nvmm_x86_vmx.c revision 1.37 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.37 2019/09/13 14:19:13 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.37 2019/09/13 14:19:13 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 bool cpuidpresent[VMX_NCPUIDS];
701 struct nvmm_mach_conf_x86_cpuid cpuid[VMX_NCPUIDS];
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
706 [NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID)] =
707 sizeof(struct nvmm_mach_conf_x86_cpuid)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736 bool ts_set;
737 struct xsave_header hfpu __aligned(64);
738
739 /* Intr state */
740 bool int_window_exit;
741 bool nmi_window_exit;
742 bool evt_pending;
743
744 /* Guest state */
745 struct msr_entry *gmsr;
746 paddr_t gmsr_pa;
747 uint64_t gmsr_misc_enable;
748 uint64_t gcr2;
749 uint64_t gcr8;
750 uint64_t gxcr0;
751 uint64_t gprs[NVMM_X64_NGPR];
752 uint64_t drs[NVMM_X64_NDR];
753 uint64_t gtsc;
754 struct xsave_header gfpu __aligned(64);
755 };
756
757 static const struct {
758 uint64_t selector;
759 uint64_t attrib;
760 uint64_t limit;
761 uint64_t base;
762 } vmx_guest_segs[NVMM_X64_NSEG] = {
763 [NVMM_X64_SEG_ES] = {
764 VMCS_GUEST_ES_SELECTOR,
765 VMCS_GUEST_ES_ACCESS_RIGHTS,
766 VMCS_GUEST_ES_LIMIT,
767 VMCS_GUEST_ES_BASE
768 },
769 [NVMM_X64_SEG_CS] = {
770 VMCS_GUEST_CS_SELECTOR,
771 VMCS_GUEST_CS_ACCESS_RIGHTS,
772 VMCS_GUEST_CS_LIMIT,
773 VMCS_GUEST_CS_BASE
774 },
775 [NVMM_X64_SEG_SS] = {
776 VMCS_GUEST_SS_SELECTOR,
777 VMCS_GUEST_SS_ACCESS_RIGHTS,
778 VMCS_GUEST_SS_LIMIT,
779 VMCS_GUEST_SS_BASE
780 },
781 [NVMM_X64_SEG_DS] = {
782 VMCS_GUEST_DS_SELECTOR,
783 VMCS_GUEST_DS_ACCESS_RIGHTS,
784 VMCS_GUEST_DS_LIMIT,
785 VMCS_GUEST_DS_BASE
786 },
787 [NVMM_X64_SEG_FS] = {
788 VMCS_GUEST_FS_SELECTOR,
789 VMCS_GUEST_FS_ACCESS_RIGHTS,
790 VMCS_GUEST_FS_LIMIT,
791 VMCS_GUEST_FS_BASE
792 },
793 [NVMM_X64_SEG_GS] = {
794 VMCS_GUEST_GS_SELECTOR,
795 VMCS_GUEST_GS_ACCESS_RIGHTS,
796 VMCS_GUEST_GS_LIMIT,
797 VMCS_GUEST_GS_BASE
798 },
799 [NVMM_X64_SEG_GDT] = {
800 0, /* doesn't exist */
801 0, /* doesn't exist */
802 VMCS_GUEST_GDTR_LIMIT,
803 VMCS_GUEST_GDTR_BASE
804 },
805 [NVMM_X64_SEG_IDT] = {
806 0, /* doesn't exist */
807 0, /* doesn't exist */
808 VMCS_GUEST_IDTR_LIMIT,
809 VMCS_GUEST_IDTR_BASE
810 },
811 [NVMM_X64_SEG_LDT] = {
812 VMCS_GUEST_LDTR_SELECTOR,
813 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
814 VMCS_GUEST_LDTR_LIMIT,
815 VMCS_GUEST_LDTR_BASE
816 },
817 [NVMM_X64_SEG_TR] = {
818 VMCS_GUEST_TR_SELECTOR,
819 VMCS_GUEST_TR_ACCESS_RIGHTS,
820 VMCS_GUEST_TR_LIMIT,
821 VMCS_GUEST_TR_BASE
822 }
823 };
824
825 /* -------------------------------------------------------------------------- */
826
827 static uint64_t
828 vmx_get_revision(void)
829 {
830 uint64_t msr;
831
832 msr = rdmsr(MSR_IA32_VMX_BASIC);
833 msr &= IA32_VMX_BASIC_IDENT;
834
835 return msr;
836 }
837
838 static void
839 vmx_vmclear_ipi(void *arg1, void *arg2)
840 {
841 paddr_t vmcs_pa = (paddr_t)arg1;
842 vmx_vmclear(&vmcs_pa);
843 }
844
845 static void
846 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
847 {
848 uint64_t xc;
849 int bound;
850
851 KASSERT(kpreempt_disabled());
852
853 bound = curlwp_bind();
854 kpreempt_enable();
855
856 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
857 xc_wait(xc);
858
859 kpreempt_disable();
860 curlwp_bindx(bound);
861 }
862
863 static void
864 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
865 {
866 struct vmx_cpudata *cpudata = vcpu->cpudata;
867 struct cpu_info *vmcs_ci;
868 paddr_t oldpa __diagused;
869
870 cpudata->vmcs_refcnt++;
871 if (cpudata->vmcs_refcnt > 1) {
872 #ifdef DIAGNOSTIC
873 KASSERT(kpreempt_disabled());
874 oldpa = vmx_vmptrst();
875 KASSERT(oldpa == cpudata->vmcs_pa);
876 #endif
877 return;
878 }
879
880 vmcs_ci = cpudata->vmcs_ci;
881 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
882
883 kpreempt_disable();
884
885 if (vmcs_ci == NULL) {
886 /* This VMCS is loaded for the first time. */
887 vmx_vmclear(&cpudata->vmcs_pa);
888 cpudata->vmcs_launched = false;
889 } else if (vmcs_ci != curcpu()) {
890 /* This VMCS is active on a remote CPU. */
891 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
892 cpudata->vmcs_launched = false;
893 } else {
894 /* This VMCS is active on curcpu, nothing to do. */
895 }
896
897 vmx_vmptrld(&cpudata->vmcs_pa);
898 }
899
900 static void
901 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
902 {
903 struct vmx_cpudata *cpudata = vcpu->cpudata;
904
905 KASSERT(kpreempt_disabled());
906 #ifdef DIAGNOSTIC
907 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
908 #endif
909 KASSERT(cpudata->vmcs_refcnt > 0);
910 cpudata->vmcs_refcnt--;
911
912 if (cpudata->vmcs_refcnt > 0) {
913 return;
914 }
915
916 cpudata->vmcs_ci = curcpu();
917 kpreempt_enable();
918 }
919
920 static void
921 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
922 {
923 struct vmx_cpudata *cpudata = vcpu->cpudata;
924
925 KASSERT(kpreempt_disabled());
926 #ifdef DIAGNOSTIC
927 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
928 #endif
929 KASSERT(cpudata->vmcs_refcnt == 1);
930 cpudata->vmcs_refcnt--;
931
932 vmx_vmclear(&cpudata->vmcs_pa);
933 kpreempt_enable();
934 }
935
936 /* -------------------------------------------------------------------------- */
937
938 static void
939 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
940 {
941 struct vmx_cpudata *cpudata = vcpu->cpudata;
942 uint64_t ctls1;
943
944 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
945
946 if (nmi) {
947 // XXX INT_STATE_NMI?
948 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
949 cpudata->nmi_window_exit = true;
950 } else {
951 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
952 cpudata->int_window_exit = true;
953 }
954
955 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
956 }
957
958 static void
959 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
960 {
961 struct vmx_cpudata *cpudata = vcpu->cpudata;
962 uint64_t ctls1;
963
964 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
965
966 if (nmi) {
967 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
968 cpudata->nmi_window_exit = false;
969 } else {
970 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
971 cpudata->int_window_exit = false;
972 }
973
974 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
975 }
976
977 static inline int
978 vmx_event_has_error(uint64_t vector)
979 {
980 switch (vector) {
981 case 8: /* #DF */
982 case 10: /* #TS */
983 case 11: /* #NP */
984 case 12: /* #SS */
985 case 13: /* #GP */
986 case 14: /* #PF */
987 case 17: /* #AC */
988 case 30: /* #SX */
989 return 1;
990 default:
991 return 0;
992 }
993 }
994
995 static int
996 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
997 {
998 struct nvmm_comm_page *comm = vcpu->comm;
999 struct vmx_cpudata *cpudata = vcpu->cpudata;
1000 int type = 0, err = 0, ret = EINVAL;
1001 enum nvmm_event_type evtype;
1002 uint64_t info, vector, error;
1003
1004 evtype = comm->event.type;
1005 vector = comm->event.vector;
1006 error = comm->event.u.error;
1007 __insn_barrier();
1008
1009 if (__predict_false(vector >= 256)) {
1010 return EINVAL;
1011 }
1012
1013 vmx_vmcs_enter(vcpu);
1014
1015 switch (evtype) {
1016 case NVMM_EVENT_INTERRUPT_HW:
1017 type = INTR_TYPE_EXT_INT;
1018 if (vector == 2) {
1019 type = INTR_TYPE_NMI;
1020 vmx_event_waitexit_enable(vcpu, true);
1021 }
1022 err = 0;
1023 break;
1024 case NVMM_EVENT_EXCEPTION:
1025 if (vector == 2 || vector >= 32)
1026 goto out;
1027 if (vector == 3 || vector == 0)
1028 goto out;
1029 type = INTR_TYPE_HW_EXC;
1030 err = vmx_event_has_error(vector);
1031 break;
1032 default:
1033 goto out;
1034 }
1035
1036 info =
1037 __SHIFTIN(vector, INTR_INFO_VECTOR) |
1038 __SHIFTIN(type, INTR_INFO_TYPE) |
1039 __SHIFTIN(err, INTR_INFO_ERROR) |
1040 __SHIFTIN(1, INTR_INFO_VALID);
1041 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1042 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1043
1044 cpudata->evt_pending = true;
1045 ret = 0;
1046
1047 out:
1048 vmx_vmcs_leave(vcpu);
1049 return ret;
1050 }
1051
1052 static void
1053 vmx_inject_ud(struct nvmm_cpu *vcpu)
1054 {
1055 struct nvmm_comm_page *comm = vcpu->comm;
1056 int ret __diagused;
1057
1058 comm->event.type = NVMM_EVENT_EXCEPTION;
1059 comm->event.vector = 6;
1060 comm->event.u.error = 0;
1061
1062 ret = vmx_vcpu_inject(vcpu);
1063 KASSERT(ret == 0);
1064 }
1065
1066 static void
1067 vmx_inject_gp(struct nvmm_cpu *vcpu)
1068 {
1069 struct nvmm_comm_page *comm = vcpu->comm;
1070 int ret __diagused;
1071
1072 comm->event.type = NVMM_EVENT_EXCEPTION;
1073 comm->event.vector = 13;
1074 comm->event.u.error = 0;
1075
1076 ret = vmx_vcpu_inject(vcpu);
1077 KASSERT(ret == 0);
1078 }
1079
1080 static inline int
1081 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1082 {
1083 if (__predict_true(!vcpu->comm->event_commit)) {
1084 return 0;
1085 }
1086 vcpu->comm->event_commit = false;
1087 return vmx_vcpu_inject(vcpu);
1088 }
1089
1090 static inline void
1091 vmx_inkernel_advance(void)
1092 {
1093 uint64_t rip, inslen, intstate;
1094
1095 /*
1096 * Maybe we should also apply single-stepping and debug exceptions.
1097 * Matters for guest-ring3, because it can execute 'cpuid' under a
1098 * debugger.
1099 */
1100 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1101 rip = vmx_vmread(VMCS_GUEST_RIP);
1102 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1103 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1104 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1105 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1106 }
1107
1108 static void
1109 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1110 {
1111 exit->u.inv.hwcode = code;
1112 exit->reason = NVMM_EXIT_INVALID;
1113 }
1114
1115 static void
1116 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1117 struct nvmm_exit *exit)
1118 {
1119 uint64_t qual;
1120
1121 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1122
1123 if ((qual & INTR_INFO_VALID) == 0) {
1124 goto error;
1125 }
1126 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1127 goto error;
1128 }
1129
1130 exit->reason = NVMM_EXIT_NONE;
1131 return;
1132
1133 error:
1134 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1135 }
1136
1137 static void
1138 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1139 {
1140 struct vmx_cpudata *cpudata = vcpu->cpudata;
1141 uint64_t cr4;
1142
1143 switch (eax) {
1144 case 0x00000001:
1145 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1146
1147 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1148 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1149 CPUID_LOCAL_APIC_ID);
1150
1151 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1152 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1153
1154 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1155
1156 /* CPUID2_OSXSAVE depends on CR4. */
1157 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1158 if (!(cr4 & CR4_OSXSAVE)) {
1159 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1160 }
1161 break;
1162 case 0x00000005:
1163 case 0x00000006:
1164 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1165 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1166 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1167 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1168 break;
1169 case 0x00000007:
1170 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1171 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1172 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1173 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1174 break;
1175 case 0x0000000D:
1176 if (vmx_xcr0_mask == 0) {
1177 break;
1178 }
1179 switch (ecx) {
1180 case 0:
1181 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1182 if (cpudata->gxcr0 & XCR0_SSE) {
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1184 } else {
1185 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1186 }
1187 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1188 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1189 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1190 break;
1191 case 1:
1192 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1193 break;
1194 }
1195 break;
1196 case 0x40000000:
1197 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1198 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1199 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1200 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1201 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1202 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1203 break;
1204 case 0x80000001:
1205 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1206 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1207 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1208 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1209 break;
1210 default:
1211 break;
1212 }
1213 }
1214
1215 static void
1216 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1217 struct nvmm_exit *exit)
1218 {
1219 struct vmx_machdata *machdata = mach->machdata;
1220 struct vmx_cpudata *cpudata = vcpu->cpudata;
1221 struct nvmm_mach_conf_x86_cpuid *cpuid;
1222 uint64_t eax, ecx;
1223 u_int descs[4];
1224 size_t i;
1225
1226 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1227 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1228 x86_cpuid2(eax, ecx, descs);
1229
1230 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1231 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1232 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1233 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1234
1235 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1236
1237 for (i = 0; i < VMX_NCPUIDS; i++) {
1238 cpuid = &machdata->cpuid[i];
1239 if (!machdata->cpuidpresent[i]) {
1240 continue;
1241 }
1242 if (cpuid->leaf != eax) {
1243 continue;
1244 }
1245
1246 /* del */
1247 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1248 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1249 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1250 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1251
1252 /* set */
1253 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1254 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1255 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1256 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1257
1258 break;
1259 }
1260
1261 vmx_inkernel_advance();
1262 exit->reason = NVMM_EXIT_NONE;
1263 }
1264
1265 static void
1266 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1267 struct nvmm_exit *exit)
1268 {
1269 struct vmx_cpudata *cpudata = vcpu->cpudata;
1270 uint64_t rflags;
1271
1272 if (cpudata->int_window_exit) {
1273 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1274 if (rflags & PSL_I) {
1275 vmx_event_waitexit_disable(vcpu, false);
1276 }
1277 }
1278
1279 vmx_inkernel_advance();
1280 exit->reason = NVMM_EXIT_HALTED;
1281 }
1282
1283 #define VMX_QUAL_CR_NUM __BITS(3,0)
1284 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1285 #define CR_TYPE_WRITE 0
1286 #define CR_TYPE_READ 1
1287 #define CR_TYPE_CLTS 2
1288 #define CR_TYPE_LMSW 3
1289 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1290 #define VMX_QUAL_CR_GPR __BITS(11,8)
1291 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1292
1293 static inline int
1294 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1295 {
1296 /* Bits set to 1 in fixed0 are fixed to 1. */
1297 if ((crval & fixed0) != fixed0) {
1298 return -1;
1299 }
1300 /* Bits set to 0 in fixed1 are fixed to 0. */
1301 if (crval & ~fixed1) {
1302 return -1;
1303 }
1304 return 0;
1305 }
1306
1307 static int
1308 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1309 uint64_t qual)
1310 {
1311 struct vmx_cpudata *cpudata = vcpu->cpudata;
1312 uint64_t type, gpr, cr0;
1313 uint64_t efer, ctls1;
1314
1315 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1316 if (type != CR_TYPE_WRITE) {
1317 return -1;
1318 }
1319
1320 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1321 KASSERT(gpr < 16);
1322
1323 if (gpr == NVMM_X64_GPR_RSP) {
1324 gpr = vmx_vmread(VMCS_GUEST_RSP);
1325 } else {
1326 gpr = cpudata->gprs[gpr];
1327 }
1328
1329 cr0 = gpr | CR0_NE | CR0_ET;
1330 cr0 &= ~(CR0_NW|CR0_CD);
1331
1332 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1333 return -1;
1334 }
1335
1336 /*
1337 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1338 * from CR3.
1339 */
1340
1341 if (cr0 & CR0_PG) {
1342 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1343 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1344 if (efer & EFER_LME) {
1345 ctls1 |= ENTRY_CTLS_LONG_MODE;
1346 efer |= EFER_LMA;
1347 } else {
1348 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1349 efer &= ~EFER_LMA;
1350 }
1351 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1352 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1353 }
1354
1355 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1356 vmx_inkernel_advance();
1357 return 0;
1358 }
1359
1360 static int
1361 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1362 uint64_t qual)
1363 {
1364 struct vmx_cpudata *cpudata = vcpu->cpudata;
1365 uint64_t type, gpr, cr4;
1366
1367 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1368 if (type != CR_TYPE_WRITE) {
1369 return -1;
1370 }
1371
1372 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1373 KASSERT(gpr < 16);
1374
1375 if (gpr == NVMM_X64_GPR_RSP) {
1376 gpr = vmx_vmread(VMCS_GUEST_RSP);
1377 } else {
1378 gpr = cpudata->gprs[gpr];
1379 }
1380
1381 cr4 = gpr | CR4_VMXE;
1382
1383 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1384 return -1;
1385 }
1386
1387 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1388 vmx_inkernel_advance();
1389 return 0;
1390 }
1391
1392 static int
1393 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1394 uint64_t qual)
1395 {
1396 struct vmx_cpudata *cpudata = vcpu->cpudata;
1397 uint64_t type, gpr;
1398 bool write;
1399
1400 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1401 if (type == CR_TYPE_WRITE) {
1402 write = true;
1403 } else if (type == CR_TYPE_READ) {
1404 write = false;
1405 } else {
1406 return -1;
1407 }
1408
1409 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1410 KASSERT(gpr < 16);
1411
1412 if (write) {
1413 if (gpr == NVMM_X64_GPR_RSP) {
1414 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1415 } else {
1416 cpudata->gcr8 = cpudata->gprs[gpr];
1417 }
1418 } else {
1419 if (gpr == NVMM_X64_GPR_RSP) {
1420 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1421 } else {
1422 cpudata->gprs[gpr] = cpudata->gcr8;
1423 }
1424 }
1425
1426 vmx_inkernel_advance();
1427 return 0;
1428 }
1429
1430 static void
1431 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1432 struct nvmm_exit *exit)
1433 {
1434 uint64_t qual;
1435 int ret;
1436
1437 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1438
1439 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1440 case 0:
1441 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1442 break;
1443 case 4:
1444 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1445 break;
1446 case 8:
1447 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1448 break;
1449 default:
1450 ret = -1;
1451 break;
1452 }
1453
1454 if (ret == -1) {
1455 vmx_inject_gp(vcpu);
1456 }
1457
1458 exit->reason = NVMM_EXIT_NONE;
1459 }
1460
1461 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1462 #define IO_SIZE_8 0
1463 #define IO_SIZE_16 1
1464 #define IO_SIZE_32 3
1465 #define VMX_QUAL_IO_IN __BIT(3)
1466 #define VMX_QUAL_IO_STR __BIT(4)
1467 #define VMX_QUAL_IO_REP __BIT(5)
1468 #define VMX_QUAL_IO_DX __BIT(6)
1469 #define VMX_QUAL_IO_PORT __BITS(31,16)
1470
1471 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1472 #define IO_ADRSIZE_16 0
1473 #define IO_ADRSIZE_32 1
1474 #define IO_ADRSIZE_64 2
1475 #define VMX_INFO_IO_SEG __BITS(17,15)
1476
1477 static void
1478 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1479 struct nvmm_exit *exit)
1480 {
1481 uint64_t qual, info, inslen, rip;
1482
1483 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1484 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1485
1486 exit->reason = NVMM_EXIT_IO;
1487
1488 if (qual & VMX_QUAL_IO_IN) {
1489 exit->u.io.type = NVMM_EXIT_IO_IN;
1490 } else {
1491 exit->u.io.type = NVMM_EXIT_IO_OUT;
1492 }
1493
1494 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1495
1496 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1497 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1498
1499 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1500 exit->u.io.address_size = 8;
1501 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1502 exit->u.io.address_size = 4;
1503 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1504 exit->u.io.address_size = 2;
1505 }
1506
1507 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1508 exit->u.io.operand_size = 4;
1509 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1510 exit->u.io.operand_size = 2;
1511 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1512 exit->u.io.operand_size = 1;
1513 }
1514
1515 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1516 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1517
1518 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1519 exit->u.io.seg = NVMM_X64_SEG_ES;
1520 }
1521
1522 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1523 rip = vmx_vmread(VMCS_GUEST_RIP);
1524 exit->u.io.npc = rip + inslen;
1525
1526 vmx_vcpu_state_provide(vcpu,
1527 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1528 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1529 }
1530
1531 static const uint64_t msr_ignore_list[] = {
1532 MSR_BIOS_SIGN,
1533 MSR_IA32_PLATFORM_ID
1534 };
1535
1536 static bool
1537 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1538 struct nvmm_exit *exit)
1539 {
1540 struct vmx_cpudata *cpudata = vcpu->cpudata;
1541 uint64_t val;
1542 size_t i;
1543
1544 switch (exit->u.msr.type) {
1545 case NVMM_EXIT_MSR_RDMSR:
1546 if (exit->u.msr.msr == MSR_CR_PAT) {
1547 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1548 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1549 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1550 goto handled;
1551 }
1552 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1553 val = cpudata->gmsr_misc_enable;
1554 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1555 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1556 goto handled;
1557 }
1558 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1559 if (msr_ignore_list[i] != exit->u.msr.msr)
1560 continue;
1561 val = 0;
1562 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1563 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1564 goto handled;
1565 }
1566 break;
1567 case NVMM_EXIT_MSR_WRMSR:
1568 if (exit->u.msr.msr == MSR_TSC) {
1569 cpudata->gtsc = exit->u.msr.val;
1570 cpudata->gtsc_want_update = true;
1571 goto handled;
1572 }
1573 if (exit->u.msr.msr == MSR_CR_PAT) {
1574 val = exit->u.msr.val;
1575 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1576 goto error;
1577 }
1578 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1579 goto handled;
1580 }
1581 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1582 /* Don't care. */
1583 goto handled;
1584 }
1585 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1586 if (msr_ignore_list[i] != exit->u.msr.msr)
1587 continue;
1588 goto handled;
1589 }
1590 break;
1591 }
1592
1593 return false;
1594
1595 handled:
1596 vmx_inkernel_advance();
1597 return true;
1598
1599 error:
1600 vmx_inject_gp(vcpu);
1601 return true;
1602 }
1603
1604 static void
1605 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1606 struct nvmm_exit *exit, bool rdmsr)
1607 {
1608 struct vmx_cpudata *cpudata = vcpu->cpudata;
1609 uint64_t inslen, rip;
1610
1611 if (rdmsr) {
1612 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1613 } else {
1614 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1615 }
1616
1617 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1618
1619 if (rdmsr) {
1620 exit->u.msr.val = 0;
1621 } else {
1622 uint64_t rdx, rax;
1623 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1624 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1625 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1626 }
1627
1628 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1629 exit->reason = NVMM_EXIT_NONE;
1630 return;
1631 }
1632
1633 exit->reason = NVMM_EXIT_MSR;
1634 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1635 rip = vmx_vmread(VMCS_GUEST_RIP);
1636 exit->u.msr.npc = rip + inslen;
1637
1638 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1639 }
1640
1641 static void
1642 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1643 struct nvmm_exit *exit)
1644 {
1645 struct vmx_cpudata *cpudata = vcpu->cpudata;
1646 uint16_t val;
1647
1648 exit->reason = NVMM_EXIT_NONE;
1649
1650 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1651 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1652
1653 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1654 goto error;
1655 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1656 goto error;
1657 } else if (__predict_false((val & XCR0_X87) == 0)) {
1658 goto error;
1659 }
1660
1661 cpudata->gxcr0 = val;
1662
1663 vmx_inkernel_advance();
1664 return;
1665
1666 error:
1667 vmx_inject_gp(vcpu);
1668 }
1669
1670 #define VMX_EPT_VIOLATION_READ __BIT(0)
1671 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1672 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1673
1674 static void
1675 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1676 struct nvmm_exit *exit)
1677 {
1678 uint64_t perm;
1679 gpaddr_t gpa;
1680
1681 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1682
1683 exit->reason = NVMM_EXIT_MEMORY;
1684 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1685 if (perm & VMX_EPT_VIOLATION_WRITE)
1686 exit->u.mem.prot = PROT_WRITE;
1687 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1688 exit->u.mem.prot = PROT_EXEC;
1689 else
1690 exit->u.mem.prot = PROT_READ;
1691 exit->u.mem.gpa = gpa;
1692 exit->u.mem.inst_len = 0;
1693
1694 vmx_vcpu_state_provide(vcpu,
1695 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1696 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1697 }
1698
1699 /* -------------------------------------------------------------------------- */
1700
1701 static void
1702 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1703 {
1704 struct vmx_cpudata *cpudata = vcpu->cpudata;
1705
1706 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1707
1708 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1709 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1710
1711 if (vmx_xcr0_mask != 0) {
1712 cpudata->hxcr0 = rdxcr(0);
1713 wrxcr(0, cpudata->gxcr0);
1714 }
1715 }
1716
1717 static void
1718 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1719 {
1720 struct vmx_cpudata *cpudata = vcpu->cpudata;
1721
1722 if (vmx_xcr0_mask != 0) {
1723 cpudata->gxcr0 = rdxcr(0);
1724 wrxcr(0, cpudata->hxcr0);
1725 }
1726
1727 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1728 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1729
1730 if (cpudata->ts_set) {
1731 stts();
1732 }
1733 }
1734
1735 static void
1736 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1737 {
1738 struct vmx_cpudata *cpudata = vcpu->cpudata;
1739
1740 x86_dbregs_save(curlwp);
1741
1742 ldr7(0);
1743
1744 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1745 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1746 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1747 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1748 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1749 }
1750
1751 static void
1752 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1753 {
1754 struct vmx_cpudata *cpudata = vcpu->cpudata;
1755
1756 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1757 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1758 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1759 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1760 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1761
1762 x86_dbregs_restore(curlwp);
1763 }
1764
1765 static void
1766 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1767 {
1768 struct vmx_cpudata *cpudata = vcpu->cpudata;
1769
1770 /* This gets restored automatically by the CPU. */
1771 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1772 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1773 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1774
1775 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1776 }
1777
1778 static void
1779 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1780 {
1781 struct vmx_cpudata *cpudata = vcpu->cpudata;
1782
1783 wrmsr(MSR_STAR, cpudata->star);
1784 wrmsr(MSR_LSTAR, cpudata->lstar);
1785 wrmsr(MSR_CSTAR, cpudata->cstar);
1786 wrmsr(MSR_SFMASK, cpudata->sfmask);
1787 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1788 }
1789
1790 /* -------------------------------------------------------------------------- */
1791
1792 #define VMX_INVVPID_ADDRESS 0
1793 #define VMX_INVVPID_CONTEXT 1
1794 #define VMX_INVVPID_ALL 2
1795 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1796
1797 #define VMX_INVEPT_CONTEXT 1
1798 #define VMX_INVEPT_ALL 2
1799
1800 static inline void
1801 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1802 {
1803 struct vmx_cpudata *cpudata = vcpu->cpudata;
1804
1805 if (vcpu->hcpu_last != hcpu) {
1806 cpudata->gtlb_want_flush = true;
1807 }
1808 }
1809
1810 static inline void
1811 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1812 {
1813 struct vmx_cpudata *cpudata = vcpu->cpudata;
1814 struct ept_desc ept_desc;
1815
1816 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1817 return;
1818 }
1819
1820 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1821 ept_desc.mbz = 0;
1822 vmx_invept(vmx_ept_flush_op, &ept_desc);
1823 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1824 }
1825
1826 static inline uint64_t
1827 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1828 {
1829 struct ept_desc ept_desc;
1830 uint64_t machgen;
1831
1832 machgen = machdata->mach_htlb_gen;
1833 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1834 return machgen;
1835 }
1836
1837 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1838
1839 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1840 ept_desc.mbz = 0;
1841 vmx_invept(vmx_ept_flush_op, &ept_desc);
1842
1843 return machgen;
1844 }
1845
1846 static inline void
1847 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1848 {
1849 cpudata->vcpu_htlb_gen = machgen;
1850 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1851 }
1852
1853 static inline void
1854 vmx_exit_evt(struct vmx_cpudata *cpudata)
1855 {
1856 uint64_t info, err;
1857
1858 cpudata->evt_pending = false;
1859
1860 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1861 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1862 return;
1863 }
1864 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1865
1866 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1867 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1868
1869 cpudata->evt_pending = true;
1870 }
1871
1872 static int
1873 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1874 struct nvmm_exit *exit)
1875 {
1876 struct nvmm_comm_page *comm = vcpu->comm;
1877 struct vmx_machdata *machdata = mach->machdata;
1878 struct vmx_cpudata *cpudata = vcpu->cpudata;
1879 struct vpid_desc vpid_desc;
1880 struct cpu_info *ci;
1881 uint64_t exitcode;
1882 uint64_t intstate;
1883 uint64_t machgen;
1884 int hcpu, s, ret;
1885 bool launched;
1886
1887 vmx_vmcs_enter(vcpu);
1888
1889 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1890 vmx_vmcs_leave(vcpu);
1891 return EINVAL;
1892 }
1893 vmx_vcpu_state_commit(vcpu);
1894 comm->state_cached = 0;
1895
1896 ci = curcpu();
1897 hcpu = cpu_number();
1898 launched = cpudata->vmcs_launched;
1899
1900 vmx_gtlb_catchup(vcpu, hcpu);
1901 vmx_htlb_catchup(vcpu, hcpu);
1902
1903 if (vcpu->hcpu_last != hcpu) {
1904 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1905 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1906 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1907 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1908 cpudata->gtsc_want_update = true;
1909 vcpu->hcpu_last = hcpu;
1910 }
1911
1912 vmx_vcpu_guest_dbregs_enter(vcpu);
1913 vmx_vcpu_guest_misc_enter(vcpu);
1914
1915 while (1) {
1916 if (cpudata->gtlb_want_flush) {
1917 vpid_desc.vpid = cpudata->asid;
1918 vpid_desc.addr = 0;
1919 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1920 cpudata->gtlb_want_flush = false;
1921 }
1922
1923 if (__predict_false(cpudata->gtsc_want_update)) {
1924 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1925 cpudata->gtsc_want_update = false;
1926 }
1927
1928 s = splhigh();
1929 machgen = vmx_htlb_flush(machdata, cpudata);
1930 vmx_vcpu_guest_fpu_enter(vcpu);
1931 lcr2(cpudata->gcr2);
1932 if (launched) {
1933 ret = vmx_vmresume(cpudata->gprs);
1934 } else {
1935 ret = vmx_vmlaunch(cpudata->gprs);
1936 }
1937 cpudata->gcr2 = rcr2();
1938 vmx_vcpu_guest_fpu_leave(vcpu);
1939 vmx_htlb_flush_ack(cpudata, machgen);
1940 splx(s);
1941
1942 if (__predict_false(ret != 0)) {
1943 vmx_exit_invalid(exit, -1);
1944 break;
1945 }
1946 vmx_exit_evt(cpudata);
1947
1948 launched = true;
1949
1950 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1951 exitcode &= __BITS(15,0);
1952
1953 switch (exitcode) {
1954 case VMCS_EXITCODE_EXC_NMI:
1955 vmx_exit_exc_nmi(mach, vcpu, exit);
1956 break;
1957 case VMCS_EXITCODE_EXT_INT:
1958 exit->reason = NVMM_EXIT_NONE;
1959 break;
1960 case VMCS_EXITCODE_CPUID:
1961 vmx_exit_cpuid(mach, vcpu, exit);
1962 break;
1963 case VMCS_EXITCODE_HLT:
1964 vmx_exit_hlt(mach, vcpu, exit);
1965 break;
1966 case VMCS_EXITCODE_CR:
1967 vmx_exit_cr(mach, vcpu, exit);
1968 break;
1969 case VMCS_EXITCODE_IO:
1970 vmx_exit_io(mach, vcpu, exit);
1971 break;
1972 case VMCS_EXITCODE_RDMSR:
1973 vmx_exit_msr(mach, vcpu, exit, true);
1974 break;
1975 case VMCS_EXITCODE_WRMSR:
1976 vmx_exit_msr(mach, vcpu, exit, false);
1977 break;
1978 case VMCS_EXITCODE_SHUTDOWN:
1979 exit->reason = NVMM_EXIT_SHUTDOWN;
1980 break;
1981 case VMCS_EXITCODE_MONITOR:
1982 exit->reason = NVMM_EXIT_MONITOR;
1983 break;
1984 case VMCS_EXITCODE_MWAIT:
1985 exit->reason = NVMM_EXIT_MWAIT;
1986 break;
1987 case VMCS_EXITCODE_XSETBV:
1988 vmx_exit_xsetbv(mach, vcpu, exit);
1989 break;
1990 case VMCS_EXITCODE_RDPMC:
1991 case VMCS_EXITCODE_RDTSCP:
1992 case VMCS_EXITCODE_INVVPID:
1993 case VMCS_EXITCODE_INVEPT:
1994 case VMCS_EXITCODE_VMCALL:
1995 case VMCS_EXITCODE_VMCLEAR:
1996 case VMCS_EXITCODE_VMLAUNCH:
1997 case VMCS_EXITCODE_VMPTRLD:
1998 case VMCS_EXITCODE_VMPTRST:
1999 case VMCS_EXITCODE_VMREAD:
2000 case VMCS_EXITCODE_VMRESUME:
2001 case VMCS_EXITCODE_VMWRITE:
2002 case VMCS_EXITCODE_VMXOFF:
2003 case VMCS_EXITCODE_VMXON:
2004 vmx_inject_ud(vcpu);
2005 exit->reason = NVMM_EXIT_NONE;
2006 break;
2007 case VMCS_EXITCODE_EPT_VIOLATION:
2008 vmx_exit_epf(mach, vcpu, exit);
2009 break;
2010 case VMCS_EXITCODE_INT_WINDOW:
2011 vmx_event_waitexit_disable(vcpu, false);
2012 exit->reason = NVMM_EXIT_INT_READY;
2013 break;
2014 case VMCS_EXITCODE_NMI_WINDOW:
2015 vmx_event_waitexit_disable(vcpu, true);
2016 exit->reason = NVMM_EXIT_NMI_READY;
2017 break;
2018 default:
2019 vmx_exit_invalid(exit, exitcode);
2020 break;
2021 }
2022
2023 /* If no reason to return to userland, keep rolling. */
2024 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2025 break;
2026 }
2027 if (curcpu()->ci_data.cpu_softints != 0) {
2028 break;
2029 }
2030 if (curlwp->l_flag & LW_USERRET) {
2031 break;
2032 }
2033 if (exit->reason != NVMM_EXIT_NONE) {
2034 break;
2035 }
2036 }
2037
2038 cpudata->vmcs_launched = launched;
2039
2040 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2041
2042 vmx_vcpu_guest_misc_leave(vcpu);
2043 vmx_vcpu_guest_dbregs_leave(vcpu);
2044
2045 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2046 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2047 vmx_vmread(VMCS_GUEST_RFLAGS);
2048 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2049 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2050 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2051 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2052 cpudata->int_window_exit;
2053 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2054 cpudata->nmi_window_exit;
2055 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2056 cpudata->evt_pending;
2057
2058 vmx_vmcs_leave(vcpu);
2059
2060 return 0;
2061 }
2062
2063 /* -------------------------------------------------------------------------- */
2064
2065 static int
2066 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2067 {
2068 struct pglist pglist;
2069 paddr_t _pa;
2070 vaddr_t _va;
2071 size_t i;
2072 int ret;
2073
2074 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2075 &pglist, 1, 0);
2076 if (ret != 0)
2077 return ENOMEM;
2078 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2079 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2080 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2081 if (_va == 0)
2082 goto error;
2083
2084 for (i = 0; i < npages; i++) {
2085 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2086 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2087 }
2088 pmap_update(pmap_kernel());
2089
2090 memset((void *)_va, 0, npages * PAGE_SIZE);
2091
2092 *pa = _pa;
2093 *va = _va;
2094 return 0;
2095
2096 error:
2097 for (i = 0; i < npages; i++) {
2098 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2099 }
2100 return ENOMEM;
2101 }
2102
2103 static void
2104 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2105 {
2106 size_t i;
2107
2108 pmap_kremove(va, npages * PAGE_SIZE);
2109 pmap_update(pmap_kernel());
2110 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2111 for (i = 0; i < npages; i++) {
2112 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2113 }
2114 }
2115
2116 /* -------------------------------------------------------------------------- */
2117
2118 static void
2119 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2120 {
2121 uint64_t byte;
2122 uint8_t bitoff;
2123
2124 if (msr < 0x00002000) {
2125 /* Range 1 */
2126 byte = ((msr - 0x00000000) / 8) + 0;
2127 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2128 /* Range 2 */
2129 byte = ((msr - 0xC0000000) / 8) + 1024;
2130 } else {
2131 panic("%s: wrong range", __func__);
2132 }
2133
2134 bitoff = (msr & 0x7);
2135
2136 if (read) {
2137 bitmap[byte] &= ~__BIT(bitoff);
2138 }
2139 if (write) {
2140 bitmap[2048 + byte] &= ~__BIT(bitoff);
2141 }
2142 }
2143
2144 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2145 #define VMX_SEG_ATTRIB_S __BIT(4)
2146 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2147 #define VMX_SEG_ATTRIB_P __BIT(7)
2148 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2149 #define VMX_SEG_ATTRIB_L __BIT(13)
2150 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2151 #define VMX_SEG_ATTRIB_G __BIT(15)
2152 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2153
2154 static void
2155 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2156 {
2157 uint64_t attrib;
2158
2159 attrib =
2160 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2161 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2162 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2163 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2164 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2165 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2166 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2167 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2168 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2169
2170 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2171 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2172 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2173 }
2174 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2175 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2176 }
2177
2178 static void
2179 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2180 {
2181 uint64_t selector = 0, attrib = 0, base, limit;
2182
2183 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2184 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2185 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2186 }
2187 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2188 base = vmx_vmread(vmx_guest_segs[idx].base);
2189
2190 segs[idx].selector = selector;
2191 segs[idx].limit = limit;
2192 segs[idx].base = base;
2193 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2194 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2195 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2196 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2197 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2198 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2199 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2200 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2201 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2202 segs[idx].attrib.p = 0;
2203 }
2204 }
2205
2206 static inline bool
2207 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2208 {
2209 uint64_t cr0, cr3, cr4, efer;
2210
2211 if (flags & NVMM_X64_STATE_CRS) {
2212 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2213 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2214 return true;
2215 }
2216 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2217 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2218 return true;
2219 }
2220 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2221 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2222 return true;
2223 }
2224 }
2225
2226 if (flags & NVMM_X64_STATE_MSRS) {
2227 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2228 if ((efer ^
2229 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2230 return true;
2231 }
2232 }
2233
2234 return false;
2235 }
2236
2237 static void
2238 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2239 {
2240 struct nvmm_comm_page *comm = vcpu->comm;
2241 const struct nvmm_x64_state *state = &comm->state;
2242 struct vmx_cpudata *cpudata = vcpu->cpudata;
2243 struct fxsave *fpustate;
2244 uint64_t ctls1, intstate;
2245 uint64_t flags;
2246
2247 flags = comm->state_wanted;
2248
2249 vmx_vmcs_enter(vcpu);
2250
2251 if (vmx_state_tlb_flush(state, flags)) {
2252 cpudata->gtlb_want_flush = true;
2253 }
2254
2255 if (flags & NVMM_X64_STATE_SEGS) {
2256 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2257 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2258 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2259 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2260 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2261 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2262 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2263 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2264 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2265 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2266 }
2267
2268 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2269 if (flags & NVMM_X64_STATE_GPRS) {
2270 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2271
2272 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2273 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2274 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2275 }
2276
2277 if (flags & NVMM_X64_STATE_CRS) {
2278 /*
2279 * CR0_NE and CR4_VMXE are mandatory.
2280 */
2281 vmx_vmwrite(VMCS_GUEST_CR0,
2282 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2283 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2284 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2285 vmx_vmwrite(VMCS_GUEST_CR4,
2286 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2287 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2288
2289 if (vmx_xcr0_mask != 0) {
2290 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2291 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2292 cpudata->gxcr0 &= vmx_xcr0_mask;
2293 cpudata->gxcr0 |= XCR0_X87;
2294 }
2295 }
2296
2297 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2298 if (flags & NVMM_X64_STATE_DRS) {
2299 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2300
2301 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2302 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2303 }
2304
2305 if (flags & NVMM_X64_STATE_MSRS) {
2306 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2307 state->msrs[NVMM_X64_MSR_STAR];
2308 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2309 state->msrs[NVMM_X64_MSR_LSTAR];
2310 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2311 state->msrs[NVMM_X64_MSR_CSTAR];
2312 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2313 state->msrs[NVMM_X64_MSR_SFMASK];
2314 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2315 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2316
2317 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2318 state->msrs[NVMM_X64_MSR_EFER]);
2319 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2320 state->msrs[NVMM_X64_MSR_PAT]);
2321 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2322 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2323 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2324 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2325 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2326 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2327
2328 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2329 cpudata->gtsc_want_update = true;
2330
2331 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2332 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2333 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2334 ctls1 |= ENTRY_CTLS_LONG_MODE;
2335 } else {
2336 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2337 }
2338 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2339 }
2340
2341 if (flags & NVMM_X64_STATE_INTR) {
2342 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2343 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2344 if (state->intr.int_shadow) {
2345 intstate |= INT_STATE_MOVSS;
2346 }
2347 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2348
2349 if (state->intr.int_window_exiting) {
2350 vmx_event_waitexit_enable(vcpu, false);
2351 } else {
2352 vmx_event_waitexit_disable(vcpu, false);
2353 }
2354
2355 if (state->intr.nmi_window_exiting) {
2356 vmx_event_waitexit_enable(vcpu, true);
2357 } else {
2358 vmx_event_waitexit_disable(vcpu, true);
2359 }
2360 }
2361
2362 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2363 if (flags & NVMM_X64_STATE_FPU) {
2364 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2365 sizeof(state->fpu));
2366
2367 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2368 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2369 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2370
2371 if (vmx_xcr0_mask != 0) {
2372 /* Reset XSTATE_BV, to force a reload. */
2373 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2374 }
2375 }
2376
2377 vmx_vmcs_leave(vcpu);
2378
2379 comm->state_wanted = 0;
2380 comm->state_cached |= flags;
2381 }
2382
2383 static void
2384 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2385 {
2386 struct nvmm_comm_page *comm = vcpu->comm;
2387 struct nvmm_x64_state *state = &comm->state;
2388 struct vmx_cpudata *cpudata = vcpu->cpudata;
2389 uint64_t intstate, flags;
2390
2391 flags = comm->state_wanted;
2392
2393 vmx_vmcs_enter(vcpu);
2394
2395 if (flags & NVMM_X64_STATE_SEGS) {
2396 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2397 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2398 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2399 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2400 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2401 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2402 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2403 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2404 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2405 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2406 }
2407
2408 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2409 if (flags & NVMM_X64_STATE_GPRS) {
2410 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2411
2412 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2413 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2414 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2415 }
2416
2417 if (flags & NVMM_X64_STATE_CRS) {
2418 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2419 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2420 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2421 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2422 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2423 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2424
2425 /* Hide VMXE. */
2426 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2427 }
2428
2429 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2430 if (flags & NVMM_X64_STATE_DRS) {
2431 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2432
2433 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2434 }
2435
2436 if (flags & NVMM_X64_STATE_MSRS) {
2437 state->msrs[NVMM_X64_MSR_STAR] =
2438 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2439 state->msrs[NVMM_X64_MSR_LSTAR] =
2440 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2441 state->msrs[NVMM_X64_MSR_CSTAR] =
2442 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2443 state->msrs[NVMM_X64_MSR_SFMASK] =
2444 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2445 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2446 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2447 state->msrs[NVMM_X64_MSR_EFER] =
2448 vmx_vmread(VMCS_GUEST_IA32_EFER);
2449 state->msrs[NVMM_X64_MSR_PAT] =
2450 vmx_vmread(VMCS_GUEST_IA32_PAT);
2451 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2452 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2453 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2454 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2455 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2456 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2457 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2458 }
2459
2460 if (flags & NVMM_X64_STATE_INTR) {
2461 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2462 state->intr.int_shadow =
2463 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2464 state->intr.int_window_exiting = cpudata->int_window_exit;
2465 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2466 state->intr.evt_pending = cpudata->evt_pending;
2467 }
2468
2469 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2470 if (flags & NVMM_X64_STATE_FPU) {
2471 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2472 sizeof(state->fpu));
2473 }
2474
2475 vmx_vmcs_leave(vcpu);
2476
2477 comm->state_wanted = 0;
2478 comm->state_cached |= flags;
2479 }
2480
2481 static void
2482 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2483 {
2484 vcpu->comm->state_wanted = flags;
2485 vmx_vcpu_getstate(vcpu);
2486 }
2487
2488 static void
2489 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2490 {
2491 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2492 vcpu->comm->state_commit = 0;
2493 vmx_vcpu_setstate(vcpu);
2494 }
2495
2496 /* -------------------------------------------------------------------------- */
2497
2498 static void
2499 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2500 {
2501 struct vmx_cpudata *cpudata = vcpu->cpudata;
2502 size_t i, oct, bit;
2503
2504 mutex_enter(&vmx_asidlock);
2505
2506 for (i = 0; i < vmx_maxasid; i++) {
2507 oct = i / 8;
2508 bit = i % 8;
2509
2510 if (vmx_asidmap[oct] & __BIT(bit)) {
2511 continue;
2512 }
2513
2514 cpudata->asid = i;
2515
2516 vmx_asidmap[oct] |= __BIT(bit);
2517 vmx_vmwrite(VMCS_VPID, i);
2518 mutex_exit(&vmx_asidlock);
2519 return;
2520 }
2521
2522 mutex_exit(&vmx_asidlock);
2523
2524 panic("%s: impossible", __func__);
2525 }
2526
2527 static void
2528 vmx_asid_free(struct nvmm_cpu *vcpu)
2529 {
2530 size_t oct, bit;
2531 uint64_t asid;
2532
2533 asid = vmx_vmread(VMCS_VPID);
2534
2535 oct = asid / 8;
2536 bit = asid % 8;
2537
2538 mutex_enter(&vmx_asidlock);
2539 vmx_asidmap[oct] &= ~__BIT(bit);
2540 mutex_exit(&vmx_asidlock);
2541 }
2542
2543 static void
2544 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2545 {
2546 struct vmx_cpudata *cpudata = vcpu->cpudata;
2547 struct vmcs *vmcs = cpudata->vmcs;
2548 struct msr_entry *gmsr = cpudata->gmsr;
2549 extern uint8_t vmx_resume_rip;
2550 uint64_t rev, eptp;
2551
2552 rev = vmx_get_revision();
2553
2554 memset(vmcs, 0, VMCS_SIZE);
2555 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2556 vmcs->abort = 0;
2557
2558 vmx_vmcs_enter(vcpu);
2559
2560 /* No link pointer. */
2561 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2562
2563 /* Install the CTLSs. */
2564 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2565 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2566 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2567 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2568 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2569
2570 /* Allow direct access to certain MSRs. */
2571 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2572 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2573 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2574 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2575 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2576 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2577 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2578 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2579 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2580 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2581 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2582 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2583 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2584 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2585 true, false);
2586 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2587
2588 /*
2589 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2590 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2591 */
2592 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2593 gmsr[VMX_MSRLIST_STAR].val = 0;
2594 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2595 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2596 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2597 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2598 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2599 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2600 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2601 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2602 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2603 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2604 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2605 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2606 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2607 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2608
2609 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2610 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2611 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2612
2613 /* Force CR4_VMXE to zero. */
2614 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2615
2616 /* Set the Host state for resuming. */
2617 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2618 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2619 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2620 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2621 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2622 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2623 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2624 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2625 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2626 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2627 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2628 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2629 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2630 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2631
2632 /* Generate ASID. */
2633 vmx_asid_alloc(vcpu);
2634
2635 /* Enable Extended Paging, 4-Level. */
2636 eptp =
2637 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2638 __SHIFTIN(4-1, EPTP_WALKLEN) |
2639 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2640 mach->vm->vm_map.pmap->pm_pdirpa[0];
2641 vmx_vmwrite(VMCS_EPTP, eptp);
2642
2643 /* Init IA32_MISC_ENABLE. */
2644 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2645 cpudata->gmsr_misc_enable &=
2646 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2647 cpudata->gmsr_misc_enable |=
2648 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2649
2650 /* Init XSAVE header. */
2651 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2652 cpudata->gfpu.xsh_xcomp_bv = 0;
2653
2654 /* These MSRs are static. */
2655 cpudata->star = rdmsr(MSR_STAR);
2656 cpudata->lstar = rdmsr(MSR_LSTAR);
2657 cpudata->cstar = rdmsr(MSR_CSTAR);
2658 cpudata->sfmask = rdmsr(MSR_SFMASK);
2659
2660 /* Install the RESET state. */
2661 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2662 sizeof(nvmm_x86_reset_state));
2663 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2664 vcpu->comm->state_cached = 0;
2665 vmx_vcpu_setstate(vcpu);
2666
2667 vmx_vmcs_leave(vcpu);
2668 }
2669
2670 static int
2671 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2672 {
2673 struct vmx_cpudata *cpudata;
2674 int error;
2675
2676 /* Allocate the VMX cpudata. */
2677 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2678 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2679 UVM_KMF_WIRED|UVM_KMF_ZERO);
2680 vcpu->cpudata = cpudata;
2681
2682 /* VMCS */
2683 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2684 VMCS_NPAGES);
2685 if (error)
2686 goto error;
2687
2688 /* MSR Bitmap */
2689 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2690 MSRBM_NPAGES);
2691 if (error)
2692 goto error;
2693
2694 /* Guest MSR List */
2695 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2696 if (error)
2697 goto error;
2698
2699 kcpuset_create(&cpudata->htlb_want_flush, true);
2700
2701 /* Init the VCPU info. */
2702 vmx_vcpu_init(mach, vcpu);
2703
2704 return 0;
2705
2706 error:
2707 if (cpudata->vmcs_pa) {
2708 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2709 VMCS_NPAGES);
2710 }
2711 if (cpudata->msrbm_pa) {
2712 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2713 MSRBM_NPAGES);
2714 }
2715 if (cpudata->gmsr_pa) {
2716 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2717 }
2718
2719 kmem_free(cpudata, sizeof(*cpudata));
2720 return error;
2721 }
2722
2723 static void
2724 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2725 {
2726 struct vmx_cpudata *cpudata = vcpu->cpudata;
2727
2728 vmx_vmcs_enter(vcpu);
2729 vmx_asid_free(vcpu);
2730 vmx_vmcs_destroy(vcpu);
2731
2732 kcpuset_destroy(cpudata->htlb_want_flush);
2733
2734 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2735 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2736 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2737 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2738 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2739 }
2740
2741 /* -------------------------------------------------------------------------- */
2742
2743 static void
2744 vmx_tlb_flush(struct pmap *pm)
2745 {
2746 struct nvmm_machine *mach = pm->pm_data;
2747 struct vmx_machdata *machdata = mach->machdata;
2748
2749 atomic_inc_64(&machdata->mach_htlb_gen);
2750
2751 /* Generates IPIs, which cause #VMEXITs. */
2752 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2753 }
2754
2755 static void
2756 vmx_machine_create(struct nvmm_machine *mach)
2757 {
2758 struct pmap *pmap = mach->vm->vm_map.pmap;
2759 struct vmx_machdata *machdata;
2760
2761 /* Convert to EPT. */
2762 pmap_ept_transform(pmap);
2763
2764 /* Fill in pmap info. */
2765 pmap->pm_data = (void *)mach;
2766 pmap->pm_tlb_flush = vmx_tlb_flush;
2767
2768 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2769 mach->machdata = machdata;
2770
2771 /* Start with an hTLB flush everywhere. */
2772 machdata->mach_htlb_gen = 1;
2773 }
2774
2775 static void
2776 vmx_machine_destroy(struct nvmm_machine *mach)
2777 {
2778 struct vmx_machdata *machdata = mach->machdata;
2779
2780 kmem_free(machdata, sizeof(struct vmx_machdata));
2781 }
2782
2783 static int
2784 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2785 {
2786 struct nvmm_mach_conf_x86_cpuid *cpuid = data;
2787 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2788 size_t i;
2789
2790 if (__predict_false(op != NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID))) {
2791 return EINVAL;
2792 }
2793
2794 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2795 (cpuid->set.ebx & cpuid->del.ebx) ||
2796 (cpuid->set.ecx & cpuid->del.ecx) ||
2797 (cpuid->set.edx & cpuid->del.edx))) {
2798 return EINVAL;
2799 }
2800
2801 /* If already here, replace. */
2802 for (i = 0; i < VMX_NCPUIDS; i++) {
2803 if (!machdata->cpuidpresent[i]) {
2804 continue;
2805 }
2806 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2807 memcpy(&machdata->cpuid[i], cpuid,
2808 sizeof(struct nvmm_mach_conf_x86_cpuid));
2809 return 0;
2810 }
2811 }
2812
2813 /* Not here, insert. */
2814 for (i = 0; i < VMX_NCPUIDS; i++) {
2815 if (!machdata->cpuidpresent[i]) {
2816 machdata->cpuidpresent[i] = true;
2817 memcpy(&machdata->cpuid[i], cpuid,
2818 sizeof(struct nvmm_mach_conf_x86_cpuid));
2819 return 0;
2820 }
2821 }
2822
2823 return ENOBUFS;
2824 }
2825
2826 /* -------------------------------------------------------------------------- */
2827
2828 static int
2829 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2830 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2831 {
2832 uint64_t basic, val, true_val;
2833 bool one_allowed, zero_allowed, has_true;
2834 size_t i;
2835
2836 basic = rdmsr(MSR_IA32_VMX_BASIC);
2837 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2838
2839 val = rdmsr(msr_ctls);
2840 if (has_true) {
2841 true_val = rdmsr(msr_true_ctls);
2842 } else {
2843 true_val = val;
2844 }
2845
2846 #define ONE_ALLOWED(msrval, bitoff) \
2847 ((msrval & __BIT(32 + bitoff)) != 0)
2848 #define ZERO_ALLOWED(msrval, bitoff) \
2849 ((msrval & __BIT(bitoff)) == 0)
2850
2851 for (i = 0; i < 32; i++) {
2852 one_allowed = ONE_ALLOWED(true_val, i);
2853 zero_allowed = ZERO_ALLOWED(true_val, i);
2854
2855 if (zero_allowed && !one_allowed) {
2856 if (set_one & __BIT(i))
2857 return -1;
2858 *res &= ~__BIT(i);
2859 } else if (one_allowed && !zero_allowed) {
2860 if (set_zero & __BIT(i))
2861 return -1;
2862 *res |= __BIT(i);
2863 } else {
2864 if (set_zero & __BIT(i)) {
2865 *res &= ~__BIT(i);
2866 } else if (set_one & __BIT(i)) {
2867 *res |= __BIT(i);
2868 } else if (!has_true) {
2869 *res &= ~__BIT(i);
2870 } else if (ZERO_ALLOWED(val, i)) {
2871 *res &= ~__BIT(i);
2872 } else if (ONE_ALLOWED(val, i)) {
2873 *res |= __BIT(i);
2874 } else {
2875 return -1;
2876 }
2877 }
2878 }
2879
2880 return 0;
2881 }
2882
2883 static bool
2884 vmx_ident(void)
2885 {
2886 uint64_t msr;
2887 int ret;
2888
2889 if (!(cpu_feature[1] & CPUID2_VMX)) {
2890 return false;
2891 }
2892
2893 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2894 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2895 return false;
2896 }
2897 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
2898 return false;
2899 }
2900
2901 msr = rdmsr(MSR_IA32_VMX_BASIC);
2902 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2903 return false;
2904 }
2905 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2906 return false;
2907 }
2908
2909 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2910 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2911 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2912 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2913 if (ret == -1) {
2914 return false;
2915 }
2916
2917 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2918 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2919 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2920 if (ret == -1) {
2921 return false;
2922 }
2923
2924 /* Init the CTLSs right now, and check for errors. */
2925 ret = vmx_init_ctls(
2926 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2927 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2928 &vmx_pinbased_ctls);
2929 if (ret == -1) {
2930 return false;
2931 }
2932 ret = vmx_init_ctls(
2933 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2934 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2935 &vmx_procbased_ctls);
2936 if (ret == -1) {
2937 return false;
2938 }
2939 ret = vmx_init_ctls(
2940 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2941 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2942 &vmx_procbased_ctls2);
2943 if (ret == -1) {
2944 return false;
2945 }
2946 ret = vmx_init_ctls(
2947 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2948 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2949 &vmx_entry_ctls);
2950 if (ret == -1) {
2951 return false;
2952 }
2953 ret = vmx_init_ctls(
2954 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2955 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2956 &vmx_exit_ctls);
2957 if (ret == -1) {
2958 return false;
2959 }
2960
2961 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2962 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2963 return false;
2964 }
2965 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2966 return false;
2967 }
2968 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2969 return false;
2970 }
2971 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2972 pmap_ept_has_ad = true;
2973 } else {
2974 pmap_ept_has_ad = false;
2975 }
2976 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2977 return false;
2978 }
2979
2980 return true;
2981 }
2982
2983 static void
2984 vmx_init_asid(uint32_t maxasid)
2985 {
2986 size_t allocsz;
2987
2988 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2989
2990 vmx_maxasid = maxasid;
2991 allocsz = roundup(maxasid, 8) / 8;
2992 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2993
2994 /* ASID 0 is reserved for the host. */
2995 vmx_asidmap[0] |= __BIT(0);
2996 }
2997
2998 static void
2999 vmx_change_cpu(void *arg1, void *arg2)
3000 {
3001 struct cpu_info *ci = curcpu();
3002 bool enable = (bool)arg1;
3003 uint64_t cr4;
3004
3005 if (!enable) {
3006 vmx_vmxoff();
3007 }
3008
3009 cr4 = rcr4();
3010 if (enable) {
3011 cr4 |= CR4_VMXE;
3012 } else {
3013 cr4 &= ~CR4_VMXE;
3014 }
3015 lcr4(cr4);
3016
3017 if (enable) {
3018 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3019 }
3020 }
3021
3022 static void
3023 vmx_init_l1tf(void)
3024 {
3025 u_int descs[4];
3026 uint64_t msr;
3027
3028 if (cpuid_level < 7) {
3029 return;
3030 }
3031
3032 x86_cpuid(7, descs);
3033
3034 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3035 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3036 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3037 /* No mitigation needed. */
3038 return;
3039 }
3040 }
3041
3042 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3043 /* Enable hardware mitigation. */
3044 vmx_msrlist_entry_nmsr += 1;
3045 }
3046 }
3047
3048 static void
3049 vmx_init(void)
3050 {
3051 CPU_INFO_ITERATOR cii;
3052 struct cpu_info *ci;
3053 uint64_t xc, msr;
3054 struct vmxon *vmxon;
3055 uint32_t revision;
3056 paddr_t pa;
3057 vaddr_t va;
3058 int error;
3059
3060 /* Init the ASID bitmap (VPID). */
3061 vmx_init_asid(VPID_MAX);
3062
3063 /* Init the XCR0 mask. */
3064 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3065
3066 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3067 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3068 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3069 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3070 } else {
3071 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3072 }
3073 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3074 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3075 } else {
3076 vmx_ept_flush_op = VMX_INVEPT_ALL;
3077 }
3078 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3079 vmx_eptp_type = EPTP_TYPE_WB;
3080 } else {
3081 vmx_eptp_type = EPTP_TYPE_UC;
3082 }
3083
3084 /* Init the L1TF mitigation. */
3085 vmx_init_l1tf();
3086
3087 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3088 revision = vmx_get_revision();
3089
3090 for (CPU_INFO_FOREACH(cii, ci)) {
3091 error = vmx_memalloc(&pa, &va, 1);
3092 if (error) {
3093 panic("%s: out of memory", __func__);
3094 }
3095 vmxoncpu[cpu_index(ci)].pa = pa;
3096 vmxoncpu[cpu_index(ci)].va = va;
3097
3098 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3099 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3100 }
3101
3102 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3103 xc_wait(xc);
3104 }
3105
3106 static void
3107 vmx_fini_asid(void)
3108 {
3109 size_t allocsz;
3110
3111 allocsz = roundup(vmx_maxasid, 8) / 8;
3112 kmem_free(vmx_asidmap, allocsz);
3113
3114 mutex_destroy(&vmx_asidlock);
3115 }
3116
3117 static void
3118 vmx_fini(void)
3119 {
3120 uint64_t xc;
3121 size_t i;
3122
3123 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3124 xc_wait(xc);
3125
3126 for (i = 0; i < MAXCPUS; i++) {
3127 if (vmxoncpu[i].pa != 0)
3128 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3129 }
3130
3131 vmx_fini_asid();
3132 }
3133
3134 static void
3135 vmx_capability(struct nvmm_capability *cap)
3136 {
3137 cap->arch.xcr0_mask = vmx_xcr0_mask;
3138 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3139 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3140 }
3141
3142 const struct nvmm_impl nvmm_x86_vmx = {
3143 .ident = vmx_ident,
3144 .init = vmx_init,
3145 .fini = vmx_fini,
3146 .capability = vmx_capability,
3147 .conf_max = NVMM_X86_NCONF,
3148 .conf_sizes = vmx_conf_sizes,
3149 .state_size = sizeof(struct nvmm_x64_state),
3150 .machine_create = vmx_machine_create,
3151 .machine_destroy = vmx_machine_destroy,
3152 .machine_configure = vmx_machine_configure,
3153 .vcpu_create = vmx_vcpu_create,
3154 .vcpu_destroy = vmx_vcpu_destroy,
3155 .vcpu_setstate = vmx_vcpu_setstate,
3156 .vcpu_getstate = vmx_vcpu_getstate,
3157 .vcpu_inject = vmx_vcpu_inject,
3158 .vcpu_run = vmx_vcpu_run
3159 };
3160