nvmm_x86_vmx.c revision 1.39 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.39 2019/10/12 06:31:04 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.39 2019/10/12 06:31:04 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 bool cpuidpresent[VMX_NCPUIDS];
701 struct nvmm_mach_conf_x86_cpuid cpuid[VMX_NCPUIDS];
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
706 [NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID)] =
707 sizeof(struct nvmm_mach_conf_x86_cpuid)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736
737 /* Intr state */
738 bool int_window_exit;
739 bool nmi_window_exit;
740 bool evt_pending;
741
742 /* Guest state */
743 struct msr_entry *gmsr;
744 paddr_t gmsr_pa;
745 uint64_t gmsr_misc_enable;
746 uint64_t gcr2;
747 uint64_t gcr8;
748 uint64_t gxcr0;
749 uint64_t gprs[NVMM_X64_NGPR];
750 uint64_t drs[NVMM_X64_NDR];
751 uint64_t gtsc;
752 struct xsave_header gfpu __aligned(64);
753 };
754
755 static const struct {
756 uint64_t selector;
757 uint64_t attrib;
758 uint64_t limit;
759 uint64_t base;
760 } vmx_guest_segs[NVMM_X64_NSEG] = {
761 [NVMM_X64_SEG_ES] = {
762 VMCS_GUEST_ES_SELECTOR,
763 VMCS_GUEST_ES_ACCESS_RIGHTS,
764 VMCS_GUEST_ES_LIMIT,
765 VMCS_GUEST_ES_BASE
766 },
767 [NVMM_X64_SEG_CS] = {
768 VMCS_GUEST_CS_SELECTOR,
769 VMCS_GUEST_CS_ACCESS_RIGHTS,
770 VMCS_GUEST_CS_LIMIT,
771 VMCS_GUEST_CS_BASE
772 },
773 [NVMM_X64_SEG_SS] = {
774 VMCS_GUEST_SS_SELECTOR,
775 VMCS_GUEST_SS_ACCESS_RIGHTS,
776 VMCS_GUEST_SS_LIMIT,
777 VMCS_GUEST_SS_BASE
778 },
779 [NVMM_X64_SEG_DS] = {
780 VMCS_GUEST_DS_SELECTOR,
781 VMCS_GUEST_DS_ACCESS_RIGHTS,
782 VMCS_GUEST_DS_LIMIT,
783 VMCS_GUEST_DS_BASE
784 },
785 [NVMM_X64_SEG_FS] = {
786 VMCS_GUEST_FS_SELECTOR,
787 VMCS_GUEST_FS_ACCESS_RIGHTS,
788 VMCS_GUEST_FS_LIMIT,
789 VMCS_GUEST_FS_BASE
790 },
791 [NVMM_X64_SEG_GS] = {
792 VMCS_GUEST_GS_SELECTOR,
793 VMCS_GUEST_GS_ACCESS_RIGHTS,
794 VMCS_GUEST_GS_LIMIT,
795 VMCS_GUEST_GS_BASE
796 },
797 [NVMM_X64_SEG_GDT] = {
798 0, /* doesn't exist */
799 0, /* doesn't exist */
800 VMCS_GUEST_GDTR_LIMIT,
801 VMCS_GUEST_GDTR_BASE
802 },
803 [NVMM_X64_SEG_IDT] = {
804 0, /* doesn't exist */
805 0, /* doesn't exist */
806 VMCS_GUEST_IDTR_LIMIT,
807 VMCS_GUEST_IDTR_BASE
808 },
809 [NVMM_X64_SEG_LDT] = {
810 VMCS_GUEST_LDTR_SELECTOR,
811 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
812 VMCS_GUEST_LDTR_LIMIT,
813 VMCS_GUEST_LDTR_BASE
814 },
815 [NVMM_X64_SEG_TR] = {
816 VMCS_GUEST_TR_SELECTOR,
817 VMCS_GUEST_TR_ACCESS_RIGHTS,
818 VMCS_GUEST_TR_LIMIT,
819 VMCS_GUEST_TR_BASE
820 }
821 };
822
823 /* -------------------------------------------------------------------------- */
824
825 static uint64_t
826 vmx_get_revision(void)
827 {
828 uint64_t msr;
829
830 msr = rdmsr(MSR_IA32_VMX_BASIC);
831 msr &= IA32_VMX_BASIC_IDENT;
832
833 return msr;
834 }
835
836 static void
837 vmx_vmclear_ipi(void *arg1, void *arg2)
838 {
839 paddr_t vmcs_pa = (paddr_t)arg1;
840 vmx_vmclear(&vmcs_pa);
841 }
842
843 static void
844 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
845 {
846 uint64_t xc;
847 int bound;
848
849 KASSERT(kpreempt_disabled());
850
851 bound = curlwp_bind();
852 kpreempt_enable();
853
854 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
855 xc_wait(xc);
856
857 kpreempt_disable();
858 curlwp_bindx(bound);
859 }
860
861 static void
862 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
863 {
864 struct vmx_cpudata *cpudata = vcpu->cpudata;
865 struct cpu_info *vmcs_ci;
866 paddr_t oldpa __diagused;
867
868 cpudata->vmcs_refcnt++;
869 if (cpudata->vmcs_refcnt > 1) {
870 #ifdef DIAGNOSTIC
871 KASSERT(kpreempt_disabled());
872 oldpa = vmx_vmptrst();
873 KASSERT(oldpa == cpudata->vmcs_pa);
874 #endif
875 return;
876 }
877
878 vmcs_ci = cpudata->vmcs_ci;
879 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
880
881 kpreempt_disable();
882
883 if (vmcs_ci == NULL) {
884 /* This VMCS is loaded for the first time. */
885 vmx_vmclear(&cpudata->vmcs_pa);
886 cpudata->vmcs_launched = false;
887 } else if (vmcs_ci != curcpu()) {
888 /* This VMCS is active on a remote CPU. */
889 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
890 cpudata->vmcs_launched = false;
891 } else {
892 /* This VMCS is active on curcpu, nothing to do. */
893 }
894
895 vmx_vmptrld(&cpudata->vmcs_pa);
896 }
897
898 static void
899 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
900 {
901 struct vmx_cpudata *cpudata = vcpu->cpudata;
902
903 KASSERT(kpreempt_disabled());
904 #ifdef DIAGNOSTIC
905 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
906 #endif
907 KASSERT(cpudata->vmcs_refcnt > 0);
908 cpudata->vmcs_refcnt--;
909
910 if (cpudata->vmcs_refcnt > 0) {
911 return;
912 }
913
914 cpudata->vmcs_ci = curcpu();
915 kpreempt_enable();
916 }
917
918 static void
919 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
920 {
921 struct vmx_cpudata *cpudata = vcpu->cpudata;
922
923 KASSERT(kpreempt_disabled());
924 #ifdef DIAGNOSTIC
925 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
926 #endif
927 KASSERT(cpudata->vmcs_refcnt == 1);
928 cpudata->vmcs_refcnt--;
929
930 vmx_vmclear(&cpudata->vmcs_pa);
931 kpreempt_enable();
932 }
933
934 /* -------------------------------------------------------------------------- */
935
936 static void
937 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
938 {
939 struct vmx_cpudata *cpudata = vcpu->cpudata;
940 uint64_t ctls1;
941
942 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
943
944 if (nmi) {
945 // XXX INT_STATE_NMI?
946 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
947 cpudata->nmi_window_exit = true;
948 } else {
949 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
950 cpudata->int_window_exit = true;
951 }
952
953 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
954 }
955
956 static void
957 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
958 {
959 struct vmx_cpudata *cpudata = vcpu->cpudata;
960 uint64_t ctls1;
961
962 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
963
964 if (nmi) {
965 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
966 cpudata->nmi_window_exit = false;
967 } else {
968 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
969 cpudata->int_window_exit = false;
970 }
971
972 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
973 }
974
975 static inline int
976 vmx_event_has_error(uint64_t vector)
977 {
978 switch (vector) {
979 case 8: /* #DF */
980 case 10: /* #TS */
981 case 11: /* #NP */
982 case 12: /* #SS */
983 case 13: /* #GP */
984 case 14: /* #PF */
985 case 17: /* #AC */
986 case 30: /* #SX */
987 return 1;
988 default:
989 return 0;
990 }
991 }
992
993 static int
994 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
995 {
996 struct nvmm_comm_page *comm = vcpu->comm;
997 struct vmx_cpudata *cpudata = vcpu->cpudata;
998 int type = 0, err = 0, ret = EINVAL;
999 enum nvmm_event_type evtype;
1000 uint64_t info, vector, error;
1001
1002 evtype = comm->event.type;
1003 vector = comm->event.vector;
1004 error = comm->event.u.error;
1005 __insn_barrier();
1006
1007 if (__predict_false(vector >= 256)) {
1008 return EINVAL;
1009 }
1010
1011 vmx_vmcs_enter(vcpu);
1012
1013 switch (evtype) {
1014 case NVMM_EVENT_INTERRUPT_HW:
1015 type = INTR_TYPE_EXT_INT;
1016 if (vector == 2) {
1017 type = INTR_TYPE_NMI;
1018 vmx_event_waitexit_enable(vcpu, true);
1019 }
1020 err = 0;
1021 break;
1022 case NVMM_EVENT_EXCEPTION:
1023 if (vector == 2 || vector >= 32)
1024 goto out;
1025 if (vector == 3 || vector == 0)
1026 goto out;
1027 type = INTR_TYPE_HW_EXC;
1028 err = vmx_event_has_error(vector);
1029 break;
1030 default:
1031 goto out;
1032 }
1033
1034 info =
1035 __SHIFTIN(vector, INTR_INFO_VECTOR) |
1036 __SHIFTIN(type, INTR_INFO_TYPE) |
1037 __SHIFTIN(err, INTR_INFO_ERROR) |
1038 __SHIFTIN(1, INTR_INFO_VALID);
1039 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1040 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1041
1042 cpudata->evt_pending = true;
1043 ret = 0;
1044
1045 out:
1046 vmx_vmcs_leave(vcpu);
1047 return ret;
1048 }
1049
1050 static void
1051 vmx_inject_ud(struct nvmm_cpu *vcpu)
1052 {
1053 struct nvmm_comm_page *comm = vcpu->comm;
1054 int ret __diagused;
1055
1056 comm->event.type = NVMM_EVENT_EXCEPTION;
1057 comm->event.vector = 6;
1058 comm->event.u.error = 0;
1059
1060 ret = vmx_vcpu_inject(vcpu);
1061 KASSERT(ret == 0);
1062 }
1063
1064 static void
1065 vmx_inject_gp(struct nvmm_cpu *vcpu)
1066 {
1067 struct nvmm_comm_page *comm = vcpu->comm;
1068 int ret __diagused;
1069
1070 comm->event.type = NVMM_EVENT_EXCEPTION;
1071 comm->event.vector = 13;
1072 comm->event.u.error = 0;
1073
1074 ret = vmx_vcpu_inject(vcpu);
1075 KASSERT(ret == 0);
1076 }
1077
1078 static inline int
1079 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1080 {
1081 if (__predict_true(!vcpu->comm->event_commit)) {
1082 return 0;
1083 }
1084 vcpu->comm->event_commit = false;
1085 return vmx_vcpu_inject(vcpu);
1086 }
1087
1088 static inline void
1089 vmx_inkernel_advance(void)
1090 {
1091 uint64_t rip, inslen, intstate;
1092
1093 /*
1094 * Maybe we should also apply single-stepping and debug exceptions.
1095 * Matters for guest-ring3, because it can execute 'cpuid' under a
1096 * debugger.
1097 */
1098 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1099 rip = vmx_vmread(VMCS_GUEST_RIP);
1100 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1101 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1102 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1103 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1104 }
1105
1106 static void
1107 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1108 {
1109 exit->u.inv.hwcode = code;
1110 exit->reason = NVMM_EXIT_INVALID;
1111 }
1112
1113 static void
1114 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1115 struct nvmm_exit *exit)
1116 {
1117 uint64_t qual;
1118
1119 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1120
1121 if ((qual & INTR_INFO_VALID) == 0) {
1122 goto error;
1123 }
1124 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1125 goto error;
1126 }
1127
1128 exit->reason = NVMM_EXIT_NONE;
1129 return;
1130
1131 error:
1132 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1133 }
1134
1135 static void
1136 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1137 {
1138 struct vmx_cpudata *cpudata = vcpu->cpudata;
1139 uint64_t cr4;
1140
1141 switch (eax) {
1142 case 0x00000001:
1143 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1144
1145 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1146 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1147 CPUID_LOCAL_APIC_ID);
1148
1149 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1150 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1151
1152 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1153
1154 /* CPUID2_OSXSAVE depends on CR4. */
1155 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1156 if (!(cr4 & CR4_OSXSAVE)) {
1157 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1158 }
1159 break;
1160 case 0x00000005:
1161 case 0x00000006:
1162 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1163 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1164 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1165 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1166 break;
1167 case 0x00000007:
1168 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1169 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1170 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1171 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1172 break;
1173 case 0x0000000D:
1174 if (vmx_xcr0_mask == 0) {
1175 break;
1176 }
1177 switch (ecx) {
1178 case 0:
1179 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1180 if (cpudata->gxcr0 & XCR0_SSE) {
1181 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1182 } else {
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1184 }
1185 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1186 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1187 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1188 break;
1189 case 1:
1190 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1191 break;
1192 }
1193 break;
1194 case 0x40000000:
1195 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1196 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1197 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1198 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1199 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1200 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1201 break;
1202 case 0x80000001:
1203 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1204 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1205 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1206 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1207 break;
1208 default:
1209 break;
1210 }
1211 }
1212
1213 static void
1214 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1215 struct nvmm_exit *exit)
1216 {
1217 struct vmx_machdata *machdata = mach->machdata;
1218 struct vmx_cpudata *cpudata = vcpu->cpudata;
1219 struct nvmm_mach_conf_x86_cpuid *cpuid;
1220 uint64_t eax, ecx;
1221 u_int descs[4];
1222 size_t i;
1223
1224 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1225 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1226 x86_cpuid2(eax, ecx, descs);
1227
1228 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1229 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1230 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1231 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1232
1233 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1234
1235 for (i = 0; i < VMX_NCPUIDS; i++) {
1236 cpuid = &machdata->cpuid[i];
1237 if (!machdata->cpuidpresent[i]) {
1238 continue;
1239 }
1240 if (cpuid->leaf != eax) {
1241 continue;
1242 }
1243
1244 /* del */
1245 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1246 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1247 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1248 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1249
1250 /* set */
1251 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1252 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1253 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1254 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1255
1256 break;
1257 }
1258
1259 vmx_inkernel_advance();
1260 exit->reason = NVMM_EXIT_NONE;
1261 }
1262
1263 static void
1264 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1265 struct nvmm_exit *exit)
1266 {
1267 struct vmx_cpudata *cpudata = vcpu->cpudata;
1268 uint64_t rflags;
1269
1270 if (cpudata->int_window_exit) {
1271 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1272 if (rflags & PSL_I) {
1273 vmx_event_waitexit_disable(vcpu, false);
1274 }
1275 }
1276
1277 vmx_inkernel_advance();
1278 exit->reason = NVMM_EXIT_HALTED;
1279 }
1280
1281 #define VMX_QUAL_CR_NUM __BITS(3,0)
1282 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1283 #define CR_TYPE_WRITE 0
1284 #define CR_TYPE_READ 1
1285 #define CR_TYPE_CLTS 2
1286 #define CR_TYPE_LMSW 3
1287 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1288 #define VMX_QUAL_CR_GPR __BITS(11,8)
1289 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1290
1291 static inline int
1292 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1293 {
1294 /* Bits set to 1 in fixed0 are fixed to 1. */
1295 if ((crval & fixed0) != fixed0) {
1296 return -1;
1297 }
1298 /* Bits set to 0 in fixed1 are fixed to 0. */
1299 if (crval & ~fixed1) {
1300 return -1;
1301 }
1302 return 0;
1303 }
1304
1305 static int
1306 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1307 uint64_t qual)
1308 {
1309 struct vmx_cpudata *cpudata = vcpu->cpudata;
1310 uint64_t type, gpr, cr0;
1311 uint64_t efer, ctls1;
1312
1313 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1314 if (type != CR_TYPE_WRITE) {
1315 return -1;
1316 }
1317
1318 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1319 KASSERT(gpr < 16);
1320
1321 if (gpr == NVMM_X64_GPR_RSP) {
1322 gpr = vmx_vmread(VMCS_GUEST_RSP);
1323 } else {
1324 gpr = cpudata->gprs[gpr];
1325 }
1326
1327 cr0 = gpr | CR0_NE | CR0_ET;
1328 cr0 &= ~(CR0_NW|CR0_CD);
1329
1330 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1331 return -1;
1332 }
1333
1334 /*
1335 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1336 * from CR3.
1337 */
1338
1339 if (cr0 & CR0_PG) {
1340 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1341 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1342 if (efer & EFER_LME) {
1343 ctls1 |= ENTRY_CTLS_LONG_MODE;
1344 efer |= EFER_LMA;
1345 } else {
1346 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1347 efer &= ~EFER_LMA;
1348 }
1349 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1350 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1351 }
1352
1353 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1354 vmx_inkernel_advance();
1355 return 0;
1356 }
1357
1358 static int
1359 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1360 uint64_t qual)
1361 {
1362 struct vmx_cpudata *cpudata = vcpu->cpudata;
1363 uint64_t type, gpr, cr4;
1364
1365 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1366 if (type != CR_TYPE_WRITE) {
1367 return -1;
1368 }
1369
1370 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1371 KASSERT(gpr < 16);
1372
1373 if (gpr == NVMM_X64_GPR_RSP) {
1374 gpr = vmx_vmread(VMCS_GUEST_RSP);
1375 } else {
1376 gpr = cpudata->gprs[gpr];
1377 }
1378
1379 cr4 = gpr | CR4_VMXE;
1380
1381 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1382 return -1;
1383 }
1384
1385 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1386 vmx_inkernel_advance();
1387 return 0;
1388 }
1389
1390 static int
1391 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1392 uint64_t qual)
1393 {
1394 struct vmx_cpudata *cpudata = vcpu->cpudata;
1395 uint64_t type, gpr;
1396 bool write;
1397
1398 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1399 if (type == CR_TYPE_WRITE) {
1400 write = true;
1401 } else if (type == CR_TYPE_READ) {
1402 write = false;
1403 } else {
1404 return -1;
1405 }
1406
1407 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1408 KASSERT(gpr < 16);
1409
1410 if (write) {
1411 if (gpr == NVMM_X64_GPR_RSP) {
1412 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1413 } else {
1414 cpudata->gcr8 = cpudata->gprs[gpr];
1415 }
1416 } else {
1417 if (gpr == NVMM_X64_GPR_RSP) {
1418 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1419 } else {
1420 cpudata->gprs[gpr] = cpudata->gcr8;
1421 }
1422 }
1423
1424 vmx_inkernel_advance();
1425 return 0;
1426 }
1427
1428 static void
1429 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1430 struct nvmm_exit *exit)
1431 {
1432 uint64_t qual;
1433 int ret;
1434
1435 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1436
1437 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1438 case 0:
1439 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1440 break;
1441 case 4:
1442 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1443 break;
1444 case 8:
1445 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1446 break;
1447 default:
1448 ret = -1;
1449 break;
1450 }
1451
1452 if (ret == -1) {
1453 vmx_inject_gp(vcpu);
1454 }
1455
1456 exit->reason = NVMM_EXIT_NONE;
1457 }
1458
1459 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1460 #define IO_SIZE_8 0
1461 #define IO_SIZE_16 1
1462 #define IO_SIZE_32 3
1463 #define VMX_QUAL_IO_IN __BIT(3)
1464 #define VMX_QUAL_IO_STR __BIT(4)
1465 #define VMX_QUAL_IO_REP __BIT(5)
1466 #define VMX_QUAL_IO_DX __BIT(6)
1467 #define VMX_QUAL_IO_PORT __BITS(31,16)
1468
1469 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1470 #define IO_ADRSIZE_16 0
1471 #define IO_ADRSIZE_32 1
1472 #define IO_ADRSIZE_64 2
1473 #define VMX_INFO_IO_SEG __BITS(17,15)
1474
1475 static void
1476 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1477 struct nvmm_exit *exit)
1478 {
1479 uint64_t qual, info, inslen, rip;
1480
1481 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1482 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1483
1484 exit->reason = NVMM_EXIT_IO;
1485
1486 if (qual & VMX_QUAL_IO_IN) {
1487 exit->u.io.type = NVMM_EXIT_IO_IN;
1488 } else {
1489 exit->u.io.type = NVMM_EXIT_IO_OUT;
1490 }
1491
1492 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1493
1494 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1495 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1496
1497 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1498 exit->u.io.address_size = 8;
1499 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1500 exit->u.io.address_size = 4;
1501 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1502 exit->u.io.address_size = 2;
1503 }
1504
1505 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1506 exit->u.io.operand_size = 4;
1507 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1508 exit->u.io.operand_size = 2;
1509 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1510 exit->u.io.operand_size = 1;
1511 }
1512
1513 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1514 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1515
1516 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1517 exit->u.io.seg = NVMM_X64_SEG_ES;
1518 }
1519
1520 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1521 rip = vmx_vmread(VMCS_GUEST_RIP);
1522 exit->u.io.npc = rip + inslen;
1523
1524 vmx_vcpu_state_provide(vcpu,
1525 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1526 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1527 }
1528
1529 static const uint64_t msr_ignore_list[] = {
1530 MSR_BIOS_SIGN,
1531 MSR_IA32_PLATFORM_ID
1532 };
1533
1534 static bool
1535 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1536 struct nvmm_exit *exit)
1537 {
1538 struct vmx_cpudata *cpudata = vcpu->cpudata;
1539 uint64_t val;
1540 size_t i;
1541
1542 switch (exit->u.msr.type) {
1543 case NVMM_EXIT_MSR_RDMSR:
1544 if (exit->u.msr.msr == MSR_CR_PAT) {
1545 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1546 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1547 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1548 goto handled;
1549 }
1550 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1551 val = cpudata->gmsr_misc_enable;
1552 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1553 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1554 goto handled;
1555 }
1556 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1557 if (msr_ignore_list[i] != exit->u.msr.msr)
1558 continue;
1559 val = 0;
1560 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1561 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1562 goto handled;
1563 }
1564 break;
1565 case NVMM_EXIT_MSR_WRMSR:
1566 if (exit->u.msr.msr == MSR_TSC) {
1567 cpudata->gtsc = exit->u.msr.val;
1568 cpudata->gtsc_want_update = true;
1569 goto handled;
1570 }
1571 if (exit->u.msr.msr == MSR_CR_PAT) {
1572 val = exit->u.msr.val;
1573 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1574 goto error;
1575 }
1576 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1577 goto handled;
1578 }
1579 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1580 /* Don't care. */
1581 goto handled;
1582 }
1583 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1584 if (msr_ignore_list[i] != exit->u.msr.msr)
1585 continue;
1586 goto handled;
1587 }
1588 break;
1589 }
1590
1591 return false;
1592
1593 handled:
1594 vmx_inkernel_advance();
1595 return true;
1596
1597 error:
1598 vmx_inject_gp(vcpu);
1599 return true;
1600 }
1601
1602 static void
1603 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1604 struct nvmm_exit *exit, bool rdmsr)
1605 {
1606 struct vmx_cpudata *cpudata = vcpu->cpudata;
1607 uint64_t inslen, rip;
1608
1609 if (rdmsr) {
1610 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1611 } else {
1612 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1613 }
1614
1615 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1616
1617 if (rdmsr) {
1618 exit->u.msr.val = 0;
1619 } else {
1620 uint64_t rdx, rax;
1621 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1622 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1623 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1624 }
1625
1626 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1627 exit->reason = NVMM_EXIT_NONE;
1628 return;
1629 }
1630
1631 exit->reason = NVMM_EXIT_MSR;
1632 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1633 rip = vmx_vmread(VMCS_GUEST_RIP);
1634 exit->u.msr.npc = rip + inslen;
1635
1636 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1637 }
1638
1639 static void
1640 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1641 struct nvmm_exit *exit)
1642 {
1643 struct vmx_cpudata *cpudata = vcpu->cpudata;
1644 uint16_t val;
1645
1646 exit->reason = NVMM_EXIT_NONE;
1647
1648 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1649 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1650
1651 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1652 goto error;
1653 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1654 goto error;
1655 } else if (__predict_false((val & XCR0_X87) == 0)) {
1656 goto error;
1657 }
1658
1659 cpudata->gxcr0 = val;
1660 if (vmx_xcr0_mask != 0) {
1661 wrxcr(0, cpudata->gxcr0);
1662 }
1663
1664 vmx_inkernel_advance();
1665 return;
1666
1667 error:
1668 vmx_inject_gp(vcpu);
1669 }
1670
1671 #define VMX_EPT_VIOLATION_READ __BIT(0)
1672 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1673 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1674
1675 static void
1676 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1677 struct nvmm_exit *exit)
1678 {
1679 uint64_t perm;
1680 gpaddr_t gpa;
1681
1682 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1683
1684 exit->reason = NVMM_EXIT_MEMORY;
1685 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1686 if (perm & VMX_EPT_VIOLATION_WRITE)
1687 exit->u.mem.prot = PROT_WRITE;
1688 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1689 exit->u.mem.prot = PROT_EXEC;
1690 else
1691 exit->u.mem.prot = PROT_READ;
1692 exit->u.mem.gpa = gpa;
1693 exit->u.mem.inst_len = 0;
1694
1695 vmx_vcpu_state_provide(vcpu,
1696 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1697 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1698 }
1699
1700 /* -------------------------------------------------------------------------- */
1701
1702 static void
1703 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1704 {
1705 struct vmx_cpudata *cpudata = vcpu->cpudata;
1706
1707 fpu_save();
1708 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1709
1710 if (vmx_xcr0_mask != 0) {
1711 cpudata->hxcr0 = rdxcr(0);
1712 wrxcr(0, cpudata->gxcr0);
1713 }
1714 }
1715
1716 static void
1717 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1718 {
1719 struct vmx_cpudata *cpudata = vcpu->cpudata;
1720
1721 if (vmx_xcr0_mask != 0) {
1722 cpudata->gxcr0 = rdxcr(0);
1723 wrxcr(0, cpudata->hxcr0);
1724 }
1725
1726 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1727 }
1728
1729 static void
1730 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1731 {
1732 struct vmx_cpudata *cpudata = vcpu->cpudata;
1733
1734 x86_dbregs_save(curlwp);
1735
1736 ldr7(0);
1737
1738 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1739 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1740 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1741 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1742 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1743 }
1744
1745 static void
1746 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1747 {
1748 struct vmx_cpudata *cpudata = vcpu->cpudata;
1749
1750 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1751 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1752 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1753 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1754 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1755
1756 x86_dbregs_restore(curlwp);
1757 }
1758
1759 static void
1760 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1761 {
1762 struct vmx_cpudata *cpudata = vcpu->cpudata;
1763
1764 /* This gets restored automatically by the CPU. */
1765 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1766 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1767 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1768
1769 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1770 }
1771
1772 static void
1773 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1774 {
1775 struct vmx_cpudata *cpudata = vcpu->cpudata;
1776
1777 wrmsr(MSR_STAR, cpudata->star);
1778 wrmsr(MSR_LSTAR, cpudata->lstar);
1779 wrmsr(MSR_CSTAR, cpudata->cstar);
1780 wrmsr(MSR_SFMASK, cpudata->sfmask);
1781 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1782 }
1783
1784 /* -------------------------------------------------------------------------- */
1785
1786 #define VMX_INVVPID_ADDRESS 0
1787 #define VMX_INVVPID_CONTEXT 1
1788 #define VMX_INVVPID_ALL 2
1789 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1790
1791 #define VMX_INVEPT_CONTEXT 1
1792 #define VMX_INVEPT_ALL 2
1793
1794 static inline void
1795 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1796 {
1797 struct vmx_cpudata *cpudata = vcpu->cpudata;
1798
1799 if (vcpu->hcpu_last != hcpu) {
1800 cpudata->gtlb_want_flush = true;
1801 }
1802 }
1803
1804 static inline void
1805 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1806 {
1807 struct vmx_cpudata *cpudata = vcpu->cpudata;
1808 struct ept_desc ept_desc;
1809
1810 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1811 return;
1812 }
1813
1814 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1815 ept_desc.mbz = 0;
1816 vmx_invept(vmx_ept_flush_op, &ept_desc);
1817 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1818 }
1819
1820 static inline uint64_t
1821 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1822 {
1823 struct ept_desc ept_desc;
1824 uint64_t machgen;
1825
1826 machgen = machdata->mach_htlb_gen;
1827 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1828 return machgen;
1829 }
1830
1831 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1832
1833 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1834 ept_desc.mbz = 0;
1835 vmx_invept(vmx_ept_flush_op, &ept_desc);
1836
1837 return machgen;
1838 }
1839
1840 static inline void
1841 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1842 {
1843 cpudata->vcpu_htlb_gen = machgen;
1844 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1845 }
1846
1847 static inline void
1848 vmx_exit_evt(struct vmx_cpudata *cpudata)
1849 {
1850 uint64_t info, err;
1851
1852 cpudata->evt_pending = false;
1853
1854 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1855 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1856 return;
1857 }
1858 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1859
1860 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1861 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1862
1863 cpudata->evt_pending = true;
1864 }
1865
1866 static int
1867 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1868 struct nvmm_exit *exit)
1869 {
1870 struct nvmm_comm_page *comm = vcpu->comm;
1871 struct vmx_machdata *machdata = mach->machdata;
1872 struct vmx_cpudata *cpudata = vcpu->cpudata;
1873 struct vpid_desc vpid_desc;
1874 struct cpu_info *ci;
1875 uint64_t exitcode;
1876 uint64_t intstate;
1877 uint64_t machgen;
1878 int hcpu, s, ret;
1879 bool launched;
1880
1881 vmx_vmcs_enter(vcpu);
1882
1883 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1884 vmx_vmcs_leave(vcpu);
1885 return EINVAL;
1886 }
1887 vmx_vcpu_state_commit(vcpu);
1888 comm->state_cached = 0;
1889
1890 ci = curcpu();
1891 hcpu = cpu_number();
1892 launched = cpudata->vmcs_launched;
1893
1894 vmx_gtlb_catchup(vcpu, hcpu);
1895 vmx_htlb_catchup(vcpu, hcpu);
1896
1897 if (vcpu->hcpu_last != hcpu) {
1898 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1899 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1900 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1901 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1902 cpudata->gtsc_want_update = true;
1903 vcpu->hcpu_last = hcpu;
1904 }
1905
1906 vmx_vcpu_guest_dbregs_enter(vcpu);
1907 vmx_vcpu_guest_misc_enter(vcpu);
1908 vmx_vcpu_guest_fpu_enter(vcpu);
1909
1910 while (1) {
1911 if (cpudata->gtlb_want_flush) {
1912 vpid_desc.vpid = cpudata->asid;
1913 vpid_desc.addr = 0;
1914 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1915 cpudata->gtlb_want_flush = false;
1916 }
1917
1918 if (__predict_false(cpudata->gtsc_want_update)) {
1919 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1920 cpudata->gtsc_want_update = false;
1921 }
1922
1923 s = splhigh();
1924 machgen = vmx_htlb_flush(machdata, cpudata);
1925 lcr2(cpudata->gcr2);
1926 if (launched) {
1927 ret = vmx_vmresume(cpudata->gprs);
1928 } else {
1929 ret = vmx_vmlaunch(cpudata->gprs);
1930 }
1931 cpudata->gcr2 = rcr2();
1932 vmx_htlb_flush_ack(cpudata, machgen);
1933 splx(s);
1934
1935 if (__predict_false(ret != 0)) {
1936 vmx_exit_invalid(exit, -1);
1937 break;
1938 }
1939 vmx_exit_evt(cpudata);
1940
1941 launched = true;
1942
1943 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1944 exitcode &= __BITS(15,0);
1945
1946 switch (exitcode) {
1947 case VMCS_EXITCODE_EXC_NMI:
1948 vmx_exit_exc_nmi(mach, vcpu, exit);
1949 break;
1950 case VMCS_EXITCODE_EXT_INT:
1951 exit->reason = NVMM_EXIT_NONE;
1952 break;
1953 case VMCS_EXITCODE_CPUID:
1954 vmx_exit_cpuid(mach, vcpu, exit);
1955 break;
1956 case VMCS_EXITCODE_HLT:
1957 vmx_exit_hlt(mach, vcpu, exit);
1958 break;
1959 case VMCS_EXITCODE_CR:
1960 vmx_exit_cr(mach, vcpu, exit);
1961 break;
1962 case VMCS_EXITCODE_IO:
1963 vmx_exit_io(mach, vcpu, exit);
1964 break;
1965 case VMCS_EXITCODE_RDMSR:
1966 vmx_exit_msr(mach, vcpu, exit, true);
1967 break;
1968 case VMCS_EXITCODE_WRMSR:
1969 vmx_exit_msr(mach, vcpu, exit, false);
1970 break;
1971 case VMCS_EXITCODE_SHUTDOWN:
1972 exit->reason = NVMM_EXIT_SHUTDOWN;
1973 break;
1974 case VMCS_EXITCODE_MONITOR:
1975 exit->reason = NVMM_EXIT_MONITOR;
1976 break;
1977 case VMCS_EXITCODE_MWAIT:
1978 exit->reason = NVMM_EXIT_MWAIT;
1979 break;
1980 case VMCS_EXITCODE_XSETBV:
1981 vmx_exit_xsetbv(mach, vcpu, exit);
1982 break;
1983 case VMCS_EXITCODE_RDPMC:
1984 case VMCS_EXITCODE_RDTSCP:
1985 case VMCS_EXITCODE_INVVPID:
1986 case VMCS_EXITCODE_INVEPT:
1987 case VMCS_EXITCODE_VMCALL:
1988 case VMCS_EXITCODE_VMCLEAR:
1989 case VMCS_EXITCODE_VMLAUNCH:
1990 case VMCS_EXITCODE_VMPTRLD:
1991 case VMCS_EXITCODE_VMPTRST:
1992 case VMCS_EXITCODE_VMREAD:
1993 case VMCS_EXITCODE_VMRESUME:
1994 case VMCS_EXITCODE_VMWRITE:
1995 case VMCS_EXITCODE_VMXOFF:
1996 case VMCS_EXITCODE_VMXON:
1997 vmx_inject_ud(vcpu);
1998 exit->reason = NVMM_EXIT_NONE;
1999 break;
2000 case VMCS_EXITCODE_EPT_VIOLATION:
2001 vmx_exit_epf(mach, vcpu, exit);
2002 break;
2003 case VMCS_EXITCODE_INT_WINDOW:
2004 vmx_event_waitexit_disable(vcpu, false);
2005 exit->reason = NVMM_EXIT_INT_READY;
2006 break;
2007 case VMCS_EXITCODE_NMI_WINDOW:
2008 vmx_event_waitexit_disable(vcpu, true);
2009 exit->reason = NVMM_EXIT_NMI_READY;
2010 break;
2011 default:
2012 vmx_exit_invalid(exit, exitcode);
2013 break;
2014 }
2015
2016 /* If no reason to return to userland, keep rolling. */
2017 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2018 break;
2019 }
2020 if (curcpu()->ci_data.cpu_softints != 0) {
2021 break;
2022 }
2023 if (curlwp->l_flag & LW_USERRET) {
2024 break;
2025 }
2026 if (exit->reason != NVMM_EXIT_NONE) {
2027 break;
2028 }
2029 }
2030
2031 cpudata->vmcs_launched = launched;
2032
2033 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2034
2035 vmx_vcpu_guest_fpu_leave(vcpu);
2036 vmx_vcpu_guest_misc_leave(vcpu);
2037 vmx_vcpu_guest_dbregs_leave(vcpu);
2038
2039 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2040 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2041 vmx_vmread(VMCS_GUEST_RFLAGS);
2042 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2043 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2044 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2045 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2046 cpudata->int_window_exit;
2047 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2048 cpudata->nmi_window_exit;
2049 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2050 cpudata->evt_pending;
2051
2052 vmx_vmcs_leave(vcpu);
2053
2054 return 0;
2055 }
2056
2057 /* -------------------------------------------------------------------------- */
2058
2059 static int
2060 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2061 {
2062 struct pglist pglist;
2063 paddr_t _pa;
2064 vaddr_t _va;
2065 size_t i;
2066 int ret;
2067
2068 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2069 &pglist, 1, 0);
2070 if (ret != 0)
2071 return ENOMEM;
2072 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2073 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2074 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2075 if (_va == 0)
2076 goto error;
2077
2078 for (i = 0; i < npages; i++) {
2079 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2080 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2081 }
2082 pmap_update(pmap_kernel());
2083
2084 memset((void *)_va, 0, npages * PAGE_SIZE);
2085
2086 *pa = _pa;
2087 *va = _va;
2088 return 0;
2089
2090 error:
2091 for (i = 0; i < npages; i++) {
2092 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2093 }
2094 return ENOMEM;
2095 }
2096
2097 static void
2098 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2099 {
2100 size_t i;
2101
2102 pmap_kremove(va, npages * PAGE_SIZE);
2103 pmap_update(pmap_kernel());
2104 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2105 for (i = 0; i < npages; i++) {
2106 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2107 }
2108 }
2109
2110 /* -------------------------------------------------------------------------- */
2111
2112 static void
2113 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2114 {
2115 uint64_t byte;
2116 uint8_t bitoff;
2117
2118 if (msr < 0x00002000) {
2119 /* Range 1 */
2120 byte = ((msr - 0x00000000) / 8) + 0;
2121 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2122 /* Range 2 */
2123 byte = ((msr - 0xC0000000) / 8) + 1024;
2124 } else {
2125 panic("%s: wrong range", __func__);
2126 }
2127
2128 bitoff = (msr & 0x7);
2129
2130 if (read) {
2131 bitmap[byte] &= ~__BIT(bitoff);
2132 }
2133 if (write) {
2134 bitmap[2048 + byte] &= ~__BIT(bitoff);
2135 }
2136 }
2137
2138 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2139 #define VMX_SEG_ATTRIB_S __BIT(4)
2140 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2141 #define VMX_SEG_ATTRIB_P __BIT(7)
2142 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2143 #define VMX_SEG_ATTRIB_L __BIT(13)
2144 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2145 #define VMX_SEG_ATTRIB_G __BIT(15)
2146 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2147
2148 static void
2149 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2150 {
2151 uint64_t attrib;
2152
2153 attrib =
2154 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2155 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2156 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2157 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2158 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2159 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2160 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2161 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2162 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2163
2164 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2165 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2166 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2167 }
2168 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2169 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2170 }
2171
2172 static void
2173 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2174 {
2175 uint64_t selector = 0, attrib = 0, base, limit;
2176
2177 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2178 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2179 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2180 }
2181 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2182 base = vmx_vmread(vmx_guest_segs[idx].base);
2183
2184 segs[idx].selector = selector;
2185 segs[idx].limit = limit;
2186 segs[idx].base = base;
2187 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2188 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2189 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2190 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2191 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2192 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2193 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2194 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2195 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2196 segs[idx].attrib.p = 0;
2197 }
2198 }
2199
2200 static inline bool
2201 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2202 {
2203 uint64_t cr0, cr3, cr4, efer;
2204
2205 if (flags & NVMM_X64_STATE_CRS) {
2206 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2207 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2208 return true;
2209 }
2210 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2211 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2212 return true;
2213 }
2214 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2215 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2216 return true;
2217 }
2218 }
2219
2220 if (flags & NVMM_X64_STATE_MSRS) {
2221 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2222 if ((efer ^
2223 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2224 return true;
2225 }
2226 }
2227
2228 return false;
2229 }
2230
2231 static void
2232 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2233 {
2234 struct nvmm_comm_page *comm = vcpu->comm;
2235 const struct nvmm_x64_state *state = &comm->state;
2236 struct vmx_cpudata *cpudata = vcpu->cpudata;
2237 struct fxsave *fpustate;
2238 uint64_t ctls1, intstate;
2239 uint64_t flags;
2240
2241 flags = comm->state_wanted;
2242
2243 vmx_vmcs_enter(vcpu);
2244
2245 if (vmx_state_tlb_flush(state, flags)) {
2246 cpudata->gtlb_want_flush = true;
2247 }
2248
2249 if (flags & NVMM_X64_STATE_SEGS) {
2250 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2251 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2252 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2253 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2254 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2255 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2256 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2257 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2258 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2259 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2260 }
2261
2262 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2263 if (flags & NVMM_X64_STATE_GPRS) {
2264 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2265
2266 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2267 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2268 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2269 }
2270
2271 if (flags & NVMM_X64_STATE_CRS) {
2272 /*
2273 * CR0_NE and CR4_VMXE are mandatory.
2274 */
2275 vmx_vmwrite(VMCS_GUEST_CR0,
2276 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2277 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2278 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2279 vmx_vmwrite(VMCS_GUEST_CR4,
2280 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2281 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2282
2283 if (vmx_xcr0_mask != 0) {
2284 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2285 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2286 cpudata->gxcr0 &= vmx_xcr0_mask;
2287 cpudata->gxcr0 |= XCR0_X87;
2288 }
2289 }
2290
2291 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2292 if (flags & NVMM_X64_STATE_DRS) {
2293 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2294
2295 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2296 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2297 }
2298
2299 if (flags & NVMM_X64_STATE_MSRS) {
2300 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2301 state->msrs[NVMM_X64_MSR_STAR];
2302 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2303 state->msrs[NVMM_X64_MSR_LSTAR];
2304 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2305 state->msrs[NVMM_X64_MSR_CSTAR];
2306 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2307 state->msrs[NVMM_X64_MSR_SFMASK];
2308 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2309 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2310
2311 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2312 state->msrs[NVMM_X64_MSR_EFER]);
2313 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2314 state->msrs[NVMM_X64_MSR_PAT]);
2315 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2316 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2317 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2318 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2319 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2320 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2321
2322 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2323 cpudata->gtsc_want_update = true;
2324
2325 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2326 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2327 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2328 ctls1 |= ENTRY_CTLS_LONG_MODE;
2329 } else {
2330 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2331 }
2332 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2333 }
2334
2335 if (flags & NVMM_X64_STATE_INTR) {
2336 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2337 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2338 if (state->intr.int_shadow) {
2339 intstate |= INT_STATE_MOVSS;
2340 }
2341 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2342
2343 if (state->intr.int_window_exiting) {
2344 vmx_event_waitexit_enable(vcpu, false);
2345 } else {
2346 vmx_event_waitexit_disable(vcpu, false);
2347 }
2348
2349 if (state->intr.nmi_window_exiting) {
2350 vmx_event_waitexit_enable(vcpu, true);
2351 } else {
2352 vmx_event_waitexit_disable(vcpu, true);
2353 }
2354 }
2355
2356 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2357 if (flags & NVMM_X64_STATE_FPU) {
2358 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2359 sizeof(state->fpu));
2360
2361 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2362 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2363 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2364
2365 if (vmx_xcr0_mask != 0) {
2366 /* Reset XSTATE_BV, to force a reload. */
2367 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2368 }
2369 }
2370
2371 vmx_vmcs_leave(vcpu);
2372
2373 comm->state_wanted = 0;
2374 comm->state_cached |= flags;
2375 }
2376
2377 static void
2378 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2379 {
2380 struct nvmm_comm_page *comm = vcpu->comm;
2381 struct nvmm_x64_state *state = &comm->state;
2382 struct vmx_cpudata *cpudata = vcpu->cpudata;
2383 uint64_t intstate, flags;
2384
2385 flags = comm->state_wanted;
2386
2387 vmx_vmcs_enter(vcpu);
2388
2389 if (flags & NVMM_X64_STATE_SEGS) {
2390 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2391 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2392 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2393 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2394 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2395 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2396 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2397 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2398 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2399 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2400 }
2401
2402 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2403 if (flags & NVMM_X64_STATE_GPRS) {
2404 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2405
2406 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2407 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2408 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2409 }
2410
2411 if (flags & NVMM_X64_STATE_CRS) {
2412 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2413 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2414 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2415 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2416 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2417 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2418
2419 /* Hide VMXE. */
2420 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2421 }
2422
2423 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2424 if (flags & NVMM_X64_STATE_DRS) {
2425 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2426
2427 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2428 }
2429
2430 if (flags & NVMM_X64_STATE_MSRS) {
2431 state->msrs[NVMM_X64_MSR_STAR] =
2432 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2433 state->msrs[NVMM_X64_MSR_LSTAR] =
2434 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2435 state->msrs[NVMM_X64_MSR_CSTAR] =
2436 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2437 state->msrs[NVMM_X64_MSR_SFMASK] =
2438 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2439 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2440 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2441 state->msrs[NVMM_X64_MSR_EFER] =
2442 vmx_vmread(VMCS_GUEST_IA32_EFER);
2443 state->msrs[NVMM_X64_MSR_PAT] =
2444 vmx_vmread(VMCS_GUEST_IA32_PAT);
2445 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2446 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2447 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2448 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2449 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2450 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2451 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2452 }
2453
2454 if (flags & NVMM_X64_STATE_INTR) {
2455 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2456 state->intr.int_shadow =
2457 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2458 state->intr.int_window_exiting = cpudata->int_window_exit;
2459 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2460 state->intr.evt_pending = cpudata->evt_pending;
2461 }
2462
2463 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2464 if (flags & NVMM_X64_STATE_FPU) {
2465 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2466 sizeof(state->fpu));
2467 }
2468
2469 vmx_vmcs_leave(vcpu);
2470
2471 comm->state_wanted = 0;
2472 comm->state_cached |= flags;
2473 }
2474
2475 static void
2476 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2477 {
2478 vcpu->comm->state_wanted = flags;
2479 vmx_vcpu_getstate(vcpu);
2480 }
2481
2482 static void
2483 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2484 {
2485 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2486 vcpu->comm->state_commit = 0;
2487 vmx_vcpu_setstate(vcpu);
2488 }
2489
2490 /* -------------------------------------------------------------------------- */
2491
2492 static void
2493 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2494 {
2495 struct vmx_cpudata *cpudata = vcpu->cpudata;
2496 size_t i, oct, bit;
2497
2498 mutex_enter(&vmx_asidlock);
2499
2500 for (i = 0; i < vmx_maxasid; i++) {
2501 oct = i / 8;
2502 bit = i % 8;
2503
2504 if (vmx_asidmap[oct] & __BIT(bit)) {
2505 continue;
2506 }
2507
2508 cpudata->asid = i;
2509
2510 vmx_asidmap[oct] |= __BIT(bit);
2511 vmx_vmwrite(VMCS_VPID, i);
2512 mutex_exit(&vmx_asidlock);
2513 return;
2514 }
2515
2516 mutex_exit(&vmx_asidlock);
2517
2518 panic("%s: impossible", __func__);
2519 }
2520
2521 static void
2522 vmx_asid_free(struct nvmm_cpu *vcpu)
2523 {
2524 size_t oct, bit;
2525 uint64_t asid;
2526
2527 asid = vmx_vmread(VMCS_VPID);
2528
2529 oct = asid / 8;
2530 bit = asid % 8;
2531
2532 mutex_enter(&vmx_asidlock);
2533 vmx_asidmap[oct] &= ~__BIT(bit);
2534 mutex_exit(&vmx_asidlock);
2535 }
2536
2537 static void
2538 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2539 {
2540 struct vmx_cpudata *cpudata = vcpu->cpudata;
2541 struct vmcs *vmcs = cpudata->vmcs;
2542 struct msr_entry *gmsr = cpudata->gmsr;
2543 extern uint8_t vmx_resume_rip;
2544 uint64_t rev, eptp;
2545
2546 rev = vmx_get_revision();
2547
2548 memset(vmcs, 0, VMCS_SIZE);
2549 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2550 vmcs->abort = 0;
2551
2552 vmx_vmcs_enter(vcpu);
2553
2554 /* No link pointer. */
2555 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2556
2557 /* Install the CTLSs. */
2558 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2559 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2560 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2561 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2562 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2563
2564 /* Allow direct access to certain MSRs. */
2565 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2566 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2567 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2568 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2569 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2570 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2571 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2572 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2573 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2574 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2575 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2576 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2577 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2578 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2579 true, false);
2580 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2581
2582 /*
2583 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2584 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2585 */
2586 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2587 gmsr[VMX_MSRLIST_STAR].val = 0;
2588 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2589 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2590 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2591 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2592 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2593 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2594 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2595 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2596 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2597 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2598 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2599 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2600 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2601 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2602
2603 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2604 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2605 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2606
2607 /* Force CR4_VMXE to zero. */
2608 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2609
2610 /* Set the Host state for resuming. */
2611 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2612 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2613 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2614 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2615 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2616 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2617 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2618 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2619 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2620 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2621 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2622 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2623 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2624 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2625
2626 /* Generate ASID. */
2627 vmx_asid_alloc(vcpu);
2628
2629 /* Enable Extended Paging, 4-Level. */
2630 eptp =
2631 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2632 __SHIFTIN(4-1, EPTP_WALKLEN) |
2633 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2634 mach->vm->vm_map.pmap->pm_pdirpa[0];
2635 vmx_vmwrite(VMCS_EPTP, eptp);
2636
2637 /* Init IA32_MISC_ENABLE. */
2638 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2639 cpudata->gmsr_misc_enable &=
2640 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2641 cpudata->gmsr_misc_enable |=
2642 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2643
2644 /* Init XSAVE header. */
2645 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2646 cpudata->gfpu.xsh_xcomp_bv = 0;
2647
2648 /* These MSRs are static. */
2649 cpudata->star = rdmsr(MSR_STAR);
2650 cpudata->lstar = rdmsr(MSR_LSTAR);
2651 cpudata->cstar = rdmsr(MSR_CSTAR);
2652 cpudata->sfmask = rdmsr(MSR_SFMASK);
2653
2654 /* Install the RESET state. */
2655 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2656 sizeof(nvmm_x86_reset_state));
2657 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2658 vcpu->comm->state_cached = 0;
2659 vmx_vcpu_setstate(vcpu);
2660
2661 vmx_vmcs_leave(vcpu);
2662 }
2663
2664 static int
2665 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2666 {
2667 struct vmx_cpudata *cpudata;
2668 int error;
2669
2670 /* Allocate the VMX cpudata. */
2671 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2672 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2673 UVM_KMF_WIRED|UVM_KMF_ZERO);
2674 vcpu->cpudata = cpudata;
2675
2676 /* VMCS */
2677 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2678 VMCS_NPAGES);
2679 if (error)
2680 goto error;
2681
2682 /* MSR Bitmap */
2683 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2684 MSRBM_NPAGES);
2685 if (error)
2686 goto error;
2687
2688 /* Guest MSR List */
2689 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2690 if (error)
2691 goto error;
2692
2693 kcpuset_create(&cpudata->htlb_want_flush, true);
2694
2695 /* Init the VCPU info. */
2696 vmx_vcpu_init(mach, vcpu);
2697
2698 return 0;
2699
2700 error:
2701 if (cpudata->vmcs_pa) {
2702 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2703 VMCS_NPAGES);
2704 }
2705 if (cpudata->msrbm_pa) {
2706 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2707 MSRBM_NPAGES);
2708 }
2709 if (cpudata->gmsr_pa) {
2710 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2711 }
2712
2713 kmem_free(cpudata, sizeof(*cpudata));
2714 return error;
2715 }
2716
2717 static void
2718 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2719 {
2720 struct vmx_cpudata *cpudata = vcpu->cpudata;
2721
2722 vmx_vmcs_enter(vcpu);
2723 vmx_asid_free(vcpu);
2724 vmx_vmcs_destroy(vcpu);
2725
2726 kcpuset_destroy(cpudata->htlb_want_flush);
2727
2728 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2729 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2730 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2731 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2732 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2733 }
2734
2735 /* -------------------------------------------------------------------------- */
2736
2737 static void
2738 vmx_tlb_flush(struct pmap *pm)
2739 {
2740 struct nvmm_machine *mach = pm->pm_data;
2741 struct vmx_machdata *machdata = mach->machdata;
2742
2743 atomic_inc_64(&machdata->mach_htlb_gen);
2744
2745 /* Generates IPIs, which cause #VMEXITs. */
2746 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2747 }
2748
2749 static void
2750 vmx_machine_create(struct nvmm_machine *mach)
2751 {
2752 struct pmap *pmap = mach->vm->vm_map.pmap;
2753 struct vmx_machdata *machdata;
2754
2755 /* Convert to EPT. */
2756 pmap_ept_transform(pmap);
2757
2758 /* Fill in pmap info. */
2759 pmap->pm_data = (void *)mach;
2760 pmap->pm_tlb_flush = vmx_tlb_flush;
2761
2762 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2763 mach->machdata = machdata;
2764
2765 /* Start with an hTLB flush everywhere. */
2766 machdata->mach_htlb_gen = 1;
2767 }
2768
2769 static void
2770 vmx_machine_destroy(struct nvmm_machine *mach)
2771 {
2772 struct vmx_machdata *machdata = mach->machdata;
2773
2774 kmem_free(machdata, sizeof(struct vmx_machdata));
2775 }
2776
2777 static int
2778 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2779 {
2780 struct nvmm_mach_conf_x86_cpuid *cpuid = data;
2781 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2782 size_t i;
2783
2784 if (__predict_false(op != NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID))) {
2785 return EINVAL;
2786 }
2787
2788 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2789 (cpuid->set.ebx & cpuid->del.ebx) ||
2790 (cpuid->set.ecx & cpuid->del.ecx) ||
2791 (cpuid->set.edx & cpuid->del.edx))) {
2792 return EINVAL;
2793 }
2794
2795 /* If already here, replace. */
2796 for (i = 0; i < VMX_NCPUIDS; i++) {
2797 if (!machdata->cpuidpresent[i]) {
2798 continue;
2799 }
2800 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2801 memcpy(&machdata->cpuid[i], cpuid,
2802 sizeof(struct nvmm_mach_conf_x86_cpuid));
2803 return 0;
2804 }
2805 }
2806
2807 /* Not here, insert. */
2808 for (i = 0; i < VMX_NCPUIDS; i++) {
2809 if (!machdata->cpuidpresent[i]) {
2810 machdata->cpuidpresent[i] = true;
2811 memcpy(&machdata->cpuid[i], cpuid,
2812 sizeof(struct nvmm_mach_conf_x86_cpuid));
2813 return 0;
2814 }
2815 }
2816
2817 return ENOBUFS;
2818 }
2819
2820 /* -------------------------------------------------------------------------- */
2821
2822 static int
2823 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2824 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2825 {
2826 uint64_t basic, val, true_val;
2827 bool one_allowed, zero_allowed, has_true;
2828 size_t i;
2829
2830 basic = rdmsr(MSR_IA32_VMX_BASIC);
2831 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2832
2833 val = rdmsr(msr_ctls);
2834 if (has_true) {
2835 true_val = rdmsr(msr_true_ctls);
2836 } else {
2837 true_val = val;
2838 }
2839
2840 #define ONE_ALLOWED(msrval, bitoff) \
2841 ((msrval & __BIT(32 + bitoff)) != 0)
2842 #define ZERO_ALLOWED(msrval, bitoff) \
2843 ((msrval & __BIT(bitoff)) == 0)
2844
2845 for (i = 0; i < 32; i++) {
2846 one_allowed = ONE_ALLOWED(true_val, i);
2847 zero_allowed = ZERO_ALLOWED(true_val, i);
2848
2849 if (zero_allowed && !one_allowed) {
2850 if (set_one & __BIT(i))
2851 return -1;
2852 *res &= ~__BIT(i);
2853 } else if (one_allowed && !zero_allowed) {
2854 if (set_zero & __BIT(i))
2855 return -1;
2856 *res |= __BIT(i);
2857 } else {
2858 if (set_zero & __BIT(i)) {
2859 *res &= ~__BIT(i);
2860 } else if (set_one & __BIT(i)) {
2861 *res |= __BIT(i);
2862 } else if (!has_true) {
2863 *res &= ~__BIT(i);
2864 } else if (ZERO_ALLOWED(val, i)) {
2865 *res &= ~__BIT(i);
2866 } else if (ONE_ALLOWED(val, i)) {
2867 *res |= __BIT(i);
2868 } else {
2869 return -1;
2870 }
2871 }
2872 }
2873
2874 return 0;
2875 }
2876
2877 static bool
2878 vmx_ident(void)
2879 {
2880 uint64_t msr;
2881 int ret;
2882
2883 if (!(cpu_feature[1] & CPUID2_VMX)) {
2884 return false;
2885 }
2886
2887 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2888 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2889 return false;
2890 }
2891 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
2892 return false;
2893 }
2894
2895 msr = rdmsr(MSR_IA32_VMX_BASIC);
2896 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2897 return false;
2898 }
2899 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2900 return false;
2901 }
2902
2903 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2904 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2905 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2906 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2907 if (ret == -1) {
2908 return false;
2909 }
2910
2911 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2912 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2913 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2914 if (ret == -1) {
2915 return false;
2916 }
2917
2918 /* Init the CTLSs right now, and check for errors. */
2919 ret = vmx_init_ctls(
2920 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2921 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2922 &vmx_pinbased_ctls);
2923 if (ret == -1) {
2924 return false;
2925 }
2926 ret = vmx_init_ctls(
2927 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2928 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2929 &vmx_procbased_ctls);
2930 if (ret == -1) {
2931 return false;
2932 }
2933 ret = vmx_init_ctls(
2934 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2935 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2936 &vmx_procbased_ctls2);
2937 if (ret == -1) {
2938 return false;
2939 }
2940 ret = vmx_init_ctls(
2941 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2942 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2943 &vmx_entry_ctls);
2944 if (ret == -1) {
2945 return false;
2946 }
2947 ret = vmx_init_ctls(
2948 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2949 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2950 &vmx_exit_ctls);
2951 if (ret == -1) {
2952 return false;
2953 }
2954
2955 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2956 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2957 return false;
2958 }
2959 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2960 return false;
2961 }
2962 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2963 return false;
2964 }
2965 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2966 pmap_ept_has_ad = true;
2967 } else {
2968 pmap_ept_has_ad = false;
2969 }
2970 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2971 return false;
2972 }
2973
2974 return true;
2975 }
2976
2977 static void
2978 vmx_init_asid(uint32_t maxasid)
2979 {
2980 size_t allocsz;
2981
2982 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2983
2984 vmx_maxasid = maxasid;
2985 allocsz = roundup(maxasid, 8) / 8;
2986 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2987
2988 /* ASID 0 is reserved for the host. */
2989 vmx_asidmap[0] |= __BIT(0);
2990 }
2991
2992 static void
2993 vmx_change_cpu(void *arg1, void *arg2)
2994 {
2995 struct cpu_info *ci = curcpu();
2996 bool enable = (bool)arg1;
2997 uint64_t cr4;
2998
2999 if (!enable) {
3000 vmx_vmxoff();
3001 }
3002
3003 cr4 = rcr4();
3004 if (enable) {
3005 cr4 |= CR4_VMXE;
3006 } else {
3007 cr4 &= ~CR4_VMXE;
3008 }
3009 lcr4(cr4);
3010
3011 if (enable) {
3012 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3013 }
3014 }
3015
3016 static void
3017 vmx_init_l1tf(void)
3018 {
3019 u_int descs[4];
3020 uint64_t msr;
3021
3022 if (cpuid_level < 7) {
3023 return;
3024 }
3025
3026 x86_cpuid(7, descs);
3027
3028 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3029 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3030 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3031 /* No mitigation needed. */
3032 return;
3033 }
3034 }
3035
3036 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3037 /* Enable hardware mitigation. */
3038 vmx_msrlist_entry_nmsr += 1;
3039 }
3040 }
3041
3042 static void
3043 vmx_init(void)
3044 {
3045 CPU_INFO_ITERATOR cii;
3046 struct cpu_info *ci;
3047 uint64_t xc, msr;
3048 struct vmxon *vmxon;
3049 uint32_t revision;
3050 paddr_t pa;
3051 vaddr_t va;
3052 int error;
3053
3054 /* Init the ASID bitmap (VPID). */
3055 vmx_init_asid(VPID_MAX);
3056
3057 /* Init the XCR0 mask. */
3058 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3059
3060 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3061 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3062 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3063 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3064 } else {
3065 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3066 }
3067 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3068 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3069 } else {
3070 vmx_ept_flush_op = VMX_INVEPT_ALL;
3071 }
3072 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3073 vmx_eptp_type = EPTP_TYPE_WB;
3074 } else {
3075 vmx_eptp_type = EPTP_TYPE_UC;
3076 }
3077
3078 /* Init the L1TF mitigation. */
3079 vmx_init_l1tf();
3080
3081 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3082 revision = vmx_get_revision();
3083
3084 for (CPU_INFO_FOREACH(cii, ci)) {
3085 error = vmx_memalloc(&pa, &va, 1);
3086 if (error) {
3087 panic("%s: out of memory", __func__);
3088 }
3089 vmxoncpu[cpu_index(ci)].pa = pa;
3090 vmxoncpu[cpu_index(ci)].va = va;
3091
3092 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3093 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3094 }
3095
3096 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3097 xc_wait(xc);
3098 }
3099
3100 static void
3101 vmx_fini_asid(void)
3102 {
3103 size_t allocsz;
3104
3105 allocsz = roundup(vmx_maxasid, 8) / 8;
3106 kmem_free(vmx_asidmap, allocsz);
3107
3108 mutex_destroy(&vmx_asidlock);
3109 }
3110
3111 static void
3112 vmx_fini(void)
3113 {
3114 uint64_t xc;
3115 size_t i;
3116
3117 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3118 xc_wait(xc);
3119
3120 for (i = 0; i < MAXCPUS; i++) {
3121 if (vmxoncpu[i].pa != 0)
3122 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3123 }
3124
3125 vmx_fini_asid();
3126 }
3127
3128 static void
3129 vmx_capability(struct nvmm_capability *cap)
3130 {
3131 cap->arch.xcr0_mask = vmx_xcr0_mask;
3132 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3133 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3134 }
3135
3136 const struct nvmm_impl nvmm_x86_vmx = {
3137 .ident = vmx_ident,
3138 .init = vmx_init,
3139 .fini = vmx_fini,
3140 .capability = vmx_capability,
3141 .conf_max = NVMM_X86_NCONF,
3142 .conf_sizes = vmx_conf_sizes,
3143 .state_size = sizeof(struct nvmm_x64_state),
3144 .machine_create = vmx_machine_create,
3145 .machine_destroy = vmx_machine_destroy,
3146 .machine_configure = vmx_machine_configure,
3147 .vcpu_create = vmx_vcpu_create,
3148 .vcpu_destroy = vmx_vcpu_destroy,
3149 .vcpu_setstate = vmx_vcpu_setstate,
3150 .vcpu_getstate = vmx_vcpu_getstate,
3151 .vcpu_inject = vmx_vcpu_inject,
3152 .vcpu_run = vmx_vcpu_run
3153 };
3154