nvmm_x86_vmx.c revision 1.42 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.42 2019/10/27 11:11:09 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.42 2019/10/27 11:11:09 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 volatile uint64_t mach_htlb_gen;
701 };
702
703 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
704 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
705 sizeof(struct nvmm_vcpu_conf_cpuid),
706 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
707 sizeof(struct nvmm_vcpu_conf_tpr)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736
737 /* Intr state */
738 bool int_window_exit;
739 bool nmi_window_exit;
740 bool evt_pending;
741
742 /* Guest state */
743 struct msr_entry *gmsr;
744 paddr_t gmsr_pa;
745 uint64_t gmsr_misc_enable;
746 uint64_t gcr2;
747 uint64_t gcr8;
748 uint64_t gxcr0;
749 uint64_t gprs[NVMM_X64_NGPR];
750 uint64_t drs[NVMM_X64_NDR];
751 uint64_t gtsc;
752 struct xsave_header gfpu __aligned(64);
753
754 /* VCPU configuration. */
755 bool cpuidpresent[VMX_NCPUIDS];
756 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
757 struct nvmm_vcpu_conf_tpr tpr;
758 };
759
760 static const struct {
761 uint64_t selector;
762 uint64_t attrib;
763 uint64_t limit;
764 uint64_t base;
765 } vmx_guest_segs[NVMM_X64_NSEG] = {
766 [NVMM_X64_SEG_ES] = {
767 VMCS_GUEST_ES_SELECTOR,
768 VMCS_GUEST_ES_ACCESS_RIGHTS,
769 VMCS_GUEST_ES_LIMIT,
770 VMCS_GUEST_ES_BASE
771 },
772 [NVMM_X64_SEG_CS] = {
773 VMCS_GUEST_CS_SELECTOR,
774 VMCS_GUEST_CS_ACCESS_RIGHTS,
775 VMCS_GUEST_CS_LIMIT,
776 VMCS_GUEST_CS_BASE
777 },
778 [NVMM_X64_SEG_SS] = {
779 VMCS_GUEST_SS_SELECTOR,
780 VMCS_GUEST_SS_ACCESS_RIGHTS,
781 VMCS_GUEST_SS_LIMIT,
782 VMCS_GUEST_SS_BASE
783 },
784 [NVMM_X64_SEG_DS] = {
785 VMCS_GUEST_DS_SELECTOR,
786 VMCS_GUEST_DS_ACCESS_RIGHTS,
787 VMCS_GUEST_DS_LIMIT,
788 VMCS_GUEST_DS_BASE
789 },
790 [NVMM_X64_SEG_FS] = {
791 VMCS_GUEST_FS_SELECTOR,
792 VMCS_GUEST_FS_ACCESS_RIGHTS,
793 VMCS_GUEST_FS_LIMIT,
794 VMCS_GUEST_FS_BASE
795 },
796 [NVMM_X64_SEG_GS] = {
797 VMCS_GUEST_GS_SELECTOR,
798 VMCS_GUEST_GS_ACCESS_RIGHTS,
799 VMCS_GUEST_GS_LIMIT,
800 VMCS_GUEST_GS_BASE
801 },
802 [NVMM_X64_SEG_GDT] = {
803 0, /* doesn't exist */
804 0, /* doesn't exist */
805 VMCS_GUEST_GDTR_LIMIT,
806 VMCS_GUEST_GDTR_BASE
807 },
808 [NVMM_X64_SEG_IDT] = {
809 0, /* doesn't exist */
810 0, /* doesn't exist */
811 VMCS_GUEST_IDTR_LIMIT,
812 VMCS_GUEST_IDTR_BASE
813 },
814 [NVMM_X64_SEG_LDT] = {
815 VMCS_GUEST_LDTR_SELECTOR,
816 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
817 VMCS_GUEST_LDTR_LIMIT,
818 VMCS_GUEST_LDTR_BASE
819 },
820 [NVMM_X64_SEG_TR] = {
821 VMCS_GUEST_TR_SELECTOR,
822 VMCS_GUEST_TR_ACCESS_RIGHTS,
823 VMCS_GUEST_TR_LIMIT,
824 VMCS_GUEST_TR_BASE
825 }
826 };
827
828 /* -------------------------------------------------------------------------- */
829
830 static uint64_t
831 vmx_get_revision(void)
832 {
833 uint64_t msr;
834
835 msr = rdmsr(MSR_IA32_VMX_BASIC);
836 msr &= IA32_VMX_BASIC_IDENT;
837
838 return msr;
839 }
840
841 static void
842 vmx_vmclear_ipi(void *arg1, void *arg2)
843 {
844 paddr_t vmcs_pa = (paddr_t)arg1;
845 vmx_vmclear(&vmcs_pa);
846 }
847
848 static void
849 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
850 {
851 uint64_t xc;
852 int bound;
853
854 KASSERT(kpreempt_disabled());
855
856 bound = curlwp_bind();
857 kpreempt_enable();
858
859 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
860 xc_wait(xc);
861
862 kpreempt_disable();
863 curlwp_bindx(bound);
864 }
865
866 static void
867 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
868 {
869 struct vmx_cpudata *cpudata = vcpu->cpudata;
870 struct cpu_info *vmcs_ci;
871 paddr_t oldpa __diagused;
872
873 cpudata->vmcs_refcnt++;
874 if (cpudata->vmcs_refcnt > 1) {
875 #ifdef DIAGNOSTIC
876 KASSERT(kpreempt_disabled());
877 oldpa = vmx_vmptrst();
878 KASSERT(oldpa == cpudata->vmcs_pa);
879 #endif
880 return;
881 }
882
883 vmcs_ci = cpudata->vmcs_ci;
884 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
885
886 kpreempt_disable();
887
888 if (vmcs_ci == NULL) {
889 /* This VMCS is loaded for the first time. */
890 vmx_vmclear(&cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else if (vmcs_ci != curcpu()) {
893 /* This VMCS is active on a remote CPU. */
894 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
895 cpudata->vmcs_launched = false;
896 } else {
897 /* This VMCS is active on curcpu, nothing to do. */
898 }
899
900 vmx_vmptrld(&cpudata->vmcs_pa);
901 }
902
903 static void
904 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
905 {
906 struct vmx_cpudata *cpudata = vcpu->cpudata;
907
908 KASSERT(kpreempt_disabled());
909 #ifdef DIAGNOSTIC
910 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
911 #endif
912 KASSERT(cpudata->vmcs_refcnt > 0);
913 cpudata->vmcs_refcnt--;
914
915 if (cpudata->vmcs_refcnt > 0) {
916 return;
917 }
918
919 cpudata->vmcs_ci = curcpu();
920 kpreempt_enable();
921 }
922
923 static void
924 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
925 {
926 struct vmx_cpudata *cpudata = vcpu->cpudata;
927
928 KASSERT(kpreempt_disabled());
929 #ifdef DIAGNOSTIC
930 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
931 #endif
932 KASSERT(cpudata->vmcs_refcnt == 1);
933 cpudata->vmcs_refcnt--;
934
935 vmx_vmclear(&cpudata->vmcs_pa);
936 kpreempt_enable();
937 }
938
939 /* -------------------------------------------------------------------------- */
940
941 static void
942 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
943 {
944 struct vmx_cpudata *cpudata = vcpu->cpudata;
945 uint64_t ctls1;
946
947 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
948
949 if (nmi) {
950 // XXX INT_STATE_NMI?
951 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
952 cpudata->nmi_window_exit = true;
953 } else {
954 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
955 cpudata->int_window_exit = true;
956 }
957
958 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
959 }
960
961 static void
962 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
963 {
964 struct vmx_cpudata *cpudata = vcpu->cpudata;
965 uint64_t ctls1;
966
967 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
968
969 if (nmi) {
970 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
971 cpudata->nmi_window_exit = false;
972 } else {
973 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
974 cpudata->int_window_exit = false;
975 }
976
977 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
978 }
979
980 static inline int
981 vmx_event_has_error(uint8_t vector)
982 {
983 switch (vector) {
984 case 8: /* #DF */
985 case 10: /* #TS */
986 case 11: /* #NP */
987 case 12: /* #SS */
988 case 13: /* #GP */
989 case 14: /* #PF */
990 case 17: /* #AC */
991 case 30: /* #SX */
992 return 1;
993 default:
994 return 0;
995 }
996 }
997
998 static int
999 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1000 {
1001 struct nvmm_comm_page *comm = vcpu->comm;
1002 struct vmx_cpudata *cpudata = vcpu->cpudata;
1003 int type = 0, err = 0, ret = EINVAL;
1004 u_int evtype;
1005 uint8_t vector;
1006 uint64_t info, error;
1007
1008 evtype = comm->event.type;
1009 vector = comm->event.vector;
1010 error = comm->event.u.excp.error;
1011 __insn_barrier();
1012
1013 vmx_vmcs_enter(vcpu);
1014
1015 switch (evtype) {
1016 case NVMM_VCPU_EVENT_EXCP:
1017 if (vector == 2 || vector >= 32)
1018 goto out;
1019 if (vector == 3 || vector == 0)
1020 goto out;
1021 type = INTR_TYPE_HW_EXC;
1022 err = vmx_event_has_error(vector);
1023 break;
1024 case NVMM_VCPU_EVENT_INTR:
1025 type = INTR_TYPE_EXT_INT;
1026 if (vector == 2) {
1027 type = INTR_TYPE_NMI;
1028 vmx_event_waitexit_enable(vcpu, true);
1029 }
1030 err = 0;
1031 break;
1032 default:
1033 goto out;
1034 }
1035
1036 info =
1037 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1038 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1039 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1040 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1041 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1042 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1043
1044 cpudata->evt_pending = true;
1045 ret = 0;
1046
1047 out:
1048 vmx_vmcs_leave(vcpu);
1049 return ret;
1050 }
1051
1052 static void
1053 vmx_inject_ud(struct nvmm_cpu *vcpu)
1054 {
1055 struct nvmm_comm_page *comm = vcpu->comm;
1056 int ret __diagused;
1057
1058 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1059 comm->event.vector = 6;
1060 comm->event.u.excp.error = 0;
1061
1062 ret = vmx_vcpu_inject(vcpu);
1063 KASSERT(ret == 0);
1064 }
1065
1066 static void
1067 vmx_inject_gp(struct nvmm_cpu *vcpu)
1068 {
1069 struct nvmm_comm_page *comm = vcpu->comm;
1070 int ret __diagused;
1071
1072 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1073 comm->event.vector = 13;
1074 comm->event.u.excp.error = 0;
1075
1076 ret = vmx_vcpu_inject(vcpu);
1077 KASSERT(ret == 0);
1078 }
1079
1080 static inline int
1081 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1082 {
1083 if (__predict_true(!vcpu->comm->event_commit)) {
1084 return 0;
1085 }
1086 vcpu->comm->event_commit = false;
1087 return vmx_vcpu_inject(vcpu);
1088 }
1089
1090 static inline void
1091 vmx_inkernel_advance(void)
1092 {
1093 uint64_t rip, inslen, intstate;
1094
1095 /*
1096 * Maybe we should also apply single-stepping and debug exceptions.
1097 * Matters for guest-ring3, because it can execute 'cpuid' under a
1098 * debugger.
1099 */
1100 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1101 rip = vmx_vmread(VMCS_GUEST_RIP);
1102 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1103 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1104 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1105 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1106 }
1107
1108 static void
1109 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1110 {
1111 exit->u.inv.hwcode = code;
1112 exit->reason = NVMM_VCPU_EXIT_INVALID;
1113 }
1114
1115 static void
1116 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1117 struct nvmm_vcpu_exit *exit)
1118 {
1119 uint64_t qual;
1120
1121 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1122
1123 if ((qual & INTR_INFO_VALID) == 0) {
1124 goto error;
1125 }
1126 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1127 goto error;
1128 }
1129
1130 exit->reason = NVMM_VCPU_EXIT_NONE;
1131 return;
1132
1133 error:
1134 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1135 }
1136
1137 static void
1138 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1139 {
1140 struct vmx_cpudata *cpudata = vcpu->cpudata;
1141 uint64_t cr4;
1142
1143 switch (eax) {
1144 case 0x00000001:
1145 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1146
1147 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1148 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1149 CPUID_LOCAL_APIC_ID);
1150
1151 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1152 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1153
1154 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1155
1156 /* CPUID2_OSXSAVE depends on CR4. */
1157 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1158 if (!(cr4 & CR4_OSXSAVE)) {
1159 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1160 }
1161 break;
1162 case 0x00000005:
1163 case 0x00000006:
1164 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1165 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1166 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1167 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1168 break;
1169 case 0x00000007:
1170 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1171 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1172 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1173 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1174 break;
1175 case 0x0000000A:
1176 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1177 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1178 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1179 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1180 break;
1181 case 0x0000000D:
1182 if (vmx_xcr0_mask == 0) {
1183 break;
1184 }
1185 switch (ecx) {
1186 case 0:
1187 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1188 if (cpudata->gxcr0 & XCR0_SSE) {
1189 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1190 } else {
1191 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1192 }
1193 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1194 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1195 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1196 break;
1197 case 1:
1198 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1199 break;
1200 }
1201 break;
1202 case 0x40000000:
1203 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1204 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1205 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1206 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1207 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1208 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1209 break;
1210 case 0x80000001:
1211 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1212 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1213 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1214 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1215 break;
1216 default:
1217 break;
1218 }
1219 }
1220
1221 static void
1222 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1223 {
1224 uint64_t inslen, rip;
1225
1226 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1227 rip = vmx_vmread(VMCS_GUEST_RIP);
1228 exit->u.insn.npc = rip + inslen;
1229 exit->reason = reason;
1230 }
1231
1232 static void
1233 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1234 struct nvmm_vcpu_exit *exit)
1235 {
1236 struct vmx_cpudata *cpudata = vcpu->cpudata;
1237 struct nvmm_vcpu_conf_cpuid *cpuid;
1238 uint64_t eax, ecx;
1239 u_int descs[4];
1240 size_t i;
1241
1242 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1243 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1244 x86_cpuid2(eax, ecx, descs);
1245
1246 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1247 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1248 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1249 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1250
1251 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1252
1253 for (i = 0; i < VMX_NCPUIDS; i++) {
1254 if (!cpudata->cpuidpresent[i]) {
1255 continue;
1256 }
1257 cpuid = &cpudata->cpuid[i];
1258 if (cpuid->leaf != eax) {
1259 continue;
1260 }
1261
1262 if (cpuid->exit) {
1263 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1264 return;
1265 }
1266 KASSERT(cpuid->mask);
1267
1268 /* del */
1269 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1270 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1271 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1272 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1273
1274 /* set */
1275 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1276 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1277 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1278 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1279
1280 break;
1281 }
1282
1283 vmx_inkernel_advance();
1284 exit->reason = NVMM_VCPU_EXIT_NONE;
1285 }
1286
1287 static void
1288 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1289 struct nvmm_vcpu_exit *exit)
1290 {
1291 struct vmx_cpudata *cpudata = vcpu->cpudata;
1292 uint64_t rflags;
1293
1294 if (cpudata->int_window_exit) {
1295 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1296 if (rflags & PSL_I) {
1297 vmx_event_waitexit_disable(vcpu, false);
1298 }
1299 }
1300
1301 vmx_inkernel_advance();
1302 exit->reason = NVMM_VCPU_EXIT_HALTED;
1303 }
1304
1305 #define VMX_QUAL_CR_NUM __BITS(3,0)
1306 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1307 #define CR_TYPE_WRITE 0
1308 #define CR_TYPE_READ 1
1309 #define CR_TYPE_CLTS 2
1310 #define CR_TYPE_LMSW 3
1311 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1312 #define VMX_QUAL_CR_GPR __BITS(11,8)
1313 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1314
1315 static inline int
1316 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1317 {
1318 /* Bits set to 1 in fixed0 are fixed to 1. */
1319 if ((crval & fixed0) != fixed0) {
1320 return -1;
1321 }
1322 /* Bits set to 0 in fixed1 are fixed to 0. */
1323 if (crval & ~fixed1) {
1324 return -1;
1325 }
1326 return 0;
1327 }
1328
1329 static int
1330 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1331 uint64_t qual)
1332 {
1333 struct vmx_cpudata *cpudata = vcpu->cpudata;
1334 uint64_t type, gpr, cr0;
1335 uint64_t efer, ctls1;
1336
1337 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1338 if (type != CR_TYPE_WRITE) {
1339 return -1;
1340 }
1341
1342 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1343 KASSERT(gpr < 16);
1344
1345 if (gpr == NVMM_X64_GPR_RSP) {
1346 gpr = vmx_vmread(VMCS_GUEST_RSP);
1347 } else {
1348 gpr = cpudata->gprs[gpr];
1349 }
1350
1351 cr0 = gpr | CR0_NE | CR0_ET;
1352 cr0 &= ~(CR0_NW|CR0_CD);
1353
1354 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1355 return -1;
1356 }
1357
1358 /*
1359 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1360 * from CR3.
1361 */
1362
1363 if (cr0 & CR0_PG) {
1364 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1365 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1366 if (efer & EFER_LME) {
1367 ctls1 |= ENTRY_CTLS_LONG_MODE;
1368 efer |= EFER_LMA;
1369 } else {
1370 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1371 efer &= ~EFER_LMA;
1372 }
1373 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1374 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1375 }
1376
1377 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1378 vmx_inkernel_advance();
1379 return 0;
1380 }
1381
1382 static int
1383 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1384 uint64_t qual)
1385 {
1386 struct vmx_cpudata *cpudata = vcpu->cpudata;
1387 uint64_t type, gpr, cr4;
1388
1389 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1390 if (type != CR_TYPE_WRITE) {
1391 return -1;
1392 }
1393
1394 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1395 KASSERT(gpr < 16);
1396
1397 if (gpr == NVMM_X64_GPR_RSP) {
1398 gpr = vmx_vmread(VMCS_GUEST_RSP);
1399 } else {
1400 gpr = cpudata->gprs[gpr];
1401 }
1402
1403 cr4 = gpr | CR4_VMXE;
1404
1405 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1406 return -1;
1407 }
1408
1409 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1410 vmx_inkernel_advance();
1411 return 0;
1412 }
1413
1414 static int
1415 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1416 uint64_t qual, struct nvmm_vcpu_exit *exit)
1417 {
1418 struct vmx_cpudata *cpudata = vcpu->cpudata;
1419 uint64_t type, gpr;
1420 bool write;
1421
1422 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1423 if (type == CR_TYPE_WRITE) {
1424 write = true;
1425 } else if (type == CR_TYPE_READ) {
1426 write = false;
1427 } else {
1428 return -1;
1429 }
1430
1431 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1432 KASSERT(gpr < 16);
1433
1434 if (write) {
1435 if (gpr == NVMM_X64_GPR_RSP) {
1436 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1437 } else {
1438 cpudata->gcr8 = cpudata->gprs[gpr];
1439 }
1440 if (cpudata->tpr.exit_changed) {
1441 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1442 }
1443 } else {
1444 if (gpr == NVMM_X64_GPR_RSP) {
1445 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1446 } else {
1447 cpudata->gprs[gpr] = cpudata->gcr8;
1448 }
1449 }
1450
1451 vmx_inkernel_advance();
1452 return 0;
1453 }
1454
1455 static void
1456 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1457 struct nvmm_vcpu_exit *exit)
1458 {
1459 uint64_t qual;
1460 int ret;
1461
1462 exit->reason = NVMM_VCPU_EXIT_NONE;
1463
1464 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1465
1466 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1467 case 0:
1468 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1469 break;
1470 case 4:
1471 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1472 break;
1473 case 8:
1474 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1475 break;
1476 default:
1477 ret = -1;
1478 break;
1479 }
1480
1481 if (ret == -1) {
1482 vmx_inject_gp(vcpu);
1483 }
1484 }
1485
1486 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1487 #define IO_SIZE_8 0
1488 #define IO_SIZE_16 1
1489 #define IO_SIZE_32 3
1490 #define VMX_QUAL_IO_IN __BIT(3)
1491 #define VMX_QUAL_IO_STR __BIT(4)
1492 #define VMX_QUAL_IO_REP __BIT(5)
1493 #define VMX_QUAL_IO_DX __BIT(6)
1494 #define VMX_QUAL_IO_PORT __BITS(31,16)
1495
1496 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1497 #define IO_ADRSIZE_16 0
1498 #define IO_ADRSIZE_32 1
1499 #define IO_ADRSIZE_64 2
1500 #define VMX_INFO_IO_SEG __BITS(17,15)
1501
1502 static void
1503 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1504 struct nvmm_vcpu_exit *exit)
1505 {
1506 uint64_t qual, info, inslen, rip;
1507
1508 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1509 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1510
1511 exit->reason = NVMM_VCPU_EXIT_IO;
1512
1513 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1514 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1515
1516 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1517 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1518
1519 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1520 exit->u.io.address_size = 8;
1521 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1522 exit->u.io.address_size = 4;
1523 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1524 exit->u.io.address_size = 2;
1525 }
1526
1527 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1528 exit->u.io.operand_size = 4;
1529 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1530 exit->u.io.operand_size = 2;
1531 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1532 exit->u.io.operand_size = 1;
1533 }
1534
1535 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1536 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1537
1538 if (exit->u.io.in && exit->u.io.str) {
1539 exit->u.io.seg = NVMM_X64_SEG_ES;
1540 }
1541
1542 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1543 rip = vmx_vmread(VMCS_GUEST_RIP);
1544 exit->u.io.npc = rip + inslen;
1545
1546 vmx_vcpu_state_provide(vcpu,
1547 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1548 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1549 }
1550
1551 static const uint64_t msr_ignore_list[] = {
1552 MSR_BIOS_SIGN,
1553 MSR_IA32_PLATFORM_ID
1554 };
1555
1556 static bool
1557 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1558 struct nvmm_vcpu_exit *exit)
1559 {
1560 struct vmx_cpudata *cpudata = vcpu->cpudata;
1561 uint64_t val;
1562 size_t i;
1563
1564 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1565 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1566 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1567 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1568 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1569 goto handled;
1570 }
1571 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1572 val = cpudata->gmsr_misc_enable;
1573 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1574 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1575 goto handled;
1576 }
1577 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1578 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1579 continue;
1580 val = 0;
1581 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1582 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1583 goto handled;
1584 }
1585 } else {
1586 if (exit->u.wrmsr.msr == MSR_TSC) {
1587 cpudata->gtsc = exit->u.wrmsr.val;
1588 cpudata->gtsc_want_update = true;
1589 goto handled;
1590 }
1591 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1592 val = exit->u.wrmsr.val;
1593 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1594 goto error;
1595 }
1596 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1597 goto handled;
1598 }
1599 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1600 /* Don't care. */
1601 goto handled;
1602 }
1603 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1604 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1605 continue;
1606 goto handled;
1607 }
1608 }
1609
1610 return false;
1611
1612 handled:
1613 vmx_inkernel_advance();
1614 return true;
1615
1616 error:
1617 vmx_inject_gp(vcpu);
1618 return true;
1619 }
1620
1621 static void
1622 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1623 struct nvmm_vcpu_exit *exit)
1624 {
1625 struct vmx_cpudata *cpudata = vcpu->cpudata;
1626 uint64_t inslen, rip;
1627
1628 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1629 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1630
1631 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1632 exit->reason = NVMM_VCPU_EXIT_NONE;
1633 return;
1634 }
1635
1636 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1637 rip = vmx_vmread(VMCS_GUEST_RIP);
1638 exit->u.rdmsr.npc = rip + inslen;
1639
1640 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1641 }
1642
1643 static void
1644 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1645 struct nvmm_vcpu_exit *exit)
1646 {
1647 struct vmx_cpudata *cpudata = vcpu->cpudata;
1648 uint64_t rdx, rax, inslen, rip;
1649
1650 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1651 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1652
1653 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1654 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1655 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1656
1657 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1658 exit->reason = NVMM_VCPU_EXIT_NONE;
1659 return;
1660 }
1661
1662 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1663 rip = vmx_vmread(VMCS_GUEST_RIP);
1664 exit->u.wrmsr.npc = rip + inslen;
1665
1666 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1667 }
1668
1669 static void
1670 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1671 struct nvmm_vcpu_exit *exit)
1672 {
1673 struct vmx_cpudata *cpudata = vcpu->cpudata;
1674 uint16_t val;
1675
1676 exit->reason = NVMM_VCPU_EXIT_NONE;
1677
1678 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1679 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1680
1681 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1682 goto error;
1683 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1684 goto error;
1685 } else if (__predict_false((val & XCR0_X87) == 0)) {
1686 goto error;
1687 }
1688
1689 cpudata->gxcr0 = val;
1690 if (vmx_xcr0_mask != 0) {
1691 wrxcr(0, cpudata->gxcr0);
1692 }
1693
1694 vmx_inkernel_advance();
1695 return;
1696
1697 error:
1698 vmx_inject_gp(vcpu);
1699 }
1700
1701 #define VMX_EPT_VIOLATION_READ __BIT(0)
1702 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1703 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1704
1705 static void
1706 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1707 struct nvmm_vcpu_exit *exit)
1708 {
1709 uint64_t perm;
1710 gpaddr_t gpa;
1711
1712 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1713
1714 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1715 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1716 if (perm & VMX_EPT_VIOLATION_WRITE)
1717 exit->u.mem.prot = PROT_WRITE;
1718 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1719 exit->u.mem.prot = PROT_EXEC;
1720 else
1721 exit->u.mem.prot = PROT_READ;
1722 exit->u.mem.gpa = gpa;
1723 exit->u.mem.inst_len = 0;
1724
1725 vmx_vcpu_state_provide(vcpu,
1726 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1727 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1728 }
1729
1730 /* -------------------------------------------------------------------------- */
1731
1732 static void
1733 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1734 {
1735 struct vmx_cpudata *cpudata = vcpu->cpudata;
1736
1737 fpu_save();
1738 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1739
1740 if (vmx_xcr0_mask != 0) {
1741 cpudata->hxcr0 = rdxcr(0);
1742 wrxcr(0, cpudata->gxcr0);
1743 }
1744 }
1745
1746 static void
1747 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1748 {
1749 struct vmx_cpudata *cpudata = vcpu->cpudata;
1750
1751 if (vmx_xcr0_mask != 0) {
1752 cpudata->gxcr0 = rdxcr(0);
1753 wrxcr(0, cpudata->hxcr0);
1754 }
1755
1756 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1757 }
1758
1759 static void
1760 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1761 {
1762 struct vmx_cpudata *cpudata = vcpu->cpudata;
1763
1764 x86_dbregs_save(curlwp);
1765
1766 ldr7(0);
1767
1768 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1769 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1770 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1771 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1772 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1773 }
1774
1775 static void
1776 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1777 {
1778 struct vmx_cpudata *cpudata = vcpu->cpudata;
1779
1780 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1781 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1782 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1783 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1784 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1785
1786 x86_dbregs_restore(curlwp);
1787 }
1788
1789 static void
1790 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1791 {
1792 struct vmx_cpudata *cpudata = vcpu->cpudata;
1793
1794 /* This gets restored automatically by the CPU. */
1795 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1796 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1797 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1798
1799 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1800 }
1801
1802 static void
1803 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1804 {
1805 struct vmx_cpudata *cpudata = vcpu->cpudata;
1806
1807 wrmsr(MSR_STAR, cpudata->star);
1808 wrmsr(MSR_LSTAR, cpudata->lstar);
1809 wrmsr(MSR_CSTAR, cpudata->cstar);
1810 wrmsr(MSR_SFMASK, cpudata->sfmask);
1811 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1812 }
1813
1814 /* -------------------------------------------------------------------------- */
1815
1816 #define VMX_INVVPID_ADDRESS 0
1817 #define VMX_INVVPID_CONTEXT 1
1818 #define VMX_INVVPID_ALL 2
1819 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1820
1821 #define VMX_INVEPT_CONTEXT 1
1822 #define VMX_INVEPT_ALL 2
1823
1824 static inline void
1825 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1826 {
1827 struct vmx_cpudata *cpudata = vcpu->cpudata;
1828
1829 if (vcpu->hcpu_last != hcpu) {
1830 cpudata->gtlb_want_flush = true;
1831 }
1832 }
1833
1834 static inline void
1835 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1836 {
1837 struct vmx_cpudata *cpudata = vcpu->cpudata;
1838 struct ept_desc ept_desc;
1839
1840 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1841 return;
1842 }
1843
1844 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1845 ept_desc.mbz = 0;
1846 vmx_invept(vmx_ept_flush_op, &ept_desc);
1847 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1848 }
1849
1850 static inline uint64_t
1851 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1852 {
1853 struct ept_desc ept_desc;
1854 uint64_t machgen;
1855
1856 machgen = machdata->mach_htlb_gen;
1857 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1858 return machgen;
1859 }
1860
1861 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1862
1863 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1864 ept_desc.mbz = 0;
1865 vmx_invept(vmx_ept_flush_op, &ept_desc);
1866
1867 return machgen;
1868 }
1869
1870 static inline void
1871 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1872 {
1873 cpudata->vcpu_htlb_gen = machgen;
1874 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1875 }
1876
1877 static inline void
1878 vmx_exit_evt(struct vmx_cpudata *cpudata)
1879 {
1880 uint64_t info, err;
1881
1882 cpudata->evt_pending = false;
1883
1884 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1885 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1886 return;
1887 }
1888 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1889
1890 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1891 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1892
1893 cpudata->evt_pending = true;
1894 }
1895
1896 static int
1897 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1898 struct nvmm_vcpu_exit *exit)
1899 {
1900 struct nvmm_comm_page *comm = vcpu->comm;
1901 struct vmx_machdata *machdata = mach->machdata;
1902 struct vmx_cpudata *cpudata = vcpu->cpudata;
1903 struct vpid_desc vpid_desc;
1904 struct cpu_info *ci;
1905 uint64_t exitcode;
1906 uint64_t intstate;
1907 uint64_t machgen;
1908 int hcpu, s, ret;
1909 bool launched;
1910
1911 vmx_vmcs_enter(vcpu);
1912
1913 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1914 vmx_vmcs_leave(vcpu);
1915 return EINVAL;
1916 }
1917 vmx_vcpu_state_commit(vcpu);
1918 comm->state_cached = 0;
1919
1920 ci = curcpu();
1921 hcpu = cpu_number();
1922 launched = cpudata->vmcs_launched;
1923
1924 vmx_gtlb_catchup(vcpu, hcpu);
1925 vmx_htlb_catchup(vcpu, hcpu);
1926
1927 if (vcpu->hcpu_last != hcpu) {
1928 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1929 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1930 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1931 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1932 cpudata->gtsc_want_update = true;
1933 vcpu->hcpu_last = hcpu;
1934 }
1935
1936 vmx_vcpu_guest_dbregs_enter(vcpu);
1937 vmx_vcpu_guest_misc_enter(vcpu);
1938 vmx_vcpu_guest_fpu_enter(vcpu);
1939
1940 while (1) {
1941 if (cpudata->gtlb_want_flush) {
1942 vpid_desc.vpid = cpudata->asid;
1943 vpid_desc.addr = 0;
1944 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1945 cpudata->gtlb_want_flush = false;
1946 }
1947
1948 if (__predict_false(cpudata->gtsc_want_update)) {
1949 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1950 cpudata->gtsc_want_update = false;
1951 }
1952
1953 s = splhigh();
1954 machgen = vmx_htlb_flush(machdata, cpudata);
1955 lcr2(cpudata->gcr2);
1956 if (launched) {
1957 ret = vmx_vmresume(cpudata->gprs);
1958 } else {
1959 ret = vmx_vmlaunch(cpudata->gprs);
1960 }
1961 cpudata->gcr2 = rcr2();
1962 vmx_htlb_flush_ack(cpudata, machgen);
1963 splx(s);
1964
1965 if (__predict_false(ret != 0)) {
1966 vmx_exit_invalid(exit, -1);
1967 break;
1968 }
1969 vmx_exit_evt(cpudata);
1970
1971 launched = true;
1972
1973 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1974 exitcode &= __BITS(15,0);
1975
1976 switch (exitcode) {
1977 case VMCS_EXITCODE_EXC_NMI:
1978 vmx_exit_exc_nmi(mach, vcpu, exit);
1979 break;
1980 case VMCS_EXITCODE_EXT_INT:
1981 exit->reason = NVMM_VCPU_EXIT_NONE;
1982 break;
1983 case VMCS_EXITCODE_CPUID:
1984 vmx_exit_cpuid(mach, vcpu, exit);
1985 break;
1986 case VMCS_EXITCODE_HLT:
1987 vmx_exit_hlt(mach, vcpu, exit);
1988 break;
1989 case VMCS_EXITCODE_CR:
1990 vmx_exit_cr(mach, vcpu, exit);
1991 break;
1992 case VMCS_EXITCODE_IO:
1993 vmx_exit_io(mach, vcpu, exit);
1994 break;
1995 case VMCS_EXITCODE_RDMSR:
1996 vmx_exit_rdmsr(mach, vcpu, exit);
1997 break;
1998 case VMCS_EXITCODE_WRMSR:
1999 vmx_exit_wrmsr(mach, vcpu, exit);
2000 break;
2001 case VMCS_EXITCODE_SHUTDOWN:
2002 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2003 break;
2004 case VMCS_EXITCODE_MONITOR:
2005 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2006 break;
2007 case VMCS_EXITCODE_MWAIT:
2008 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2009 break;
2010 case VMCS_EXITCODE_XSETBV:
2011 vmx_exit_xsetbv(mach, vcpu, exit);
2012 break;
2013 case VMCS_EXITCODE_RDPMC:
2014 case VMCS_EXITCODE_RDTSCP:
2015 case VMCS_EXITCODE_INVVPID:
2016 case VMCS_EXITCODE_INVEPT:
2017 case VMCS_EXITCODE_VMCALL:
2018 case VMCS_EXITCODE_VMCLEAR:
2019 case VMCS_EXITCODE_VMLAUNCH:
2020 case VMCS_EXITCODE_VMPTRLD:
2021 case VMCS_EXITCODE_VMPTRST:
2022 case VMCS_EXITCODE_VMREAD:
2023 case VMCS_EXITCODE_VMRESUME:
2024 case VMCS_EXITCODE_VMWRITE:
2025 case VMCS_EXITCODE_VMXOFF:
2026 case VMCS_EXITCODE_VMXON:
2027 vmx_inject_ud(vcpu);
2028 exit->reason = NVMM_VCPU_EXIT_NONE;
2029 break;
2030 case VMCS_EXITCODE_EPT_VIOLATION:
2031 vmx_exit_epf(mach, vcpu, exit);
2032 break;
2033 case VMCS_EXITCODE_INT_WINDOW:
2034 vmx_event_waitexit_disable(vcpu, false);
2035 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2036 break;
2037 case VMCS_EXITCODE_NMI_WINDOW:
2038 vmx_event_waitexit_disable(vcpu, true);
2039 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2040 break;
2041 default:
2042 vmx_exit_invalid(exit, exitcode);
2043 break;
2044 }
2045
2046 /* If no reason to return to userland, keep rolling. */
2047 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2048 break;
2049 }
2050 if (curcpu()->ci_data.cpu_softints != 0) {
2051 break;
2052 }
2053 if (curlwp->l_flag & LW_USERRET) {
2054 break;
2055 }
2056 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2057 break;
2058 }
2059 }
2060
2061 cpudata->vmcs_launched = launched;
2062
2063 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2064
2065 vmx_vcpu_guest_fpu_leave(vcpu);
2066 vmx_vcpu_guest_misc_leave(vcpu);
2067 vmx_vcpu_guest_dbregs_leave(vcpu);
2068
2069 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2070 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2071 vmx_vmread(VMCS_GUEST_RFLAGS);
2072 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2073 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2074 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2075 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2076 cpudata->int_window_exit;
2077 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2078 cpudata->nmi_window_exit;
2079 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2080 cpudata->evt_pending;
2081
2082 vmx_vmcs_leave(vcpu);
2083
2084 return 0;
2085 }
2086
2087 /* -------------------------------------------------------------------------- */
2088
2089 static int
2090 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2091 {
2092 struct pglist pglist;
2093 paddr_t _pa;
2094 vaddr_t _va;
2095 size_t i;
2096 int ret;
2097
2098 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2099 &pglist, 1, 0);
2100 if (ret != 0)
2101 return ENOMEM;
2102 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2103 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2104 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2105 if (_va == 0)
2106 goto error;
2107
2108 for (i = 0; i < npages; i++) {
2109 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2110 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2111 }
2112 pmap_update(pmap_kernel());
2113
2114 memset((void *)_va, 0, npages * PAGE_SIZE);
2115
2116 *pa = _pa;
2117 *va = _va;
2118 return 0;
2119
2120 error:
2121 for (i = 0; i < npages; i++) {
2122 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2123 }
2124 return ENOMEM;
2125 }
2126
2127 static void
2128 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2129 {
2130 size_t i;
2131
2132 pmap_kremove(va, npages * PAGE_SIZE);
2133 pmap_update(pmap_kernel());
2134 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2135 for (i = 0; i < npages; i++) {
2136 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2137 }
2138 }
2139
2140 /* -------------------------------------------------------------------------- */
2141
2142 static void
2143 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2144 {
2145 uint64_t byte;
2146 uint8_t bitoff;
2147
2148 if (msr < 0x00002000) {
2149 /* Range 1 */
2150 byte = ((msr - 0x00000000) / 8) + 0;
2151 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2152 /* Range 2 */
2153 byte = ((msr - 0xC0000000) / 8) + 1024;
2154 } else {
2155 panic("%s: wrong range", __func__);
2156 }
2157
2158 bitoff = (msr & 0x7);
2159
2160 if (read) {
2161 bitmap[byte] &= ~__BIT(bitoff);
2162 }
2163 if (write) {
2164 bitmap[2048 + byte] &= ~__BIT(bitoff);
2165 }
2166 }
2167
2168 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2169 #define VMX_SEG_ATTRIB_S __BIT(4)
2170 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2171 #define VMX_SEG_ATTRIB_P __BIT(7)
2172 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2173 #define VMX_SEG_ATTRIB_L __BIT(13)
2174 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2175 #define VMX_SEG_ATTRIB_G __BIT(15)
2176 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2177
2178 static void
2179 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2180 {
2181 uint64_t attrib;
2182
2183 attrib =
2184 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2185 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2186 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2187 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2188 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2189 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2190 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2191 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2192 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2193
2194 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2195 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2196 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2197 }
2198 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2199 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2200 }
2201
2202 static void
2203 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2204 {
2205 uint64_t selector = 0, attrib = 0, base, limit;
2206
2207 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2208 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2209 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2210 }
2211 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2212 base = vmx_vmread(vmx_guest_segs[idx].base);
2213
2214 segs[idx].selector = selector;
2215 segs[idx].limit = limit;
2216 segs[idx].base = base;
2217 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2218 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2219 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2220 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2221 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2222 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2223 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2224 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2225 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2226 segs[idx].attrib.p = 0;
2227 }
2228 }
2229
2230 static inline bool
2231 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2232 {
2233 uint64_t cr0, cr3, cr4, efer;
2234
2235 if (flags & NVMM_X64_STATE_CRS) {
2236 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2237 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2238 return true;
2239 }
2240 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2241 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2242 return true;
2243 }
2244 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2245 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2246 return true;
2247 }
2248 }
2249
2250 if (flags & NVMM_X64_STATE_MSRS) {
2251 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2252 if ((efer ^
2253 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2254 return true;
2255 }
2256 }
2257
2258 return false;
2259 }
2260
2261 static void
2262 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2263 {
2264 struct nvmm_comm_page *comm = vcpu->comm;
2265 const struct nvmm_x64_state *state = &comm->state;
2266 struct vmx_cpudata *cpudata = vcpu->cpudata;
2267 struct fxsave *fpustate;
2268 uint64_t ctls1, intstate;
2269 uint64_t flags;
2270
2271 flags = comm->state_wanted;
2272
2273 vmx_vmcs_enter(vcpu);
2274
2275 if (vmx_state_tlb_flush(state, flags)) {
2276 cpudata->gtlb_want_flush = true;
2277 }
2278
2279 if (flags & NVMM_X64_STATE_SEGS) {
2280 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2281 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2282 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2283 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2284 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2285 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2286 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2287 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2288 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2289 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2290 }
2291
2292 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2293 if (flags & NVMM_X64_STATE_GPRS) {
2294 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2295
2296 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2297 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2298 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2299 }
2300
2301 if (flags & NVMM_X64_STATE_CRS) {
2302 /*
2303 * CR0_NE and CR4_VMXE are mandatory.
2304 */
2305 vmx_vmwrite(VMCS_GUEST_CR0,
2306 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2307 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2308 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2309 vmx_vmwrite(VMCS_GUEST_CR4,
2310 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2311 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2312
2313 if (vmx_xcr0_mask != 0) {
2314 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2315 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2316 cpudata->gxcr0 &= vmx_xcr0_mask;
2317 cpudata->gxcr0 |= XCR0_X87;
2318 }
2319 }
2320
2321 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2322 if (flags & NVMM_X64_STATE_DRS) {
2323 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2324
2325 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2326 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2327 }
2328
2329 if (flags & NVMM_X64_STATE_MSRS) {
2330 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2331 state->msrs[NVMM_X64_MSR_STAR];
2332 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2333 state->msrs[NVMM_X64_MSR_LSTAR];
2334 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2335 state->msrs[NVMM_X64_MSR_CSTAR];
2336 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2337 state->msrs[NVMM_X64_MSR_SFMASK];
2338 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2339 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2340
2341 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2342 state->msrs[NVMM_X64_MSR_EFER]);
2343 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2344 state->msrs[NVMM_X64_MSR_PAT]);
2345 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2346 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2347 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2348 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2349 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2350 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2351
2352 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2353 cpudata->gtsc_want_update = true;
2354
2355 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2356 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2357 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2358 ctls1 |= ENTRY_CTLS_LONG_MODE;
2359 } else {
2360 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2361 }
2362 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2363 }
2364
2365 if (flags & NVMM_X64_STATE_INTR) {
2366 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2367 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2368 if (state->intr.int_shadow) {
2369 intstate |= INT_STATE_MOVSS;
2370 }
2371 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2372
2373 if (state->intr.int_window_exiting) {
2374 vmx_event_waitexit_enable(vcpu, false);
2375 } else {
2376 vmx_event_waitexit_disable(vcpu, false);
2377 }
2378
2379 if (state->intr.nmi_window_exiting) {
2380 vmx_event_waitexit_enable(vcpu, true);
2381 } else {
2382 vmx_event_waitexit_disable(vcpu, true);
2383 }
2384 }
2385
2386 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2387 if (flags & NVMM_X64_STATE_FPU) {
2388 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2389 sizeof(state->fpu));
2390
2391 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2392 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2393 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2394
2395 if (vmx_xcr0_mask != 0) {
2396 /* Reset XSTATE_BV, to force a reload. */
2397 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2398 }
2399 }
2400
2401 vmx_vmcs_leave(vcpu);
2402
2403 comm->state_wanted = 0;
2404 comm->state_cached |= flags;
2405 }
2406
2407 static void
2408 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2409 {
2410 struct nvmm_comm_page *comm = vcpu->comm;
2411 struct nvmm_x64_state *state = &comm->state;
2412 struct vmx_cpudata *cpudata = vcpu->cpudata;
2413 uint64_t intstate, flags;
2414
2415 flags = comm->state_wanted;
2416
2417 vmx_vmcs_enter(vcpu);
2418
2419 if (flags & NVMM_X64_STATE_SEGS) {
2420 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2421 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2422 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2423 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2424 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2425 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2426 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2427 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2428 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2429 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2430 }
2431
2432 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2433 if (flags & NVMM_X64_STATE_GPRS) {
2434 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2435
2436 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2437 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2438 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2439 }
2440
2441 if (flags & NVMM_X64_STATE_CRS) {
2442 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2443 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2444 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2445 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2446 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2447 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2448
2449 /* Hide VMXE. */
2450 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2451 }
2452
2453 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2454 if (flags & NVMM_X64_STATE_DRS) {
2455 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2456
2457 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2458 }
2459
2460 if (flags & NVMM_X64_STATE_MSRS) {
2461 state->msrs[NVMM_X64_MSR_STAR] =
2462 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2463 state->msrs[NVMM_X64_MSR_LSTAR] =
2464 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2465 state->msrs[NVMM_X64_MSR_CSTAR] =
2466 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2467 state->msrs[NVMM_X64_MSR_SFMASK] =
2468 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2469 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2470 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2471 state->msrs[NVMM_X64_MSR_EFER] =
2472 vmx_vmread(VMCS_GUEST_IA32_EFER);
2473 state->msrs[NVMM_X64_MSR_PAT] =
2474 vmx_vmread(VMCS_GUEST_IA32_PAT);
2475 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2476 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2477 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2478 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2479 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2480 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2481 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2482 }
2483
2484 if (flags & NVMM_X64_STATE_INTR) {
2485 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2486 state->intr.int_shadow =
2487 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2488 state->intr.int_window_exiting = cpudata->int_window_exit;
2489 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2490 state->intr.evt_pending = cpudata->evt_pending;
2491 }
2492
2493 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2494 if (flags & NVMM_X64_STATE_FPU) {
2495 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2496 sizeof(state->fpu));
2497 }
2498
2499 vmx_vmcs_leave(vcpu);
2500
2501 comm->state_wanted = 0;
2502 comm->state_cached |= flags;
2503 }
2504
2505 static void
2506 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2507 {
2508 vcpu->comm->state_wanted = flags;
2509 vmx_vcpu_getstate(vcpu);
2510 }
2511
2512 static void
2513 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2514 {
2515 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2516 vcpu->comm->state_commit = 0;
2517 vmx_vcpu_setstate(vcpu);
2518 }
2519
2520 /* -------------------------------------------------------------------------- */
2521
2522 static void
2523 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2524 {
2525 struct vmx_cpudata *cpudata = vcpu->cpudata;
2526 size_t i, oct, bit;
2527
2528 mutex_enter(&vmx_asidlock);
2529
2530 for (i = 0; i < vmx_maxasid; i++) {
2531 oct = i / 8;
2532 bit = i % 8;
2533
2534 if (vmx_asidmap[oct] & __BIT(bit)) {
2535 continue;
2536 }
2537
2538 cpudata->asid = i;
2539
2540 vmx_asidmap[oct] |= __BIT(bit);
2541 vmx_vmwrite(VMCS_VPID, i);
2542 mutex_exit(&vmx_asidlock);
2543 return;
2544 }
2545
2546 mutex_exit(&vmx_asidlock);
2547
2548 panic("%s: impossible", __func__);
2549 }
2550
2551 static void
2552 vmx_asid_free(struct nvmm_cpu *vcpu)
2553 {
2554 size_t oct, bit;
2555 uint64_t asid;
2556
2557 asid = vmx_vmread(VMCS_VPID);
2558
2559 oct = asid / 8;
2560 bit = asid % 8;
2561
2562 mutex_enter(&vmx_asidlock);
2563 vmx_asidmap[oct] &= ~__BIT(bit);
2564 mutex_exit(&vmx_asidlock);
2565 }
2566
2567 static void
2568 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2569 {
2570 struct vmx_cpudata *cpudata = vcpu->cpudata;
2571 struct vmcs *vmcs = cpudata->vmcs;
2572 struct msr_entry *gmsr = cpudata->gmsr;
2573 extern uint8_t vmx_resume_rip;
2574 uint64_t rev, eptp;
2575
2576 rev = vmx_get_revision();
2577
2578 memset(vmcs, 0, VMCS_SIZE);
2579 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2580 vmcs->abort = 0;
2581
2582 vmx_vmcs_enter(vcpu);
2583
2584 /* No link pointer. */
2585 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2586
2587 /* Install the CTLSs. */
2588 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2589 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2590 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2591 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2592 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2593
2594 /* Allow direct access to certain MSRs. */
2595 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2596 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2597 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2598 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2599 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2600 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2601 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2602 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2603 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2604 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2605 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2606 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2607 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2608 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2609 true, false);
2610 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2611
2612 /*
2613 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2614 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2615 */
2616 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2617 gmsr[VMX_MSRLIST_STAR].val = 0;
2618 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2619 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2620 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2621 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2622 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2623 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2624 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2625 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2626 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2627 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2628 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2629 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2630 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2631 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2632
2633 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2634 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2635 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2636
2637 /* Force CR4_VMXE to zero. */
2638 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2639
2640 /* Set the Host state for resuming. */
2641 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2642 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2643 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2644 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2645 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2646 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2647 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2648 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2649 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2650 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2651 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2652 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2653 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2654 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2655
2656 /* Generate ASID. */
2657 vmx_asid_alloc(vcpu);
2658
2659 /* Enable Extended Paging, 4-Level. */
2660 eptp =
2661 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2662 __SHIFTIN(4-1, EPTP_WALKLEN) |
2663 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2664 mach->vm->vm_map.pmap->pm_pdirpa[0];
2665 vmx_vmwrite(VMCS_EPTP, eptp);
2666
2667 /* Init IA32_MISC_ENABLE. */
2668 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2669 cpudata->gmsr_misc_enable &=
2670 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2671 cpudata->gmsr_misc_enable |=
2672 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2673
2674 /* Init XSAVE header. */
2675 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2676 cpudata->gfpu.xsh_xcomp_bv = 0;
2677
2678 /* These MSRs are static. */
2679 cpudata->star = rdmsr(MSR_STAR);
2680 cpudata->lstar = rdmsr(MSR_LSTAR);
2681 cpudata->cstar = rdmsr(MSR_CSTAR);
2682 cpudata->sfmask = rdmsr(MSR_SFMASK);
2683
2684 /* Install the RESET state. */
2685 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2686 sizeof(nvmm_x86_reset_state));
2687 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2688 vcpu->comm->state_cached = 0;
2689 vmx_vcpu_setstate(vcpu);
2690
2691 vmx_vmcs_leave(vcpu);
2692 }
2693
2694 static int
2695 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2696 {
2697 struct vmx_cpudata *cpudata;
2698 int error;
2699
2700 /* Allocate the VMX cpudata. */
2701 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2702 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2703 UVM_KMF_WIRED|UVM_KMF_ZERO);
2704 vcpu->cpudata = cpudata;
2705
2706 /* VMCS */
2707 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2708 VMCS_NPAGES);
2709 if (error)
2710 goto error;
2711
2712 /* MSR Bitmap */
2713 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2714 MSRBM_NPAGES);
2715 if (error)
2716 goto error;
2717
2718 /* Guest MSR List */
2719 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2720 if (error)
2721 goto error;
2722
2723 kcpuset_create(&cpudata->htlb_want_flush, true);
2724
2725 /* Init the VCPU info. */
2726 vmx_vcpu_init(mach, vcpu);
2727
2728 return 0;
2729
2730 error:
2731 if (cpudata->vmcs_pa) {
2732 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2733 VMCS_NPAGES);
2734 }
2735 if (cpudata->msrbm_pa) {
2736 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2737 MSRBM_NPAGES);
2738 }
2739 if (cpudata->gmsr_pa) {
2740 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2741 }
2742
2743 kmem_free(cpudata, sizeof(*cpudata));
2744 return error;
2745 }
2746
2747 static void
2748 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2749 {
2750 struct vmx_cpudata *cpudata = vcpu->cpudata;
2751
2752 vmx_vmcs_enter(vcpu);
2753 vmx_asid_free(vcpu);
2754 vmx_vmcs_destroy(vcpu);
2755
2756 kcpuset_destroy(cpudata->htlb_want_flush);
2757
2758 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2759 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2760 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2761 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2762 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2763 }
2764
2765 /* -------------------------------------------------------------------------- */
2766
2767 static int
2768 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2769 {
2770 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2771 size_t i;
2772
2773 if (__predict_false(cpuid->mask && cpuid->exit)) {
2774 return EINVAL;
2775 }
2776 if (__predict_false(cpuid->mask &&
2777 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2778 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2779 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2780 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2781 return EINVAL;
2782 }
2783
2784 /* If unset, delete, to restore the default behavior. */
2785 if (!cpuid->mask && !cpuid->exit) {
2786 for (i = 0; i < VMX_NCPUIDS; i++) {
2787 if (!cpudata->cpuidpresent[i]) {
2788 continue;
2789 }
2790 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2791 cpudata->cpuidpresent[i] = false;
2792 }
2793 }
2794 return 0;
2795 }
2796
2797 /* If already here, replace. */
2798 for (i = 0; i < VMX_NCPUIDS; i++) {
2799 if (!cpudata->cpuidpresent[i]) {
2800 continue;
2801 }
2802 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2803 memcpy(&cpudata->cpuid[i], cpuid,
2804 sizeof(struct nvmm_vcpu_conf_cpuid));
2805 return 0;
2806 }
2807 }
2808
2809 /* Not here, insert. */
2810 for (i = 0; i < VMX_NCPUIDS; i++) {
2811 if (!cpudata->cpuidpresent[i]) {
2812 cpudata->cpuidpresent[i] = true;
2813 memcpy(&cpudata->cpuid[i], cpuid,
2814 sizeof(struct nvmm_vcpu_conf_cpuid));
2815 return 0;
2816 }
2817 }
2818
2819 return ENOBUFS;
2820 }
2821
2822 static int
2823 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2824 {
2825 struct nvmm_vcpu_conf_tpr *tpr = data;
2826
2827 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2828 return 0;
2829 }
2830
2831 static int
2832 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2833 {
2834 struct vmx_cpudata *cpudata = vcpu->cpudata;
2835
2836 switch (op) {
2837 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2838 return vmx_vcpu_configure_cpuid(cpudata, data);
2839 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2840 return vmx_vcpu_configure_tpr(cpudata, data);
2841 default:
2842 return EINVAL;
2843 }
2844 }
2845
2846 /* -------------------------------------------------------------------------- */
2847
2848 static void
2849 vmx_tlb_flush(struct pmap *pm)
2850 {
2851 struct nvmm_machine *mach = pm->pm_data;
2852 struct vmx_machdata *machdata = mach->machdata;
2853
2854 atomic_inc_64(&machdata->mach_htlb_gen);
2855
2856 /* Generates IPIs, which cause #VMEXITs. */
2857 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2858 }
2859
2860 static void
2861 vmx_machine_create(struct nvmm_machine *mach)
2862 {
2863 struct pmap *pmap = mach->vm->vm_map.pmap;
2864 struct vmx_machdata *machdata;
2865
2866 /* Convert to EPT. */
2867 pmap_ept_transform(pmap);
2868
2869 /* Fill in pmap info. */
2870 pmap->pm_data = (void *)mach;
2871 pmap->pm_tlb_flush = vmx_tlb_flush;
2872
2873 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2874 mach->machdata = machdata;
2875
2876 /* Start with an hTLB flush everywhere. */
2877 machdata->mach_htlb_gen = 1;
2878 }
2879
2880 static void
2881 vmx_machine_destroy(struct nvmm_machine *mach)
2882 {
2883 struct vmx_machdata *machdata = mach->machdata;
2884
2885 kmem_free(machdata, sizeof(struct vmx_machdata));
2886 }
2887
2888 static int
2889 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2890 {
2891 panic("%s: impossible", __func__);
2892 }
2893
2894 /* -------------------------------------------------------------------------- */
2895
2896 static int
2897 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2898 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2899 {
2900 uint64_t basic, val, true_val;
2901 bool one_allowed, zero_allowed, has_true;
2902 size_t i;
2903
2904 basic = rdmsr(MSR_IA32_VMX_BASIC);
2905 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2906
2907 val = rdmsr(msr_ctls);
2908 if (has_true) {
2909 true_val = rdmsr(msr_true_ctls);
2910 } else {
2911 true_val = val;
2912 }
2913
2914 #define ONE_ALLOWED(msrval, bitoff) \
2915 ((msrval & __BIT(32 + bitoff)) != 0)
2916 #define ZERO_ALLOWED(msrval, bitoff) \
2917 ((msrval & __BIT(bitoff)) == 0)
2918
2919 for (i = 0; i < 32; i++) {
2920 one_allowed = ONE_ALLOWED(true_val, i);
2921 zero_allowed = ZERO_ALLOWED(true_val, i);
2922
2923 if (zero_allowed && !one_allowed) {
2924 if (set_one & __BIT(i))
2925 return -1;
2926 *res &= ~__BIT(i);
2927 } else if (one_allowed && !zero_allowed) {
2928 if (set_zero & __BIT(i))
2929 return -1;
2930 *res |= __BIT(i);
2931 } else {
2932 if (set_zero & __BIT(i)) {
2933 *res &= ~__BIT(i);
2934 } else if (set_one & __BIT(i)) {
2935 *res |= __BIT(i);
2936 } else if (!has_true) {
2937 *res &= ~__BIT(i);
2938 } else if (ZERO_ALLOWED(val, i)) {
2939 *res &= ~__BIT(i);
2940 } else if (ONE_ALLOWED(val, i)) {
2941 *res |= __BIT(i);
2942 } else {
2943 return -1;
2944 }
2945 }
2946 }
2947
2948 return 0;
2949 }
2950
2951 static bool
2952 vmx_ident(void)
2953 {
2954 uint64_t msr;
2955 int ret;
2956
2957 if (!(cpu_feature[1] & CPUID2_VMX)) {
2958 return false;
2959 }
2960
2961 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2962 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2963 return false;
2964 }
2965 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
2966 return false;
2967 }
2968
2969 msr = rdmsr(MSR_IA32_VMX_BASIC);
2970 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2971 return false;
2972 }
2973 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2974 return false;
2975 }
2976
2977 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2978 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2979 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2980 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2981 if (ret == -1) {
2982 return false;
2983 }
2984
2985 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2986 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2987 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2988 if (ret == -1) {
2989 return false;
2990 }
2991
2992 /* Init the CTLSs right now, and check for errors. */
2993 ret = vmx_init_ctls(
2994 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2995 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2996 &vmx_pinbased_ctls);
2997 if (ret == -1) {
2998 return false;
2999 }
3000 ret = vmx_init_ctls(
3001 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3002 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3003 &vmx_procbased_ctls);
3004 if (ret == -1) {
3005 return false;
3006 }
3007 ret = vmx_init_ctls(
3008 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3009 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3010 &vmx_procbased_ctls2);
3011 if (ret == -1) {
3012 return false;
3013 }
3014 ret = vmx_init_ctls(
3015 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3016 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3017 &vmx_entry_ctls);
3018 if (ret == -1) {
3019 return false;
3020 }
3021 ret = vmx_init_ctls(
3022 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3023 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3024 &vmx_exit_ctls);
3025 if (ret == -1) {
3026 return false;
3027 }
3028
3029 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3030 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3031 return false;
3032 }
3033 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3034 return false;
3035 }
3036 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3037 return false;
3038 }
3039 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3040 pmap_ept_has_ad = true;
3041 } else {
3042 pmap_ept_has_ad = false;
3043 }
3044 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3045 return false;
3046 }
3047
3048 return true;
3049 }
3050
3051 static void
3052 vmx_init_asid(uint32_t maxasid)
3053 {
3054 size_t allocsz;
3055
3056 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3057
3058 vmx_maxasid = maxasid;
3059 allocsz = roundup(maxasid, 8) / 8;
3060 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3061
3062 /* ASID 0 is reserved for the host. */
3063 vmx_asidmap[0] |= __BIT(0);
3064 }
3065
3066 static void
3067 vmx_change_cpu(void *arg1, void *arg2)
3068 {
3069 struct cpu_info *ci = curcpu();
3070 bool enable = (bool)arg1;
3071 uint64_t cr4;
3072
3073 if (!enable) {
3074 vmx_vmxoff();
3075 }
3076
3077 cr4 = rcr4();
3078 if (enable) {
3079 cr4 |= CR4_VMXE;
3080 } else {
3081 cr4 &= ~CR4_VMXE;
3082 }
3083 lcr4(cr4);
3084
3085 if (enable) {
3086 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3087 }
3088 }
3089
3090 static void
3091 vmx_init_l1tf(void)
3092 {
3093 u_int descs[4];
3094 uint64_t msr;
3095
3096 if (cpuid_level < 7) {
3097 return;
3098 }
3099
3100 x86_cpuid(7, descs);
3101
3102 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3103 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3104 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3105 /* No mitigation needed. */
3106 return;
3107 }
3108 }
3109
3110 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3111 /* Enable hardware mitigation. */
3112 vmx_msrlist_entry_nmsr += 1;
3113 }
3114 }
3115
3116 static void
3117 vmx_init(void)
3118 {
3119 CPU_INFO_ITERATOR cii;
3120 struct cpu_info *ci;
3121 uint64_t xc, msr;
3122 struct vmxon *vmxon;
3123 uint32_t revision;
3124 paddr_t pa;
3125 vaddr_t va;
3126 int error;
3127
3128 /* Init the ASID bitmap (VPID). */
3129 vmx_init_asid(VPID_MAX);
3130
3131 /* Init the XCR0 mask. */
3132 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3133
3134 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3135 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3136 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3137 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3138 } else {
3139 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3140 }
3141 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3142 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3143 } else {
3144 vmx_ept_flush_op = VMX_INVEPT_ALL;
3145 }
3146 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3147 vmx_eptp_type = EPTP_TYPE_WB;
3148 } else {
3149 vmx_eptp_type = EPTP_TYPE_UC;
3150 }
3151
3152 /* Init the L1TF mitigation. */
3153 vmx_init_l1tf();
3154
3155 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3156 revision = vmx_get_revision();
3157
3158 for (CPU_INFO_FOREACH(cii, ci)) {
3159 error = vmx_memalloc(&pa, &va, 1);
3160 if (error) {
3161 panic("%s: out of memory", __func__);
3162 }
3163 vmxoncpu[cpu_index(ci)].pa = pa;
3164 vmxoncpu[cpu_index(ci)].va = va;
3165
3166 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3167 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3168 }
3169
3170 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3171 xc_wait(xc);
3172 }
3173
3174 static void
3175 vmx_fini_asid(void)
3176 {
3177 size_t allocsz;
3178
3179 allocsz = roundup(vmx_maxasid, 8) / 8;
3180 kmem_free(vmx_asidmap, allocsz);
3181
3182 mutex_destroy(&vmx_asidlock);
3183 }
3184
3185 static void
3186 vmx_fini(void)
3187 {
3188 uint64_t xc;
3189 size_t i;
3190
3191 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3192 xc_wait(xc);
3193
3194 for (i = 0; i < MAXCPUS; i++) {
3195 if (vmxoncpu[i].pa != 0)
3196 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3197 }
3198
3199 vmx_fini_asid();
3200 }
3201
3202 static void
3203 vmx_capability(struct nvmm_capability *cap)
3204 {
3205 cap->arch.mach_conf_support = 0;
3206 cap->arch.vcpu_conf_support =
3207 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3208 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3209 cap->arch.xcr0_mask = vmx_xcr0_mask;
3210 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3211 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3212 }
3213
3214 const struct nvmm_impl nvmm_x86_vmx = {
3215 .ident = vmx_ident,
3216 .init = vmx_init,
3217 .fini = vmx_fini,
3218 .capability = vmx_capability,
3219 .mach_conf_max = NVMM_X86_MACH_NCONF,
3220 .mach_conf_sizes = NULL,
3221 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3222 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3223 .state_size = sizeof(struct nvmm_x64_state),
3224 .machine_create = vmx_machine_create,
3225 .machine_destroy = vmx_machine_destroy,
3226 .machine_configure = vmx_machine_configure,
3227 .vcpu_create = vmx_vcpu_create,
3228 .vcpu_destroy = vmx_vcpu_destroy,
3229 .vcpu_configure = vmx_vcpu_configure,
3230 .vcpu_setstate = vmx_vcpu_setstate,
3231 .vcpu_getstate = vmx_vcpu_getstate,
3232 .vcpu_inject = vmx_vcpu_inject,
3233 .vcpu_run = vmx_vcpu_run
3234 };
3235