Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.4
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.4 2019/02/15 13:17:05 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.4 2019/02/15 13:17:05 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 
     42 #include <uvm/uvm.h>
     43 #include <uvm/uvm_page.h>
     44 
     45 #include <x86/cputypes.h>
     46 #include <x86/specialreg.h>
     47 #include <x86/pmap.h>
     48 #include <x86/dbregs.h>
     49 #include <x86/cpu_counter.h>
     50 #include <machine/cpuvar.h>
     51 
     52 #include <dev/nvmm/nvmm.h>
     53 #include <dev/nvmm/nvmm_internal.h>
     54 #include <dev/nvmm/x86/nvmm_x86.h>
     55 
     56 int _vmx_vmxon(paddr_t *pa);
     57 int _vmx_vmxoff(void);
     58 int _vmx_invept(uint64_t op, void *desc);
     59 int _vmx_invvpid(uint64_t op, void *desc);
     60 int _vmx_vmread(uint64_t op, uint64_t *val);
     61 int _vmx_vmwrite(uint64_t op, uint64_t val);
     62 int _vmx_vmptrld(paddr_t *pa);
     63 int _vmx_vmptrst(paddr_t *pa);
     64 int _vmx_vmclear(paddr_t *pa);
     65 int vmx_vmlaunch(uint64_t *gprs);
     66 int vmx_vmresume(uint64_t *gprs);
     67 
     68 #define vmx_vmxon(a) \
     69 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     70 		panic("%s: VMXON failed", __func__); \
     71 	}
     72 #define vmx_vmxoff() \
     73 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     74 		panic("%s: VMXOFF failed", __func__); \
     75 	}
     76 #define vmx_invept(a, b) \
     77 	if (__predict_false(_vmx_invept(a, b) != 0)) { \
     78 		panic("%s: INVEPT failed", __func__); \
     79 	}
     80 #define vmx_invvpid(a, b) \
     81 	if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
     82 		panic("%s: INVVPID failed", __func__); \
     83 	}
     84 #define vmx_vmread(a, b) \
     85 	if (__predict_false(_vmx_vmread(a, b) != 0)) { \
     86 		panic("%s: VMREAD failed", __func__); \
     87 	}
     88 #define vmx_vmwrite(a, b) \
     89 	if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
     90 		panic("%s: VMWRITE failed", __func__); \
     91 	}
     92 #define vmx_vmptrld(a) \
     93 	if (__predict_false(_vmx_vmptrld(a) != 0)) { \
     94 		panic("%s: VMPTRLD failed", __func__); \
     95 	}
     96 #define vmx_vmptrst(a) \
     97 	if (__predict_false(_vmx_vmptrst(a) != 0)) { \
     98 		panic("%s: VMPTRST failed", __func__); \
     99 	}
    100 #define vmx_vmclear(a) \
    101 	if (__predict_false(_vmx_vmclear(a) != 0)) { \
    102 		panic("%s: VMCLEAR failed", __func__); \
    103 	}
    104 
    105 #define MSR_IA32_FEATURE_CONTROL	0x003A
    106 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    107 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    108 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    109 
    110 #define MSR_IA32_VMX_BASIC		0x0480
    111 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    112 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    113 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    114 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    115 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    116 #define			MEM_TYPE_UC		0
    117 #define			MEM_TYPE_WB		6
    118 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    119 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    120 
    121 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    122 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    123 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    124 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    125 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    126 
    127 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    128 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    129 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    130 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    131 
    132 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    133 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    134 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    135 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    136 
    137 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    138 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    139 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    140 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    141 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    142 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    143 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    144 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    145 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    146 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    147 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    148 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    149 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    150 
    151 /* -------------------------------------------------------------------------- */
    152 
    153 /* 16-bit control fields */
    154 #define VMCS_VPID				0x00000000
    155 #define VMCS_PIR_VECTOR				0x00000002
    156 #define VMCS_EPTP_INDEX				0x00000004
    157 /* 16-bit guest-state fields */
    158 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    159 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    160 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    161 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    162 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    163 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    164 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    165 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    166 #define VMCS_GUEST_INTR_STATUS			0x00000810
    167 #define VMCS_PML_INDEX				0x00000812
    168 /* 16-bit host-state fields */
    169 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    170 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    171 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    172 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    173 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    174 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    175 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    176 /* 64-bit control fields */
    177 #define VMCS_IO_BITMAP_A			0x00002000
    178 #define VMCS_IO_BITMAP_B			0x00002002
    179 #define VMCS_MSR_BITMAP				0x00002004
    180 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    181 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    182 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    183 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    184 #define VMCS_PML_ADDRESS			0x0000200E
    185 #define VMCS_TSC_OFFSET				0x00002010
    186 #define VMCS_VIRTUAL_APIC			0x00002012
    187 #define VMCS_APIC_ACCESS			0x00002014
    188 #define VMCS_PIR_DESC				0x00002016
    189 #define VMCS_VM_CONTROL				0x00002018
    190 #define VMCS_EPTP				0x0000201A
    191 #define		EPTP_TYPE			__BITS(2,0)
    192 #define			EPTP_TYPE_UC		0
    193 #define			EPTP_TYPE_WB		6
    194 #define		EPTP_WALKLEN			__BITS(5,3)
    195 #define		EPTP_FLAGS_AD			__BIT(6)
    196 #define		EPTP_PHYSADDR			__BITS(63,12)
    197 #define VMCS_EOI_EXIT0				0x0000201C
    198 #define VMCS_EOI_EXIT1				0x0000201E
    199 #define VMCS_EOI_EXIT2				0x00002020
    200 #define VMCS_EOI_EXIT3				0x00002022
    201 #define VMCS_EPTP_LIST				0x00002024
    202 #define VMCS_VMREAD_BITMAP			0x00002026
    203 #define VMCS_VMWRITE_BITMAP			0x00002028
    204 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    205 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    206 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    207 #define VMCS_TSC_MULTIPLIER			0x00002032
    208 /* 64-bit read-only fields */
    209 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    210 /* 64-bit guest-state fields */
    211 #define VMCS_LINK_POINTER			0x00002800
    212 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    213 #define VMCS_GUEST_IA32_PAT			0x00002804
    214 #define VMCS_GUEST_IA32_EFER			0x00002806
    215 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    216 #define VMCS_GUEST_PDPTE0			0x0000280A
    217 #define VMCS_GUEST_PDPTE1			0x0000280C
    218 #define VMCS_GUEST_PDPTE2			0x0000280E
    219 #define VMCS_GUEST_PDPTE3			0x00002810
    220 #define VMCS_GUEST_BNDCFGS			0x00002812
    221 /* 64-bit host-state fields */
    222 #define VMCS_HOST_IA32_PAT			0x00002C00
    223 #define VMCS_HOST_IA32_EFER			0x00002C02
    224 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    225 /* 32-bit control fields */
    226 #define VMCS_PINBASED_CTLS			0x00004000
    227 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    228 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    229 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    230 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    231 #define		PIN_CTLS_PROCESS_POSTEd_INTS	__BIT(7)
    232 #define VMCS_PROCBASED_CTLS			0x00004002
    233 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    234 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    235 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    236 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    237 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    238 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    239 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    240 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    241 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    242 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    243 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    244 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    245 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    246 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    247 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    248 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    249 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    250 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    251 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    252 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    253 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    254 #define VMCS_EXCEPTION_BITMAP			0x00004004
    255 #define VMCS_PF_ERROR_MASK			0x00004006
    256 #define VMCS_PF_ERROR_MATCH			0x00004008
    257 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    258 #define VMCS_EXIT_CTLS				0x0000400C
    259 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    260 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    261 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    262 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    263 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    264 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    265 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    266 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    267 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    268 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    269 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    270 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    271 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    272 #define VMCS_ENTRY_CTLS				0x00004012
    273 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    274 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    275 #define		ENTRY_CTLS_SMM			__BIT(10)
    276 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    277 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    278 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    279 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    280 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    281 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    282 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    283 #define VMCS_ENTRY_INTR_INFO			0x00004016
    284 #define		INTR_INFO_VECTOR		__BITS(7,0)
    285 #define		INTR_INFO_TYPE_EXT_INT		(0 << 8)
    286 #define		INTR_INFO_TYPE_NMI		(2 << 8)
    287 #define		INTR_INFO_TYPE_HW_EXC		(3 << 8)
    288 #define		INTR_INFO_TYPE_SW_INT		(4 << 8)
    289 #define		INTR_INFO_TYPE_PRIV_SW_EXC	(5 << 8)
    290 #define		INTR_INFO_TYPE_SW_EXC		(6 << 8)
    291 #define		INTR_INFO_TYPE_OTHER		(7 << 8)
    292 #define		INTR_INFO_ERROR			__BIT(11)
    293 #define		INTR_INFO_VALID			__BIT(31)
    294 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    295 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    296 #define VMCS_TPR_THRESHOLD			0x0000401C
    297 #define VMCS_PROCBASED_CTLS2			0x0000401E
    298 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    299 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    300 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    301 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    302 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    303 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    304 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    305 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    306 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    307 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    308 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    309 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    310 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    311 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    312 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    313 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    314 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    315 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    316 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    317 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    318 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    319 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    320 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    321 #define VMCS_PLE_GAP				0x00004020
    322 #define VMCS_PLE_WINDOW				0x00004022
    323 /* 32-bit read-only data fields */
    324 #define VMCS_INSTRUCTION_ERROR			0x00004400
    325 #define VMCS_EXIT_REASON			0x00004402
    326 #define VMCS_EXIT_INTR_INFO			0x00004404
    327 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    328 #define VMCS_IDT_VECTORING_INFO			0x00004408
    329 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    330 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    331 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    332 /* 32-bit guest-state fields */
    333 #define VMCS_GUEST_ES_LIMIT			0x00004800
    334 #define VMCS_GUEST_CS_LIMIT			0x00004802
    335 #define VMCS_GUEST_SS_LIMIT			0x00004804
    336 #define VMCS_GUEST_DS_LIMIT			0x00004806
    337 #define VMCS_GUEST_FS_LIMIT			0x00004808
    338 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    339 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    340 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    341 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    342 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    343 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    344 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    345 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    346 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    347 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    348 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    349 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    350 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    351 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    352 #define		INT_STATE_STI			__BIT(0)
    353 #define		INT_STATE_MOVSS			__BIT(1)
    354 #define		INT_STATE_SMI			__BIT(2)
    355 #define		INT_STATE_NMI			__BIT(3)
    356 #define		INT_STATE_ENCLAVE		__BIT(4)
    357 #define VMCS_GUEST_ACTIVITY			0x00004826
    358 #define VMCS_GUEST_SMBASE			0x00004828
    359 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    360 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    361 /* 32-bit host state fields */
    362 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    363 /* Natural-Width control fields */
    364 #define VMCS_CR0_MASK				0x00006000
    365 #define VMCS_CR4_MASK				0x00006002
    366 #define VMCS_CR0_SHADOW				0x00006004
    367 #define VMCS_CR4_SHADOW				0x00006006
    368 #define VMCS_CR3_TARGET0			0x00006008
    369 #define VMCS_CR3_TARGET1			0x0000600A
    370 #define VMCS_CR3_TARGET2			0x0000600C
    371 #define VMCS_CR3_TARGET3			0x0000600E
    372 /* Natural-Width read-only fields */
    373 #define VMCS_EXIT_QUALIFICATION			0x00006400
    374 #define VMCS_IO_RCX				0x00006402
    375 #define VMCS_IO_RSI				0x00006404
    376 #define VMCS_IO_RDI				0x00006406
    377 #define VMCS_IO_RIP				0x00006408
    378 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    379 /* Natural-Width guest-state fields */
    380 #define VMCS_GUEST_CR0				0x00006800
    381 #define VMCS_GUEST_CR3				0x00006802
    382 #define VMCS_GUEST_CR4				0x00006804
    383 #define VMCS_GUEST_ES_BASE			0x00006806
    384 #define VMCS_GUEST_CS_BASE			0x00006808
    385 #define VMCS_GUEST_SS_BASE			0x0000680A
    386 #define VMCS_GUEST_DS_BASE			0x0000680C
    387 #define VMCS_GUEST_FS_BASE			0x0000680E
    388 #define VMCS_GUEST_GS_BASE			0x00006810
    389 #define VMCS_GUEST_LDTR_BASE			0x00006812
    390 #define VMCS_GUEST_TR_BASE			0x00006814
    391 #define VMCS_GUEST_GDTR_BASE			0x00006816
    392 #define VMCS_GUEST_IDTR_BASE			0x00006818
    393 #define VMCS_GUEST_DR7				0x0000681A
    394 #define VMCS_GUEST_RSP				0x0000681C
    395 #define VMCS_GUEST_RIP				0x0000681E
    396 #define VMCS_GUEST_RFLAGS			0x00006820
    397 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    398 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    399 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    400 /* Natural-Width host-state fields */
    401 #define VMCS_HOST_CR0				0x00006C00
    402 #define VMCS_HOST_CR3				0x00006C02
    403 #define VMCS_HOST_CR4				0x00006C04
    404 #define VMCS_HOST_FS_BASE			0x00006C06
    405 #define VMCS_HOST_GS_BASE			0x00006C08
    406 #define VMCS_HOST_TR_BASE			0x00006C0A
    407 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    408 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    409 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    410 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    411 #define VMCS_HOST_RSP				0x00006C14
    412 #define VMCS_HOST_RIP				0x00006c16
    413 
    414 /* VMX basic exit reasons. */
    415 #define VMCS_EXITCODE_EXC_NMI			0
    416 #define VMCS_EXITCODE_EXT_INT			1
    417 #define VMCS_EXITCODE_SHUTDOWN			2
    418 #define VMCS_EXITCODE_INIT			3
    419 #define VMCS_EXITCODE_SIPI			4
    420 #define VMCS_EXITCODE_SMI			5
    421 #define VMCS_EXITCODE_OTHER_SMI			6
    422 #define VMCS_EXITCODE_INT_WINDOW		7
    423 #define VMCS_EXITCODE_NMI_WINDOW		8
    424 #define VMCS_EXITCODE_TASK_SWITCH		9
    425 #define VMCS_EXITCODE_CPUID			10
    426 #define VMCS_EXITCODE_GETSEC			11
    427 #define VMCS_EXITCODE_HLT			12
    428 #define VMCS_EXITCODE_INVD			13
    429 #define VMCS_EXITCODE_INVLPG			14
    430 #define VMCS_EXITCODE_RDPMC			15
    431 #define VMCS_EXITCODE_RDTSC			16
    432 #define VMCS_EXITCODE_RSM			17
    433 #define VMCS_EXITCODE_VMCALL			18
    434 #define VMCS_EXITCODE_VMCLEAR			19
    435 #define VMCS_EXITCODE_VMLAUNCH			20
    436 #define VMCS_EXITCODE_VMPTRLD			21
    437 #define VMCS_EXITCODE_VMPTRST			22
    438 #define VMCS_EXITCODE_VMREAD			23
    439 #define VMCS_EXITCODE_VMRESUME			24
    440 #define VMCS_EXITCODE_VMWRITE			25
    441 #define VMCS_EXITCODE_VMXOFF			26
    442 #define VMCS_EXITCODE_VMXON			27
    443 #define VMCS_EXITCODE_CR			28
    444 #define VMCS_EXITCODE_DR			29
    445 #define VMCS_EXITCODE_IO			30
    446 #define VMCS_EXITCODE_RDMSR			31
    447 #define VMCS_EXITCODE_WRMSR			32
    448 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    449 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    450 #define VMCS_EXITCODE_MWAIT			36
    451 #define VMCS_EXITCODE_TRAP_FLAG			37
    452 #define VMCS_EXITCODE_MONITOR			39
    453 #define VMCS_EXITCODE_PAUSE			40
    454 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    455 #define VMCS_EXITCODE_TPR_BELOW			43
    456 #define VMCS_EXITCODE_APIC_ACCESS		44
    457 #define VMCS_EXITCODE_VEOI			45
    458 #define VMCS_EXITCODE_GDTR_IDTR			46
    459 #define VMCS_EXITCODE_LDTR_TR			47
    460 #define VMCS_EXITCODE_EPT_VIOLATION		48
    461 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    462 #define VMCS_EXITCODE_INVEPT			50
    463 #define VMCS_EXITCODE_RDTSCP			51
    464 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    465 #define VMCS_EXITCODE_INVVPID			53
    466 #define VMCS_EXITCODE_WBINVD			54
    467 #define VMCS_EXITCODE_XSETBV			55
    468 #define VMCS_EXITCODE_APIC_WRITE		56
    469 #define VMCS_EXITCODE_RDRAND			57
    470 #define VMCS_EXITCODE_INVPCID			58
    471 #define VMCS_EXITCODE_VMFUNC			59
    472 #define VMCS_EXITCODE_ENCLS			60
    473 #define VMCS_EXITCODE_RDSEED			61
    474 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    475 #define VMCS_EXITCODE_XSAVES			63
    476 #define VMCS_EXITCODE_XRSTORS			64
    477 
    478 /* -------------------------------------------------------------------------- */
    479 
    480 #define VMX_MSRLIST_STAR		0
    481 #define VMX_MSRLIST_LSTAR		1
    482 #define VMX_MSRLIST_CSTAR		2
    483 #define VMX_MSRLIST_SFMASK		3
    484 #define VMX_MSRLIST_KERNELGSBASE	4
    485 #define VMX_MSRLIST_EXIT_NMSR		5
    486 #define VMX_MSRLIST_L1DFLUSH		5
    487 
    488 /* On entry, we may do +1 to include L1DFLUSH. */
    489 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    490 
    491 struct vmxon {
    492 	uint32_t ident;
    493 #define VMXON_IDENT_REVISION	__BITS(30,0)
    494 
    495 	uint8_t data[PAGE_SIZE - 4];
    496 } __packed;
    497 
    498 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    499 
    500 struct vmxoncpu {
    501 	vaddr_t va;
    502 	paddr_t pa;
    503 };
    504 
    505 static struct vmxoncpu vmxoncpu[MAXCPUS];
    506 
    507 struct vmcs {
    508 	uint32_t ident;
    509 #define VMCS_IDENT_REVISION	__BITS(30,0)
    510 #define VMCS_IDENT_SHADOW	__BIT(31)
    511 
    512 	uint32_t abort;
    513 	uint8_t data[PAGE_SIZE - 8];
    514 } __packed;
    515 
    516 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    517 
    518 struct msr_entry {
    519 	uint32_t msr;
    520 	uint32_t rsvd;
    521 	uint64_t val;
    522 } __packed;
    523 
    524 struct ept_desc {
    525 	uint64_t eptp;
    526 	uint64_t mbz;
    527 } __packed;
    528 
    529 struct vpid_desc {
    530 	uint64_t vpid;
    531 	uint64_t addr;
    532 } __packed;
    533 
    534 #define VPID_MAX	0xFFFF
    535 
    536 /* Make sure we never run out of VPIDs. */
    537 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    538 
    539 static uint64_t vmx_tlb_flush_op __read_mostly;
    540 static uint64_t vmx_ept_flush_op __read_mostly;
    541 static uint64_t vmx_eptp_type __read_mostly;
    542 
    543 static uint64_t vmx_pinbased_ctls __read_mostly;
    544 static uint64_t vmx_procbased_ctls __read_mostly;
    545 static uint64_t vmx_procbased_ctls2 __read_mostly;
    546 static uint64_t vmx_entry_ctls __read_mostly;
    547 static uint64_t vmx_exit_ctls __read_mostly;
    548 
    549 static uint64_t vmx_cr0_fixed0 __read_mostly;
    550 static uint64_t vmx_cr0_fixed1 __read_mostly;
    551 static uint64_t vmx_cr4_fixed0 __read_mostly;
    552 static uint64_t vmx_cr4_fixed1 __read_mostly;
    553 
    554 #define VMX_PINBASED_CTLS_ONE	\
    555 	(PIN_CTLS_INT_EXITING| \
    556 	 PIN_CTLS_NMI_EXITING| \
    557 	 PIN_CTLS_VIRTUAL_NMIS)
    558 
    559 #define VMX_PINBASED_CTLS_ZERO	0
    560 
    561 #define VMX_PROCBASED_CTLS_ONE	\
    562 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    563 	 PROC_CTLS_HLT_EXITING| \
    564 	 PROC_CTLS_MWAIT_EXITING | \
    565 	 PROC_CTLS_RDPMC_EXITING | \
    566 	 PROC_CTLS_RCR8_EXITING | \
    567 	 PROC_CTLS_LCR8_EXITING | \
    568 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    569 	 PROC_CTLS_USE_MSR_BITMAPS | \
    570 	 PROC_CTLS_MONITOR_EXITING | \
    571 	 PROC_CTLS_ACTIVATE_CTLS2)
    572 
    573 #define VMX_PROCBASED_CTLS_ZERO	\
    574 	(PROC_CTLS_RCR3_EXITING| \
    575 	 PROC_CTLS_LCR3_EXITING)
    576 
    577 #define VMX_PROCBASED_CTLS2_ONE	\
    578 	(PROC_CTLS2_ENABLE_EPT| \
    579 	 PROC_CTLS2_ENABLE_VPID| \
    580 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    581 
    582 #define VMX_PROCBASED_CTLS2_ZERO	0
    583 
    584 #define VMX_ENTRY_CTLS_ONE	\
    585 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    586 	 ENTRY_CTLS_LOAD_EFER| \
    587 	 ENTRY_CTLS_LOAD_PAT)
    588 
    589 #define VMX_ENTRY_CTLS_ZERO	\
    590 	(ENTRY_CTLS_SMM| \
    591 	 ENTRY_CTLS_DISABLE_DUAL)
    592 
    593 #define VMX_EXIT_CTLS_ONE	\
    594 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    595 	 EXIT_CTLS_HOST_LONG_MODE| \
    596 	 EXIT_CTLS_SAVE_PAT| \
    597 	 EXIT_CTLS_LOAD_PAT| \
    598 	 EXIT_CTLS_SAVE_EFER| \
    599 	 EXIT_CTLS_LOAD_EFER)
    600 
    601 #define VMX_EXIT_CTLS_ZERO	0
    602 
    603 static uint8_t *vmx_asidmap __read_mostly;
    604 static uint32_t vmx_maxasid __read_mostly;
    605 static kmutex_t vmx_asidlock __cacheline_aligned;
    606 
    607 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    608 static uint64_t vmx_xcr0_mask __read_mostly;
    609 
    610 #define VMX_NCPUIDS	32
    611 
    612 #define VMCS_NPAGES	1
    613 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    614 
    615 #define MSRBM_NPAGES	1
    616 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    617 
    618 #define EFER_TLB_FLUSH \
    619 	(EFER_NXE|EFER_LMA|EFER_LME)
    620 #define CR0_TLB_FLUSH \
    621 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    622 #define CR4_TLB_FLUSH \
    623 	(CR4_PGE|CR4_PAE|CR4_PSE)
    624 
    625 /* -------------------------------------------------------------------------- */
    626 
    627 struct vmx_machdata {
    628 	bool cpuidpresent[VMX_NCPUIDS];
    629 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    630 	kcpuset_t *ept_want_flush;
    631 };
    632 
    633 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    634 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    635 };
    636 
    637 struct vmx_cpudata {
    638 	/* General */
    639 	uint64_t asid;
    640 	bool tlb_want_flush;
    641 
    642 	/* VMCS */
    643 	struct vmcs *vmcs;
    644 	paddr_t vmcs_pa;
    645 	size_t vmcs_refcnt;
    646 
    647 	/* MSR bitmap */
    648 	uint8_t *msrbm;
    649 	paddr_t msrbm_pa;
    650 
    651 	/* Host state */
    652 	uint64_t hxcr0;
    653 	uint64_t star;
    654 	uint64_t lstar;
    655 	uint64_t cstar;
    656 	uint64_t sfmask;
    657 	uint64_t kernelgsbase;
    658 	bool ts_set;
    659 	struct xsave_header hfpu __aligned(64);
    660 
    661 	/* Event state */
    662 	bool int_window_exit;
    663 	bool nmi_window_exit;
    664 
    665 	/* Guest state */
    666 	struct msr_entry *gmsr;
    667 	paddr_t gmsr_pa;
    668 	uint64_t gcr2;
    669 	uint64_t gcr8;
    670 	uint64_t gxcr0;
    671 	uint64_t gprs[NVMM_X64_NGPR];
    672 	uint64_t drs[NVMM_X64_NDR];
    673 	uint64_t tsc_offset;
    674 	struct xsave_header gfpu __aligned(64);
    675 };
    676 
    677 static const struct {
    678 	uint64_t selector;
    679 	uint64_t attrib;
    680 	uint64_t limit;
    681 	uint64_t base;
    682 } vmx_guest_segs[NVMM_X64_NSEG] = {
    683 	[NVMM_X64_SEG_ES] = {
    684 		VMCS_GUEST_ES_SELECTOR,
    685 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    686 		VMCS_GUEST_ES_LIMIT,
    687 		VMCS_GUEST_ES_BASE
    688 	},
    689 	[NVMM_X64_SEG_CS] = {
    690 		VMCS_GUEST_CS_SELECTOR,
    691 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    692 		VMCS_GUEST_CS_LIMIT,
    693 		VMCS_GUEST_CS_BASE
    694 	},
    695 	[NVMM_X64_SEG_SS] = {
    696 		VMCS_GUEST_SS_SELECTOR,
    697 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    698 		VMCS_GUEST_SS_LIMIT,
    699 		VMCS_GUEST_SS_BASE
    700 	},
    701 	[NVMM_X64_SEG_DS] = {
    702 		VMCS_GUEST_DS_SELECTOR,
    703 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    704 		VMCS_GUEST_DS_LIMIT,
    705 		VMCS_GUEST_DS_BASE
    706 	},
    707 	[NVMM_X64_SEG_FS] = {
    708 		VMCS_GUEST_FS_SELECTOR,
    709 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    710 		VMCS_GUEST_FS_LIMIT,
    711 		VMCS_GUEST_FS_BASE
    712 	},
    713 	[NVMM_X64_SEG_GS] = {
    714 		VMCS_GUEST_GS_SELECTOR,
    715 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    716 		VMCS_GUEST_GS_LIMIT,
    717 		VMCS_GUEST_GS_BASE
    718 	},
    719 	[NVMM_X64_SEG_GDT] = {
    720 		0, /* doesn't exist */
    721 		0, /* doesn't exist */
    722 		VMCS_GUEST_GDTR_LIMIT,
    723 		VMCS_GUEST_GDTR_BASE
    724 	},
    725 	[NVMM_X64_SEG_IDT] = {
    726 		0, /* doesn't exist */
    727 		0, /* doesn't exist */
    728 		VMCS_GUEST_IDTR_LIMIT,
    729 		VMCS_GUEST_IDTR_BASE
    730 	},
    731 	[NVMM_X64_SEG_LDT] = {
    732 		VMCS_GUEST_LDTR_SELECTOR,
    733 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    734 		VMCS_GUEST_LDTR_LIMIT,
    735 		VMCS_GUEST_LDTR_BASE
    736 	},
    737 	[NVMM_X64_SEG_TR] = {
    738 		VMCS_GUEST_TR_SELECTOR,
    739 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    740 		VMCS_GUEST_TR_LIMIT,
    741 		VMCS_GUEST_TR_BASE
    742 	}
    743 };
    744 
    745 /* -------------------------------------------------------------------------- */
    746 
    747 static uint64_t
    748 vmx_get_revision(void)
    749 {
    750 	uint64_t msr;
    751 
    752 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    753 	msr &= IA32_VMX_BASIC_IDENT;
    754 
    755 	return msr;
    756 }
    757 
    758 static void
    759 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    760 {
    761 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    762 	paddr_t oldpa __diagused;
    763 
    764 	cpudata->vmcs_refcnt++;
    765 	if (cpudata->vmcs_refcnt > 1) {
    766 #ifdef DIAGNOSTIC
    767 		KASSERT(kpreempt_disabled());
    768 		vmx_vmptrst(&oldpa);
    769 		KASSERT(oldpa == cpudata->vmcs_pa);
    770 #endif
    771 		return;
    772 	}
    773 
    774 	kpreempt_disable();
    775 
    776 #ifdef DIAGNOSTIC
    777 	vmx_vmptrst(&oldpa);
    778 	KASSERT(oldpa == 0xFFFFFFFFFFFFFFFF);
    779 #endif
    780 
    781 	vmx_vmptrld(&cpudata->vmcs_pa);
    782 }
    783 
    784 static void
    785 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    786 {
    787 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    788 	paddr_t oldpa __diagused;
    789 
    790 	KASSERT(kpreempt_disabled());
    791 	KASSERT(cpudata->vmcs_refcnt > 0);
    792 	cpudata->vmcs_refcnt--;
    793 
    794 	if (cpudata->vmcs_refcnt > 0) {
    795 #ifdef DIAGNOSTIC
    796 		vmx_vmptrst(&oldpa);
    797 		KASSERT(oldpa == cpudata->vmcs_pa);
    798 #endif
    799 		return;
    800 	}
    801 
    802 	vmx_vmclear(&cpudata->vmcs_pa);
    803 	kpreempt_enable();
    804 }
    805 
    806 /* -------------------------------------------------------------------------- */
    807 
    808 static void
    809 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    810 {
    811 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    812 	uint64_t ctls1;
    813 
    814 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    815 
    816 	if (nmi) {
    817 		// XXX INT_STATE_NMI?
    818 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    819 		cpudata->nmi_window_exit = true;
    820 	} else {
    821 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    822 		cpudata->int_window_exit = true;
    823 	}
    824 
    825 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    826 }
    827 
    828 static void
    829 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    830 {
    831 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    832 	uint64_t ctls1;
    833 
    834 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    835 
    836 	if (nmi) {
    837 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    838 		cpudata->nmi_window_exit = false;
    839 	} else {
    840 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    841 		cpudata->int_window_exit = false;
    842 	}
    843 
    844 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    845 }
    846 
    847 static inline int
    848 vmx_event_has_error(uint64_t vector)
    849 {
    850 	switch (vector) {
    851 	case 8:		/* #DF */
    852 	case 10:	/* #TS */
    853 	case 11:	/* #NP */
    854 	case 12:	/* #SS */
    855 	case 13:	/* #GP */
    856 	case 14:	/* #PF */
    857 	case 17:	/* #AC */
    858 	case 30:	/* #SX */
    859 		return 1;
    860 	default:
    861 		return 0;
    862 	}
    863 }
    864 
    865 static int
    866 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    867     struct nvmm_event *event)
    868 {
    869 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    870 	int type = 0, err = 0, ret = 0;
    871 	uint64_t info, intstate, rflags;
    872 
    873 	if (event->vector >= 256) {
    874 		return EINVAL;
    875 	}
    876 
    877 	vmx_vmcs_enter(vcpu);
    878 
    879 	switch (event->type) {
    880 	case NVMM_EVENT_INTERRUPT_HW:
    881 		type = INTR_INFO_TYPE_EXT_INT;
    882 		if (event->vector == 2) {
    883 			type = INTR_INFO_TYPE_NMI;
    884 		}
    885 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    886 		if (type == INTR_INFO_TYPE_NMI) {
    887 			if (cpudata->nmi_window_exit) {
    888 				ret = EAGAIN;
    889 				goto out;
    890 			}
    891 			vmx_event_waitexit_enable(vcpu, true);
    892 		} else {
    893 			vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
    894 			if ((rflags & PSL_I) == 0 ||
    895 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
    896 				vmx_event_waitexit_enable(vcpu, false);
    897 				ret = EAGAIN;
    898 				goto out;
    899 			}
    900 		}
    901 		err = 0;
    902 		break;
    903 	case NVMM_EVENT_INTERRUPT_SW:
    904 		ret = EINVAL;
    905 		goto out;
    906 	case NVMM_EVENT_EXCEPTION:
    907 		if (event->vector == 2 || event->vector >= 32) {
    908 			ret = EINVAL;
    909 			goto out;
    910 		}
    911 		if (event->vector == 3 || event->vector == 0) {
    912 			ret = EINVAL;
    913 			goto out;
    914 		}
    915 		type = INTR_INFO_TYPE_HW_EXC;
    916 		err = vmx_event_has_error(event->vector);
    917 		break;
    918 	default:
    919 		ret = EAGAIN;
    920 		goto out;
    921 	}
    922 
    923 	info =
    924 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
    925 	    type |
    926 	    __SHIFTIN(err, INTR_INFO_ERROR) |
    927 	    __SHIFTIN(1, INTR_INFO_VALID);
    928 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
    929 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
    930 
    931 out:
    932 	vmx_vmcs_leave(vcpu);
    933 	return ret;
    934 }
    935 
    936 static void
    937 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    938 {
    939 	struct nvmm_event event;
    940 	int ret __diagused;
    941 
    942 	event.type = NVMM_EVENT_EXCEPTION;
    943 	event.vector = 6;
    944 	event.u.error = 0;
    945 
    946 	ret = vmx_vcpu_inject(mach, vcpu, &event);
    947 	KASSERT(ret == 0);
    948 }
    949 
    950 static void
    951 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    952 {
    953 	struct nvmm_event event;
    954 	int ret __diagused;
    955 
    956 	event.type = NVMM_EVENT_EXCEPTION;
    957 	event.vector = 13;
    958 	event.u.error = 0;
    959 
    960 	ret = vmx_vcpu_inject(mach, vcpu, &event);
    961 	KASSERT(ret == 0);
    962 }
    963 
    964 static inline void
    965 vmx_inkernel_advance(void)
    966 {
    967 	uint64_t rip, inslen, intstate;
    968 
    969 	/*
    970 	 * Maybe we should also apply single-stepping and debug exceptions.
    971 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    972 	 * debugger.
    973 	 */
    974 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
    975 	vmx_vmread(VMCS_GUEST_RIP, &rip);
    976 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
    977 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    978 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
    979 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
    980 }
    981 
    982 static void
    983 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    984 {
    985 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    986 
    987 	switch (eax) {
    988 	case 0x00000001:
    989 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    990 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    991 		    CPUID_LOCAL_APIC_ID);
    992 		cpudata->gprs[NVMM_X64_GPR_RCX] &=
    993 		    ~(CPUID2_VMX|CPUID2_SMX|CPUID2_EST|CPUID2_TM2|CPUID2_PDCM|
    994 		      CPUID2_PCID|CPUID2_DEADLINE);
    995 		cpudata->gprs[NVMM_X64_GPR_RDX] &=
    996 		    ~(CPUID_DS|CPUID_ACPI|CPUID_TM);
    997 		break;
    998 	case 0x00000005:
    999 	case 0x00000006:
   1000 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1001 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1002 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1003 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1004 		break;
   1005 	case 0x00000007:
   1006 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_SEF_INVPCID;
   1007 		cpudata->gprs[NVMM_X64_GPR_RDX] &=
   1008 		    ~(CPUID_SEF_IBRS|CPUID_SEF_STIBP|CPUID_SEF_L1D_FLUSH|
   1009 		      CPUID_SEF_SSBD);
   1010 		break;
   1011 	case 0x0000000D:
   1012 		if (ecx != 0 || vmx_xcr0_mask == 0) {
   1013 			break;
   1014 		}
   1015 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1016 		if (cpudata->gxcr0 & XCR0_SSE) {
   1017 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1018 		} else {
   1019 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1020 		}
   1021 		cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1022 		cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
   1023 		cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1024 		break;
   1025 	case 0x40000000:
   1026 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1027 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1028 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1029 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1030 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1031 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1032 		break;
   1033 	case 0x80000001:
   1034 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
   1035 		break;
   1036 	default:
   1037 		break;
   1038 	}
   1039 }
   1040 
   1041 static void
   1042 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1043     struct nvmm_exit *exit)
   1044 {
   1045 	struct vmx_machdata *machdata = mach->machdata;
   1046 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1047 	struct nvmm_x86_conf_cpuid *cpuid;
   1048 	uint64_t eax, ecx;
   1049 	u_int descs[4];
   1050 	size_t i;
   1051 
   1052 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1053 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1054 	x86_cpuid2(eax, ecx, descs);
   1055 
   1056 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1057 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1058 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1059 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1060 
   1061 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1062 		cpuid = &machdata->cpuid[i];
   1063 		if (!machdata->cpuidpresent[i]) {
   1064 			continue;
   1065 		}
   1066 		if (cpuid->leaf != eax) {
   1067 			continue;
   1068 		}
   1069 
   1070 		/* del */
   1071 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1072 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1073 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1074 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1075 
   1076 		/* set */
   1077 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1078 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1079 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1080 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1081 
   1082 		break;
   1083 	}
   1084 
   1085 	/* Overwrite non-tunable leaves. */
   1086 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1087 
   1088 	vmx_inkernel_advance();
   1089 	exit->reason = NVMM_EXIT_NONE;
   1090 }
   1091 
   1092 static void
   1093 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1094     struct nvmm_exit *exit)
   1095 {
   1096 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1097 	uint64_t rflags;
   1098 
   1099 	if (cpudata->int_window_exit) {
   1100 		vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
   1101 		if (rflags & PSL_I) {
   1102 			vmx_event_waitexit_disable(vcpu, false);
   1103 		}
   1104 	}
   1105 
   1106 	vmx_inkernel_advance();
   1107 	exit->reason = NVMM_EXIT_HALTED;
   1108 }
   1109 
   1110 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1111 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1112 #define		CR_TYPE_WRITE	0
   1113 #define		CR_TYPE_READ	1
   1114 #define		CR_TYPE_CLTS	2
   1115 #define		CR_TYPE_LMSW	3
   1116 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1117 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1118 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1119 
   1120 static inline int
   1121 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1122 {
   1123 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1124 	if ((crval & fixed0) != fixed0) {
   1125 		return -1;
   1126 	}
   1127 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1128 	if (crval & ~fixed1) {
   1129 		return -1;
   1130 	}
   1131 	return 0;
   1132 }
   1133 
   1134 static int
   1135 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1136     uint64_t qual)
   1137 {
   1138 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1139 	uint64_t type, gpr, cr0;
   1140 
   1141 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1142 	if (type != CR_TYPE_WRITE) {
   1143 		return -1;
   1144 	}
   1145 
   1146 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1147 	KASSERT(gpr < 16);
   1148 
   1149 	if (gpr == NVMM_X64_GPR_RSP) {
   1150 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1151 	} else {
   1152 		gpr = cpudata->gprs[gpr];
   1153 	}
   1154 
   1155 	cr0 = gpr | CR0_NE | CR0_ET;
   1156 	cr0 &= ~(CR0_NW|CR0_CD);
   1157 
   1158 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1159 		return -1;
   1160 	}
   1161 
   1162 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1163 	vmx_inkernel_advance();
   1164 	return 0;
   1165 }
   1166 
   1167 static int
   1168 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1169     uint64_t qual)
   1170 {
   1171 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1172 	uint64_t type, gpr, cr4;
   1173 
   1174 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1175 	if (type != CR_TYPE_WRITE) {
   1176 		return -1;
   1177 	}
   1178 
   1179 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1180 	KASSERT(gpr < 16);
   1181 
   1182 	if (gpr == NVMM_X64_GPR_RSP) {
   1183 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1184 	} else {
   1185 		gpr = cpudata->gprs[gpr];
   1186 	}
   1187 
   1188 	cr4 = gpr | CR4_VMXE;
   1189 
   1190 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1191 		return -1;
   1192 	}
   1193 
   1194 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1195 	vmx_inkernel_advance();
   1196 	return 0;
   1197 }
   1198 
   1199 static int
   1200 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1201     uint64_t qual)
   1202 {
   1203 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1204 	uint64_t type, gpr;
   1205 	bool write;
   1206 
   1207 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1208 	if (type == CR_TYPE_WRITE) {
   1209 		write = true;
   1210 	} else if (type == CR_TYPE_READ) {
   1211 		write = false;
   1212 	} else {
   1213 		return -1;
   1214 	}
   1215 
   1216 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1217 	KASSERT(gpr < 16);
   1218 
   1219 	if (write) {
   1220 		if (gpr == NVMM_X64_GPR_RSP) {
   1221 			vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
   1222 		} else {
   1223 			cpudata->gcr8 = cpudata->gprs[gpr];
   1224 		}
   1225 	} else {
   1226 		if (gpr == NVMM_X64_GPR_RSP) {
   1227 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1228 		} else {
   1229 			cpudata->gprs[gpr] = cpudata->gcr8;
   1230 		}
   1231 	}
   1232 
   1233 	vmx_inkernel_advance();
   1234 	return 0;
   1235 }
   1236 
   1237 static void
   1238 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1239     struct nvmm_exit *exit)
   1240 {
   1241 	uint64_t qual;
   1242 	int ret;
   1243 
   1244 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1245 
   1246 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1247 	case 0:
   1248 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1249 		break;
   1250 	case 4:
   1251 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1252 		break;
   1253 	case 8:
   1254 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1255 		break;
   1256 	default:
   1257 		ret = -1;
   1258 		break;
   1259 	}
   1260 
   1261 	if (ret == -1) {
   1262 		vmx_inject_gp(mach, vcpu);
   1263 	}
   1264 
   1265 	exit->reason = NVMM_EXIT_NONE;
   1266 }
   1267 
   1268 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1269 #define		IO_SIZE_8	0
   1270 #define		IO_SIZE_16	1
   1271 #define		IO_SIZE_32	3
   1272 #define VMX_QUAL_IO_IN		__BIT(3)
   1273 #define VMX_QUAL_IO_STR		__BIT(4)
   1274 #define VMX_QUAL_IO_REP		__BIT(5)
   1275 #define VMX_QUAL_IO_DX		__BIT(6)
   1276 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1277 
   1278 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1279 #define		IO_ADRSIZE_16	0
   1280 #define		IO_ADRSIZE_32	1
   1281 #define		IO_ADRSIZE_64	2
   1282 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1283 
   1284 static const int seg_to_nvmm[] = {
   1285 	[0] = NVMM_X64_SEG_ES,
   1286 	[1] = NVMM_X64_SEG_CS,
   1287 	[2] = NVMM_X64_SEG_SS,
   1288 	[3] = NVMM_X64_SEG_DS,
   1289 	[4] = NVMM_X64_SEG_FS,
   1290 	[5] = NVMM_X64_SEG_GS
   1291 };
   1292 
   1293 static void
   1294 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1295     struct nvmm_exit *exit)
   1296 {
   1297 	uint64_t qual, info, inslen, rip;
   1298 
   1299 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1300 	vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
   1301 
   1302 	exit->reason = NVMM_EXIT_IO;
   1303 
   1304 	if (qual & VMX_QUAL_IO_IN) {
   1305 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1306 	} else {
   1307 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1308 	}
   1309 
   1310 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1311 
   1312 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1313 	exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, VMX_INFO_IO_SEG)];
   1314 
   1315 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1316 		exit->u.io.address_size = 8;
   1317 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1318 		exit->u.io.address_size = 4;
   1319 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1320 		exit->u.io.address_size = 2;
   1321 	}
   1322 
   1323 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1324 		exit->u.io.operand_size = 4;
   1325 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1326 		exit->u.io.operand_size = 2;
   1327 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1328 		exit->u.io.operand_size = 1;
   1329 	}
   1330 
   1331 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1332 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1333 
   1334 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1335 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1336 	}
   1337 
   1338 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1339 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1340 	exit->u.io.npc = rip + inslen;
   1341 }
   1342 
   1343 static const uint64_t msr_ignore_list[] = {
   1344 	MSR_BIOS_SIGN,
   1345 	MSR_IA32_PLATFORM_ID
   1346 };
   1347 
   1348 static bool
   1349 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1350     struct nvmm_exit *exit)
   1351 {
   1352 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1353 	uint64_t val;
   1354 	size_t i;
   1355 
   1356 	switch (exit->u.msr.type) {
   1357 	case NVMM_EXIT_MSR_RDMSR:
   1358 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1359 			vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
   1360 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1361 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1362 			goto handled;
   1363 		}
   1364 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1365 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1366 				continue;
   1367 			val = 0;
   1368 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1369 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1370 			goto handled;
   1371 		}
   1372 		break;
   1373 	case NVMM_EXIT_MSR_WRMSR:
   1374 		if (exit->u.msr.msr == MSR_TSC) {
   1375 			cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
   1376 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
   1377 			    curcpu()->ci_data.cpu_cc_skew);
   1378 			goto handled;
   1379 		}
   1380 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1381 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
   1382 			goto handled;
   1383 		}
   1384 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1385 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1386 				continue;
   1387 			goto handled;
   1388 		}
   1389 		break;
   1390 	}
   1391 
   1392 	return false;
   1393 
   1394 handled:
   1395 	vmx_inkernel_advance();
   1396 	return true;
   1397 }
   1398 
   1399 static void
   1400 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1401     struct nvmm_exit *exit, bool rdmsr)
   1402 {
   1403 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1404 	uint64_t inslen, rip;
   1405 
   1406 	if (rdmsr) {
   1407 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1408 	} else {
   1409 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1410 	}
   1411 
   1412 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1413 
   1414 	if (rdmsr) {
   1415 		exit->u.msr.val = 0;
   1416 	} else {
   1417 		uint64_t rdx, rax;
   1418 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1419 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1420 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1421 	}
   1422 
   1423 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1424 		exit->reason = NVMM_EXIT_NONE;
   1425 		return;
   1426 	}
   1427 
   1428 	exit->reason = NVMM_EXIT_MSR;
   1429 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1430 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1431 	exit->u.msr.npc = rip + inslen;
   1432 }
   1433 
   1434 static void
   1435 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1436     struct nvmm_exit *exit)
   1437 {
   1438 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1439 	uint16_t val;
   1440 
   1441 	exit->reason = NVMM_EXIT_NONE;
   1442 
   1443 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1444 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1445 
   1446 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1447 		goto error;
   1448 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1449 		goto error;
   1450 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1451 		goto error;
   1452 	}
   1453 
   1454 	cpudata->gxcr0 = val;
   1455 
   1456 	vmx_inkernel_advance();
   1457 	return;
   1458 
   1459 error:
   1460 	vmx_inject_gp(mach, vcpu);
   1461 }
   1462 
   1463 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1464 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1465 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1466 
   1467 static void
   1468 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1469     struct nvmm_exit *exit)
   1470 {
   1471 	uint64_t perm;
   1472 	gpaddr_t gpa;
   1473 	int error;
   1474 
   1475 	vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
   1476 
   1477 	error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
   1478 
   1479 	if (error) {
   1480 		exit->reason = NVMM_EXIT_MEMORY;
   1481 		vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
   1482 		if (perm & VMX_EPT_VIOLATION_WRITE)
   1483 			exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
   1484 		else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1485 			exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
   1486 		else
   1487 			exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
   1488 		exit->u.mem.gpa = gpa;
   1489 		exit->u.mem.inst_len = 0;
   1490 	} else {
   1491 		exit->reason = NVMM_EXIT_NONE;
   1492 	}
   1493 }
   1494 
   1495 static void
   1496 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1497 {
   1498 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1499 
   1500 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1501 
   1502 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1503 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1504 
   1505 	if (vmx_xcr0_mask != 0) {
   1506 		cpudata->hxcr0 = rdxcr(0);
   1507 		wrxcr(0, cpudata->gxcr0);
   1508 	}
   1509 }
   1510 
   1511 static void
   1512 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1513 {
   1514 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1515 
   1516 	if (vmx_xcr0_mask != 0) {
   1517 		cpudata->gxcr0 = rdxcr(0);
   1518 		wrxcr(0, cpudata->hxcr0);
   1519 	}
   1520 
   1521 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1522 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1523 
   1524 	if (cpudata->ts_set) {
   1525 		stts();
   1526 	}
   1527 }
   1528 
   1529 static void
   1530 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1531 {
   1532 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1533 
   1534 	x86_dbregs_save(curlwp);
   1535 
   1536 	ldr7(0);
   1537 
   1538 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1539 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1540 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1541 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1542 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1543 }
   1544 
   1545 static void
   1546 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1547 {
   1548 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1549 
   1550 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1551 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1552 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1553 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1554 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1555 
   1556 	x86_dbregs_restore(curlwp);
   1557 }
   1558 
   1559 static void
   1560 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1561 {
   1562 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1563 
   1564 	/* This gets restored automatically by the CPU. */
   1565 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1566 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1567 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1568 
   1569 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1570 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1571 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1572 }
   1573 
   1574 static void
   1575 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1576 {
   1577 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1578 
   1579 	wrmsr(MSR_STAR, cpudata->star);
   1580 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1581 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1582 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1583 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1584 }
   1585 
   1586 #define VMX_INVVPID_ADDRESS		0
   1587 #define VMX_INVVPID_CONTEXT		1
   1588 #define VMX_INVVPID_ALL			2
   1589 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1590 
   1591 #define VMX_INVEPT_CONTEXT		1
   1592 #define VMX_INVEPT_ALL			2
   1593 
   1594 static int
   1595 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1596     struct nvmm_exit *exit)
   1597 {
   1598 	struct vmx_machdata *machdata = mach->machdata;
   1599 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1600 	bool tlb_need_flush = false;
   1601 	struct vpid_desc vpid_desc;
   1602 	struct ept_desc ept_desc;
   1603 	struct cpu_info *ci;
   1604 	uint64_t exitcode;
   1605 	uint64_t intstate;
   1606 	int hcpu, s, ret;
   1607 	bool launched = false;
   1608 
   1609 	vmx_vmcs_enter(vcpu);
   1610 	ci = curcpu();
   1611 	hcpu = cpu_number();
   1612 
   1613 	if (__predict_false(kcpuset_isset(machdata->ept_want_flush, hcpu))) {
   1614 		vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1615 		ept_desc.mbz = 0;
   1616 		vmx_invept(vmx_ept_flush_op, &ept_desc);
   1617 		kcpuset_clear(machdata->ept_want_flush, hcpu);
   1618 	}
   1619 
   1620 	if (vcpu->hcpu_last != hcpu) {
   1621 		tlb_need_flush = true;
   1622 	}
   1623 
   1624 	if (vcpu->hcpu_last != hcpu) {
   1625 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1626 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1627 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1628 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1629 		vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
   1630 		    curcpu()->ci_data.cpu_cc_skew);
   1631 		vcpu->hcpu_last = hcpu;
   1632 	}
   1633 
   1634 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1635 	vmx_vcpu_guest_misc_enter(vcpu);
   1636 
   1637 	while (1) {
   1638 		if (cpudata->tlb_want_flush || tlb_need_flush) {
   1639 			vpid_desc.vpid = cpudata->asid;
   1640 			vpid_desc.addr = 0;
   1641 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1642 			cpudata->tlb_want_flush = false;
   1643 			tlb_need_flush = false;
   1644 		}
   1645 
   1646 		s = splhigh();
   1647 		vmx_vcpu_guest_fpu_enter(vcpu);
   1648 		lcr2(cpudata->gcr2);
   1649 		if (launched) {
   1650 			ret = vmx_vmresume(cpudata->gprs);
   1651 		} else {
   1652 			ret = vmx_vmlaunch(cpudata->gprs);
   1653 		}
   1654 		cpudata->gcr2 = rcr2();
   1655 		vmx_vcpu_guest_fpu_leave(vcpu);
   1656 		splx(s);
   1657 
   1658 		if (__predict_false(ret != 0)) {
   1659 			exit->reason = NVMM_EXIT_INVALID;
   1660 			break;
   1661 		}
   1662 
   1663 		launched = true;
   1664 
   1665 		vmx_vmread(VMCS_EXIT_REASON, &exitcode);
   1666 		exitcode &= __BITS(15,0);
   1667 
   1668 		switch (exitcode) {
   1669 		case VMCS_EXITCODE_EXT_INT:
   1670 			exit->reason = NVMM_EXIT_NONE;
   1671 			break;
   1672 		case VMCS_EXITCODE_CPUID:
   1673 			vmx_exit_cpuid(mach, vcpu, exit);
   1674 			break;
   1675 		case VMCS_EXITCODE_HLT:
   1676 			vmx_exit_hlt(mach, vcpu, exit);
   1677 			break;
   1678 		case VMCS_EXITCODE_CR:
   1679 			vmx_exit_cr(mach, vcpu, exit);
   1680 			break;
   1681 		case VMCS_EXITCODE_IO:
   1682 			vmx_exit_io(mach, vcpu, exit);
   1683 			break;
   1684 		case VMCS_EXITCODE_RDMSR:
   1685 			vmx_exit_msr(mach, vcpu, exit, true);
   1686 			break;
   1687 		case VMCS_EXITCODE_WRMSR:
   1688 			vmx_exit_msr(mach, vcpu, exit, false);
   1689 			break;
   1690 		case VMCS_EXITCODE_SHUTDOWN:
   1691 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1692 			break;
   1693 		case VMCS_EXITCODE_MONITOR:
   1694 			exit->reason = NVMM_EXIT_MONITOR;
   1695 			break;
   1696 		case VMCS_EXITCODE_MWAIT:
   1697 			exit->reason = NVMM_EXIT_MWAIT;
   1698 			break;
   1699 		case VMCS_EXITCODE_XSETBV:
   1700 			vmx_exit_xsetbv(mach, vcpu, exit);
   1701 			break;
   1702 		case VMCS_EXITCODE_RDPMC:
   1703 		case VMCS_EXITCODE_RDTSCP:
   1704 		case VMCS_EXITCODE_INVVPID:
   1705 		case VMCS_EXITCODE_INVEPT:
   1706 		case VMCS_EXITCODE_VMCALL:
   1707 		case VMCS_EXITCODE_VMCLEAR:
   1708 		case VMCS_EXITCODE_VMLAUNCH:
   1709 		case VMCS_EXITCODE_VMPTRLD:
   1710 		case VMCS_EXITCODE_VMPTRST:
   1711 		case VMCS_EXITCODE_VMREAD:
   1712 		case VMCS_EXITCODE_VMRESUME:
   1713 		case VMCS_EXITCODE_VMWRITE:
   1714 		case VMCS_EXITCODE_VMXOFF:
   1715 		case VMCS_EXITCODE_VMXON:
   1716 			vmx_inject_ud(mach, vcpu);
   1717 			exit->reason = NVMM_EXIT_NONE;
   1718 			break;
   1719 		case VMCS_EXITCODE_EPT_VIOLATION:
   1720 			vmx_exit_epf(mach, vcpu, exit);
   1721 			break;
   1722 		case VMCS_EXITCODE_INT_WINDOW:
   1723 			vmx_event_waitexit_disable(vcpu, false);
   1724 			exit->reason = NVMM_EXIT_INT_READY;
   1725 			break;
   1726 		case VMCS_EXITCODE_NMI_WINDOW:
   1727 			vmx_event_waitexit_disable(vcpu, true);
   1728 			exit->reason = NVMM_EXIT_NMI_READY;
   1729 			break;
   1730 		default:
   1731 			exit->reason = NVMM_EXIT_INVALID;
   1732 			break;
   1733 		}
   1734 
   1735 		/* If no reason to return to userland, keep rolling. */
   1736 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1737 			break;
   1738 		}
   1739 		if (curcpu()->ci_data.cpu_softints != 0) {
   1740 			break;
   1741 		}
   1742 		if (curlwp->l_flag & LW_USERRET) {
   1743 			break;
   1744 		}
   1745 		if (exit->reason != NVMM_EXIT_NONE) {
   1746 			break;
   1747 		}
   1748 	}
   1749 
   1750 	vmx_vcpu_guest_misc_leave(vcpu);
   1751 	vmx_vcpu_guest_dbregs_leave(vcpu);
   1752 
   1753 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   1754 	vmx_vmread(VMCS_GUEST_RFLAGS,
   1755 	    &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
   1756 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1757 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1758 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   1759 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1760 	    cpudata->int_window_exit;
   1761 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1762 	    cpudata->nmi_window_exit;
   1763 
   1764 	vmx_vmcs_leave(vcpu);
   1765 
   1766 	return 0;
   1767 }
   1768 
   1769 /* -------------------------------------------------------------------------- */
   1770 
   1771 static int
   1772 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1773 {
   1774 	struct pglist pglist;
   1775 	paddr_t _pa;
   1776 	vaddr_t _va;
   1777 	size_t i;
   1778 	int ret;
   1779 
   1780 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1781 	    &pglist, 1, 0);
   1782 	if (ret != 0)
   1783 		return ENOMEM;
   1784 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1785 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1786 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1787 	if (_va == 0)
   1788 		goto error;
   1789 
   1790 	for (i = 0; i < npages; i++) {
   1791 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1792 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1793 	}
   1794 	pmap_update(pmap_kernel());
   1795 
   1796 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1797 
   1798 	*pa = _pa;
   1799 	*va = _va;
   1800 	return 0;
   1801 
   1802 error:
   1803 	for (i = 0; i < npages; i++) {
   1804 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1805 	}
   1806 	return ENOMEM;
   1807 }
   1808 
   1809 static void
   1810 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1811 {
   1812 	size_t i;
   1813 
   1814 	pmap_kremove(va, npages * PAGE_SIZE);
   1815 	pmap_update(pmap_kernel());
   1816 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1817 	for (i = 0; i < npages; i++) {
   1818 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1819 	}
   1820 }
   1821 
   1822 /* -------------------------------------------------------------------------- */
   1823 
   1824 static void
   1825 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   1826 {
   1827 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1828 	size_t i, oct, bit;
   1829 
   1830 	mutex_enter(&vmx_asidlock);
   1831 
   1832 	for (i = 0; i < vmx_maxasid; i++) {
   1833 		oct = i / 8;
   1834 		bit = i % 8;
   1835 
   1836 		if (vmx_asidmap[oct] & __BIT(bit)) {
   1837 			continue;
   1838 		}
   1839 
   1840 		cpudata->asid = i;
   1841 
   1842 		vmx_asidmap[oct] |= __BIT(bit);
   1843 		vmx_vmwrite(VMCS_VPID, i);
   1844 		mutex_exit(&vmx_asidlock);
   1845 		return;
   1846 	}
   1847 
   1848 	mutex_exit(&vmx_asidlock);
   1849 
   1850 	panic("%s: impossible", __func__);
   1851 }
   1852 
   1853 static void
   1854 vmx_asid_free(struct nvmm_cpu *vcpu)
   1855 {
   1856 	size_t oct, bit;
   1857 	uint64_t asid;
   1858 
   1859 	vmx_vmread(VMCS_VPID, &asid);
   1860 
   1861 	oct = asid / 8;
   1862 	bit = asid % 8;
   1863 
   1864 	mutex_enter(&vmx_asidlock);
   1865 	vmx_asidmap[oct] &= ~__BIT(bit);
   1866 	mutex_exit(&vmx_asidlock);
   1867 }
   1868 
   1869 static void
   1870 vmx_init_asid(uint32_t maxasid)
   1871 {
   1872 	size_t allocsz;
   1873 
   1874 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   1875 
   1876 	vmx_maxasid = maxasid;
   1877 	allocsz = roundup(maxasid, 8) / 8;
   1878 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   1879 
   1880 	/* ASID 0 is reserved for the host. */
   1881 	vmx_asidmap[0] |= __BIT(0);
   1882 }
   1883 
   1884 static void
   1885 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1886 {
   1887 	uint64_t byte;
   1888 	uint8_t bitoff;
   1889 
   1890 	if (msr < 0x00002000) {
   1891 		/* Range 1 */
   1892 		byte = ((msr - 0x00000000) / 8) + 0;
   1893 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1894 		/* Range 2 */
   1895 		byte = ((msr - 0xC0000000) / 8) + 1024;
   1896 	} else {
   1897 		panic("%s: wrong range", __func__);
   1898 	}
   1899 
   1900 	bitoff = (msr & 0x7);
   1901 
   1902 	if (read) {
   1903 		bitmap[byte] &= ~__BIT(bitoff);
   1904 	}
   1905 	if (write) {
   1906 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   1907 	}
   1908 }
   1909 
   1910 static void
   1911 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1912 {
   1913 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1914 	struct vmcs *vmcs = cpudata->vmcs;
   1915 	struct msr_entry *gmsr = cpudata->gmsr;
   1916 	extern uint8_t vmx_resume_rip;
   1917 	uint64_t rev, eptp;
   1918 
   1919 	rev = vmx_get_revision();
   1920 
   1921 	memset(vmcs, 0, VMCS_SIZE);
   1922 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   1923 	vmcs->abort = 0;
   1924 
   1925 	vmx_vmcs_enter(vcpu);
   1926 
   1927 	/* No link pointer. */
   1928 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   1929 
   1930 	/* Install the CTLSs. */
   1931 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   1932 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   1933 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   1934 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   1935 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   1936 
   1937 	/* Allow direct access to certain MSRs. */
   1938 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1939 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   1940 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1941 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1942 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1943 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1944 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1945 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1946 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1947 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1948 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1949 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1950 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1951 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   1952 	    true, false);
   1953 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   1954 
   1955 	/*
   1956 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   1957 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   1958 	 */
   1959 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   1960 	gmsr[VMX_MSRLIST_STAR].val = 0;
   1961 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   1962 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   1963 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   1964 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   1965 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   1966 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   1967 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   1968 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   1969 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   1970 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   1971 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   1972 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   1973 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   1974 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   1975 
   1976 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   1977 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD);
   1978 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   1979 
   1980 	/* Force CR4_VMXE to zero. */
   1981 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   1982 
   1983 	/* Set the Host state for resuming. */
   1984 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   1985 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   1986 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1987 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1988 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1989 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   1990 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   1991 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   1992 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   1993 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   1994 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   1995 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   1996 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   1997 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   1998 
   1999 	/* Generate ASID. */
   2000 	vmx_asid_alloc(vcpu);
   2001 
   2002 	/* Enable Extended Paging, 4-Level. */
   2003 	eptp =
   2004 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2005 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2006 	    EPTP_FLAGS_AD |
   2007 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2008 	vmx_vmwrite(VMCS_EPTP, eptp);
   2009 
   2010 	/* Must always be set. */
   2011 	vmx_vmwrite(VMCS_GUEST_CR4, CR4_VMXE);
   2012 	vmx_vmwrite(VMCS_GUEST_CR0, CR0_NE);
   2013 	cpudata->gxcr0 = XCR0_X87;
   2014 
   2015 	/* Init XSAVE header. */
   2016 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2017 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2018 
   2019 	/* Set guest TSC to zero, more or less. */
   2020 	cpudata->tsc_offset = -cpu_counter();
   2021 
   2022 	/* These MSRs are static. */
   2023 	cpudata->star = rdmsr(MSR_STAR);
   2024 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2025 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2026 
   2027 	vmx_vmcs_leave(vcpu);
   2028 }
   2029 
   2030 static int
   2031 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2032 {
   2033 	struct vmx_cpudata *cpudata;
   2034 	int error;
   2035 
   2036 	/* Allocate the VMX cpudata. */
   2037 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2038 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2039 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2040 	vcpu->cpudata = cpudata;
   2041 
   2042 	/* VMCS */
   2043 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2044 	    VMCS_NPAGES);
   2045 	if (error)
   2046 		goto error;
   2047 
   2048 	/* MSR Bitmap */
   2049 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2050 	    MSRBM_NPAGES);
   2051 	if (error)
   2052 		goto error;
   2053 
   2054 	/* Guest MSR List */
   2055 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2056 	if (error)
   2057 		goto error;
   2058 
   2059 	/* Init the VCPU info. */
   2060 	vmx_vcpu_init(mach, vcpu);
   2061 
   2062 	return 0;
   2063 
   2064 error:
   2065 	if (cpudata->vmcs_pa) {
   2066 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2067 		    VMCS_NPAGES);
   2068 	}
   2069 	if (cpudata->msrbm_pa) {
   2070 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2071 		    MSRBM_NPAGES);
   2072 	}
   2073 	if (cpudata->gmsr_pa) {
   2074 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2075 	}
   2076 
   2077 	kmem_free(cpudata, sizeof(*cpudata));
   2078 	return error;
   2079 }
   2080 
   2081 static void
   2082 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2083 {
   2084 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2085 
   2086 	vmx_vmcs_enter(vcpu);
   2087 	vmx_asid_free(vcpu);
   2088 	vmx_vmcs_leave(vcpu);
   2089 
   2090 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2091 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2092 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2093 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2094 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2095 }
   2096 
   2097 #define VMX_SEG_ATTRIB_TYPE		__BITS(4,0)
   2098 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2099 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2100 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2101 #define VMX_SEG_ATTRIB_LONG		__BIT(13)
   2102 #define VMX_SEG_ATTRIB_DEF32		__BIT(14)
   2103 #define VMX_SEG_ATTRIB_GRAN		__BIT(15)
   2104 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2105 
   2106 static void
   2107 vmx_vcpu_setstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2108 {
   2109 	uint64_t attrib;
   2110 
   2111 	attrib =
   2112 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2113 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2114 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2115 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2116 	    __SHIFTIN(segs[idx].attrib.lng, VMX_SEG_ATTRIB_LONG) |
   2117 	    __SHIFTIN(segs[idx].attrib.def32, VMX_SEG_ATTRIB_DEF32) |
   2118 	    __SHIFTIN(segs[idx].attrib.gran, VMX_SEG_ATTRIB_GRAN) |
   2119 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2120 
   2121 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2122 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2123 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2124 	}
   2125 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2126 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2127 }
   2128 
   2129 static void
   2130 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2131 {
   2132 	uint64_t attrib = 0;
   2133 
   2134 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2135 		vmx_vmread(vmx_guest_segs[idx].selector, &segs[idx].selector);
   2136 		vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
   2137 	}
   2138 	vmx_vmread(vmx_guest_segs[idx].limit, &segs[idx].limit);
   2139 	vmx_vmread(vmx_guest_segs[idx].base, &segs[idx].base);
   2140 
   2141 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2142 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2143 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2144 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2145 	segs[idx].attrib.lng = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_LONG);
   2146 	segs[idx].attrib.def32 = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF32);
   2147 	segs[idx].attrib.gran = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_GRAN);
   2148 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2149 		segs[idx].attrib.p = 0;
   2150 	}
   2151 }
   2152 
   2153 static inline bool
   2154 vmx_state_tlb_flush(struct nvmm_x64_state *state, uint64_t flags)
   2155 {
   2156 	uint64_t cr0, cr3, cr4, efer;
   2157 
   2158 	if (flags & NVMM_X64_STATE_CRS) {
   2159 		vmx_vmread(VMCS_GUEST_CR0, &cr0);
   2160 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2161 			return true;
   2162 		}
   2163 		vmx_vmread(VMCS_GUEST_CR3, &cr3);
   2164 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2165 			return true;
   2166 		}
   2167 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   2168 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2169 			return true;
   2170 		}
   2171 	}
   2172 
   2173 	if (flags & NVMM_X64_STATE_MSRS) {
   2174 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   2175 		if ((efer ^
   2176 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2177 			return true;
   2178 		}
   2179 	}
   2180 
   2181 	return false;
   2182 }
   2183 
   2184 static void
   2185 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2186 {
   2187 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2188 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2189 	struct fxsave *fpustate;
   2190 	uint64_t ctls1, intstate;
   2191 
   2192 	vmx_vmcs_enter(vcpu);
   2193 
   2194 	if (vmx_state_tlb_flush(state, flags)) {
   2195 		cpudata->tlb_want_flush = true;
   2196 	}
   2197 
   2198 	if (flags & NVMM_X64_STATE_SEGS) {
   2199 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2200 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2201 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2202 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2203 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2204 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2205 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2206 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2207 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2208 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2209 	}
   2210 
   2211 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2212 	if (flags & NVMM_X64_STATE_GPRS) {
   2213 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2214 
   2215 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2216 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2217 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2218 	}
   2219 
   2220 	if (flags & NVMM_X64_STATE_CRS) {
   2221 		/* These bits are mandatory. */
   2222 		state->crs[NVMM_X64_CR_CR4] |= CR4_VMXE;
   2223 		state->crs[NVMM_X64_CR_CR0] |= CR0_NE;
   2224 
   2225 		vmx_vmwrite(VMCS_GUEST_CR0, state->crs[NVMM_X64_CR_CR0]);
   2226 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2227 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2228 		vmx_vmwrite(VMCS_GUEST_CR4, state->crs[NVMM_X64_CR_CR4]);
   2229 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2230 
   2231 		if (vmx_xcr0_mask != 0) {
   2232 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2233 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2234 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2235 			cpudata->gxcr0 |= XCR0_X87;
   2236 		}
   2237 	}
   2238 
   2239 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2240 	if (flags & NVMM_X64_STATE_DRS) {
   2241 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2242 
   2243 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2244 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2245 	}
   2246 
   2247 	if (flags & NVMM_X64_STATE_MSRS) {
   2248 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2249 		    state->msrs[NVMM_X64_MSR_STAR];
   2250 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2251 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2252 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2253 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2254 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2255 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2256 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2257 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2258 
   2259 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2260 		    state->msrs[NVMM_X64_MSR_EFER]);
   2261 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2262 		    state->msrs[NVMM_X64_MSR_PAT]);
   2263 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2264 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2265 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2266 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2267 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2268 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2269 
   2270 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2271 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   2272 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2273 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2274 		} else {
   2275 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2276 		}
   2277 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2278 	}
   2279 
   2280 	if (flags & NVMM_X64_STATE_MISC) {
   2281 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2282 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2283 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   2284 			intstate |= INT_STATE_MOVSS;
   2285 		}
   2286 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2287 
   2288 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   2289 			vmx_event_waitexit_enable(vcpu, false);
   2290 		} else {
   2291 			vmx_event_waitexit_disable(vcpu, false);
   2292 		}
   2293 
   2294 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   2295 			vmx_event_waitexit_enable(vcpu, true);
   2296 		} else {
   2297 			vmx_event_waitexit_disable(vcpu, true);
   2298 		}
   2299 	}
   2300 
   2301 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2302 	if (flags & NVMM_X64_STATE_FPU) {
   2303 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2304 		    sizeof(state->fpu));
   2305 
   2306 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2307 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2308 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2309 
   2310 		if (vmx_xcr0_mask != 0) {
   2311 			/* Reset XSTATE_BV, to force a reload. */
   2312 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2313 		}
   2314 	}
   2315 
   2316 	vmx_vmcs_leave(vcpu);
   2317 }
   2318 
   2319 static void
   2320 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2321 {
   2322 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2323 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2324 	uint64_t intstate;
   2325 
   2326 	vmx_vmcs_enter(vcpu);
   2327 
   2328 	if (flags & NVMM_X64_STATE_SEGS) {
   2329 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2330 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2331 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2332 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2333 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2334 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2335 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2336 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2337 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2338 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2339 	}
   2340 
   2341 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2342 	if (flags & NVMM_X64_STATE_GPRS) {
   2343 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2344 
   2345 		vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
   2346 		vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
   2347 		vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
   2348 	}
   2349 
   2350 	if (flags & NVMM_X64_STATE_CRS) {
   2351 		vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
   2352 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2353 		vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
   2354 		vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
   2355 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2356 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2357 
   2358 		/* Hide VMXE. */
   2359 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2360 	}
   2361 
   2362 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2363 	if (flags & NVMM_X64_STATE_DRS) {
   2364 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2365 
   2366 		vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
   2367 	}
   2368 
   2369 	if (flags & NVMM_X64_STATE_MSRS) {
   2370 		state->msrs[NVMM_X64_MSR_STAR] =
   2371 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2372 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2373 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2374 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2375 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2376 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2377 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2378 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2379 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2380 
   2381 		vmx_vmread(VMCS_GUEST_IA32_EFER,
   2382 		    &state->msrs[NVMM_X64_MSR_EFER]);
   2383 		vmx_vmread(VMCS_GUEST_IA32_PAT,
   2384 		    &state->msrs[NVMM_X64_MSR_PAT]);
   2385 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
   2386 		    &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2387 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
   2388 		    &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2389 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
   2390 		    &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2391 	}
   2392 
   2393 	if (flags & NVMM_X64_STATE_MISC) {
   2394 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2395 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   2396 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2397 
   2398 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   2399 		    cpudata->int_window_exit;
   2400 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   2401 		    cpudata->nmi_window_exit;
   2402 	}
   2403 
   2404 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2405 	if (flags & NVMM_X64_STATE_FPU) {
   2406 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2407 		    sizeof(state->fpu));
   2408 	}
   2409 
   2410 	vmx_vmcs_leave(vcpu);
   2411 }
   2412 
   2413 /* -------------------------------------------------------------------------- */
   2414 
   2415 static void
   2416 vmx_tlb_flush(struct pmap *pm)
   2417 {
   2418 	struct nvmm_machine *mach = pm->pm_data;
   2419 	struct vmx_machdata *machdata = mach->machdata;
   2420 	struct nvmm_cpu *vcpu;
   2421 	int error;
   2422 	size_t i;
   2423 
   2424 	kcpuset_atomicly_merge(machdata->ept_want_flush, kcpuset_running);
   2425 
   2426 	/*
   2427 	 * Not as dumb as it seems. We want to make sure that when we leave
   2428 	 * this function, each VCPU got halted at some point, and possibly
   2429 	 * resumed with the updated kcpuset.
   2430 	 */
   2431 	for (i = 0; i < NVMM_MAX_VCPUS; i++) {
   2432 		error = nvmm_vcpu_get(mach, i, &vcpu);
   2433 		if (error)
   2434 			continue;
   2435 		nvmm_vcpu_put(vcpu);
   2436 	}
   2437 }
   2438 
   2439 static void
   2440 vmx_machine_create(struct nvmm_machine *mach)
   2441 {
   2442 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2443 	struct vmx_machdata *machdata;
   2444 
   2445 	/* Convert to EPT. */
   2446 	pmap_ept_transform(pmap);
   2447 
   2448 	/* Fill in pmap info. */
   2449 	pmap->pm_data = (void *)mach;
   2450 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2451 
   2452 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2453 	kcpuset_create(&machdata->ept_want_flush, true);
   2454 	mach->machdata = machdata;
   2455 
   2456 	/* Start with an EPT flush everywhere. */
   2457 	kcpuset_copy(machdata->ept_want_flush, kcpuset_running);
   2458 }
   2459 
   2460 static void
   2461 vmx_machine_destroy(struct nvmm_machine *mach)
   2462 {
   2463 	struct vmx_machdata *machdata = mach->machdata;
   2464 
   2465 	kcpuset_destroy(machdata->ept_want_flush);
   2466 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2467 }
   2468 
   2469 static int
   2470 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2471 {
   2472 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2473 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2474 	size_t i;
   2475 
   2476 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2477 		return EINVAL;
   2478 	}
   2479 
   2480 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2481 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2482 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2483 	    (cpuid->set.edx & cpuid->del.edx))) {
   2484 		return EINVAL;
   2485 	}
   2486 
   2487 	/* If already here, replace. */
   2488 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2489 		if (!machdata->cpuidpresent[i]) {
   2490 			continue;
   2491 		}
   2492 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2493 			memcpy(&machdata->cpuid[i], cpuid,
   2494 			    sizeof(struct nvmm_x86_conf_cpuid));
   2495 			return 0;
   2496 		}
   2497 	}
   2498 
   2499 	/* Not here, insert. */
   2500 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2501 		if (!machdata->cpuidpresent[i]) {
   2502 			machdata->cpuidpresent[i] = true;
   2503 			memcpy(&machdata->cpuid[i], cpuid,
   2504 			    sizeof(struct nvmm_x86_conf_cpuid));
   2505 			return 0;
   2506 		}
   2507 	}
   2508 
   2509 	return ENOBUFS;
   2510 }
   2511 
   2512 /* -------------------------------------------------------------------------- */
   2513 
   2514 static int
   2515 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2516     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2517 {
   2518 	uint64_t basic, val, true_val;
   2519 	bool one_allowed, zero_allowed, has_true;
   2520 	size_t i;
   2521 
   2522 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2523 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2524 
   2525 	val = rdmsr(msr_ctls);
   2526 	if (has_true) {
   2527 		true_val = rdmsr(msr_true_ctls);
   2528 	} else {
   2529 		true_val = val;
   2530 	}
   2531 
   2532 #define ONE_ALLOWED(msrval, bitoff) \
   2533 	((msrval & __BIT(32 + bitoff)) != 0)
   2534 #define ZERO_ALLOWED(msrval, bitoff) \
   2535 	((msrval & __BIT(bitoff)) == 0)
   2536 
   2537 	for (i = 0; i < 32; i++) {
   2538 		one_allowed = ONE_ALLOWED(true_val, i);
   2539 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2540 
   2541 		if (zero_allowed && !one_allowed) {
   2542 			if (set_one & __BIT(i))
   2543 				return -1;
   2544 			*res &= ~__BIT(i);
   2545 		} else if (one_allowed && !zero_allowed) {
   2546 			if (set_zero & __BIT(i))
   2547 				return -1;
   2548 			*res |= __BIT(i);
   2549 		} else {
   2550 			if (set_zero & __BIT(i)) {
   2551 				*res &= ~__BIT(i);
   2552 			} else if (set_one & __BIT(i)) {
   2553 				*res |= __BIT(i);
   2554 			} else if (!has_true) {
   2555 				*res &= ~__BIT(i);
   2556 			} else if (ZERO_ALLOWED(val, i)) {
   2557 				*res &= ~__BIT(i);
   2558 			} else if (ONE_ALLOWED(val, i)) {
   2559 				*res |= __BIT(i);
   2560 			} else {
   2561 				return -1;
   2562 			}
   2563 		}
   2564 	}
   2565 
   2566 	return 0;
   2567 }
   2568 
   2569 static bool
   2570 vmx_ident(void)
   2571 {
   2572 	uint64_t msr;
   2573 	int ret;
   2574 
   2575 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2576 		return false;
   2577 	}
   2578 
   2579 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2580 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2581 		return false;
   2582 	}
   2583 
   2584 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2585 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2586 		return false;
   2587 	}
   2588 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2589 		return false;
   2590 	}
   2591 
   2592 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2593 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2594 		return false;
   2595 	}
   2596 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2597 		return false;
   2598 	}
   2599 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2600 		return false;
   2601 	}
   2602 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) == 0) {
   2603 		return false;
   2604 	}
   2605 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2606 		return false;
   2607 	}
   2608 
   2609 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2610 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2611 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2612 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2613 	if (ret == -1) {
   2614 		return false;
   2615 	}
   2616 
   2617 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2618 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2619 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2620 	if (ret == -1) {
   2621 		return false;
   2622 	}
   2623 
   2624 	/* Init the CTLSs right now, and check for errors. */
   2625 	ret = vmx_init_ctls(
   2626 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2627 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2628 	    &vmx_pinbased_ctls);
   2629 	if (ret == -1) {
   2630 		return false;
   2631 	}
   2632 	ret = vmx_init_ctls(
   2633 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2634 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2635 	    &vmx_procbased_ctls);
   2636 	if (ret == -1) {
   2637 		return false;
   2638 	}
   2639 	ret = vmx_init_ctls(
   2640 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2641 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2642 	    &vmx_procbased_ctls2);
   2643 	if (ret == -1) {
   2644 		return false;
   2645 	}
   2646 	ret = vmx_init_ctls(
   2647 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2648 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2649 	    &vmx_entry_ctls);
   2650 	if (ret == -1) {
   2651 		return false;
   2652 	}
   2653 	ret = vmx_init_ctls(
   2654 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2655 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2656 	    &vmx_exit_ctls);
   2657 	if (ret == -1) {
   2658 		return false;
   2659 	}
   2660 
   2661 	return true;
   2662 }
   2663 
   2664 static void
   2665 vmx_change_cpu(void *arg1, void *arg2)
   2666 {
   2667 	struct cpu_info *ci = curcpu();
   2668 	bool enable = (bool)arg1;
   2669 	uint64_t cr4;
   2670 
   2671 	if (!enable) {
   2672 		vmx_vmxoff();
   2673 	}
   2674 
   2675 	cr4 = rcr4();
   2676 	if (enable) {
   2677 		cr4 |= CR4_VMXE;
   2678 	} else {
   2679 		cr4 &= ~CR4_VMXE;
   2680 	}
   2681 	lcr4(cr4);
   2682 
   2683 	if (enable) {
   2684 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2685 	}
   2686 }
   2687 
   2688 static void
   2689 vmx_init_l1tf(void)
   2690 {
   2691 	u_int descs[4];
   2692 	uint64_t msr;
   2693 
   2694 	if (cpuid_level < 7) {
   2695 		return;
   2696 	}
   2697 
   2698 	x86_cpuid(7, descs);
   2699 
   2700 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2701 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2702 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2703 			/* No mitigation needed. */
   2704 			return;
   2705 		}
   2706 	}
   2707 
   2708 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2709 		/* Enable hardware mitigation. */
   2710 		vmx_msrlist_entry_nmsr += 1;
   2711 	}
   2712 }
   2713 
   2714 static void
   2715 vmx_init(void)
   2716 {
   2717 	CPU_INFO_ITERATOR cii;
   2718 	struct cpu_info *ci;
   2719 	uint64_t xc, msr;
   2720 	struct vmxon *vmxon;
   2721 	uint32_t revision;
   2722 	paddr_t pa;
   2723 	vaddr_t va;
   2724 	int error;
   2725 
   2726 	/* Init the ASID bitmap (VPID). */
   2727 	vmx_init_asid(VPID_MAX);
   2728 
   2729 	/* Init the XCR0 mask. */
   2730 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2731 
   2732 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2733 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2734 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2735 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   2736 	} else {
   2737 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   2738 	}
   2739 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   2740 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   2741 	} else {
   2742 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   2743 	}
   2744 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   2745 		vmx_eptp_type = EPTP_TYPE_WB;
   2746 	} else {
   2747 		vmx_eptp_type = EPTP_TYPE_UC;
   2748 	}
   2749 
   2750 	/* Init the L1TF mitigation. */
   2751 	vmx_init_l1tf();
   2752 
   2753 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   2754 	revision = vmx_get_revision();
   2755 
   2756 	for (CPU_INFO_FOREACH(cii, ci)) {
   2757 		error = vmx_memalloc(&pa, &va, 1);
   2758 		if (error) {
   2759 			panic("%s: out of memory", __func__);
   2760 		}
   2761 		vmxoncpu[cpu_index(ci)].pa = pa;
   2762 		vmxoncpu[cpu_index(ci)].va = va;
   2763 
   2764 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   2765 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   2766 	}
   2767 
   2768 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   2769 	xc_wait(xc);
   2770 }
   2771 
   2772 static void
   2773 vmx_fini_asid(void)
   2774 {
   2775 	size_t allocsz;
   2776 
   2777 	allocsz = roundup(vmx_maxasid, 8) / 8;
   2778 	kmem_free(vmx_asidmap, allocsz);
   2779 
   2780 	mutex_destroy(&vmx_asidlock);
   2781 }
   2782 
   2783 static void
   2784 vmx_fini(void)
   2785 {
   2786 	uint64_t xc;
   2787 	size_t i;
   2788 
   2789 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   2790 	xc_wait(xc);
   2791 
   2792 	for (i = 0; i < MAXCPUS; i++) {
   2793 		if (vmxoncpu[i].pa != 0)
   2794 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   2795 	}
   2796 
   2797 	vmx_fini_asid();
   2798 }
   2799 
   2800 static void
   2801 vmx_capability(struct nvmm_capability *cap)
   2802 {
   2803 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   2804 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2805 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   2806 }
   2807 
   2808 const struct nvmm_impl nvmm_x86_vmx = {
   2809 	.ident = vmx_ident,
   2810 	.init = vmx_init,
   2811 	.fini = vmx_fini,
   2812 	.capability = vmx_capability,
   2813 	.conf_max = NVMM_X86_NCONF,
   2814 	.conf_sizes = vmx_conf_sizes,
   2815 	.state_size = sizeof(struct nvmm_x64_state),
   2816 	.machine_create = vmx_machine_create,
   2817 	.machine_destroy = vmx_machine_destroy,
   2818 	.machine_configure = vmx_machine_configure,
   2819 	.vcpu_create = vmx_vcpu_create,
   2820 	.vcpu_destroy = vmx_vcpu_destroy,
   2821 	.vcpu_setstate = vmx_vcpu_setstate,
   2822 	.vcpu_getstate = vmx_vcpu_getstate,
   2823 	.vcpu_inject = vmx_vcpu_inject,
   2824 	.vcpu_run = vmx_vcpu_run
   2825 };
   2826