nvmm_x86_vmx.c revision 1.43 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.43 2019/10/27 18:26:54 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.43 2019/10/27 18:26:54 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 volatile uint64_t mach_htlb_gen;
701 };
702
703 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
704 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
705 sizeof(struct nvmm_vcpu_conf_cpuid),
706 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
707 sizeof(struct nvmm_vcpu_conf_tpr)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736
737 /* Intr state */
738 bool int_window_exit;
739 bool nmi_window_exit;
740 bool evt_pending;
741
742 /* Guest state */
743 struct msr_entry *gmsr;
744 paddr_t gmsr_pa;
745 uint64_t gmsr_misc_enable;
746 uint64_t gcr2;
747 uint64_t gcr8;
748 uint64_t gxcr0;
749 uint64_t gprs[NVMM_X64_NGPR];
750 uint64_t drs[NVMM_X64_NDR];
751 uint64_t gtsc;
752 struct xsave_header gfpu __aligned(64);
753
754 /* VCPU configuration. */
755 bool cpuidpresent[VMX_NCPUIDS];
756 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
757 struct nvmm_vcpu_conf_tpr tpr;
758 };
759
760 static const struct {
761 uint64_t selector;
762 uint64_t attrib;
763 uint64_t limit;
764 uint64_t base;
765 } vmx_guest_segs[NVMM_X64_NSEG] = {
766 [NVMM_X64_SEG_ES] = {
767 VMCS_GUEST_ES_SELECTOR,
768 VMCS_GUEST_ES_ACCESS_RIGHTS,
769 VMCS_GUEST_ES_LIMIT,
770 VMCS_GUEST_ES_BASE
771 },
772 [NVMM_X64_SEG_CS] = {
773 VMCS_GUEST_CS_SELECTOR,
774 VMCS_GUEST_CS_ACCESS_RIGHTS,
775 VMCS_GUEST_CS_LIMIT,
776 VMCS_GUEST_CS_BASE
777 },
778 [NVMM_X64_SEG_SS] = {
779 VMCS_GUEST_SS_SELECTOR,
780 VMCS_GUEST_SS_ACCESS_RIGHTS,
781 VMCS_GUEST_SS_LIMIT,
782 VMCS_GUEST_SS_BASE
783 },
784 [NVMM_X64_SEG_DS] = {
785 VMCS_GUEST_DS_SELECTOR,
786 VMCS_GUEST_DS_ACCESS_RIGHTS,
787 VMCS_GUEST_DS_LIMIT,
788 VMCS_GUEST_DS_BASE
789 },
790 [NVMM_X64_SEG_FS] = {
791 VMCS_GUEST_FS_SELECTOR,
792 VMCS_GUEST_FS_ACCESS_RIGHTS,
793 VMCS_GUEST_FS_LIMIT,
794 VMCS_GUEST_FS_BASE
795 },
796 [NVMM_X64_SEG_GS] = {
797 VMCS_GUEST_GS_SELECTOR,
798 VMCS_GUEST_GS_ACCESS_RIGHTS,
799 VMCS_GUEST_GS_LIMIT,
800 VMCS_GUEST_GS_BASE
801 },
802 [NVMM_X64_SEG_GDT] = {
803 0, /* doesn't exist */
804 0, /* doesn't exist */
805 VMCS_GUEST_GDTR_LIMIT,
806 VMCS_GUEST_GDTR_BASE
807 },
808 [NVMM_X64_SEG_IDT] = {
809 0, /* doesn't exist */
810 0, /* doesn't exist */
811 VMCS_GUEST_IDTR_LIMIT,
812 VMCS_GUEST_IDTR_BASE
813 },
814 [NVMM_X64_SEG_LDT] = {
815 VMCS_GUEST_LDTR_SELECTOR,
816 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
817 VMCS_GUEST_LDTR_LIMIT,
818 VMCS_GUEST_LDTR_BASE
819 },
820 [NVMM_X64_SEG_TR] = {
821 VMCS_GUEST_TR_SELECTOR,
822 VMCS_GUEST_TR_ACCESS_RIGHTS,
823 VMCS_GUEST_TR_LIMIT,
824 VMCS_GUEST_TR_BASE
825 }
826 };
827
828 /* -------------------------------------------------------------------------- */
829
830 static uint64_t
831 vmx_get_revision(void)
832 {
833 uint64_t msr;
834
835 msr = rdmsr(MSR_IA32_VMX_BASIC);
836 msr &= IA32_VMX_BASIC_IDENT;
837
838 return msr;
839 }
840
841 static void
842 vmx_vmclear_ipi(void *arg1, void *arg2)
843 {
844 paddr_t vmcs_pa = (paddr_t)arg1;
845 vmx_vmclear(&vmcs_pa);
846 }
847
848 static void
849 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
850 {
851 uint64_t xc;
852 int bound;
853
854 KASSERT(kpreempt_disabled());
855
856 bound = curlwp_bind();
857 kpreempt_enable();
858
859 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
860 xc_wait(xc);
861
862 kpreempt_disable();
863 curlwp_bindx(bound);
864 }
865
866 static void
867 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
868 {
869 struct vmx_cpudata *cpudata = vcpu->cpudata;
870 struct cpu_info *vmcs_ci;
871 paddr_t oldpa __diagused;
872
873 cpudata->vmcs_refcnt++;
874 if (cpudata->vmcs_refcnt > 1) {
875 #ifdef DIAGNOSTIC
876 KASSERT(kpreempt_disabled());
877 oldpa = vmx_vmptrst();
878 KASSERT(oldpa == cpudata->vmcs_pa);
879 #endif
880 return;
881 }
882
883 vmcs_ci = cpudata->vmcs_ci;
884 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
885
886 kpreempt_disable();
887
888 if (vmcs_ci == NULL) {
889 /* This VMCS is loaded for the first time. */
890 vmx_vmclear(&cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else if (vmcs_ci != curcpu()) {
893 /* This VMCS is active on a remote CPU. */
894 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
895 cpudata->vmcs_launched = false;
896 } else {
897 /* This VMCS is active on curcpu, nothing to do. */
898 }
899
900 vmx_vmptrld(&cpudata->vmcs_pa);
901 }
902
903 static void
904 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
905 {
906 struct vmx_cpudata *cpudata = vcpu->cpudata;
907
908 KASSERT(kpreempt_disabled());
909 #ifdef DIAGNOSTIC
910 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
911 #endif
912 KASSERT(cpudata->vmcs_refcnt > 0);
913 cpudata->vmcs_refcnt--;
914
915 if (cpudata->vmcs_refcnt > 0) {
916 return;
917 }
918
919 cpudata->vmcs_ci = curcpu();
920 kpreempt_enable();
921 }
922
923 static void
924 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
925 {
926 struct vmx_cpudata *cpudata = vcpu->cpudata;
927
928 KASSERT(kpreempt_disabled());
929 #ifdef DIAGNOSTIC
930 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
931 #endif
932 KASSERT(cpudata->vmcs_refcnt == 1);
933 cpudata->vmcs_refcnt--;
934
935 vmx_vmclear(&cpudata->vmcs_pa);
936 kpreempt_enable();
937 }
938
939 /* -------------------------------------------------------------------------- */
940
941 static void
942 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
943 {
944 struct vmx_cpudata *cpudata = vcpu->cpudata;
945 uint64_t ctls1;
946
947 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
948
949 if (nmi) {
950 // XXX INT_STATE_NMI?
951 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
952 cpudata->nmi_window_exit = true;
953 } else {
954 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
955 cpudata->int_window_exit = true;
956 }
957
958 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
959 }
960
961 static void
962 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
963 {
964 struct vmx_cpudata *cpudata = vcpu->cpudata;
965 uint64_t ctls1;
966
967 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
968
969 if (nmi) {
970 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
971 cpudata->nmi_window_exit = false;
972 } else {
973 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
974 cpudata->int_window_exit = false;
975 }
976
977 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
978 }
979
980 static inline int
981 vmx_event_has_error(uint8_t vector)
982 {
983 switch (vector) {
984 case 8: /* #DF */
985 case 10: /* #TS */
986 case 11: /* #NP */
987 case 12: /* #SS */
988 case 13: /* #GP */
989 case 14: /* #PF */
990 case 17: /* #AC */
991 case 30: /* #SX */
992 return 1;
993 default:
994 return 0;
995 }
996 }
997
998 static int
999 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1000 {
1001 struct nvmm_comm_page *comm = vcpu->comm;
1002 struct vmx_cpudata *cpudata = vcpu->cpudata;
1003 int type = 0, err = 0, ret = EINVAL;
1004 u_int evtype;
1005 uint8_t vector;
1006 uint64_t info, error;
1007
1008 evtype = comm->event.type;
1009 vector = comm->event.vector;
1010 error = comm->event.u.excp.error;
1011 __insn_barrier();
1012
1013 vmx_vmcs_enter(vcpu);
1014
1015 switch (evtype) {
1016 case NVMM_VCPU_EVENT_EXCP:
1017 if (vector == 2 || vector >= 32)
1018 goto out;
1019 if (vector == 3 || vector == 0)
1020 goto out;
1021 type = INTR_TYPE_HW_EXC;
1022 err = vmx_event_has_error(vector);
1023 break;
1024 case NVMM_VCPU_EVENT_INTR:
1025 type = INTR_TYPE_EXT_INT;
1026 if (vector == 2) {
1027 type = INTR_TYPE_NMI;
1028 vmx_event_waitexit_enable(vcpu, true);
1029 }
1030 err = 0;
1031 break;
1032 default:
1033 goto out;
1034 }
1035
1036 info =
1037 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1038 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1039 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1040 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1041 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1042 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1043
1044 cpudata->evt_pending = true;
1045 ret = 0;
1046
1047 out:
1048 vmx_vmcs_leave(vcpu);
1049 return ret;
1050 }
1051
1052 static void
1053 vmx_inject_ud(struct nvmm_cpu *vcpu)
1054 {
1055 struct nvmm_comm_page *comm = vcpu->comm;
1056 int ret __diagused;
1057
1058 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1059 comm->event.vector = 6;
1060 comm->event.u.excp.error = 0;
1061
1062 ret = vmx_vcpu_inject(vcpu);
1063 KASSERT(ret == 0);
1064 }
1065
1066 static void
1067 vmx_inject_gp(struct nvmm_cpu *vcpu)
1068 {
1069 struct nvmm_comm_page *comm = vcpu->comm;
1070 int ret __diagused;
1071
1072 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1073 comm->event.vector = 13;
1074 comm->event.u.excp.error = 0;
1075
1076 ret = vmx_vcpu_inject(vcpu);
1077 KASSERT(ret == 0);
1078 }
1079
1080 static inline int
1081 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1082 {
1083 if (__predict_true(!vcpu->comm->event_commit)) {
1084 return 0;
1085 }
1086 vcpu->comm->event_commit = false;
1087 return vmx_vcpu_inject(vcpu);
1088 }
1089
1090 static inline void
1091 vmx_inkernel_advance(void)
1092 {
1093 uint64_t rip, inslen, intstate;
1094
1095 /*
1096 * Maybe we should also apply single-stepping and debug exceptions.
1097 * Matters for guest-ring3, because it can execute 'cpuid' under a
1098 * debugger.
1099 */
1100 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1101 rip = vmx_vmread(VMCS_GUEST_RIP);
1102 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1103 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1104 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1105 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1106 }
1107
1108 static void
1109 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1110 {
1111 exit->u.inv.hwcode = code;
1112 exit->reason = NVMM_VCPU_EXIT_INVALID;
1113 }
1114
1115 static void
1116 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1117 struct nvmm_vcpu_exit *exit)
1118 {
1119 uint64_t qual;
1120
1121 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1122
1123 if ((qual & INTR_INFO_VALID) == 0) {
1124 goto error;
1125 }
1126 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1127 goto error;
1128 }
1129
1130 exit->reason = NVMM_VCPU_EXIT_NONE;
1131 return;
1132
1133 error:
1134 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1135 }
1136
1137 static void
1138 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1139 {
1140 struct vmx_cpudata *cpudata = vcpu->cpudata;
1141 uint64_t cr4;
1142
1143 switch (eax) {
1144 case 0x00000001:
1145 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1146
1147 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1148 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1149 CPUID_LOCAL_APIC_ID);
1150
1151 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1152 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1153 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1154 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1155 }
1156
1157 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1158
1159 /* CPUID2_OSXSAVE depends on CR4. */
1160 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1161 if (!(cr4 & CR4_OSXSAVE)) {
1162 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1163 }
1164 break;
1165 case 0x00000005:
1166 case 0x00000006:
1167 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1168 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1169 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1170 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1171 break;
1172 case 0x00000007:
1173 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1174 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1175 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1176 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1177 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1178 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1179 }
1180 break;
1181 case 0x0000000A:
1182 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1184 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1186 break;
1187 case 0x0000000D:
1188 if (vmx_xcr0_mask == 0) {
1189 break;
1190 }
1191 switch (ecx) {
1192 case 0:
1193 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1194 if (cpudata->gxcr0 & XCR0_SSE) {
1195 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1196 } else {
1197 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1198 }
1199 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1200 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1201 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1202 break;
1203 case 1:
1204 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1205 break;
1206 }
1207 break;
1208 case 0x40000000:
1209 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1210 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1211 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1212 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1213 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1214 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1215 break;
1216 case 0x80000001:
1217 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1218 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1219 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1220 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1221 break;
1222 default:
1223 break;
1224 }
1225 }
1226
1227 static void
1228 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1229 {
1230 uint64_t inslen, rip;
1231
1232 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1233 rip = vmx_vmread(VMCS_GUEST_RIP);
1234 exit->u.insn.npc = rip + inslen;
1235 exit->reason = reason;
1236 }
1237
1238 static void
1239 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1240 struct nvmm_vcpu_exit *exit)
1241 {
1242 struct vmx_cpudata *cpudata = vcpu->cpudata;
1243 struct nvmm_vcpu_conf_cpuid *cpuid;
1244 uint64_t eax, ecx;
1245 u_int descs[4];
1246 size_t i;
1247
1248 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1249 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1250 x86_cpuid2(eax, ecx, descs);
1251
1252 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1253 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1254 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1255 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1256
1257 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1258
1259 for (i = 0; i < VMX_NCPUIDS; i++) {
1260 if (!cpudata->cpuidpresent[i]) {
1261 continue;
1262 }
1263 cpuid = &cpudata->cpuid[i];
1264 if (cpuid->leaf != eax) {
1265 continue;
1266 }
1267
1268 if (cpuid->exit) {
1269 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1270 return;
1271 }
1272 KASSERT(cpuid->mask);
1273
1274 /* del */
1275 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1276 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1277 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1278 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1279
1280 /* set */
1281 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1282 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1283 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1284 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1285
1286 break;
1287 }
1288
1289 vmx_inkernel_advance();
1290 exit->reason = NVMM_VCPU_EXIT_NONE;
1291 }
1292
1293 static void
1294 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1295 struct nvmm_vcpu_exit *exit)
1296 {
1297 struct vmx_cpudata *cpudata = vcpu->cpudata;
1298 uint64_t rflags;
1299
1300 if (cpudata->int_window_exit) {
1301 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1302 if (rflags & PSL_I) {
1303 vmx_event_waitexit_disable(vcpu, false);
1304 }
1305 }
1306
1307 vmx_inkernel_advance();
1308 exit->reason = NVMM_VCPU_EXIT_HALTED;
1309 }
1310
1311 #define VMX_QUAL_CR_NUM __BITS(3,0)
1312 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1313 #define CR_TYPE_WRITE 0
1314 #define CR_TYPE_READ 1
1315 #define CR_TYPE_CLTS 2
1316 #define CR_TYPE_LMSW 3
1317 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1318 #define VMX_QUAL_CR_GPR __BITS(11,8)
1319 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1320
1321 static inline int
1322 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1323 {
1324 /* Bits set to 1 in fixed0 are fixed to 1. */
1325 if ((crval & fixed0) != fixed0) {
1326 return -1;
1327 }
1328 /* Bits set to 0 in fixed1 are fixed to 0. */
1329 if (crval & ~fixed1) {
1330 return -1;
1331 }
1332 return 0;
1333 }
1334
1335 static int
1336 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1337 uint64_t qual)
1338 {
1339 struct vmx_cpudata *cpudata = vcpu->cpudata;
1340 uint64_t type, gpr, cr0;
1341 uint64_t efer, ctls1;
1342
1343 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1344 if (type != CR_TYPE_WRITE) {
1345 return -1;
1346 }
1347
1348 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1349 KASSERT(gpr < 16);
1350
1351 if (gpr == NVMM_X64_GPR_RSP) {
1352 gpr = vmx_vmread(VMCS_GUEST_RSP);
1353 } else {
1354 gpr = cpudata->gprs[gpr];
1355 }
1356
1357 cr0 = gpr | CR0_NE | CR0_ET;
1358 cr0 &= ~(CR0_NW|CR0_CD);
1359
1360 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1361 return -1;
1362 }
1363
1364 /*
1365 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1366 * from CR3.
1367 */
1368
1369 if (cr0 & CR0_PG) {
1370 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1371 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1372 if (efer & EFER_LME) {
1373 ctls1 |= ENTRY_CTLS_LONG_MODE;
1374 efer |= EFER_LMA;
1375 } else {
1376 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1377 efer &= ~EFER_LMA;
1378 }
1379 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1380 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1381 }
1382
1383 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1384 vmx_inkernel_advance();
1385 return 0;
1386 }
1387
1388 static int
1389 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1390 uint64_t qual)
1391 {
1392 struct vmx_cpudata *cpudata = vcpu->cpudata;
1393 uint64_t type, gpr, cr4;
1394
1395 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1396 if (type != CR_TYPE_WRITE) {
1397 return -1;
1398 }
1399
1400 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1401 KASSERT(gpr < 16);
1402
1403 if (gpr == NVMM_X64_GPR_RSP) {
1404 gpr = vmx_vmread(VMCS_GUEST_RSP);
1405 } else {
1406 gpr = cpudata->gprs[gpr];
1407 }
1408
1409 cr4 = gpr | CR4_VMXE;
1410
1411 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1412 return -1;
1413 }
1414
1415 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1416 vmx_inkernel_advance();
1417 return 0;
1418 }
1419
1420 static int
1421 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1422 uint64_t qual, struct nvmm_vcpu_exit *exit)
1423 {
1424 struct vmx_cpudata *cpudata = vcpu->cpudata;
1425 uint64_t type, gpr;
1426 bool write;
1427
1428 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1429 if (type == CR_TYPE_WRITE) {
1430 write = true;
1431 } else if (type == CR_TYPE_READ) {
1432 write = false;
1433 } else {
1434 return -1;
1435 }
1436
1437 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1438 KASSERT(gpr < 16);
1439
1440 if (write) {
1441 if (gpr == NVMM_X64_GPR_RSP) {
1442 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1443 } else {
1444 cpudata->gcr8 = cpudata->gprs[gpr];
1445 }
1446 if (cpudata->tpr.exit_changed) {
1447 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1448 }
1449 } else {
1450 if (gpr == NVMM_X64_GPR_RSP) {
1451 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1452 } else {
1453 cpudata->gprs[gpr] = cpudata->gcr8;
1454 }
1455 }
1456
1457 vmx_inkernel_advance();
1458 return 0;
1459 }
1460
1461 static void
1462 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1463 struct nvmm_vcpu_exit *exit)
1464 {
1465 uint64_t qual;
1466 int ret;
1467
1468 exit->reason = NVMM_VCPU_EXIT_NONE;
1469
1470 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1471
1472 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1473 case 0:
1474 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1475 break;
1476 case 4:
1477 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1478 break;
1479 case 8:
1480 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1481 break;
1482 default:
1483 ret = -1;
1484 break;
1485 }
1486
1487 if (ret == -1) {
1488 vmx_inject_gp(vcpu);
1489 }
1490 }
1491
1492 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1493 #define IO_SIZE_8 0
1494 #define IO_SIZE_16 1
1495 #define IO_SIZE_32 3
1496 #define VMX_QUAL_IO_IN __BIT(3)
1497 #define VMX_QUAL_IO_STR __BIT(4)
1498 #define VMX_QUAL_IO_REP __BIT(5)
1499 #define VMX_QUAL_IO_DX __BIT(6)
1500 #define VMX_QUAL_IO_PORT __BITS(31,16)
1501
1502 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1503 #define IO_ADRSIZE_16 0
1504 #define IO_ADRSIZE_32 1
1505 #define IO_ADRSIZE_64 2
1506 #define VMX_INFO_IO_SEG __BITS(17,15)
1507
1508 static void
1509 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1510 struct nvmm_vcpu_exit *exit)
1511 {
1512 uint64_t qual, info, inslen, rip;
1513
1514 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1515 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1516
1517 exit->reason = NVMM_VCPU_EXIT_IO;
1518
1519 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1520 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1521
1522 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1523 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1524
1525 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1526 exit->u.io.address_size = 8;
1527 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1528 exit->u.io.address_size = 4;
1529 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1530 exit->u.io.address_size = 2;
1531 }
1532
1533 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1534 exit->u.io.operand_size = 4;
1535 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1536 exit->u.io.operand_size = 2;
1537 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1538 exit->u.io.operand_size = 1;
1539 }
1540
1541 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1542 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1543
1544 if (exit->u.io.in && exit->u.io.str) {
1545 exit->u.io.seg = NVMM_X64_SEG_ES;
1546 }
1547
1548 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1549 rip = vmx_vmread(VMCS_GUEST_RIP);
1550 exit->u.io.npc = rip + inslen;
1551
1552 vmx_vcpu_state_provide(vcpu,
1553 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1554 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1555 }
1556
1557 static const uint64_t msr_ignore_list[] = {
1558 MSR_BIOS_SIGN,
1559 MSR_IA32_PLATFORM_ID
1560 };
1561
1562 static bool
1563 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1564 struct nvmm_vcpu_exit *exit)
1565 {
1566 struct vmx_cpudata *cpudata = vcpu->cpudata;
1567 uint64_t val;
1568 size_t i;
1569
1570 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1571 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1572 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1573 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1574 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1575 goto handled;
1576 }
1577 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1578 val = cpudata->gmsr_misc_enable;
1579 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1580 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1581 goto handled;
1582 }
1583 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1584 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1585 continue;
1586 val = 0;
1587 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1588 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1589 goto handled;
1590 }
1591 } else {
1592 if (exit->u.wrmsr.msr == MSR_TSC) {
1593 cpudata->gtsc = exit->u.wrmsr.val;
1594 cpudata->gtsc_want_update = true;
1595 goto handled;
1596 }
1597 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1598 val = exit->u.wrmsr.val;
1599 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1600 goto error;
1601 }
1602 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1603 goto handled;
1604 }
1605 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1606 /* Don't care. */
1607 goto handled;
1608 }
1609 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1610 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1611 continue;
1612 goto handled;
1613 }
1614 }
1615
1616 return false;
1617
1618 handled:
1619 vmx_inkernel_advance();
1620 return true;
1621
1622 error:
1623 vmx_inject_gp(vcpu);
1624 return true;
1625 }
1626
1627 static void
1628 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1629 struct nvmm_vcpu_exit *exit)
1630 {
1631 struct vmx_cpudata *cpudata = vcpu->cpudata;
1632 uint64_t inslen, rip;
1633
1634 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1635 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1636
1637 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1638 exit->reason = NVMM_VCPU_EXIT_NONE;
1639 return;
1640 }
1641
1642 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1643 rip = vmx_vmread(VMCS_GUEST_RIP);
1644 exit->u.rdmsr.npc = rip + inslen;
1645
1646 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1647 }
1648
1649 static void
1650 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1651 struct nvmm_vcpu_exit *exit)
1652 {
1653 struct vmx_cpudata *cpudata = vcpu->cpudata;
1654 uint64_t rdx, rax, inslen, rip;
1655
1656 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1657 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1658
1659 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1660 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1661 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1662
1663 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1664 exit->reason = NVMM_VCPU_EXIT_NONE;
1665 return;
1666 }
1667
1668 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1669 rip = vmx_vmread(VMCS_GUEST_RIP);
1670 exit->u.wrmsr.npc = rip + inslen;
1671
1672 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1673 }
1674
1675 static void
1676 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1677 struct nvmm_vcpu_exit *exit)
1678 {
1679 struct vmx_cpudata *cpudata = vcpu->cpudata;
1680 uint16_t val;
1681
1682 exit->reason = NVMM_VCPU_EXIT_NONE;
1683
1684 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1685 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1686
1687 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1688 goto error;
1689 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1690 goto error;
1691 } else if (__predict_false((val & XCR0_X87) == 0)) {
1692 goto error;
1693 }
1694
1695 cpudata->gxcr0 = val;
1696 if (vmx_xcr0_mask != 0) {
1697 wrxcr(0, cpudata->gxcr0);
1698 }
1699
1700 vmx_inkernel_advance();
1701 return;
1702
1703 error:
1704 vmx_inject_gp(vcpu);
1705 }
1706
1707 #define VMX_EPT_VIOLATION_READ __BIT(0)
1708 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1709 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1710
1711 static void
1712 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1713 struct nvmm_vcpu_exit *exit)
1714 {
1715 uint64_t perm;
1716 gpaddr_t gpa;
1717
1718 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1719
1720 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1721 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1722 if (perm & VMX_EPT_VIOLATION_WRITE)
1723 exit->u.mem.prot = PROT_WRITE;
1724 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1725 exit->u.mem.prot = PROT_EXEC;
1726 else
1727 exit->u.mem.prot = PROT_READ;
1728 exit->u.mem.gpa = gpa;
1729 exit->u.mem.inst_len = 0;
1730
1731 vmx_vcpu_state_provide(vcpu,
1732 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1733 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1734 }
1735
1736 /* -------------------------------------------------------------------------- */
1737
1738 static void
1739 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1740 {
1741 struct vmx_cpudata *cpudata = vcpu->cpudata;
1742
1743 fpu_save();
1744 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1745
1746 if (vmx_xcr0_mask != 0) {
1747 cpudata->hxcr0 = rdxcr(0);
1748 wrxcr(0, cpudata->gxcr0);
1749 }
1750 }
1751
1752 static void
1753 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1754 {
1755 struct vmx_cpudata *cpudata = vcpu->cpudata;
1756
1757 if (vmx_xcr0_mask != 0) {
1758 cpudata->gxcr0 = rdxcr(0);
1759 wrxcr(0, cpudata->hxcr0);
1760 }
1761
1762 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1763 }
1764
1765 static void
1766 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1767 {
1768 struct vmx_cpudata *cpudata = vcpu->cpudata;
1769
1770 x86_dbregs_save(curlwp);
1771
1772 ldr7(0);
1773
1774 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1775 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1776 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1777 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1778 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1779 }
1780
1781 static void
1782 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1783 {
1784 struct vmx_cpudata *cpudata = vcpu->cpudata;
1785
1786 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1787 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1788 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1789 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1790 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1791
1792 x86_dbregs_restore(curlwp);
1793 }
1794
1795 static void
1796 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1797 {
1798 struct vmx_cpudata *cpudata = vcpu->cpudata;
1799
1800 /* This gets restored automatically by the CPU. */
1801 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1802 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1803 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1804
1805 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1806 }
1807
1808 static void
1809 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1810 {
1811 struct vmx_cpudata *cpudata = vcpu->cpudata;
1812
1813 wrmsr(MSR_STAR, cpudata->star);
1814 wrmsr(MSR_LSTAR, cpudata->lstar);
1815 wrmsr(MSR_CSTAR, cpudata->cstar);
1816 wrmsr(MSR_SFMASK, cpudata->sfmask);
1817 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1818 }
1819
1820 /* -------------------------------------------------------------------------- */
1821
1822 #define VMX_INVVPID_ADDRESS 0
1823 #define VMX_INVVPID_CONTEXT 1
1824 #define VMX_INVVPID_ALL 2
1825 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1826
1827 #define VMX_INVEPT_CONTEXT 1
1828 #define VMX_INVEPT_ALL 2
1829
1830 static inline void
1831 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1832 {
1833 struct vmx_cpudata *cpudata = vcpu->cpudata;
1834
1835 if (vcpu->hcpu_last != hcpu) {
1836 cpudata->gtlb_want_flush = true;
1837 }
1838 }
1839
1840 static inline void
1841 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1842 {
1843 struct vmx_cpudata *cpudata = vcpu->cpudata;
1844 struct ept_desc ept_desc;
1845
1846 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1847 return;
1848 }
1849
1850 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1851 ept_desc.mbz = 0;
1852 vmx_invept(vmx_ept_flush_op, &ept_desc);
1853 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1854 }
1855
1856 static inline uint64_t
1857 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1858 {
1859 struct ept_desc ept_desc;
1860 uint64_t machgen;
1861
1862 machgen = machdata->mach_htlb_gen;
1863 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1864 return machgen;
1865 }
1866
1867 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1868
1869 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1870 ept_desc.mbz = 0;
1871 vmx_invept(vmx_ept_flush_op, &ept_desc);
1872
1873 return machgen;
1874 }
1875
1876 static inline void
1877 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1878 {
1879 cpudata->vcpu_htlb_gen = machgen;
1880 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1881 }
1882
1883 static inline void
1884 vmx_exit_evt(struct vmx_cpudata *cpudata)
1885 {
1886 uint64_t info, err;
1887
1888 cpudata->evt_pending = false;
1889
1890 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1891 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1892 return;
1893 }
1894 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1895
1896 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1897 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1898
1899 cpudata->evt_pending = true;
1900 }
1901
1902 static int
1903 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1904 struct nvmm_vcpu_exit *exit)
1905 {
1906 struct nvmm_comm_page *comm = vcpu->comm;
1907 struct vmx_machdata *machdata = mach->machdata;
1908 struct vmx_cpudata *cpudata = vcpu->cpudata;
1909 struct vpid_desc vpid_desc;
1910 struct cpu_info *ci;
1911 uint64_t exitcode;
1912 uint64_t intstate;
1913 uint64_t machgen;
1914 int hcpu, s, ret;
1915 bool launched;
1916
1917 vmx_vmcs_enter(vcpu);
1918
1919 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1920 vmx_vmcs_leave(vcpu);
1921 return EINVAL;
1922 }
1923 vmx_vcpu_state_commit(vcpu);
1924 comm->state_cached = 0;
1925
1926 ci = curcpu();
1927 hcpu = cpu_number();
1928 launched = cpudata->vmcs_launched;
1929
1930 vmx_gtlb_catchup(vcpu, hcpu);
1931 vmx_htlb_catchup(vcpu, hcpu);
1932
1933 if (vcpu->hcpu_last != hcpu) {
1934 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1935 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1936 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1937 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1938 cpudata->gtsc_want_update = true;
1939 vcpu->hcpu_last = hcpu;
1940 }
1941
1942 vmx_vcpu_guest_dbregs_enter(vcpu);
1943 vmx_vcpu_guest_misc_enter(vcpu);
1944 vmx_vcpu_guest_fpu_enter(vcpu);
1945
1946 while (1) {
1947 if (cpudata->gtlb_want_flush) {
1948 vpid_desc.vpid = cpudata->asid;
1949 vpid_desc.addr = 0;
1950 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1951 cpudata->gtlb_want_flush = false;
1952 }
1953
1954 if (__predict_false(cpudata->gtsc_want_update)) {
1955 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1956 cpudata->gtsc_want_update = false;
1957 }
1958
1959 s = splhigh();
1960 machgen = vmx_htlb_flush(machdata, cpudata);
1961 lcr2(cpudata->gcr2);
1962 if (launched) {
1963 ret = vmx_vmresume(cpudata->gprs);
1964 } else {
1965 ret = vmx_vmlaunch(cpudata->gprs);
1966 }
1967 cpudata->gcr2 = rcr2();
1968 vmx_htlb_flush_ack(cpudata, machgen);
1969 splx(s);
1970
1971 if (__predict_false(ret != 0)) {
1972 vmx_exit_invalid(exit, -1);
1973 break;
1974 }
1975 vmx_exit_evt(cpudata);
1976
1977 launched = true;
1978
1979 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1980 exitcode &= __BITS(15,0);
1981
1982 switch (exitcode) {
1983 case VMCS_EXITCODE_EXC_NMI:
1984 vmx_exit_exc_nmi(mach, vcpu, exit);
1985 break;
1986 case VMCS_EXITCODE_EXT_INT:
1987 exit->reason = NVMM_VCPU_EXIT_NONE;
1988 break;
1989 case VMCS_EXITCODE_CPUID:
1990 vmx_exit_cpuid(mach, vcpu, exit);
1991 break;
1992 case VMCS_EXITCODE_HLT:
1993 vmx_exit_hlt(mach, vcpu, exit);
1994 break;
1995 case VMCS_EXITCODE_CR:
1996 vmx_exit_cr(mach, vcpu, exit);
1997 break;
1998 case VMCS_EXITCODE_IO:
1999 vmx_exit_io(mach, vcpu, exit);
2000 break;
2001 case VMCS_EXITCODE_RDMSR:
2002 vmx_exit_rdmsr(mach, vcpu, exit);
2003 break;
2004 case VMCS_EXITCODE_WRMSR:
2005 vmx_exit_wrmsr(mach, vcpu, exit);
2006 break;
2007 case VMCS_EXITCODE_SHUTDOWN:
2008 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2009 break;
2010 case VMCS_EXITCODE_MONITOR:
2011 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2012 break;
2013 case VMCS_EXITCODE_MWAIT:
2014 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2015 break;
2016 case VMCS_EXITCODE_XSETBV:
2017 vmx_exit_xsetbv(mach, vcpu, exit);
2018 break;
2019 case VMCS_EXITCODE_RDPMC:
2020 case VMCS_EXITCODE_RDTSCP:
2021 case VMCS_EXITCODE_INVVPID:
2022 case VMCS_EXITCODE_INVEPT:
2023 case VMCS_EXITCODE_VMCALL:
2024 case VMCS_EXITCODE_VMCLEAR:
2025 case VMCS_EXITCODE_VMLAUNCH:
2026 case VMCS_EXITCODE_VMPTRLD:
2027 case VMCS_EXITCODE_VMPTRST:
2028 case VMCS_EXITCODE_VMREAD:
2029 case VMCS_EXITCODE_VMRESUME:
2030 case VMCS_EXITCODE_VMWRITE:
2031 case VMCS_EXITCODE_VMXOFF:
2032 case VMCS_EXITCODE_VMXON:
2033 vmx_inject_ud(vcpu);
2034 exit->reason = NVMM_VCPU_EXIT_NONE;
2035 break;
2036 case VMCS_EXITCODE_EPT_VIOLATION:
2037 vmx_exit_epf(mach, vcpu, exit);
2038 break;
2039 case VMCS_EXITCODE_INT_WINDOW:
2040 vmx_event_waitexit_disable(vcpu, false);
2041 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2042 break;
2043 case VMCS_EXITCODE_NMI_WINDOW:
2044 vmx_event_waitexit_disable(vcpu, true);
2045 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2046 break;
2047 default:
2048 vmx_exit_invalid(exit, exitcode);
2049 break;
2050 }
2051
2052 /* If no reason to return to userland, keep rolling. */
2053 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2054 break;
2055 }
2056 if (curcpu()->ci_data.cpu_softints != 0) {
2057 break;
2058 }
2059 if (curlwp->l_flag & LW_USERRET) {
2060 break;
2061 }
2062 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2063 break;
2064 }
2065 }
2066
2067 cpudata->vmcs_launched = launched;
2068
2069 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2070
2071 vmx_vcpu_guest_fpu_leave(vcpu);
2072 vmx_vcpu_guest_misc_leave(vcpu);
2073 vmx_vcpu_guest_dbregs_leave(vcpu);
2074
2075 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2076 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2077 vmx_vmread(VMCS_GUEST_RFLAGS);
2078 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2079 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2080 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2081 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2082 cpudata->int_window_exit;
2083 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2084 cpudata->nmi_window_exit;
2085 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2086 cpudata->evt_pending;
2087
2088 vmx_vmcs_leave(vcpu);
2089
2090 return 0;
2091 }
2092
2093 /* -------------------------------------------------------------------------- */
2094
2095 static int
2096 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2097 {
2098 struct pglist pglist;
2099 paddr_t _pa;
2100 vaddr_t _va;
2101 size_t i;
2102 int ret;
2103
2104 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2105 &pglist, 1, 0);
2106 if (ret != 0)
2107 return ENOMEM;
2108 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2109 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2110 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2111 if (_va == 0)
2112 goto error;
2113
2114 for (i = 0; i < npages; i++) {
2115 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2116 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2117 }
2118 pmap_update(pmap_kernel());
2119
2120 memset((void *)_va, 0, npages * PAGE_SIZE);
2121
2122 *pa = _pa;
2123 *va = _va;
2124 return 0;
2125
2126 error:
2127 for (i = 0; i < npages; i++) {
2128 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2129 }
2130 return ENOMEM;
2131 }
2132
2133 static void
2134 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2135 {
2136 size_t i;
2137
2138 pmap_kremove(va, npages * PAGE_SIZE);
2139 pmap_update(pmap_kernel());
2140 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2141 for (i = 0; i < npages; i++) {
2142 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2143 }
2144 }
2145
2146 /* -------------------------------------------------------------------------- */
2147
2148 static void
2149 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2150 {
2151 uint64_t byte;
2152 uint8_t bitoff;
2153
2154 if (msr < 0x00002000) {
2155 /* Range 1 */
2156 byte = ((msr - 0x00000000) / 8) + 0;
2157 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2158 /* Range 2 */
2159 byte = ((msr - 0xC0000000) / 8) + 1024;
2160 } else {
2161 panic("%s: wrong range", __func__);
2162 }
2163
2164 bitoff = (msr & 0x7);
2165
2166 if (read) {
2167 bitmap[byte] &= ~__BIT(bitoff);
2168 }
2169 if (write) {
2170 bitmap[2048 + byte] &= ~__BIT(bitoff);
2171 }
2172 }
2173
2174 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2175 #define VMX_SEG_ATTRIB_S __BIT(4)
2176 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2177 #define VMX_SEG_ATTRIB_P __BIT(7)
2178 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2179 #define VMX_SEG_ATTRIB_L __BIT(13)
2180 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2181 #define VMX_SEG_ATTRIB_G __BIT(15)
2182 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2183
2184 static void
2185 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2186 {
2187 uint64_t attrib;
2188
2189 attrib =
2190 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2191 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2192 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2193 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2194 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2195 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2196 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2197 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2198 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2199
2200 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2201 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2202 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2203 }
2204 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2205 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2206 }
2207
2208 static void
2209 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2210 {
2211 uint64_t selector = 0, attrib = 0, base, limit;
2212
2213 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2214 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2215 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2216 }
2217 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2218 base = vmx_vmread(vmx_guest_segs[idx].base);
2219
2220 segs[idx].selector = selector;
2221 segs[idx].limit = limit;
2222 segs[idx].base = base;
2223 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2224 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2225 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2226 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2227 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2228 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2229 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2230 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2231 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2232 segs[idx].attrib.p = 0;
2233 }
2234 }
2235
2236 static inline bool
2237 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2238 {
2239 uint64_t cr0, cr3, cr4, efer;
2240
2241 if (flags & NVMM_X64_STATE_CRS) {
2242 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2243 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2244 return true;
2245 }
2246 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2247 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2248 return true;
2249 }
2250 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2251 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2252 return true;
2253 }
2254 }
2255
2256 if (flags & NVMM_X64_STATE_MSRS) {
2257 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2258 if ((efer ^
2259 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2260 return true;
2261 }
2262 }
2263
2264 return false;
2265 }
2266
2267 static void
2268 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2269 {
2270 struct nvmm_comm_page *comm = vcpu->comm;
2271 const struct nvmm_x64_state *state = &comm->state;
2272 struct vmx_cpudata *cpudata = vcpu->cpudata;
2273 struct fxsave *fpustate;
2274 uint64_t ctls1, intstate;
2275 uint64_t flags;
2276
2277 flags = comm->state_wanted;
2278
2279 vmx_vmcs_enter(vcpu);
2280
2281 if (vmx_state_tlb_flush(state, flags)) {
2282 cpudata->gtlb_want_flush = true;
2283 }
2284
2285 if (flags & NVMM_X64_STATE_SEGS) {
2286 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2287 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2288 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2289 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2290 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2291 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2292 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2293 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2294 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2295 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2296 }
2297
2298 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2299 if (flags & NVMM_X64_STATE_GPRS) {
2300 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2301
2302 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2303 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2304 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2305 }
2306
2307 if (flags & NVMM_X64_STATE_CRS) {
2308 /*
2309 * CR0_NE and CR4_VMXE are mandatory.
2310 */
2311 vmx_vmwrite(VMCS_GUEST_CR0,
2312 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2313 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2314 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2315 vmx_vmwrite(VMCS_GUEST_CR4,
2316 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2317 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2318
2319 if (vmx_xcr0_mask != 0) {
2320 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2321 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2322 cpudata->gxcr0 &= vmx_xcr0_mask;
2323 cpudata->gxcr0 |= XCR0_X87;
2324 }
2325 }
2326
2327 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2328 if (flags & NVMM_X64_STATE_DRS) {
2329 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2330
2331 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2332 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2333 }
2334
2335 if (flags & NVMM_X64_STATE_MSRS) {
2336 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2337 state->msrs[NVMM_X64_MSR_STAR];
2338 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2339 state->msrs[NVMM_X64_MSR_LSTAR];
2340 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2341 state->msrs[NVMM_X64_MSR_CSTAR];
2342 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2343 state->msrs[NVMM_X64_MSR_SFMASK];
2344 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2345 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2346
2347 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2348 state->msrs[NVMM_X64_MSR_EFER]);
2349 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2350 state->msrs[NVMM_X64_MSR_PAT]);
2351 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2352 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2353 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2354 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2355 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2356 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2357
2358 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2359 cpudata->gtsc_want_update = true;
2360
2361 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2362 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2363 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2364 ctls1 |= ENTRY_CTLS_LONG_MODE;
2365 } else {
2366 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2367 }
2368 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2369 }
2370
2371 if (flags & NVMM_X64_STATE_INTR) {
2372 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2373 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2374 if (state->intr.int_shadow) {
2375 intstate |= INT_STATE_MOVSS;
2376 }
2377 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2378
2379 if (state->intr.int_window_exiting) {
2380 vmx_event_waitexit_enable(vcpu, false);
2381 } else {
2382 vmx_event_waitexit_disable(vcpu, false);
2383 }
2384
2385 if (state->intr.nmi_window_exiting) {
2386 vmx_event_waitexit_enable(vcpu, true);
2387 } else {
2388 vmx_event_waitexit_disable(vcpu, true);
2389 }
2390 }
2391
2392 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2393 if (flags & NVMM_X64_STATE_FPU) {
2394 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2395 sizeof(state->fpu));
2396
2397 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2398 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2399 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2400
2401 if (vmx_xcr0_mask != 0) {
2402 /* Reset XSTATE_BV, to force a reload. */
2403 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2404 }
2405 }
2406
2407 vmx_vmcs_leave(vcpu);
2408
2409 comm->state_wanted = 0;
2410 comm->state_cached |= flags;
2411 }
2412
2413 static void
2414 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2415 {
2416 struct nvmm_comm_page *comm = vcpu->comm;
2417 struct nvmm_x64_state *state = &comm->state;
2418 struct vmx_cpudata *cpudata = vcpu->cpudata;
2419 uint64_t intstate, flags;
2420
2421 flags = comm->state_wanted;
2422
2423 vmx_vmcs_enter(vcpu);
2424
2425 if (flags & NVMM_X64_STATE_SEGS) {
2426 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2427 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2428 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2429 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2430 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2431 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2432 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2433 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2434 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2435 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2436 }
2437
2438 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2439 if (flags & NVMM_X64_STATE_GPRS) {
2440 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2441
2442 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2443 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2444 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2445 }
2446
2447 if (flags & NVMM_X64_STATE_CRS) {
2448 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2449 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2450 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2451 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2452 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2453 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2454
2455 /* Hide VMXE. */
2456 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2457 }
2458
2459 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2460 if (flags & NVMM_X64_STATE_DRS) {
2461 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2462
2463 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2464 }
2465
2466 if (flags & NVMM_X64_STATE_MSRS) {
2467 state->msrs[NVMM_X64_MSR_STAR] =
2468 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2469 state->msrs[NVMM_X64_MSR_LSTAR] =
2470 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2471 state->msrs[NVMM_X64_MSR_CSTAR] =
2472 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2473 state->msrs[NVMM_X64_MSR_SFMASK] =
2474 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2475 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2476 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2477 state->msrs[NVMM_X64_MSR_EFER] =
2478 vmx_vmread(VMCS_GUEST_IA32_EFER);
2479 state->msrs[NVMM_X64_MSR_PAT] =
2480 vmx_vmread(VMCS_GUEST_IA32_PAT);
2481 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2482 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2483 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2484 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2485 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2486 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2487 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2488 }
2489
2490 if (flags & NVMM_X64_STATE_INTR) {
2491 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2492 state->intr.int_shadow =
2493 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2494 state->intr.int_window_exiting = cpudata->int_window_exit;
2495 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2496 state->intr.evt_pending = cpudata->evt_pending;
2497 }
2498
2499 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2500 if (flags & NVMM_X64_STATE_FPU) {
2501 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2502 sizeof(state->fpu));
2503 }
2504
2505 vmx_vmcs_leave(vcpu);
2506
2507 comm->state_wanted = 0;
2508 comm->state_cached |= flags;
2509 }
2510
2511 static void
2512 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2513 {
2514 vcpu->comm->state_wanted = flags;
2515 vmx_vcpu_getstate(vcpu);
2516 }
2517
2518 static void
2519 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2520 {
2521 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2522 vcpu->comm->state_commit = 0;
2523 vmx_vcpu_setstate(vcpu);
2524 }
2525
2526 /* -------------------------------------------------------------------------- */
2527
2528 static void
2529 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2530 {
2531 struct vmx_cpudata *cpudata = vcpu->cpudata;
2532 size_t i, oct, bit;
2533
2534 mutex_enter(&vmx_asidlock);
2535
2536 for (i = 0; i < vmx_maxasid; i++) {
2537 oct = i / 8;
2538 bit = i % 8;
2539
2540 if (vmx_asidmap[oct] & __BIT(bit)) {
2541 continue;
2542 }
2543
2544 cpudata->asid = i;
2545
2546 vmx_asidmap[oct] |= __BIT(bit);
2547 vmx_vmwrite(VMCS_VPID, i);
2548 mutex_exit(&vmx_asidlock);
2549 return;
2550 }
2551
2552 mutex_exit(&vmx_asidlock);
2553
2554 panic("%s: impossible", __func__);
2555 }
2556
2557 static void
2558 vmx_asid_free(struct nvmm_cpu *vcpu)
2559 {
2560 size_t oct, bit;
2561 uint64_t asid;
2562
2563 asid = vmx_vmread(VMCS_VPID);
2564
2565 oct = asid / 8;
2566 bit = asid % 8;
2567
2568 mutex_enter(&vmx_asidlock);
2569 vmx_asidmap[oct] &= ~__BIT(bit);
2570 mutex_exit(&vmx_asidlock);
2571 }
2572
2573 static void
2574 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2575 {
2576 struct vmx_cpudata *cpudata = vcpu->cpudata;
2577 struct vmcs *vmcs = cpudata->vmcs;
2578 struct msr_entry *gmsr = cpudata->gmsr;
2579 extern uint8_t vmx_resume_rip;
2580 uint64_t rev, eptp;
2581
2582 rev = vmx_get_revision();
2583
2584 memset(vmcs, 0, VMCS_SIZE);
2585 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2586 vmcs->abort = 0;
2587
2588 vmx_vmcs_enter(vcpu);
2589
2590 /* No link pointer. */
2591 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2592
2593 /* Install the CTLSs. */
2594 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2595 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2596 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2597 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2598 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2599
2600 /* Allow direct access to certain MSRs. */
2601 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2602 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2603 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2604 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2605 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2606 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2607 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2608 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2609 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2610 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2611 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2612 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2613 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2614 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2615 true, false);
2616 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2617
2618 /*
2619 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2620 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2621 */
2622 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2623 gmsr[VMX_MSRLIST_STAR].val = 0;
2624 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2625 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2626 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2627 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2628 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2629 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2630 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2631 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2632 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2633 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2634 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2635 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2636 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2637 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2638
2639 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2640 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2641 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2642
2643 /* Force CR4_VMXE to zero. */
2644 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2645
2646 /* Set the Host state for resuming. */
2647 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2648 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2649 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2650 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2651 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2652 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2653 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2654 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2655 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2656 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2657 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2658 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2659 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2660 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2661
2662 /* Generate ASID. */
2663 vmx_asid_alloc(vcpu);
2664
2665 /* Enable Extended Paging, 4-Level. */
2666 eptp =
2667 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2668 __SHIFTIN(4-1, EPTP_WALKLEN) |
2669 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2670 mach->vm->vm_map.pmap->pm_pdirpa[0];
2671 vmx_vmwrite(VMCS_EPTP, eptp);
2672
2673 /* Init IA32_MISC_ENABLE. */
2674 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2675 cpudata->gmsr_misc_enable &=
2676 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2677 cpudata->gmsr_misc_enable |=
2678 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2679
2680 /* Init XSAVE header. */
2681 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2682 cpudata->gfpu.xsh_xcomp_bv = 0;
2683
2684 /* These MSRs are static. */
2685 cpudata->star = rdmsr(MSR_STAR);
2686 cpudata->lstar = rdmsr(MSR_LSTAR);
2687 cpudata->cstar = rdmsr(MSR_CSTAR);
2688 cpudata->sfmask = rdmsr(MSR_SFMASK);
2689
2690 /* Install the RESET state. */
2691 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2692 sizeof(nvmm_x86_reset_state));
2693 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2694 vcpu->comm->state_cached = 0;
2695 vmx_vcpu_setstate(vcpu);
2696
2697 vmx_vmcs_leave(vcpu);
2698 }
2699
2700 static int
2701 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2702 {
2703 struct vmx_cpudata *cpudata;
2704 int error;
2705
2706 /* Allocate the VMX cpudata. */
2707 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2708 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2709 UVM_KMF_WIRED|UVM_KMF_ZERO);
2710 vcpu->cpudata = cpudata;
2711
2712 /* VMCS */
2713 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2714 VMCS_NPAGES);
2715 if (error)
2716 goto error;
2717
2718 /* MSR Bitmap */
2719 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2720 MSRBM_NPAGES);
2721 if (error)
2722 goto error;
2723
2724 /* Guest MSR List */
2725 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2726 if (error)
2727 goto error;
2728
2729 kcpuset_create(&cpudata->htlb_want_flush, true);
2730
2731 /* Init the VCPU info. */
2732 vmx_vcpu_init(mach, vcpu);
2733
2734 return 0;
2735
2736 error:
2737 if (cpudata->vmcs_pa) {
2738 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2739 VMCS_NPAGES);
2740 }
2741 if (cpudata->msrbm_pa) {
2742 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2743 MSRBM_NPAGES);
2744 }
2745 if (cpudata->gmsr_pa) {
2746 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2747 }
2748
2749 kmem_free(cpudata, sizeof(*cpudata));
2750 return error;
2751 }
2752
2753 static void
2754 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2755 {
2756 struct vmx_cpudata *cpudata = vcpu->cpudata;
2757
2758 vmx_vmcs_enter(vcpu);
2759 vmx_asid_free(vcpu);
2760 vmx_vmcs_destroy(vcpu);
2761
2762 kcpuset_destroy(cpudata->htlb_want_flush);
2763
2764 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2765 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2766 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2767 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2768 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2769 }
2770
2771 /* -------------------------------------------------------------------------- */
2772
2773 static int
2774 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2775 {
2776 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2777 size_t i;
2778
2779 if (__predict_false(cpuid->mask && cpuid->exit)) {
2780 return EINVAL;
2781 }
2782 if (__predict_false(cpuid->mask &&
2783 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2784 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2785 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2786 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2787 return EINVAL;
2788 }
2789
2790 /* If unset, delete, to restore the default behavior. */
2791 if (!cpuid->mask && !cpuid->exit) {
2792 for (i = 0; i < VMX_NCPUIDS; i++) {
2793 if (!cpudata->cpuidpresent[i]) {
2794 continue;
2795 }
2796 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2797 cpudata->cpuidpresent[i] = false;
2798 }
2799 }
2800 return 0;
2801 }
2802
2803 /* If already here, replace. */
2804 for (i = 0; i < VMX_NCPUIDS; i++) {
2805 if (!cpudata->cpuidpresent[i]) {
2806 continue;
2807 }
2808 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2809 memcpy(&cpudata->cpuid[i], cpuid,
2810 sizeof(struct nvmm_vcpu_conf_cpuid));
2811 return 0;
2812 }
2813 }
2814
2815 /* Not here, insert. */
2816 for (i = 0; i < VMX_NCPUIDS; i++) {
2817 if (!cpudata->cpuidpresent[i]) {
2818 cpudata->cpuidpresent[i] = true;
2819 memcpy(&cpudata->cpuid[i], cpuid,
2820 sizeof(struct nvmm_vcpu_conf_cpuid));
2821 return 0;
2822 }
2823 }
2824
2825 return ENOBUFS;
2826 }
2827
2828 static int
2829 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2830 {
2831 struct nvmm_vcpu_conf_tpr *tpr = data;
2832
2833 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2834 return 0;
2835 }
2836
2837 static int
2838 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2839 {
2840 struct vmx_cpudata *cpudata = vcpu->cpudata;
2841
2842 switch (op) {
2843 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2844 return vmx_vcpu_configure_cpuid(cpudata, data);
2845 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2846 return vmx_vcpu_configure_tpr(cpudata, data);
2847 default:
2848 return EINVAL;
2849 }
2850 }
2851
2852 /* -------------------------------------------------------------------------- */
2853
2854 static void
2855 vmx_tlb_flush(struct pmap *pm)
2856 {
2857 struct nvmm_machine *mach = pm->pm_data;
2858 struct vmx_machdata *machdata = mach->machdata;
2859
2860 atomic_inc_64(&machdata->mach_htlb_gen);
2861
2862 /* Generates IPIs, which cause #VMEXITs. */
2863 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2864 }
2865
2866 static void
2867 vmx_machine_create(struct nvmm_machine *mach)
2868 {
2869 struct pmap *pmap = mach->vm->vm_map.pmap;
2870 struct vmx_machdata *machdata;
2871
2872 /* Convert to EPT. */
2873 pmap_ept_transform(pmap);
2874
2875 /* Fill in pmap info. */
2876 pmap->pm_data = (void *)mach;
2877 pmap->pm_tlb_flush = vmx_tlb_flush;
2878
2879 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2880 mach->machdata = machdata;
2881
2882 /* Start with an hTLB flush everywhere. */
2883 machdata->mach_htlb_gen = 1;
2884 }
2885
2886 static void
2887 vmx_machine_destroy(struct nvmm_machine *mach)
2888 {
2889 struct vmx_machdata *machdata = mach->machdata;
2890
2891 kmem_free(machdata, sizeof(struct vmx_machdata));
2892 }
2893
2894 static int
2895 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2896 {
2897 panic("%s: impossible", __func__);
2898 }
2899
2900 /* -------------------------------------------------------------------------- */
2901
2902 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2903 ((msrval & __BIT(32 + bitoff)) != 0)
2904 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2905 ((msrval & __BIT(bitoff)) == 0)
2906
2907 static int
2908 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
2909 {
2910 uint64_t basic, val, true_val;
2911 bool has_true;
2912 size_t i;
2913
2914 basic = rdmsr(MSR_IA32_VMX_BASIC);
2915 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2916
2917 val = rdmsr(msr_ctls);
2918 if (has_true) {
2919 true_val = rdmsr(msr_true_ctls);
2920 } else {
2921 true_val = val;
2922 }
2923
2924 for (i = 0; i < 32; i++) {
2925 if (!(set_one & __BIT(i))) {
2926 continue;
2927 }
2928 if (!CTLS_ONE_ALLOWED(true_val, i)) {
2929 return -1;
2930 }
2931 }
2932
2933 return 0;
2934 }
2935
2936 static int
2937 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2938 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2939 {
2940 uint64_t basic, val, true_val;
2941 bool one_allowed, zero_allowed, has_true;
2942 size_t i;
2943
2944 basic = rdmsr(MSR_IA32_VMX_BASIC);
2945 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2946
2947 val = rdmsr(msr_ctls);
2948 if (has_true) {
2949 true_val = rdmsr(msr_true_ctls);
2950 } else {
2951 true_val = val;
2952 }
2953
2954 for (i = 0; i < 32; i++) {
2955 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
2956 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
2957
2958 if (zero_allowed && !one_allowed) {
2959 if (set_one & __BIT(i))
2960 return -1;
2961 *res &= ~__BIT(i);
2962 } else if (one_allowed && !zero_allowed) {
2963 if (set_zero & __BIT(i))
2964 return -1;
2965 *res |= __BIT(i);
2966 } else {
2967 if (set_zero & __BIT(i)) {
2968 *res &= ~__BIT(i);
2969 } else if (set_one & __BIT(i)) {
2970 *res |= __BIT(i);
2971 } else if (!has_true) {
2972 *res &= ~__BIT(i);
2973 } else if (CTLS_ZERO_ALLOWED(val, i)) {
2974 *res &= ~__BIT(i);
2975 } else if (CTLS_ONE_ALLOWED(val, i)) {
2976 *res |= __BIT(i);
2977 } else {
2978 return -1;
2979 }
2980 }
2981 }
2982
2983 return 0;
2984 }
2985
2986 static bool
2987 vmx_ident(void)
2988 {
2989 uint64_t msr;
2990 int ret;
2991
2992 if (!(cpu_feature[1] & CPUID2_VMX)) {
2993 return false;
2994 }
2995
2996 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2997 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2998 return false;
2999 }
3000 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3001 return false;
3002 }
3003
3004 msr = rdmsr(MSR_IA32_VMX_BASIC);
3005 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3006 return false;
3007 }
3008 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3009 return false;
3010 }
3011
3012 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3013 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3014 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3015 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3016 if (ret == -1) {
3017 return false;
3018 }
3019
3020 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3021 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3022 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3023 if (ret == -1) {
3024 return false;
3025 }
3026
3027 /* Init the CTLSs right now, and check for errors. */
3028 ret = vmx_init_ctls(
3029 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3030 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3031 &vmx_pinbased_ctls);
3032 if (ret == -1) {
3033 return false;
3034 }
3035 ret = vmx_init_ctls(
3036 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3037 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3038 &vmx_procbased_ctls);
3039 if (ret == -1) {
3040 return false;
3041 }
3042 ret = vmx_init_ctls(
3043 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3044 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3045 &vmx_procbased_ctls2);
3046 if (ret == -1) {
3047 return false;
3048 }
3049 ret = vmx_check_ctls(
3050 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3051 PROC_CTLS2_INVPCID_ENABLE);
3052 if (ret != -1) {
3053 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3054 }
3055 ret = vmx_init_ctls(
3056 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3057 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3058 &vmx_entry_ctls);
3059 if (ret == -1) {
3060 return false;
3061 }
3062 ret = vmx_init_ctls(
3063 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3064 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3065 &vmx_exit_ctls);
3066 if (ret == -1) {
3067 return false;
3068 }
3069
3070 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3071 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3072 return false;
3073 }
3074 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3075 return false;
3076 }
3077 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3078 return false;
3079 }
3080 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3081 pmap_ept_has_ad = true;
3082 } else {
3083 pmap_ept_has_ad = false;
3084 }
3085 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3086 return false;
3087 }
3088
3089 return true;
3090 }
3091
3092 static void
3093 vmx_init_asid(uint32_t maxasid)
3094 {
3095 size_t allocsz;
3096
3097 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3098
3099 vmx_maxasid = maxasid;
3100 allocsz = roundup(maxasid, 8) / 8;
3101 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3102
3103 /* ASID 0 is reserved for the host. */
3104 vmx_asidmap[0] |= __BIT(0);
3105 }
3106
3107 static void
3108 vmx_change_cpu(void *arg1, void *arg2)
3109 {
3110 struct cpu_info *ci = curcpu();
3111 bool enable = (bool)arg1;
3112 uint64_t cr4;
3113
3114 if (!enable) {
3115 vmx_vmxoff();
3116 }
3117
3118 cr4 = rcr4();
3119 if (enable) {
3120 cr4 |= CR4_VMXE;
3121 } else {
3122 cr4 &= ~CR4_VMXE;
3123 }
3124 lcr4(cr4);
3125
3126 if (enable) {
3127 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3128 }
3129 }
3130
3131 static void
3132 vmx_init_l1tf(void)
3133 {
3134 u_int descs[4];
3135 uint64_t msr;
3136
3137 if (cpuid_level < 7) {
3138 return;
3139 }
3140
3141 x86_cpuid(7, descs);
3142
3143 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3144 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3145 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3146 /* No mitigation needed. */
3147 return;
3148 }
3149 }
3150
3151 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3152 /* Enable hardware mitigation. */
3153 vmx_msrlist_entry_nmsr += 1;
3154 }
3155 }
3156
3157 static void
3158 vmx_init(void)
3159 {
3160 CPU_INFO_ITERATOR cii;
3161 struct cpu_info *ci;
3162 uint64_t xc, msr;
3163 struct vmxon *vmxon;
3164 uint32_t revision;
3165 paddr_t pa;
3166 vaddr_t va;
3167 int error;
3168
3169 /* Init the ASID bitmap (VPID). */
3170 vmx_init_asid(VPID_MAX);
3171
3172 /* Init the XCR0 mask. */
3173 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3174
3175 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3176 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3177 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3178 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3179 } else {
3180 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3181 }
3182 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3183 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3184 } else {
3185 vmx_ept_flush_op = VMX_INVEPT_ALL;
3186 }
3187 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3188 vmx_eptp_type = EPTP_TYPE_WB;
3189 } else {
3190 vmx_eptp_type = EPTP_TYPE_UC;
3191 }
3192
3193 /* Init the L1TF mitigation. */
3194 vmx_init_l1tf();
3195
3196 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3197 revision = vmx_get_revision();
3198
3199 for (CPU_INFO_FOREACH(cii, ci)) {
3200 error = vmx_memalloc(&pa, &va, 1);
3201 if (error) {
3202 panic("%s: out of memory", __func__);
3203 }
3204 vmxoncpu[cpu_index(ci)].pa = pa;
3205 vmxoncpu[cpu_index(ci)].va = va;
3206
3207 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3208 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3209 }
3210
3211 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3212 xc_wait(xc);
3213 }
3214
3215 static void
3216 vmx_fini_asid(void)
3217 {
3218 size_t allocsz;
3219
3220 allocsz = roundup(vmx_maxasid, 8) / 8;
3221 kmem_free(vmx_asidmap, allocsz);
3222
3223 mutex_destroy(&vmx_asidlock);
3224 }
3225
3226 static void
3227 vmx_fini(void)
3228 {
3229 uint64_t xc;
3230 size_t i;
3231
3232 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3233 xc_wait(xc);
3234
3235 for (i = 0; i < MAXCPUS; i++) {
3236 if (vmxoncpu[i].pa != 0)
3237 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3238 }
3239
3240 vmx_fini_asid();
3241 }
3242
3243 static void
3244 vmx_capability(struct nvmm_capability *cap)
3245 {
3246 cap->arch.mach_conf_support = 0;
3247 cap->arch.vcpu_conf_support =
3248 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3249 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3250 cap->arch.xcr0_mask = vmx_xcr0_mask;
3251 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3252 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3253 }
3254
3255 const struct nvmm_impl nvmm_x86_vmx = {
3256 .ident = vmx_ident,
3257 .init = vmx_init,
3258 .fini = vmx_fini,
3259 .capability = vmx_capability,
3260 .mach_conf_max = NVMM_X86_MACH_NCONF,
3261 .mach_conf_sizes = NULL,
3262 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3263 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3264 .state_size = sizeof(struct nvmm_x64_state),
3265 .machine_create = vmx_machine_create,
3266 .machine_destroy = vmx_machine_destroy,
3267 .machine_configure = vmx_machine_configure,
3268 .vcpu_create = vmx_vcpu_create,
3269 .vcpu_destroy = vmx_vcpu_destroy,
3270 .vcpu_configure = vmx_vcpu_configure,
3271 .vcpu_setstate = vmx_vcpu_setstate,
3272 .vcpu_getstate = vmx_vcpu_getstate,
3273 .vcpu_inject = vmx_vcpu_inject,
3274 .vcpu_run = vmx_vcpu_run
3275 };
3276