming. */
2766 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2767 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2768 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2769 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2770 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2771 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2772 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2773 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2774 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2775 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2776 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2777 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2778 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2779 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2780
2781 /* Generate ASID. */
2782 vmx_asid_alloc(vcpu);
2783
2784 /* Enable Extended Paging, 4-Level. */
2785 eptp =
2786 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2787 __SHIFTIN(4-1, EPTP_WALKLEN) |
2788 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2789 mach->vm->vm_map.pmap->pm_pdirpa[0];
2790 vmx_vmwrite(VMCS_EPTP, eptp);
2791
2792 /* Init IA32_MISC_ENABLE. */
2793 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2794 cpudata->gmsr_misc_enable &=
2795 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2796 cpudata->gmsr_misc_enable |=
2797 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2798
2799 /* Init XSAVE header. */
2800 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2801 cpudata->gfpu.xsh_xcomp_bv = 0;
2802
2803 /* These MSRs are static. */
2804 cpudata->star = rdmsr(MSR_STAR);
2805 cpudata->lstar = rdmsr(MSR_LSTAR);
2806 cpudata->cstar = rdmsr(MSR_CSTAR);
2807 cpudata->sfmask = rdmsr(MSR_SFMASK);
2808
2809 /* Install the RESET state. */
2810 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2811 sizeof(nvmm_x86_reset_state));
2812 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2813 vcpu->comm->state_cached = 0;
2814 vmx_vcpu_setstate(vcpu);
2815
2816 vmx_vmcs_leave(vcpu);
2817 }
2818
2819 static int
2820 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2821 {
2822 struct vmx_cpudata *cpudata;
2823 int error;
2824
2825 /* Allocate the VMX cpudata. */
2826 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2827 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2828 UVM_KMF_WIRED|UVM_KMF_ZERO);
2829 vcpu->cpudata = cpudata;
2830
2831 /* VMCS */
2832 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2833 VMCS_NPAGES);
2834 if (error)
2835 goto error;
2836
2837 /* MSR Bitmap */
2838 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2839 MSRBM_NPAGES);
2840 if (error)
2841 goto error;
2842
2843 /* Guest MSR List */
2844 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2845 if (error)
2846 goto error;
2847
2848 kcpuset_create(&cpudata->htlb_want_flush, true);
2849
2850 /* Init the VCPU info. */
2851 vmx_vcpu_init(mach, vcpu);
2852
2853 return 0;
2854
2855 error:
2856 if (cpudata->vmcs_pa) {
2857 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2858 VMCS_NPAGES);
2859 }
2860 if (cpudata->msrbm_pa) {
2861 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2862 MSRBM_NPAGES);
2863 }
2864 if (cpudata->gmsr_pa) {
2865 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2866 }
2867
2868 kmem_free(cpudata, sizeof(*cpudata));
2869 return error;
2870 }
2871
2872 static void
2873 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2874 {
2875 struct vmx_cpudata *cpudata = vcpu->cpudata;
2876
2877 vmx_vmcs_enter(vcpu);
2878 vmx_asid_free(vcpu);
2879 vmx_vmcs_destroy(vcpu);
2880
2881 kcpuset_destroy(cpudata->htlb_want_flush);
2882
2883 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2884 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2885 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2886 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2887 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2888 }
2889
2890 /* -------------------------------------------------------------------------- */
2891
2892 static int
2893 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2894 {
2895 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2896 size_t i;
2897
2898 if (__predict_false(cpuid->mask && cpuid->exit)) {
2899 return EINVAL;
2900 }
2901 if (__predict_false(cpuid->mask &&
2902 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2903 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2904 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2905 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2906 return EINVAL;
2907 }
2908
2909 /* If unset, delete, to restore the default behavior. */
2910 if (!cpuid->mask && !cpuid->exit) {
2911 for (i = 0; i < VMX_NCPUIDS; i++) {
2912 if (!cpudata->cpuidpresent[i]) {
2913 continue;
2914 }
2915 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2916 cpudata->cpuidpresent[i] = false;
2917 }
2918 }
2919 return 0;
2920 }
2921
2922 /* If already here, replace. */
2923 for (i = 0; i < VMX_NCPUIDS; i++) {
2924 if (!cpudata->cpuidpresent[i]) {
2925 continue;
2926 }
2927 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2928 memcpy(&cpudata->cpuid[i], cpuid,
2929 sizeof(struct nvmm_vcpu_conf_cpuid));
2930 return 0;
2931 }
2932 }
2933
2934 /* Not here, insert. */
2935 for (i = 0; i < VMX_NCPUIDS; i++) {
2936 if (!cpudata->cpuidpresent[i]) {
2937 cpudata->cpuidpresent[i] = true;
2938 memcpy(&cpudata->cpuid[i], cpuid,
2939 sizeof(struct nvmm_vcpu_conf_cpuid));
2940 return 0;
2941 }
2942 }
2943
2944 return ENOBUFS;
2945 }
2946
2947 static int
2948 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2949 {
2950 struct nvmm_vcpu_conf_tpr *tpr = data;
2951
2952 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2953 return 0;
2954 }
2955
2956 static int
2957 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2958 {
2959 struct vmx_cpudata *cpudata = vcpu->cpudata;
2960
2961 switch (op) {
2962 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2963 return vmx_vcpu_configure_cpuid(cpudata, data);
2964 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2965 return vmx_vcpu_configure_tpr(cpudata, data);
2966 default:
2967 return EINVAL;
2968 }
2969 }
2970
2971 /* -------------------------------------------------------------------------- */
2972
2973 static void
2974 vmx_tlb_flush(struct pmap *pm)
2975 {
2976 struct nvmm_machine *mach = pm->pm_data;
2977 struct vmx_machdata *machdata = mach->machdata;
2978
2979 atomic_inc_64(&machdata->mach_htlb_gen);
2980
2981 /* Generates IPIs, which cause #VMEXITs. */
2982 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2983 }
2984
2985 static void
2986 vmx_machine_create(struct nvmm_machine *mach)
2987 {
2988 struct pmap *pmap = mach->vm->vm_map.pmap;
2989 struct vmx_machdata *machdata;
2990
2991 /* Convert to EPT. */
2992 pmap_ept_transform(pmap);
2993
2994 /* Fill in pmap info. */
2995 pmap->pm_data = (void *)mach;
2996 pmap->pm_tlb_flush = vmx_tlb_flush;
2997
2998 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2999 mach->machdata = machdata;
3000
3001 /* Start with an hTLB flush everywhere. */
3002 machdata->mach_htlb_gen = 1;
3003 }
3004
3005 static void
3006 vmx_machine_destroy(struct nvmm_machine *mach)
3007 {
3008 struct vmx_machdata *machdata = mach->machdata;
3009
3010 kmem_free(machdata, sizeof(struct vmx_machdata));
3011 }
3012
3013 static int
3014 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3015 {
3016 panic("%s: impossible", __func__);
3017 }
3018
3019 /* -------------------------------------------------------------------------- */
3020
3021 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3022 ((msrval & __BIT(32 + bitoff)) != 0)
3023 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3024 ((msrval & __BIT(bitoff)) == 0)
3025
3026 static int
3027 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3028 {
3029 uint64_t basic, val, true_val;
3030 bool has_true;
3031 size_t i;
3032
3033 basic = rdmsr(MSR_IA32_VMX_BASIC);
3034 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3035
3036 val = rdmsr(msr_ctls);
3037 if (has_true) {
3038 true_val = rdmsr(msr_true_ctls);
3039 } else {
3040 true_val = val;
3041 }
3042
3043 for (i = 0; i < 32; i++) {
3044 if (!(set_one & __BIT(i))) {
3045 continue;
3046 }
3047 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3048 return -1;
3049 }
3050 }
3051
3052 return 0;
3053 }
3054
3055 static int
3056 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3057 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3058 {
3059 uint64_t basic, val, true_val;
3060 bool one_allowed, zero_allowed, has_true;
3061 size_t i;
3062
3063 basic = rdmsr(MSR_IA32_VMX_BASIC);
3064 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3065
3066 val = rdmsr(msr_ctls);
3067 if (has_true) {
3068 true_val = rdmsr(msr_true_ctls);
3069 } else {
3070 true_val = val;
3071 }
3072
3073 for (i = 0; i < 32; i++) {
3074 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3075 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3076
3077 if (zero_allowed && !one_allowed) {
3078 if (set_one & __BIT(i))
3079 return -1;
3080 *res &= ~__BIT(i);
3081 } else if (one_allowed && !zero_allowed) {
3082 if (set_zero & __BIT(i))
3083 return -1;
3084 *res |= __BIT(i);
3085 } else {
3086 if (set_zero & __BIT(i)) {
3087 *res &= ~__BIT(i);
3088 } else if (set_one & __BIT(i)) {
3089 *res |= __BIT(i);
3090 } else if (!has_true) {
3091 *res &= ~__BIT(i);
3092 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3093 *res &= ~__BIT(i);
3094 } else if (CTLS_ONE_ALLOWED(val, i)) {
3095 *res |= __BIT(i);
3096 } else {
3097 return -1;
3098 }
3099 }
3100 }
3101
3102 return 0;
3103 }
3104
3105 static bool
3106 vmx_ident(void)
3107 {
3108 uint64_t msr;
3109 int ret;
3110
3111 if (!(cpu_feature[1] & CPUID2_VMX)) {
3112 return false;
3113 }
3114
3115 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3116 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3117 printf("NVMM: VMX disabled in BIOS\n");
3118 return false;
3119 }
3120 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3121 printf("NVMM: VMX disabled in BIOS\n");
3122 return false;
3123 }
3124
3125 msr = rdmsr(MSR_IA32_VMX_BASIC);
3126 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3127 printf("NVMM: I/O reporting not supported\n");
3128 return false;
3129 }
3130 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3131 printf("NVMM: WB memory not supported\n");
3132 return false;
3133 }
3134
3135 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3136 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3137 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3138 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3139 if (ret == -1) {
3140 printf("NVMM: CR0 requirements not satisfied\n");
3141 return false;
3142 }
3143
3144 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3145 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3146 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3147 if (ret == -1) {
3148 printf("NVMM: CR4 requirements not satisfied\n");
3149 return false;
3150 }
3151
3152 /* Init the CTLSs right now, and check for errors. */
3153 ret = vmx_init_ctls(
3154 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3155 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3156 &vmx_pinbased_ctls);
3157 if (ret == -1) {
3158 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3159 return false;
3160 }
3161 ret = vmx_init_ctls(
3162 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3163 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3164 &vmx_procbased_ctls);
3165 if (ret == -1) {
3166 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3167 return false;
3168 }
3169 ret = vmx_init_ctls(
3170 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3171 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3172 &vmx_procbased_ctls2);
3173 if (ret == -1) {
3174 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3175 return false;
3176 }
3177 ret = vmx_check_ctls(
3178 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3179 PROC_CTLS2_INVPCID_ENABLE);
3180 if (ret != -1) {
3181 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3182 }
3183 ret = vmx_init_ctls(
3184 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3185 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3186 &vmx_entry_ctls);
3187 if (ret == -1) {
3188 printf("NVMM: entry-ctls requirements not satisfied\n");
3189 return false;
3190 }
3191 ret = vmx_init_ctls(
3192 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3193 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3194 &vmx_exit_ctls);
3195 if (ret == -1) {
3196 printf("NVMM: exit-ctls requirements not satisfied\n");
3197 return false;
3198 }
3199
3200 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3201 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3202 printf("NVMM: 4-level page tree not supported\n");
3203 return false;
3204 }
3205 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3206 printf("NVMM: INVEPT not supported\n");
3207 return false;
3208 }
3209 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3210 printf("NVMM: INVVPID not supported\n");
3211 return false;
3212 }
3213 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3214 pmap_ept_has_ad = true;
3215 } else {
3216 pmap_ept_has_ad = false;
3217 }
3218 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3219 printf("NVMM: EPT UC/WB memory types not supported\n");
3220 return false;
3221 }
3222
3223 return true;
3224 }
3225
3226 static void
3227 vmx_init_asid(uint32_t maxasid)
3228 {
3229 size_t allocsz;
3230
3231 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3232
3233 vmx_maxasid = maxasid;
3234 allocsz = roundup(maxasid, 8) / 8;
3235 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3236
3237 /* ASID 0 is reserved for the host. */
3238 vmx_asidmap[0] |= __BIT(0);
3239 }
3240
3241 static void
3242 vmx_change_cpu(void *arg1, void *arg2)
3243 {
3244 struct cpu_info *ci = curcpu();
3245 bool enable = arg1 != NULL;
3246 uint64_t cr4;
3247
3248 if (!enable) {
3249 vmx_vmxoff();
3250 }
3251
3252 cr4 = rcr4();
3253 if (enable) {
3254 cr4 |= CR4_VMXE;
3255 } else {
3256 cr4 &= ~CR4_VMXE;
3257 }
3258 lcr4(cr4);
3259
3260 if (enable) {
3261 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3262 }
3263 }
3264
3265 static void
3266 vmx_init_l1tf(void)
3267 {
3268 u_int descs[4];
3269 uint64_t msr;
3270
3271 if (cpuid_level < 7) {
3272 return;
3273 }
3274
3275 x86_cpuid(7, descs);
3276
3277 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3278 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3279 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3280 /* No mitigation needed. */
3281 return;
3282 }
3283 }
3284
3285 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3286 /* Enable hardware mitigation. */
3287 vmx_msrlist_entry_nmsr += 1;
3288 }
3289 }
3290
3291 static void
3292 vmx_init(void)
3293 {
3294 CPU_INFO_ITERATOR cii;
3295 struct cpu_info *ci;
3296 uint64_t xc, msr;
3297 struct vmxon *vmxon;
3298 uint32_t revision;
3299 paddr_t pa;
3300 vaddr_t va;
3301 int error;
3302
3303 /* Init the ASID bitmap (VPID). */
3304 vmx_init_asid(VPID_MAX);
3305
3306 /* Init the XCR0 mask. */
3307 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3308
3309 /* Init the max CPUID leaves. */
3310 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3311
3312 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3313 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3314 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3315 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3316 } else {
3317 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3318 }
3319 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3320 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3321 } else {
3322 vmx_ept_flush_op = VMX_INVEPT_ALL;
3323 }
3324 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3325 vmx_eptp_type = EPTP_TYPE_WB;
3326 } else {
3327 vmx_eptp_type = EPTP_TYPE_UC;
3328 }
3329
3330 /* Init the L1TF mitigation. */
3331 vmx_init_l1tf();
3332
3333 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3334 revision = vmx_get_revision();
3335
3336 for (CPU_INFO_FOREACH(cii, ci)) {
3337 error = vmx_memalloc(&pa, &va, 1);
3338 if (error) {
3339 panic("%s: out of memory", __func__);
3340 }
3341 vmxoncpu[cpu_index(ci)].pa = pa;
3342 vmxoncpu[cpu_index(ci)].va = va;
3343
3344 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3345 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3346 }
3347
3348 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3349 xc_wait(xc);
3350 }
3351
3352 static void
3353 vmx_fini_asid(void)
3354 {
3355 size_t allocsz;
3356
3357 allocsz = roundup(vmx_maxasid, 8) / 8;
3358 kmem_free(vmx_asidmap, allocsz);
3359
3360 mutex_destroy(&vmx_asidlock);
3361 }
3362
3363 static void
3364 vmx_fini(void)
3365 {
3366 uint64_t xc;
3367 size_t i;
3368
3369 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3370 xc_wait(xc);
3371
3372 for (i = 0; i < MAXCPUS; i++) {
3373 if (vmxoncpu[i].pa != 0)
3374 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3375 }
3376
3377 vmx_fini_asid();
3378 }
3379
3380 static void
3381 vmx_capability(struct nvmm_capability *cap)
3382 {
3383 cap->arch.mach_conf_support = 0;
3384 cap->arch.vcpu_conf_support =
3385 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3386 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3387 cap->arch.xcr0_mask = vmx_xcr0_mask;
3388 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3389 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3390 }
3391
3392 const struct nvmm_impl nvmm_x86_vmx = {
3393 .name = "x86-vmx",
3394 .ident = vmx_ident,
3395 .init = vmx_init,
3396 .fini = vmx_fini,
3397 .capability = vmx_capability,
3398 .mach_conf_max = NVMM_X86_MACH_NCONF,
3399 .mach_conf_sizes = NULL,
3400 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3401 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3402 .state_size = sizeof(struct nvmm_x64_state),
3403 .machine_create = vmx_machine_create,
3404 .machine_destroy = vmx_machine_destroy,
3405 .machine_configure = vmx_machine_configure,
3406 .vcpu_create = vmx_vcpu_create,
3407 .vcpu_destroy = vmx_vcpu_destroy,
3408 .vcpu_configure = vmx_vcpu_configure,
3409 .vcpu_setstate = vmx_vcpu_setstate,
3410 .vcpu_getstate = vmx_vcpu_getstate,
3411 .vcpu_inject = vmx_vcpu_inject,
3412 .vcpu_run = vmx_vcpu_run
3413 };
3414