nvmm_x86_vmx.c revision 1.40 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.40 2019/10/23 07:01:11 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.40 2019/10/23 07:01:11 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 volatile uint64_t mach_htlb_gen;
701 };
702
703 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
704 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
705 sizeof(struct nvmm_vcpu_conf_cpuid)
706 };
707
708 struct vmx_cpudata {
709 /* General */
710 uint64_t asid;
711 bool gtlb_want_flush;
712 bool gtsc_want_update;
713 uint64_t vcpu_htlb_gen;
714 kcpuset_t *htlb_want_flush;
715
716 /* VMCS */
717 struct vmcs *vmcs;
718 paddr_t vmcs_pa;
719 size_t vmcs_refcnt;
720 struct cpu_info *vmcs_ci;
721 bool vmcs_launched;
722
723 /* MSR bitmap */
724 uint8_t *msrbm;
725 paddr_t msrbm_pa;
726
727 /* Host state */
728 uint64_t hxcr0;
729 uint64_t star;
730 uint64_t lstar;
731 uint64_t cstar;
732 uint64_t sfmask;
733 uint64_t kernelgsbase;
734
735 /* Intr state */
736 bool int_window_exit;
737 bool nmi_window_exit;
738 bool evt_pending;
739
740 /* Guest state */
741 struct msr_entry *gmsr;
742 paddr_t gmsr_pa;
743 uint64_t gmsr_misc_enable;
744 uint64_t gcr2;
745 uint64_t gcr8;
746 uint64_t gxcr0;
747 uint64_t gprs[NVMM_X64_NGPR];
748 uint64_t drs[NVMM_X64_NDR];
749 uint64_t gtsc;
750 struct xsave_header gfpu __aligned(64);
751
752 /* VCPU configuration. */
753 bool cpuidpresent[VMX_NCPUIDS];
754 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
755 };
756
757 static const struct {
758 uint64_t selector;
759 uint64_t attrib;
760 uint64_t limit;
761 uint64_t base;
762 } vmx_guest_segs[NVMM_X64_NSEG] = {
763 [NVMM_X64_SEG_ES] = {
764 VMCS_GUEST_ES_SELECTOR,
765 VMCS_GUEST_ES_ACCESS_RIGHTS,
766 VMCS_GUEST_ES_LIMIT,
767 VMCS_GUEST_ES_BASE
768 },
769 [NVMM_X64_SEG_CS] = {
770 VMCS_GUEST_CS_SELECTOR,
771 VMCS_GUEST_CS_ACCESS_RIGHTS,
772 VMCS_GUEST_CS_LIMIT,
773 VMCS_GUEST_CS_BASE
774 },
775 [NVMM_X64_SEG_SS] = {
776 VMCS_GUEST_SS_SELECTOR,
777 VMCS_GUEST_SS_ACCESS_RIGHTS,
778 VMCS_GUEST_SS_LIMIT,
779 VMCS_GUEST_SS_BASE
780 },
781 [NVMM_X64_SEG_DS] = {
782 VMCS_GUEST_DS_SELECTOR,
783 VMCS_GUEST_DS_ACCESS_RIGHTS,
784 VMCS_GUEST_DS_LIMIT,
785 VMCS_GUEST_DS_BASE
786 },
787 [NVMM_X64_SEG_FS] = {
788 VMCS_GUEST_FS_SELECTOR,
789 VMCS_GUEST_FS_ACCESS_RIGHTS,
790 VMCS_GUEST_FS_LIMIT,
791 VMCS_GUEST_FS_BASE
792 },
793 [NVMM_X64_SEG_GS] = {
794 VMCS_GUEST_GS_SELECTOR,
795 VMCS_GUEST_GS_ACCESS_RIGHTS,
796 VMCS_GUEST_GS_LIMIT,
797 VMCS_GUEST_GS_BASE
798 },
799 [NVMM_X64_SEG_GDT] = {
800 0, /* doesn't exist */
801 0, /* doesn't exist */
802 VMCS_GUEST_GDTR_LIMIT,
803 VMCS_GUEST_GDTR_BASE
804 },
805 [NVMM_X64_SEG_IDT] = {
806 0, /* doesn't exist */
807 0, /* doesn't exist */
808 VMCS_GUEST_IDTR_LIMIT,
809 VMCS_GUEST_IDTR_BASE
810 },
811 [NVMM_X64_SEG_LDT] = {
812 VMCS_GUEST_LDTR_SELECTOR,
813 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
814 VMCS_GUEST_LDTR_LIMIT,
815 VMCS_GUEST_LDTR_BASE
816 },
817 [NVMM_X64_SEG_TR] = {
818 VMCS_GUEST_TR_SELECTOR,
819 VMCS_GUEST_TR_ACCESS_RIGHTS,
820 VMCS_GUEST_TR_LIMIT,
821 VMCS_GUEST_TR_BASE
822 }
823 };
824
825 /* -------------------------------------------------------------------------- */
826
827 static uint64_t
828 vmx_get_revision(void)
829 {
830 uint64_t msr;
831
832 msr = rdmsr(MSR_IA32_VMX_BASIC);
833 msr &= IA32_VMX_BASIC_IDENT;
834
835 return msr;
836 }
837
838 static void
839 vmx_vmclear_ipi(void *arg1, void *arg2)
840 {
841 paddr_t vmcs_pa = (paddr_t)arg1;
842 vmx_vmclear(&vmcs_pa);
843 }
844
845 static void
846 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
847 {
848 uint64_t xc;
849 int bound;
850
851 KASSERT(kpreempt_disabled());
852
853 bound = curlwp_bind();
854 kpreempt_enable();
855
856 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
857 xc_wait(xc);
858
859 kpreempt_disable();
860 curlwp_bindx(bound);
861 }
862
863 static void
864 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
865 {
866 struct vmx_cpudata *cpudata = vcpu->cpudata;
867 struct cpu_info *vmcs_ci;
868 paddr_t oldpa __diagused;
869
870 cpudata->vmcs_refcnt++;
871 if (cpudata->vmcs_refcnt > 1) {
872 #ifdef DIAGNOSTIC
873 KASSERT(kpreempt_disabled());
874 oldpa = vmx_vmptrst();
875 KASSERT(oldpa == cpudata->vmcs_pa);
876 #endif
877 return;
878 }
879
880 vmcs_ci = cpudata->vmcs_ci;
881 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
882
883 kpreempt_disable();
884
885 if (vmcs_ci == NULL) {
886 /* This VMCS is loaded for the first time. */
887 vmx_vmclear(&cpudata->vmcs_pa);
888 cpudata->vmcs_launched = false;
889 } else if (vmcs_ci != curcpu()) {
890 /* This VMCS is active on a remote CPU. */
891 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
892 cpudata->vmcs_launched = false;
893 } else {
894 /* This VMCS is active on curcpu, nothing to do. */
895 }
896
897 vmx_vmptrld(&cpudata->vmcs_pa);
898 }
899
900 static void
901 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
902 {
903 struct vmx_cpudata *cpudata = vcpu->cpudata;
904
905 KASSERT(kpreempt_disabled());
906 #ifdef DIAGNOSTIC
907 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
908 #endif
909 KASSERT(cpudata->vmcs_refcnt > 0);
910 cpudata->vmcs_refcnt--;
911
912 if (cpudata->vmcs_refcnt > 0) {
913 return;
914 }
915
916 cpudata->vmcs_ci = curcpu();
917 kpreempt_enable();
918 }
919
920 static void
921 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
922 {
923 struct vmx_cpudata *cpudata = vcpu->cpudata;
924
925 KASSERT(kpreempt_disabled());
926 #ifdef DIAGNOSTIC
927 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
928 #endif
929 KASSERT(cpudata->vmcs_refcnt == 1);
930 cpudata->vmcs_refcnt--;
931
932 vmx_vmclear(&cpudata->vmcs_pa);
933 kpreempt_enable();
934 }
935
936 /* -------------------------------------------------------------------------- */
937
938 static void
939 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
940 {
941 struct vmx_cpudata *cpudata = vcpu->cpudata;
942 uint64_t ctls1;
943
944 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
945
946 if (nmi) {
947 // XXX INT_STATE_NMI?
948 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
949 cpudata->nmi_window_exit = true;
950 } else {
951 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
952 cpudata->int_window_exit = true;
953 }
954
955 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
956 }
957
958 static void
959 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
960 {
961 struct vmx_cpudata *cpudata = vcpu->cpudata;
962 uint64_t ctls1;
963
964 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
965
966 if (nmi) {
967 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
968 cpudata->nmi_window_exit = false;
969 } else {
970 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
971 cpudata->int_window_exit = false;
972 }
973
974 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
975 }
976
977 static inline int
978 vmx_event_has_error(uint8_t vector)
979 {
980 switch (vector) {
981 case 8: /* #DF */
982 case 10: /* #TS */
983 case 11: /* #NP */
984 case 12: /* #SS */
985 case 13: /* #GP */
986 case 14: /* #PF */
987 case 17: /* #AC */
988 case 30: /* #SX */
989 return 1;
990 default:
991 return 0;
992 }
993 }
994
995 static int
996 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
997 {
998 struct nvmm_comm_page *comm = vcpu->comm;
999 struct vmx_cpudata *cpudata = vcpu->cpudata;
1000 int type = 0, err = 0, ret = EINVAL;
1001 u_int evtype;
1002 uint8_t vector;
1003 uint64_t info, error;
1004
1005 evtype = comm->event.type;
1006 vector = comm->event.vector;
1007 error = comm->event.u.excp.error;
1008 __insn_barrier();
1009
1010 vmx_vmcs_enter(vcpu);
1011
1012 switch (evtype) {
1013 case NVMM_VCPU_EVENT_EXCP:
1014 if (vector == 2 || vector >= 32)
1015 goto out;
1016 if (vector == 3 || vector == 0)
1017 goto out;
1018 type = INTR_TYPE_HW_EXC;
1019 err = vmx_event_has_error(vector);
1020 break;
1021 case NVMM_VCPU_EVENT_INTR:
1022 type = INTR_TYPE_EXT_INT;
1023 if (vector == 2) {
1024 type = INTR_TYPE_NMI;
1025 vmx_event_waitexit_enable(vcpu, true);
1026 }
1027 err = 0;
1028 break;
1029 default:
1030 goto out;
1031 }
1032
1033 info =
1034 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1035 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1036 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1037 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1038 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1039 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1040
1041 cpudata->evt_pending = true;
1042 ret = 0;
1043
1044 out:
1045 vmx_vmcs_leave(vcpu);
1046 return ret;
1047 }
1048
1049 static void
1050 vmx_inject_ud(struct nvmm_cpu *vcpu)
1051 {
1052 struct nvmm_comm_page *comm = vcpu->comm;
1053 int ret __diagused;
1054
1055 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1056 comm->event.vector = 6;
1057 comm->event.u.excp.error = 0;
1058
1059 ret = vmx_vcpu_inject(vcpu);
1060 KASSERT(ret == 0);
1061 }
1062
1063 static void
1064 vmx_inject_gp(struct nvmm_cpu *vcpu)
1065 {
1066 struct nvmm_comm_page *comm = vcpu->comm;
1067 int ret __diagused;
1068
1069 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1070 comm->event.vector = 13;
1071 comm->event.u.excp.error = 0;
1072
1073 ret = vmx_vcpu_inject(vcpu);
1074 KASSERT(ret == 0);
1075 }
1076
1077 static inline int
1078 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1079 {
1080 if (__predict_true(!vcpu->comm->event_commit)) {
1081 return 0;
1082 }
1083 vcpu->comm->event_commit = false;
1084 return vmx_vcpu_inject(vcpu);
1085 }
1086
1087 static inline void
1088 vmx_inkernel_advance(void)
1089 {
1090 uint64_t rip, inslen, intstate;
1091
1092 /*
1093 * Maybe we should also apply single-stepping and debug exceptions.
1094 * Matters for guest-ring3, because it can execute 'cpuid' under a
1095 * debugger.
1096 */
1097 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1098 rip = vmx_vmread(VMCS_GUEST_RIP);
1099 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1100 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1101 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1102 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1103 }
1104
1105 static void
1106 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1107 {
1108 exit->u.inv.hwcode = code;
1109 exit->reason = NVMM_VCPU_EXIT_INVALID;
1110 }
1111
1112 static void
1113 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1114 struct nvmm_vcpu_exit *exit)
1115 {
1116 uint64_t qual;
1117
1118 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1119
1120 if ((qual & INTR_INFO_VALID) == 0) {
1121 goto error;
1122 }
1123 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1124 goto error;
1125 }
1126
1127 exit->reason = NVMM_VCPU_EXIT_NONE;
1128 return;
1129
1130 error:
1131 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1132 }
1133
1134 static void
1135 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1136 {
1137 struct vmx_cpudata *cpudata = vcpu->cpudata;
1138 uint64_t cr4;
1139
1140 switch (eax) {
1141 case 0x00000001:
1142 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1143
1144 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1145 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1146 CPUID_LOCAL_APIC_ID);
1147
1148 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1149 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1150
1151 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1152
1153 /* CPUID2_OSXSAVE depends on CR4. */
1154 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1155 if (!(cr4 & CR4_OSXSAVE)) {
1156 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1157 }
1158 break;
1159 case 0x00000005:
1160 case 0x00000006:
1161 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1162 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1163 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1164 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1165 break;
1166 case 0x00000007:
1167 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1168 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1169 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1170 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1171 break;
1172 case 0x0000000D:
1173 if (vmx_xcr0_mask == 0) {
1174 break;
1175 }
1176 switch (ecx) {
1177 case 0:
1178 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1179 if (cpudata->gxcr0 & XCR0_SSE) {
1180 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1181 } else {
1182 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1183 }
1184 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1185 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1186 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1187 break;
1188 case 1:
1189 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1190 break;
1191 }
1192 break;
1193 case 0x40000000:
1194 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1195 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1196 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1197 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1198 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1199 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1200 break;
1201 case 0x80000001:
1202 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1203 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1204 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1205 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1206 break;
1207 default:
1208 break;
1209 }
1210 }
1211
1212 static void
1213 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1214 {
1215 uint64_t inslen, rip;
1216
1217 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1218 rip = vmx_vmread(VMCS_GUEST_RIP);
1219 exit->u.insn.npc = rip + inslen;
1220 exit->reason = reason;
1221 }
1222
1223 static void
1224 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1225 struct nvmm_vcpu_exit *exit)
1226 {
1227 struct vmx_cpudata *cpudata = vcpu->cpudata;
1228 struct nvmm_vcpu_conf_cpuid *cpuid;
1229 uint64_t eax, ecx;
1230 u_int descs[4];
1231 size_t i;
1232
1233 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1234 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1235 x86_cpuid2(eax, ecx, descs);
1236
1237 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1238 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1239 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1240 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1241
1242 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1243
1244 for (i = 0; i < VMX_NCPUIDS; i++) {
1245 if (!cpudata->cpuidpresent[i]) {
1246 continue;
1247 }
1248 cpuid = &cpudata->cpuid[i];
1249 if (cpuid->leaf != eax) {
1250 continue;
1251 }
1252
1253 if (cpuid->exit) {
1254 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1255 return;
1256 }
1257 KASSERT(cpuid->mask);
1258
1259 /* del */
1260 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1261 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1262 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1263 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1264
1265 /* set */
1266 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1267 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1268 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1269 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1270
1271 break;
1272 }
1273
1274 vmx_inkernel_advance();
1275 exit->reason = NVMM_VCPU_EXIT_NONE;
1276 }
1277
1278 static void
1279 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1280 struct nvmm_vcpu_exit *exit)
1281 {
1282 struct vmx_cpudata *cpudata = vcpu->cpudata;
1283 uint64_t rflags;
1284
1285 if (cpudata->int_window_exit) {
1286 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1287 if (rflags & PSL_I) {
1288 vmx_event_waitexit_disable(vcpu, false);
1289 }
1290 }
1291
1292 vmx_inkernel_advance();
1293 exit->reason = NVMM_VCPU_EXIT_HALTED;
1294 }
1295
1296 #define VMX_QUAL_CR_NUM __BITS(3,0)
1297 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1298 #define CR_TYPE_WRITE 0
1299 #define CR_TYPE_READ 1
1300 #define CR_TYPE_CLTS 2
1301 #define CR_TYPE_LMSW 3
1302 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1303 #define VMX_QUAL_CR_GPR __BITS(11,8)
1304 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1305
1306 static inline int
1307 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1308 {
1309 /* Bits set to 1 in fixed0 are fixed to 1. */
1310 if ((crval & fixed0) != fixed0) {
1311 return -1;
1312 }
1313 /* Bits set to 0 in fixed1 are fixed to 0. */
1314 if (crval & ~fixed1) {
1315 return -1;
1316 }
1317 return 0;
1318 }
1319
1320 static int
1321 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1322 uint64_t qual)
1323 {
1324 struct vmx_cpudata *cpudata = vcpu->cpudata;
1325 uint64_t type, gpr, cr0;
1326 uint64_t efer, ctls1;
1327
1328 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1329 if (type != CR_TYPE_WRITE) {
1330 return -1;
1331 }
1332
1333 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1334 KASSERT(gpr < 16);
1335
1336 if (gpr == NVMM_X64_GPR_RSP) {
1337 gpr = vmx_vmread(VMCS_GUEST_RSP);
1338 } else {
1339 gpr = cpudata->gprs[gpr];
1340 }
1341
1342 cr0 = gpr | CR0_NE | CR0_ET;
1343 cr0 &= ~(CR0_NW|CR0_CD);
1344
1345 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1346 return -1;
1347 }
1348
1349 /*
1350 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1351 * from CR3.
1352 */
1353
1354 if (cr0 & CR0_PG) {
1355 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1356 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1357 if (efer & EFER_LME) {
1358 ctls1 |= ENTRY_CTLS_LONG_MODE;
1359 efer |= EFER_LMA;
1360 } else {
1361 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1362 efer &= ~EFER_LMA;
1363 }
1364 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1365 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1366 }
1367
1368 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1369 vmx_inkernel_advance();
1370 return 0;
1371 }
1372
1373 static int
1374 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1375 uint64_t qual)
1376 {
1377 struct vmx_cpudata *cpudata = vcpu->cpudata;
1378 uint64_t type, gpr, cr4;
1379
1380 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1381 if (type != CR_TYPE_WRITE) {
1382 return -1;
1383 }
1384
1385 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1386 KASSERT(gpr < 16);
1387
1388 if (gpr == NVMM_X64_GPR_RSP) {
1389 gpr = vmx_vmread(VMCS_GUEST_RSP);
1390 } else {
1391 gpr = cpudata->gprs[gpr];
1392 }
1393
1394 cr4 = gpr | CR4_VMXE;
1395
1396 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1397 return -1;
1398 }
1399
1400 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1401 vmx_inkernel_advance();
1402 return 0;
1403 }
1404
1405 static int
1406 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1407 uint64_t qual)
1408 {
1409 struct vmx_cpudata *cpudata = vcpu->cpudata;
1410 uint64_t type, gpr;
1411 bool write;
1412
1413 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1414 if (type == CR_TYPE_WRITE) {
1415 write = true;
1416 } else if (type == CR_TYPE_READ) {
1417 write = false;
1418 } else {
1419 return -1;
1420 }
1421
1422 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1423 KASSERT(gpr < 16);
1424
1425 if (write) {
1426 if (gpr == NVMM_X64_GPR_RSP) {
1427 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1428 } else {
1429 cpudata->gcr8 = cpudata->gprs[gpr];
1430 }
1431 } else {
1432 if (gpr == NVMM_X64_GPR_RSP) {
1433 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1434 } else {
1435 cpudata->gprs[gpr] = cpudata->gcr8;
1436 }
1437 }
1438
1439 vmx_inkernel_advance();
1440 return 0;
1441 }
1442
1443 static void
1444 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1445 struct nvmm_vcpu_exit *exit)
1446 {
1447 uint64_t qual;
1448 int ret;
1449
1450 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1451
1452 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1453 case 0:
1454 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1455 break;
1456 case 4:
1457 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1458 break;
1459 case 8:
1460 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1461 break;
1462 default:
1463 ret = -1;
1464 break;
1465 }
1466
1467 if (ret == -1) {
1468 vmx_inject_gp(vcpu);
1469 }
1470
1471 exit->reason = NVMM_VCPU_EXIT_NONE;
1472 }
1473
1474 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1475 #define IO_SIZE_8 0
1476 #define IO_SIZE_16 1
1477 #define IO_SIZE_32 3
1478 #define VMX_QUAL_IO_IN __BIT(3)
1479 #define VMX_QUAL_IO_STR __BIT(4)
1480 #define VMX_QUAL_IO_REP __BIT(5)
1481 #define VMX_QUAL_IO_DX __BIT(6)
1482 #define VMX_QUAL_IO_PORT __BITS(31,16)
1483
1484 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1485 #define IO_ADRSIZE_16 0
1486 #define IO_ADRSIZE_32 1
1487 #define IO_ADRSIZE_64 2
1488 #define VMX_INFO_IO_SEG __BITS(17,15)
1489
1490 static void
1491 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1492 struct nvmm_vcpu_exit *exit)
1493 {
1494 uint64_t qual, info, inslen, rip;
1495
1496 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1497 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1498
1499 exit->reason = NVMM_VCPU_EXIT_IO;
1500
1501 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1502 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1503
1504 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1505 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1506
1507 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1508 exit->u.io.address_size = 8;
1509 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1510 exit->u.io.address_size = 4;
1511 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1512 exit->u.io.address_size = 2;
1513 }
1514
1515 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1516 exit->u.io.operand_size = 4;
1517 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1518 exit->u.io.operand_size = 2;
1519 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1520 exit->u.io.operand_size = 1;
1521 }
1522
1523 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1524 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1525
1526 if (exit->u.io.in && exit->u.io.str) {
1527 exit->u.io.seg = NVMM_X64_SEG_ES;
1528 }
1529
1530 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1531 rip = vmx_vmread(VMCS_GUEST_RIP);
1532 exit->u.io.npc = rip + inslen;
1533
1534 vmx_vcpu_state_provide(vcpu,
1535 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1536 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1537 }
1538
1539 static const uint64_t msr_ignore_list[] = {
1540 MSR_BIOS_SIGN,
1541 MSR_IA32_PLATFORM_ID
1542 };
1543
1544 static bool
1545 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1546 struct nvmm_vcpu_exit *exit)
1547 {
1548 struct vmx_cpudata *cpudata = vcpu->cpudata;
1549 uint64_t val;
1550 size_t i;
1551
1552 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1553 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1554 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1555 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1556 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1557 goto handled;
1558 }
1559 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1560 val = cpudata->gmsr_misc_enable;
1561 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1562 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1563 goto handled;
1564 }
1565 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1566 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1567 continue;
1568 val = 0;
1569 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1570 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1571 goto handled;
1572 }
1573 } else {
1574 if (exit->u.wrmsr.msr == MSR_TSC) {
1575 cpudata->gtsc = exit->u.wrmsr.val;
1576 cpudata->gtsc_want_update = true;
1577 goto handled;
1578 }
1579 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1580 val = exit->u.wrmsr.val;
1581 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1582 goto error;
1583 }
1584 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1585 goto handled;
1586 }
1587 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1588 /* Don't care. */
1589 goto handled;
1590 }
1591 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1592 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1593 continue;
1594 goto handled;
1595 }
1596 }
1597
1598 return false;
1599
1600 handled:
1601 vmx_inkernel_advance();
1602 return true;
1603
1604 error:
1605 vmx_inject_gp(vcpu);
1606 return true;
1607 }
1608
1609 static void
1610 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1611 struct nvmm_vcpu_exit *exit)
1612 {
1613 struct vmx_cpudata *cpudata = vcpu->cpudata;
1614 uint64_t inslen, rip;
1615
1616 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1617 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1618
1619 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1620 exit->reason = NVMM_VCPU_EXIT_NONE;
1621 return;
1622 }
1623
1624 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1625 rip = vmx_vmread(VMCS_GUEST_RIP);
1626 exit->u.rdmsr.npc = rip + inslen;
1627
1628 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1629 }
1630
1631 static void
1632 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1633 struct nvmm_vcpu_exit *exit)
1634 {
1635 struct vmx_cpudata *cpudata = vcpu->cpudata;
1636 uint64_t rdx, rax, inslen, rip;
1637
1638 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1639 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1640
1641 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1642 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1643 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1644
1645 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1646 exit->reason = NVMM_VCPU_EXIT_NONE;
1647 return;
1648 }
1649
1650 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1651 rip = vmx_vmread(VMCS_GUEST_RIP);
1652 exit->u.wrmsr.npc = rip + inslen;
1653
1654 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1655 }
1656
1657 static void
1658 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1659 struct nvmm_vcpu_exit *exit)
1660 {
1661 struct vmx_cpudata *cpudata = vcpu->cpudata;
1662 uint16_t val;
1663
1664 exit->reason = NVMM_VCPU_EXIT_NONE;
1665
1666 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1667 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1668
1669 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1670 goto error;
1671 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1672 goto error;
1673 } else if (__predict_false((val & XCR0_X87) == 0)) {
1674 goto error;
1675 }
1676
1677 cpudata->gxcr0 = val;
1678 if (vmx_xcr0_mask != 0) {
1679 wrxcr(0, cpudata->gxcr0);
1680 }
1681
1682 vmx_inkernel_advance();
1683 return;
1684
1685 error:
1686 vmx_inject_gp(vcpu);
1687 }
1688
1689 #define VMX_EPT_VIOLATION_READ __BIT(0)
1690 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1691 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1692
1693 static void
1694 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1695 struct nvmm_vcpu_exit *exit)
1696 {
1697 uint64_t perm;
1698 gpaddr_t gpa;
1699
1700 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1701
1702 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1703 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1704 if (perm & VMX_EPT_VIOLATION_WRITE)
1705 exit->u.mem.prot = PROT_WRITE;
1706 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1707 exit->u.mem.prot = PROT_EXEC;
1708 else
1709 exit->u.mem.prot = PROT_READ;
1710 exit->u.mem.gpa = gpa;
1711 exit->u.mem.inst_len = 0;
1712
1713 vmx_vcpu_state_provide(vcpu,
1714 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1715 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1716 }
1717
1718 /* -------------------------------------------------------------------------- */
1719
1720 static void
1721 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1722 {
1723 struct vmx_cpudata *cpudata = vcpu->cpudata;
1724
1725 fpu_save();
1726 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1727
1728 if (vmx_xcr0_mask != 0) {
1729 cpudata->hxcr0 = rdxcr(0);
1730 wrxcr(0, cpudata->gxcr0);
1731 }
1732 }
1733
1734 static void
1735 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1736 {
1737 struct vmx_cpudata *cpudata = vcpu->cpudata;
1738
1739 if (vmx_xcr0_mask != 0) {
1740 cpudata->gxcr0 = rdxcr(0);
1741 wrxcr(0, cpudata->hxcr0);
1742 }
1743
1744 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1745 }
1746
1747 static void
1748 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1749 {
1750 struct vmx_cpudata *cpudata = vcpu->cpudata;
1751
1752 x86_dbregs_save(curlwp);
1753
1754 ldr7(0);
1755
1756 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1757 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1758 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1759 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1760 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1761 }
1762
1763 static void
1764 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1765 {
1766 struct vmx_cpudata *cpudata = vcpu->cpudata;
1767
1768 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1769 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1770 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1771 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1772 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1773
1774 x86_dbregs_restore(curlwp);
1775 }
1776
1777 static void
1778 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1779 {
1780 struct vmx_cpudata *cpudata = vcpu->cpudata;
1781
1782 /* This gets restored automatically by the CPU. */
1783 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1784 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1785 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1786
1787 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1788 }
1789
1790 static void
1791 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1792 {
1793 struct vmx_cpudata *cpudata = vcpu->cpudata;
1794
1795 wrmsr(MSR_STAR, cpudata->star);
1796 wrmsr(MSR_LSTAR, cpudata->lstar);
1797 wrmsr(MSR_CSTAR, cpudata->cstar);
1798 wrmsr(MSR_SFMASK, cpudata->sfmask);
1799 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1800 }
1801
1802 /* -------------------------------------------------------------------------- */
1803
1804 #define VMX_INVVPID_ADDRESS 0
1805 #define VMX_INVVPID_CONTEXT 1
1806 #define VMX_INVVPID_ALL 2
1807 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1808
1809 #define VMX_INVEPT_CONTEXT 1
1810 #define VMX_INVEPT_ALL 2
1811
1812 static inline void
1813 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1814 {
1815 struct vmx_cpudata *cpudata = vcpu->cpudata;
1816
1817 if (vcpu->hcpu_last != hcpu) {
1818 cpudata->gtlb_want_flush = true;
1819 }
1820 }
1821
1822 static inline void
1823 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1824 {
1825 struct vmx_cpudata *cpudata = vcpu->cpudata;
1826 struct ept_desc ept_desc;
1827
1828 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1829 return;
1830 }
1831
1832 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1833 ept_desc.mbz = 0;
1834 vmx_invept(vmx_ept_flush_op, &ept_desc);
1835 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1836 }
1837
1838 static inline uint64_t
1839 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1840 {
1841 struct ept_desc ept_desc;
1842 uint64_t machgen;
1843
1844 machgen = machdata->mach_htlb_gen;
1845 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1846 return machgen;
1847 }
1848
1849 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1850
1851 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1852 ept_desc.mbz = 0;
1853 vmx_invept(vmx_ept_flush_op, &ept_desc);
1854
1855 return machgen;
1856 }
1857
1858 static inline void
1859 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1860 {
1861 cpudata->vcpu_htlb_gen = machgen;
1862 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1863 }
1864
1865 static inline void
1866 vmx_exit_evt(struct vmx_cpudata *cpudata)
1867 {
1868 uint64_t info, err;
1869
1870 cpudata->evt_pending = false;
1871
1872 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1873 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1874 return;
1875 }
1876 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1877
1878 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1879 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1880
1881 cpudata->evt_pending = true;
1882 }
1883
1884 static int
1885 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1886 struct nvmm_vcpu_exit *exit)
1887 {
1888 struct nvmm_comm_page *comm = vcpu->comm;
1889 struct vmx_machdata *machdata = mach->machdata;
1890 struct vmx_cpudata *cpudata = vcpu->cpudata;
1891 struct vpid_desc vpid_desc;
1892 struct cpu_info *ci;
1893 uint64_t exitcode;
1894 uint64_t intstate;
1895 uint64_t machgen;
1896 int hcpu, s, ret;
1897 bool launched;
1898
1899 vmx_vmcs_enter(vcpu);
1900
1901 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1902 vmx_vmcs_leave(vcpu);
1903 return EINVAL;
1904 }
1905 vmx_vcpu_state_commit(vcpu);
1906 comm->state_cached = 0;
1907
1908 ci = curcpu();
1909 hcpu = cpu_number();
1910 launched = cpudata->vmcs_launched;
1911
1912 vmx_gtlb_catchup(vcpu, hcpu);
1913 vmx_htlb_catchup(vcpu, hcpu);
1914
1915 if (vcpu->hcpu_last != hcpu) {
1916 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1917 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1918 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1919 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1920 cpudata->gtsc_want_update = true;
1921 vcpu->hcpu_last = hcpu;
1922 }
1923
1924 vmx_vcpu_guest_dbregs_enter(vcpu);
1925 vmx_vcpu_guest_misc_enter(vcpu);
1926 vmx_vcpu_guest_fpu_enter(vcpu);
1927
1928 while (1) {
1929 if (cpudata->gtlb_want_flush) {
1930 vpid_desc.vpid = cpudata->asid;
1931 vpid_desc.addr = 0;
1932 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1933 cpudata->gtlb_want_flush = false;
1934 }
1935
1936 if (__predict_false(cpudata->gtsc_want_update)) {
1937 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1938 cpudata->gtsc_want_update = false;
1939 }
1940
1941 s = splhigh();
1942 machgen = vmx_htlb_flush(machdata, cpudata);
1943 lcr2(cpudata->gcr2);
1944 if (launched) {
1945 ret = vmx_vmresume(cpudata->gprs);
1946 } else {
1947 ret = vmx_vmlaunch(cpudata->gprs);
1948 }
1949 cpudata->gcr2 = rcr2();
1950 vmx_htlb_flush_ack(cpudata, machgen);
1951 splx(s);
1952
1953 if (__predict_false(ret != 0)) {
1954 vmx_exit_invalid(exit, -1);
1955 break;
1956 }
1957 vmx_exit_evt(cpudata);
1958
1959 launched = true;
1960
1961 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1962 exitcode &= __BITS(15,0);
1963
1964 switch (exitcode) {
1965 case VMCS_EXITCODE_EXC_NMI:
1966 vmx_exit_exc_nmi(mach, vcpu, exit);
1967 break;
1968 case VMCS_EXITCODE_EXT_INT:
1969 exit->reason = NVMM_VCPU_EXIT_NONE;
1970 break;
1971 case VMCS_EXITCODE_CPUID:
1972 vmx_exit_cpuid(mach, vcpu, exit);
1973 break;
1974 case VMCS_EXITCODE_HLT:
1975 vmx_exit_hlt(mach, vcpu, exit);
1976 break;
1977 case VMCS_EXITCODE_CR:
1978 vmx_exit_cr(mach, vcpu, exit);
1979 break;
1980 case VMCS_EXITCODE_IO:
1981 vmx_exit_io(mach, vcpu, exit);
1982 break;
1983 case VMCS_EXITCODE_RDMSR:
1984 vmx_exit_rdmsr(mach, vcpu, exit);
1985 break;
1986 case VMCS_EXITCODE_WRMSR:
1987 vmx_exit_wrmsr(mach, vcpu, exit);
1988 break;
1989 case VMCS_EXITCODE_SHUTDOWN:
1990 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1991 break;
1992 case VMCS_EXITCODE_MONITOR:
1993 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
1994 break;
1995 case VMCS_EXITCODE_MWAIT:
1996 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
1997 break;
1998 case VMCS_EXITCODE_XSETBV:
1999 vmx_exit_xsetbv(mach, vcpu, exit);
2000 break;
2001 case VMCS_EXITCODE_RDPMC:
2002 case VMCS_EXITCODE_RDTSCP:
2003 case VMCS_EXITCODE_INVVPID:
2004 case VMCS_EXITCODE_INVEPT:
2005 case VMCS_EXITCODE_VMCALL:
2006 case VMCS_EXITCODE_VMCLEAR:
2007 case VMCS_EXITCODE_VMLAUNCH:
2008 case VMCS_EXITCODE_VMPTRLD:
2009 case VMCS_EXITCODE_VMPTRST:
2010 case VMCS_EXITCODE_VMREAD:
2011 case VMCS_EXITCODE_VMRESUME:
2012 case VMCS_EXITCODE_VMWRITE:
2013 case VMCS_EXITCODE_VMXOFF:
2014 case VMCS_EXITCODE_VMXON:
2015 vmx_inject_ud(vcpu);
2016 exit->reason = NVMM_VCPU_EXIT_NONE;
2017 break;
2018 case VMCS_EXITCODE_EPT_VIOLATION:
2019 vmx_exit_epf(mach, vcpu, exit);
2020 break;
2021 case VMCS_EXITCODE_INT_WINDOW:
2022 vmx_event_waitexit_disable(vcpu, false);
2023 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2024 break;
2025 case VMCS_EXITCODE_NMI_WINDOW:
2026 vmx_event_waitexit_disable(vcpu, true);
2027 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2028 break;
2029 default:
2030 vmx_exit_invalid(exit, exitcode);
2031 break;
2032 }
2033
2034 /* If no reason to return to userland, keep rolling. */
2035 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2036 break;
2037 }
2038 if (curcpu()->ci_data.cpu_softints != 0) {
2039 break;
2040 }
2041 if (curlwp->l_flag & LW_USERRET) {
2042 break;
2043 }
2044 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2045 break;
2046 }
2047 }
2048
2049 cpudata->vmcs_launched = launched;
2050
2051 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2052
2053 vmx_vcpu_guest_fpu_leave(vcpu);
2054 vmx_vcpu_guest_misc_leave(vcpu);
2055 vmx_vcpu_guest_dbregs_leave(vcpu);
2056
2057 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2058 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2059 vmx_vmread(VMCS_GUEST_RFLAGS);
2060 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2061 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2062 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2063 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2064 cpudata->int_window_exit;
2065 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2066 cpudata->nmi_window_exit;
2067 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2068 cpudata->evt_pending;
2069
2070 vmx_vmcs_leave(vcpu);
2071
2072 return 0;
2073 }
2074
2075 /* -------------------------------------------------------------------------- */
2076
2077 static int
2078 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2079 {
2080 struct pglist pglist;
2081 paddr_t _pa;
2082 vaddr_t _va;
2083 size_t i;
2084 int ret;
2085
2086 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2087 &pglist, 1, 0);
2088 if (ret != 0)
2089 return ENOMEM;
2090 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2091 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2092 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2093 if (_va == 0)
2094 goto error;
2095
2096 for (i = 0; i < npages; i++) {
2097 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2098 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2099 }
2100 pmap_update(pmap_kernel());
2101
2102 memset((void *)_va, 0, npages * PAGE_SIZE);
2103
2104 *pa = _pa;
2105 *va = _va;
2106 return 0;
2107
2108 error:
2109 for (i = 0; i < npages; i++) {
2110 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2111 }
2112 return ENOMEM;
2113 }
2114
2115 static void
2116 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2117 {
2118 size_t i;
2119
2120 pmap_kremove(va, npages * PAGE_SIZE);
2121 pmap_update(pmap_kernel());
2122 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2123 for (i = 0; i < npages; i++) {
2124 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2125 }
2126 }
2127
2128 /* -------------------------------------------------------------------------- */
2129
2130 static void
2131 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2132 {
2133 uint64_t byte;
2134 uint8_t bitoff;
2135
2136 if (msr < 0x00002000) {
2137 /* Range 1 */
2138 byte = ((msr - 0x00000000) / 8) + 0;
2139 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2140 /* Range 2 */
2141 byte = ((msr - 0xC0000000) / 8) + 1024;
2142 } else {
2143 panic("%s: wrong range", __func__);
2144 }
2145
2146 bitoff = (msr & 0x7);
2147
2148 if (read) {
2149 bitmap[byte] &= ~__BIT(bitoff);
2150 }
2151 if (write) {
2152 bitmap[2048 + byte] &= ~__BIT(bitoff);
2153 }
2154 }
2155
2156 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2157 #define VMX_SEG_ATTRIB_S __BIT(4)
2158 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2159 #define VMX_SEG_ATTRIB_P __BIT(7)
2160 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2161 #define VMX_SEG_ATTRIB_L __BIT(13)
2162 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2163 #define VMX_SEG_ATTRIB_G __BIT(15)
2164 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2165
2166 static void
2167 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2168 {
2169 uint64_t attrib;
2170
2171 attrib =
2172 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2173 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2174 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2175 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2176 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2177 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2178 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2179 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2180 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2181
2182 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2183 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2184 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2185 }
2186 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2187 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2188 }
2189
2190 static void
2191 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2192 {
2193 uint64_t selector = 0, attrib = 0, base, limit;
2194
2195 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2196 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2197 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2198 }
2199 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2200 base = vmx_vmread(vmx_guest_segs[idx].base);
2201
2202 segs[idx].selector = selector;
2203 segs[idx].limit = limit;
2204 segs[idx].base = base;
2205 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2206 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2207 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2208 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2209 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2210 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2211 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2212 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2213 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2214 segs[idx].attrib.p = 0;
2215 }
2216 }
2217
2218 static inline bool
2219 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2220 {
2221 uint64_t cr0, cr3, cr4, efer;
2222
2223 if (flags & NVMM_X64_STATE_CRS) {
2224 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2225 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2226 return true;
2227 }
2228 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2229 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2230 return true;
2231 }
2232 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2233 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2234 return true;
2235 }
2236 }
2237
2238 if (flags & NVMM_X64_STATE_MSRS) {
2239 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2240 if ((efer ^
2241 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2242 return true;
2243 }
2244 }
2245
2246 return false;
2247 }
2248
2249 static void
2250 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2251 {
2252 struct nvmm_comm_page *comm = vcpu->comm;
2253 const struct nvmm_x64_state *state = &comm->state;
2254 struct vmx_cpudata *cpudata = vcpu->cpudata;
2255 struct fxsave *fpustate;
2256 uint64_t ctls1, intstate;
2257 uint64_t flags;
2258
2259 flags = comm->state_wanted;
2260
2261 vmx_vmcs_enter(vcpu);
2262
2263 if (vmx_state_tlb_flush(state, flags)) {
2264 cpudata->gtlb_want_flush = true;
2265 }
2266
2267 if (flags & NVMM_X64_STATE_SEGS) {
2268 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2269 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2270 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2271 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2272 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2273 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2274 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2275 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2276 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2277 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2278 }
2279
2280 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2281 if (flags & NVMM_X64_STATE_GPRS) {
2282 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2283
2284 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2285 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2286 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2287 }
2288
2289 if (flags & NVMM_X64_STATE_CRS) {
2290 /*
2291 * CR0_NE and CR4_VMXE are mandatory.
2292 */
2293 vmx_vmwrite(VMCS_GUEST_CR0,
2294 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2295 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2296 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2297 vmx_vmwrite(VMCS_GUEST_CR4,
2298 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2299 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2300
2301 if (vmx_xcr0_mask != 0) {
2302 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2303 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2304 cpudata->gxcr0 &= vmx_xcr0_mask;
2305 cpudata->gxcr0 |= XCR0_X87;
2306 }
2307 }
2308
2309 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2310 if (flags & NVMM_X64_STATE_DRS) {
2311 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2312
2313 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2314 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2315 }
2316
2317 if (flags & NVMM_X64_STATE_MSRS) {
2318 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2319 state->msrs[NVMM_X64_MSR_STAR];
2320 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2321 state->msrs[NVMM_X64_MSR_LSTAR];
2322 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2323 state->msrs[NVMM_X64_MSR_CSTAR];
2324 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2325 state->msrs[NVMM_X64_MSR_SFMASK];
2326 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2327 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2328
2329 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2330 state->msrs[NVMM_X64_MSR_EFER]);
2331 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2332 state->msrs[NVMM_X64_MSR_PAT]);
2333 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2334 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2335 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2336 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2337 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2338 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2339
2340 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2341 cpudata->gtsc_want_update = true;
2342
2343 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2344 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2345 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2346 ctls1 |= ENTRY_CTLS_LONG_MODE;
2347 } else {
2348 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2349 }
2350 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2351 }
2352
2353 if (flags & NVMM_X64_STATE_INTR) {
2354 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2355 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2356 if (state->intr.int_shadow) {
2357 intstate |= INT_STATE_MOVSS;
2358 }
2359 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2360
2361 if (state->intr.int_window_exiting) {
2362 vmx_event_waitexit_enable(vcpu, false);
2363 } else {
2364 vmx_event_waitexit_disable(vcpu, false);
2365 }
2366
2367 if (state->intr.nmi_window_exiting) {
2368 vmx_event_waitexit_enable(vcpu, true);
2369 } else {
2370 vmx_event_waitexit_disable(vcpu, true);
2371 }
2372 }
2373
2374 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2375 if (flags & NVMM_X64_STATE_FPU) {
2376 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2377 sizeof(state->fpu));
2378
2379 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2380 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2381 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2382
2383 if (vmx_xcr0_mask != 0) {
2384 /* Reset XSTATE_BV, to force a reload. */
2385 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2386 }
2387 }
2388
2389 vmx_vmcs_leave(vcpu);
2390
2391 comm->state_wanted = 0;
2392 comm->state_cached |= flags;
2393 }
2394
2395 static void
2396 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2397 {
2398 struct nvmm_comm_page *comm = vcpu->comm;
2399 struct nvmm_x64_state *state = &comm->state;
2400 struct vmx_cpudata *cpudata = vcpu->cpudata;
2401 uint64_t intstate, flags;
2402
2403 flags = comm->state_wanted;
2404
2405 vmx_vmcs_enter(vcpu);
2406
2407 if (flags & NVMM_X64_STATE_SEGS) {
2408 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2409 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2410 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2411 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2412 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2413 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2414 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2415 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2416 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2417 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2418 }
2419
2420 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2421 if (flags & NVMM_X64_STATE_GPRS) {
2422 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2423
2424 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2425 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2426 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2427 }
2428
2429 if (flags & NVMM_X64_STATE_CRS) {
2430 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2431 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2432 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2433 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2434 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2435 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2436
2437 /* Hide VMXE. */
2438 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2439 }
2440
2441 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2442 if (flags & NVMM_X64_STATE_DRS) {
2443 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2444
2445 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2446 }
2447
2448 if (flags & NVMM_X64_STATE_MSRS) {
2449 state->msrs[NVMM_X64_MSR_STAR] =
2450 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2451 state->msrs[NVMM_X64_MSR_LSTAR] =
2452 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2453 state->msrs[NVMM_X64_MSR_CSTAR] =
2454 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2455 state->msrs[NVMM_X64_MSR_SFMASK] =
2456 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2457 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2458 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2459 state->msrs[NVMM_X64_MSR_EFER] =
2460 vmx_vmread(VMCS_GUEST_IA32_EFER);
2461 state->msrs[NVMM_X64_MSR_PAT] =
2462 vmx_vmread(VMCS_GUEST_IA32_PAT);
2463 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2464 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2465 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2466 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2467 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2468 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2469 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2470 }
2471
2472 if (flags & NVMM_X64_STATE_INTR) {
2473 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2474 state->intr.int_shadow =
2475 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2476 state->intr.int_window_exiting = cpudata->int_window_exit;
2477 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2478 state->intr.evt_pending = cpudata->evt_pending;
2479 }
2480
2481 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2482 if (flags & NVMM_X64_STATE_FPU) {
2483 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2484 sizeof(state->fpu));
2485 }
2486
2487 vmx_vmcs_leave(vcpu);
2488
2489 comm->state_wanted = 0;
2490 comm->state_cached |= flags;
2491 }
2492
2493 static void
2494 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2495 {
2496 vcpu->comm->state_wanted = flags;
2497 vmx_vcpu_getstate(vcpu);
2498 }
2499
2500 static void
2501 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2502 {
2503 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2504 vcpu->comm->state_commit = 0;
2505 vmx_vcpu_setstate(vcpu);
2506 }
2507
2508 /* -------------------------------------------------------------------------- */
2509
2510 static void
2511 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2512 {
2513 struct vmx_cpudata *cpudata = vcpu->cpudata;
2514 size_t i, oct, bit;
2515
2516 mutex_enter(&vmx_asidlock);
2517
2518 for (i = 0; i < vmx_maxasid; i++) {
2519 oct = i / 8;
2520 bit = i % 8;
2521
2522 if (vmx_asidmap[oct] & __BIT(bit)) {
2523 continue;
2524 }
2525
2526 cpudata->asid = i;
2527
2528 vmx_asidmap[oct] |= __BIT(bit);
2529 vmx_vmwrite(VMCS_VPID, i);
2530 mutex_exit(&vmx_asidlock);
2531 return;
2532 }
2533
2534 mutex_exit(&vmx_asidlock);
2535
2536 panic("%s: impossible", __func__);
2537 }
2538
2539 static void
2540 vmx_asid_free(struct nvmm_cpu *vcpu)
2541 {
2542 size_t oct, bit;
2543 uint64_t asid;
2544
2545 asid = vmx_vmread(VMCS_VPID);
2546
2547 oct = asid / 8;
2548 bit = asid % 8;
2549
2550 mutex_enter(&vmx_asidlock);
2551 vmx_asidmap[oct] &= ~__BIT(bit);
2552 mutex_exit(&vmx_asidlock);
2553 }
2554
2555 static void
2556 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2557 {
2558 struct vmx_cpudata *cpudata = vcpu->cpudata;
2559 struct vmcs *vmcs = cpudata->vmcs;
2560 struct msr_entry *gmsr = cpudata->gmsr;
2561 extern uint8_t vmx_resume_rip;
2562 uint64_t rev, eptp;
2563
2564 rev = vmx_get_revision();
2565
2566 memset(vmcs, 0, VMCS_SIZE);
2567 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2568 vmcs->abort = 0;
2569
2570 vmx_vmcs_enter(vcpu);
2571
2572 /* No link pointer. */
2573 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2574
2575 /* Install the CTLSs. */
2576 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2577 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2578 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2579 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2580 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2581
2582 /* Allow direct access to certain MSRs. */
2583 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2584 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2585 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2586 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2587 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2588 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2589 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2590 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2591 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2592 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2593 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2594 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2595 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2596 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2597 true, false);
2598 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2599
2600 /*
2601 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2602 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2603 */
2604 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2605 gmsr[VMX_MSRLIST_STAR].val = 0;
2606 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2607 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2608 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2609 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2610 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2611 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2612 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2613 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2614 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2615 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2616 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2617 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2618 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2619 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2620
2621 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2622 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2623 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2624
2625 /* Force CR4_VMXE to zero. */
2626 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2627
2628 /* Set the Host state for resuming. */
2629 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2630 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2631 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2632 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2633 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2634 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2635 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2636 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2637 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2638 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2639 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2640 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2641 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2642 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2643
2644 /* Generate ASID. */
2645 vmx_asid_alloc(vcpu);
2646
2647 /* Enable Extended Paging, 4-Level. */
2648 eptp =
2649 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2650 __SHIFTIN(4-1, EPTP_WALKLEN) |
2651 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2652 mach->vm->vm_map.pmap->pm_pdirpa[0];
2653 vmx_vmwrite(VMCS_EPTP, eptp);
2654
2655 /* Init IA32_MISC_ENABLE. */
2656 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2657 cpudata->gmsr_misc_enable &=
2658 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2659 cpudata->gmsr_misc_enable |=
2660 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2661
2662 /* Init XSAVE header. */
2663 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2664 cpudata->gfpu.xsh_xcomp_bv = 0;
2665
2666 /* These MSRs are static. */
2667 cpudata->star = rdmsr(MSR_STAR);
2668 cpudata->lstar = rdmsr(MSR_LSTAR);
2669 cpudata->cstar = rdmsr(MSR_CSTAR);
2670 cpudata->sfmask = rdmsr(MSR_SFMASK);
2671
2672 /* Install the RESET state. */
2673 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2674 sizeof(nvmm_x86_reset_state));
2675 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2676 vcpu->comm->state_cached = 0;
2677 vmx_vcpu_setstate(vcpu);
2678
2679 vmx_vmcs_leave(vcpu);
2680 }
2681
2682 static int
2683 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2684 {
2685 struct vmx_cpudata *cpudata;
2686 int error;
2687
2688 /* Allocate the VMX cpudata. */
2689 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2690 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2691 UVM_KMF_WIRED|UVM_KMF_ZERO);
2692 vcpu->cpudata = cpudata;
2693
2694 /* VMCS */
2695 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2696 VMCS_NPAGES);
2697 if (error)
2698 goto error;
2699
2700 /* MSR Bitmap */
2701 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2702 MSRBM_NPAGES);
2703 if (error)
2704 goto error;
2705
2706 /* Guest MSR List */
2707 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2708 if (error)
2709 goto error;
2710
2711 kcpuset_create(&cpudata->htlb_want_flush, true);
2712
2713 /* Init the VCPU info. */
2714 vmx_vcpu_init(mach, vcpu);
2715
2716 return 0;
2717
2718 error:
2719 if (cpudata->vmcs_pa) {
2720 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2721 VMCS_NPAGES);
2722 }
2723 if (cpudata->msrbm_pa) {
2724 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2725 MSRBM_NPAGES);
2726 }
2727 if (cpudata->gmsr_pa) {
2728 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2729 }
2730
2731 kmem_free(cpudata, sizeof(*cpudata));
2732 return error;
2733 }
2734
2735 static void
2736 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2737 {
2738 struct vmx_cpudata *cpudata = vcpu->cpudata;
2739
2740 vmx_vmcs_enter(vcpu);
2741 vmx_asid_free(vcpu);
2742 vmx_vmcs_destroy(vcpu);
2743
2744 kcpuset_destroy(cpudata->htlb_want_flush);
2745
2746 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2747 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2748 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2749 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2750 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2751 }
2752
2753 static int
2754 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2755 {
2756 struct vmx_cpudata *cpudata = vcpu->cpudata;
2757 struct nvmm_vcpu_conf_cpuid *cpuid;
2758 size_t i;
2759
2760 if (__predict_false(op != NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID))) {
2761 return EINVAL;
2762 }
2763 cpuid = data;
2764
2765 if (__predict_false(cpuid->mask && cpuid->exit)) {
2766 return EINVAL;
2767 }
2768 if (__predict_false(cpuid->mask &&
2769 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2770 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2771 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2772 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2773 return EINVAL;
2774 }
2775
2776 /* If unset, delete, to restore the default behavior. */
2777 if (!cpuid->mask && !cpuid->exit) {
2778 for (i = 0; i < VMX_NCPUIDS; i++) {
2779 if (!cpudata->cpuidpresent[i]) {
2780 continue;
2781 }
2782 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2783 cpudata->cpuidpresent[i] = false;
2784 }
2785 }
2786 return 0;
2787 }
2788
2789 /* If already here, replace. */
2790 for (i = 0; i < VMX_NCPUIDS; i++) {
2791 if (!cpudata->cpuidpresent[i]) {
2792 continue;
2793 }
2794 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2795 memcpy(&cpudata->cpuid[i], cpuid,
2796 sizeof(struct nvmm_vcpu_conf_cpuid));
2797 return 0;
2798 }
2799 }
2800
2801 /* Not here, insert. */
2802 for (i = 0; i < VMX_NCPUIDS; i++) {
2803 if (!cpudata->cpuidpresent[i]) {
2804 cpudata->cpuidpresent[i] = true;
2805 memcpy(&cpudata->cpuid[i], cpuid,
2806 sizeof(struct nvmm_vcpu_conf_cpuid));
2807 return 0;
2808 }
2809 }
2810
2811 return ENOBUFS;
2812 }
2813
2814 /* -------------------------------------------------------------------------- */
2815
2816 static void
2817 vmx_tlb_flush(struct pmap *pm)
2818 {
2819 struct nvmm_machine *mach = pm->pm_data;
2820 struct vmx_machdata *machdata = mach->machdata;
2821
2822 atomic_inc_64(&machdata->mach_htlb_gen);
2823
2824 /* Generates IPIs, which cause #VMEXITs. */
2825 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2826 }
2827
2828 static void
2829 vmx_machine_create(struct nvmm_machine *mach)
2830 {
2831 struct pmap *pmap = mach->vm->vm_map.pmap;
2832 struct vmx_machdata *machdata;
2833
2834 /* Convert to EPT. */
2835 pmap_ept_transform(pmap);
2836
2837 /* Fill in pmap info. */
2838 pmap->pm_data = (void *)mach;
2839 pmap->pm_tlb_flush = vmx_tlb_flush;
2840
2841 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2842 mach->machdata = machdata;
2843
2844 /* Start with an hTLB flush everywhere. */
2845 machdata->mach_htlb_gen = 1;
2846 }
2847
2848 static void
2849 vmx_machine_destroy(struct nvmm_machine *mach)
2850 {
2851 struct vmx_machdata *machdata = mach->machdata;
2852
2853 kmem_free(machdata, sizeof(struct vmx_machdata));
2854 }
2855
2856 static int
2857 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2858 {
2859 panic("%s: impossible", __func__);
2860 }
2861
2862 /* -------------------------------------------------------------------------- */
2863
2864 static int
2865 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2866 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2867 {
2868 uint64_t basic, val, true_val;
2869 bool one_allowed, zero_allowed, has_true;
2870 size_t i;
2871
2872 basic = rdmsr(MSR_IA32_VMX_BASIC);
2873 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2874
2875 val = rdmsr(msr_ctls);
2876 if (has_true) {
2877 true_val = rdmsr(msr_true_ctls);
2878 } else {
2879 true_val = val;
2880 }
2881
2882 #define ONE_ALLOWED(msrval, bitoff) \
2883 ((msrval & __BIT(32 + bitoff)) != 0)
2884 #define ZERO_ALLOWED(msrval, bitoff) \
2885 ((msrval & __BIT(bitoff)) == 0)
2886
2887 for (i = 0; i < 32; i++) {
2888 one_allowed = ONE_ALLOWED(true_val, i);
2889 zero_allowed = ZERO_ALLOWED(true_val, i);
2890
2891 if (zero_allowed && !one_allowed) {
2892 if (set_one & __BIT(i))
2893 return -1;
2894 *res &= ~__BIT(i);
2895 } else if (one_allowed && !zero_allowed) {
2896 if (set_zero & __BIT(i))
2897 return -1;
2898 *res |= __BIT(i);
2899 } else {
2900 if (set_zero & __BIT(i)) {
2901 *res &= ~__BIT(i);
2902 } else if (set_one & __BIT(i)) {
2903 *res |= __BIT(i);
2904 } else if (!has_true) {
2905 *res &= ~__BIT(i);
2906 } else if (ZERO_ALLOWED(val, i)) {
2907 *res &= ~__BIT(i);
2908 } else if (ONE_ALLOWED(val, i)) {
2909 *res |= __BIT(i);
2910 } else {
2911 return -1;
2912 }
2913 }
2914 }
2915
2916 return 0;
2917 }
2918
2919 static bool
2920 vmx_ident(void)
2921 {
2922 uint64_t msr;
2923 int ret;
2924
2925 if (!(cpu_feature[1] & CPUID2_VMX)) {
2926 return false;
2927 }
2928
2929 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2930 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2931 return false;
2932 }
2933 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
2934 return false;
2935 }
2936
2937 msr = rdmsr(MSR_IA32_VMX_BASIC);
2938 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2939 return false;
2940 }
2941 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2942 return false;
2943 }
2944
2945 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2946 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2947 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2948 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2949 if (ret == -1) {
2950 return false;
2951 }
2952
2953 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2954 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2955 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2956 if (ret == -1) {
2957 return false;
2958 }
2959
2960 /* Init the CTLSs right now, and check for errors. */
2961 ret = vmx_init_ctls(
2962 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2963 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2964 &vmx_pinbased_ctls);
2965 if (ret == -1) {
2966 return false;
2967 }
2968 ret = vmx_init_ctls(
2969 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2970 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2971 &vmx_procbased_ctls);
2972 if (ret == -1) {
2973 return false;
2974 }
2975 ret = vmx_init_ctls(
2976 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2977 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2978 &vmx_procbased_ctls2);
2979 if (ret == -1) {
2980 return false;
2981 }
2982 ret = vmx_init_ctls(
2983 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2984 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2985 &vmx_entry_ctls);
2986 if (ret == -1) {
2987 return false;
2988 }
2989 ret = vmx_init_ctls(
2990 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2991 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2992 &vmx_exit_ctls);
2993 if (ret == -1) {
2994 return false;
2995 }
2996
2997 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2998 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2999 return false;
3000 }
3001 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3002 return false;
3003 }
3004 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3005 return false;
3006 }
3007 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3008 pmap_ept_has_ad = true;
3009 } else {
3010 pmap_ept_has_ad = false;
3011 }
3012 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3013 return false;
3014 }
3015
3016 return true;
3017 }
3018
3019 static void
3020 vmx_init_asid(uint32_t maxasid)
3021 {
3022 size_t allocsz;
3023
3024 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3025
3026 vmx_maxasid = maxasid;
3027 allocsz = roundup(maxasid, 8) / 8;
3028 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3029
3030 /* ASID 0 is reserved for the host. */
3031 vmx_asidmap[0] |= __BIT(0);
3032 }
3033
3034 static void
3035 vmx_change_cpu(void *arg1, void *arg2)
3036 {
3037 struct cpu_info *ci = curcpu();
3038 bool enable = (bool)arg1;
3039 uint64_t cr4;
3040
3041 if (!enable) {
3042 vmx_vmxoff();
3043 }
3044
3045 cr4 = rcr4();
3046 if (enable) {
3047 cr4 |= CR4_VMXE;
3048 } else {
3049 cr4 &= ~CR4_VMXE;
3050 }
3051 lcr4(cr4);
3052
3053 if (enable) {
3054 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3055 }
3056 }
3057
3058 static void
3059 vmx_init_l1tf(void)
3060 {
3061 u_int descs[4];
3062 uint64_t msr;
3063
3064 if (cpuid_level < 7) {
3065 return;
3066 }
3067
3068 x86_cpuid(7, descs);
3069
3070 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3071 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3072 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3073 /* No mitigation needed. */
3074 return;
3075 }
3076 }
3077
3078 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3079 /* Enable hardware mitigation. */
3080 vmx_msrlist_entry_nmsr += 1;
3081 }
3082 }
3083
3084 static void
3085 vmx_init(void)
3086 {
3087 CPU_INFO_ITERATOR cii;
3088 struct cpu_info *ci;
3089 uint64_t xc, msr;
3090 struct vmxon *vmxon;
3091 uint32_t revision;
3092 paddr_t pa;
3093 vaddr_t va;
3094 int error;
3095
3096 /* Init the ASID bitmap (VPID). */
3097 vmx_init_asid(VPID_MAX);
3098
3099 /* Init the XCR0 mask. */
3100 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3101
3102 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3103 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3104 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3105 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3106 } else {
3107 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3108 }
3109 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3110 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3111 } else {
3112 vmx_ept_flush_op = VMX_INVEPT_ALL;
3113 }
3114 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3115 vmx_eptp_type = EPTP_TYPE_WB;
3116 } else {
3117 vmx_eptp_type = EPTP_TYPE_UC;
3118 }
3119
3120 /* Init the L1TF mitigation. */
3121 vmx_init_l1tf();
3122
3123 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3124 revision = vmx_get_revision();
3125
3126 for (CPU_INFO_FOREACH(cii, ci)) {
3127 error = vmx_memalloc(&pa, &va, 1);
3128 if (error) {
3129 panic("%s: out of memory", __func__);
3130 }
3131 vmxoncpu[cpu_index(ci)].pa = pa;
3132 vmxoncpu[cpu_index(ci)].va = va;
3133
3134 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3135 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3136 }
3137
3138 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3139 xc_wait(xc);
3140 }
3141
3142 static void
3143 vmx_fini_asid(void)
3144 {
3145 size_t allocsz;
3146
3147 allocsz = roundup(vmx_maxasid, 8) / 8;
3148 kmem_free(vmx_asidmap, allocsz);
3149
3150 mutex_destroy(&vmx_asidlock);
3151 }
3152
3153 static void
3154 vmx_fini(void)
3155 {
3156 uint64_t xc;
3157 size_t i;
3158
3159 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3160 xc_wait(xc);
3161
3162 for (i = 0; i < MAXCPUS; i++) {
3163 if (vmxoncpu[i].pa != 0)
3164 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3165 }
3166
3167 vmx_fini_asid();
3168 }
3169
3170 static void
3171 vmx_capability(struct nvmm_capability *cap)
3172 {
3173 cap->arch.xcr0_mask = vmx_xcr0_mask;
3174 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3175 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3176 }
3177
3178 const struct nvmm_impl nvmm_x86_vmx = {
3179 .ident = vmx_ident,
3180 .init = vmx_init,
3181 .fini = vmx_fini,
3182 .capability = vmx_capability,
3183 .mach_conf_max = NVMM_X86_MACH_NCONF,
3184 .mach_conf_sizes = NULL,
3185 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3186 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3187 .state_size = sizeof(struct nvmm_x64_state),
3188 .machine_create = vmx_machine_create,
3189 .machine_destroy = vmx_machine_destroy,
3190 .machine_configure = vmx_machine_configure,
3191 .vcpu_create = vmx_vcpu_create,
3192 .vcpu_destroy = vmx_vcpu_destroy,
3193 .vcpu_configure = vmx_vcpu_configure,
3194 .vcpu_setstate = vmx_vcpu_setstate,
3195 .vcpu_getstate = vmx_vcpu_getstate,
3196 .vcpu_inject = vmx_vcpu_inject,
3197 .vcpu_run = vmx_vcpu_run
3198 };
3199