nvmm_x86_vmx.c revision 1.49 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.49 2020/02/21 00:26:22 joerg Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.49 2020/02/21 00:26:22 joerg Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
558 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
559
560 #define VMX_MSRLIST_STAR 0
561 #define VMX_MSRLIST_LSTAR 1
562 #define VMX_MSRLIST_CSTAR 2
563 #define VMX_MSRLIST_SFMASK 3
564 #define VMX_MSRLIST_KERNELGSBASE 4
565 #define VMX_MSRLIST_EXIT_NMSR 5
566 #define VMX_MSRLIST_L1DFLUSH 5
567
568 /* On entry, we may do +1 to include L1DFLUSH. */
569 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
570
571 struct vmxon {
572 uint32_t ident;
573 #define VMXON_IDENT_REVISION __BITS(30,0)
574
575 uint8_t data[PAGE_SIZE - 4];
576 } __packed;
577
578 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
579
580 struct vmxoncpu {
581 vaddr_t va;
582 paddr_t pa;
583 };
584
585 static struct vmxoncpu vmxoncpu[MAXCPUS];
586
587 struct vmcs {
588 uint32_t ident;
589 #define VMCS_IDENT_REVISION __BITS(30,0)
590 #define VMCS_IDENT_SHADOW __BIT(31)
591
592 uint32_t abort;
593 uint8_t data[PAGE_SIZE - 8];
594 } __packed;
595
596 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
597
598 struct msr_entry {
599 uint32_t msr;
600 uint32_t rsvd;
601 uint64_t val;
602 } __packed;
603
604 #define VPID_MAX 0xFFFF
605
606 /* Make sure we never run out of VPIDs. */
607 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
608
609 static uint64_t vmx_tlb_flush_op __read_mostly;
610 static uint64_t vmx_ept_flush_op __read_mostly;
611 static uint64_t vmx_eptp_type __read_mostly;
612
613 static uint64_t vmx_pinbased_ctls __read_mostly;
614 static uint64_t vmx_procbased_ctls __read_mostly;
615 static uint64_t vmx_procbased_ctls2 __read_mostly;
616 static uint64_t vmx_entry_ctls __read_mostly;
617 static uint64_t vmx_exit_ctls __read_mostly;
618
619 static uint64_t vmx_cr0_fixed0 __read_mostly;
620 static uint64_t vmx_cr0_fixed1 __read_mostly;
621 static uint64_t vmx_cr4_fixed0 __read_mostly;
622 static uint64_t vmx_cr4_fixed1 __read_mostly;
623
624 extern bool pmap_ept_has_ad;
625
626 #define VMX_PINBASED_CTLS_ONE \
627 (PIN_CTLS_INT_EXITING| \
628 PIN_CTLS_NMI_EXITING| \
629 PIN_CTLS_VIRTUAL_NMIS)
630
631 #define VMX_PINBASED_CTLS_ZERO 0
632
633 #define VMX_PROCBASED_CTLS_ONE \
634 (PROC_CTLS_USE_TSC_OFFSETTING| \
635 PROC_CTLS_HLT_EXITING| \
636 PROC_CTLS_MWAIT_EXITING | \
637 PROC_CTLS_RDPMC_EXITING | \
638 PROC_CTLS_RCR8_EXITING | \
639 PROC_CTLS_LCR8_EXITING | \
640 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
641 PROC_CTLS_USE_MSR_BITMAPS | \
642 PROC_CTLS_MONITOR_EXITING | \
643 PROC_CTLS_ACTIVATE_CTLS2)
644
645 #define VMX_PROCBASED_CTLS_ZERO \
646 (PROC_CTLS_RCR3_EXITING| \
647 PROC_CTLS_LCR3_EXITING)
648
649 #define VMX_PROCBASED_CTLS2_ONE \
650 (PROC_CTLS2_ENABLE_EPT| \
651 PROC_CTLS2_ENABLE_VPID| \
652 PROC_CTLS2_UNRESTRICTED_GUEST)
653
654 #define VMX_PROCBASED_CTLS2_ZERO 0
655
656 #define VMX_ENTRY_CTLS_ONE \
657 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
658 ENTRY_CTLS_LOAD_EFER| \
659 ENTRY_CTLS_LOAD_PAT)
660
661 #define VMX_ENTRY_CTLS_ZERO \
662 (ENTRY_CTLS_SMM| \
663 ENTRY_CTLS_DISABLE_DUAL)
664
665 #define VMX_EXIT_CTLS_ONE \
666 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
667 EXIT_CTLS_HOST_LONG_MODE| \
668 EXIT_CTLS_SAVE_PAT| \
669 EXIT_CTLS_LOAD_PAT| \
670 EXIT_CTLS_SAVE_EFER| \
671 EXIT_CTLS_LOAD_EFER)
672
673 #define VMX_EXIT_CTLS_ZERO 0
674
675 static uint8_t *vmx_asidmap __read_mostly;
676 static uint32_t vmx_maxasid __read_mostly;
677 static kmutex_t vmx_asidlock __cacheline_aligned;
678
679 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
680 static uint64_t vmx_xcr0_mask __read_mostly;
681
682 #define VMX_NCPUIDS 32
683
684 #define VMCS_NPAGES 1
685 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
686
687 #define MSRBM_NPAGES 1
688 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
689
690 #define EFER_TLB_FLUSH \
691 (EFER_NXE|EFER_LMA|EFER_LME)
692 #define CR0_TLB_FLUSH \
693 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
694 #define CR4_TLB_FLUSH \
695 (CR4_PGE|CR4_PAE|CR4_PSE)
696
697 /* -------------------------------------------------------------------------- */
698
699 struct vmx_machdata {
700 volatile uint64_t mach_htlb_gen;
701 };
702
703 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
704 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
705 sizeof(struct nvmm_vcpu_conf_cpuid),
706 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
707 sizeof(struct nvmm_vcpu_conf_tpr)
708 };
709
710 struct vmx_cpudata {
711 /* General */
712 uint64_t asid;
713 bool gtlb_want_flush;
714 bool gtsc_want_update;
715 uint64_t vcpu_htlb_gen;
716 kcpuset_t *htlb_want_flush;
717
718 /* VMCS */
719 struct vmcs *vmcs;
720 paddr_t vmcs_pa;
721 size_t vmcs_refcnt;
722 struct cpu_info *vmcs_ci;
723 bool vmcs_launched;
724
725 /* MSR bitmap */
726 uint8_t *msrbm;
727 paddr_t msrbm_pa;
728
729 /* Host state */
730 uint64_t hxcr0;
731 uint64_t star;
732 uint64_t lstar;
733 uint64_t cstar;
734 uint64_t sfmask;
735 uint64_t kernelgsbase;
736
737 /* Intr state */
738 bool int_window_exit;
739 bool nmi_window_exit;
740 bool evt_pending;
741
742 /* Guest state */
743 struct msr_entry *gmsr;
744 paddr_t gmsr_pa;
745 uint64_t gmsr_misc_enable;
746 uint64_t gcr2;
747 uint64_t gcr8;
748 uint64_t gxcr0;
749 uint64_t gprs[NVMM_X64_NGPR];
750 uint64_t drs[NVMM_X64_NDR];
751 uint64_t gtsc;
752 struct xsave_header gfpu __aligned(64);
753
754 /* VCPU configuration. */
755 bool cpuidpresent[VMX_NCPUIDS];
756 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
757 struct nvmm_vcpu_conf_tpr tpr;
758 };
759
760 static const struct {
761 uint64_t selector;
762 uint64_t attrib;
763 uint64_t limit;
764 uint64_t base;
765 } vmx_guest_segs[NVMM_X64_NSEG] = {
766 [NVMM_X64_SEG_ES] = {
767 VMCS_GUEST_ES_SELECTOR,
768 VMCS_GUEST_ES_ACCESS_RIGHTS,
769 VMCS_GUEST_ES_LIMIT,
770 VMCS_GUEST_ES_BASE
771 },
772 [NVMM_X64_SEG_CS] = {
773 VMCS_GUEST_CS_SELECTOR,
774 VMCS_GUEST_CS_ACCESS_RIGHTS,
775 VMCS_GUEST_CS_LIMIT,
776 VMCS_GUEST_CS_BASE
777 },
778 [NVMM_X64_SEG_SS] = {
779 VMCS_GUEST_SS_SELECTOR,
780 VMCS_GUEST_SS_ACCESS_RIGHTS,
781 VMCS_GUEST_SS_LIMIT,
782 VMCS_GUEST_SS_BASE
783 },
784 [NVMM_X64_SEG_DS] = {
785 VMCS_GUEST_DS_SELECTOR,
786 VMCS_GUEST_DS_ACCESS_RIGHTS,
787 VMCS_GUEST_DS_LIMIT,
788 VMCS_GUEST_DS_BASE
789 },
790 [NVMM_X64_SEG_FS] = {
791 VMCS_GUEST_FS_SELECTOR,
792 VMCS_GUEST_FS_ACCESS_RIGHTS,
793 VMCS_GUEST_FS_LIMIT,
794 VMCS_GUEST_FS_BASE
795 },
796 [NVMM_X64_SEG_GS] = {
797 VMCS_GUEST_GS_SELECTOR,
798 VMCS_GUEST_GS_ACCESS_RIGHTS,
799 VMCS_GUEST_GS_LIMIT,
800 VMCS_GUEST_GS_BASE
801 },
802 [NVMM_X64_SEG_GDT] = {
803 0, /* doesn't exist */
804 0, /* doesn't exist */
805 VMCS_GUEST_GDTR_LIMIT,
806 VMCS_GUEST_GDTR_BASE
807 },
808 [NVMM_X64_SEG_IDT] = {
809 0, /* doesn't exist */
810 0, /* doesn't exist */
811 VMCS_GUEST_IDTR_LIMIT,
812 VMCS_GUEST_IDTR_BASE
813 },
814 [NVMM_X64_SEG_LDT] = {
815 VMCS_GUEST_LDTR_SELECTOR,
816 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
817 VMCS_GUEST_LDTR_LIMIT,
818 VMCS_GUEST_LDTR_BASE
819 },
820 [NVMM_X64_SEG_TR] = {
821 VMCS_GUEST_TR_SELECTOR,
822 VMCS_GUEST_TR_ACCESS_RIGHTS,
823 VMCS_GUEST_TR_LIMIT,
824 VMCS_GUEST_TR_BASE
825 }
826 };
827
828 /* -------------------------------------------------------------------------- */
829
830 static uint64_t
831 vmx_get_revision(void)
832 {
833 uint64_t msr;
834
835 msr = rdmsr(MSR_IA32_VMX_BASIC);
836 msr &= IA32_VMX_BASIC_IDENT;
837
838 return msr;
839 }
840
841 static void
842 vmx_vmclear_ipi(void *arg1, void *arg2)
843 {
844 paddr_t vmcs_pa = (paddr_t)arg1;
845 vmx_vmclear(&vmcs_pa);
846 }
847
848 static void
849 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
850 {
851 uint64_t xc;
852 int bound;
853
854 KASSERT(kpreempt_disabled());
855
856 bound = curlwp_bind();
857 kpreempt_enable();
858
859 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
860 xc_wait(xc);
861
862 kpreempt_disable();
863 curlwp_bindx(bound);
864 }
865
866 static void
867 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
868 {
869 struct vmx_cpudata *cpudata = vcpu->cpudata;
870 struct cpu_info *vmcs_ci;
871 paddr_t oldpa __diagused;
872
873 cpudata->vmcs_refcnt++;
874 if (cpudata->vmcs_refcnt > 1) {
875 #ifdef DIAGNOSTIC
876 KASSERT(kpreempt_disabled());
877 oldpa = vmx_vmptrst();
878 KASSERT(oldpa == cpudata->vmcs_pa);
879 #endif
880 return;
881 }
882
883 vmcs_ci = cpudata->vmcs_ci;
884 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
885
886 kpreempt_disable();
887
888 if (vmcs_ci == NULL) {
889 /* This VMCS is loaded for the first time. */
890 vmx_vmclear(&cpudata->vmcs_pa);
891 cpudata->vmcs_launched = false;
892 } else if (vmcs_ci != curcpu()) {
893 /* This VMCS is active on a remote CPU. */
894 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
895 cpudata->vmcs_launched = false;
896 } else {
897 /* This VMCS is active on curcpu, nothing to do. */
898 }
899
900 vmx_vmptrld(&cpudata->vmcs_pa);
901 }
902
903 static void
904 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
905 {
906 struct vmx_cpudata *cpudata = vcpu->cpudata;
907
908 KASSERT(kpreempt_disabled());
909 #ifdef DIAGNOSTIC
910 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
911 #endif
912 KASSERT(cpudata->vmcs_refcnt > 0);
913 cpudata->vmcs_refcnt--;
914
915 if (cpudata->vmcs_refcnt > 0) {
916 return;
917 }
918
919 cpudata->vmcs_ci = curcpu();
920 kpreempt_enable();
921 }
922
923 static void
924 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
925 {
926 struct vmx_cpudata *cpudata = vcpu->cpudata;
927
928 KASSERT(kpreempt_disabled());
929 #ifdef DIAGNOSTIC
930 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
931 #endif
932 KASSERT(cpudata->vmcs_refcnt == 1);
933 cpudata->vmcs_refcnt--;
934
935 vmx_vmclear(&cpudata->vmcs_pa);
936 kpreempt_enable();
937 }
938
939 /* -------------------------------------------------------------------------- */
940
941 static void
942 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
943 {
944 struct vmx_cpudata *cpudata = vcpu->cpudata;
945 uint64_t ctls1;
946
947 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
948
949 if (nmi) {
950 // XXX INT_STATE_NMI?
951 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
952 cpudata->nmi_window_exit = true;
953 } else {
954 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
955 cpudata->int_window_exit = true;
956 }
957
958 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
959 }
960
961 static void
962 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
963 {
964 struct vmx_cpudata *cpudata = vcpu->cpudata;
965 uint64_t ctls1;
966
967 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
968
969 if (nmi) {
970 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
971 cpudata->nmi_window_exit = false;
972 } else {
973 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
974 cpudata->int_window_exit = false;
975 }
976
977 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
978 }
979
980 static inline int
981 vmx_event_has_error(uint8_t vector)
982 {
983 switch (vector) {
984 case 8: /* #DF */
985 case 10: /* #TS */
986 case 11: /* #NP */
987 case 12: /* #SS */
988 case 13: /* #GP */
989 case 14: /* #PF */
990 case 17: /* #AC */
991 case 30: /* #SX */
992 return 1;
993 default:
994 return 0;
995 }
996 }
997
998 static int
999 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1000 {
1001 struct nvmm_comm_page *comm = vcpu->comm;
1002 struct vmx_cpudata *cpudata = vcpu->cpudata;
1003 int type = 0, err = 0, ret = EINVAL;
1004 u_int evtype;
1005 uint8_t vector;
1006 uint64_t info, error;
1007
1008 evtype = comm->event.type;
1009 vector = comm->event.vector;
1010 error = comm->event.u.excp.error;
1011 __insn_barrier();
1012
1013 vmx_vmcs_enter(vcpu);
1014
1015 switch (evtype) {
1016 case NVMM_VCPU_EVENT_EXCP:
1017 if (vector == 2 || vector >= 32)
1018 goto out;
1019 if (vector == 3 || vector == 0)
1020 goto out;
1021 type = INTR_TYPE_HW_EXC;
1022 err = vmx_event_has_error(vector);
1023 break;
1024 case NVMM_VCPU_EVENT_INTR:
1025 type = INTR_TYPE_EXT_INT;
1026 if (vector == 2) {
1027 type = INTR_TYPE_NMI;
1028 vmx_event_waitexit_enable(vcpu, true);
1029 }
1030 err = 0;
1031 break;
1032 default:
1033 goto out;
1034 }
1035
1036 info =
1037 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1038 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1039 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1040 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1041 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1042 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1043
1044 cpudata->evt_pending = true;
1045 ret = 0;
1046
1047 out:
1048 vmx_vmcs_leave(vcpu);
1049 return ret;
1050 }
1051
1052 static void
1053 vmx_inject_ud(struct nvmm_cpu *vcpu)
1054 {
1055 struct nvmm_comm_page *comm = vcpu->comm;
1056 int ret __diagused;
1057
1058 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1059 comm->event.vector = 6;
1060 comm->event.u.excp.error = 0;
1061
1062 ret = vmx_vcpu_inject(vcpu);
1063 KASSERT(ret == 0);
1064 }
1065
1066 static void
1067 vmx_inject_gp(struct nvmm_cpu *vcpu)
1068 {
1069 struct nvmm_comm_page *comm = vcpu->comm;
1070 int ret __diagused;
1071
1072 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1073 comm->event.vector = 13;
1074 comm->event.u.excp.error = 0;
1075
1076 ret = vmx_vcpu_inject(vcpu);
1077 KASSERT(ret == 0);
1078 }
1079
1080 static inline int
1081 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1082 {
1083 if (__predict_true(!vcpu->comm->event_commit)) {
1084 return 0;
1085 }
1086 vcpu->comm->event_commit = false;
1087 return vmx_vcpu_inject(vcpu);
1088 }
1089
1090 static inline void
1091 vmx_inkernel_advance(void)
1092 {
1093 uint64_t rip, inslen, intstate;
1094
1095 /*
1096 * Maybe we should also apply single-stepping and debug exceptions.
1097 * Matters for guest-ring3, because it can execute 'cpuid' under a
1098 * debugger.
1099 */
1100 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1101 rip = vmx_vmread(VMCS_GUEST_RIP);
1102 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1103 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1104 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1105 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1106 }
1107
1108 static void
1109 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1110 {
1111 exit->u.inv.hwcode = code;
1112 exit->reason = NVMM_VCPU_EXIT_INVALID;
1113 }
1114
1115 static void
1116 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1117 struct nvmm_vcpu_exit *exit)
1118 {
1119 uint64_t qual;
1120
1121 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1122
1123 if ((qual & INTR_INFO_VALID) == 0) {
1124 goto error;
1125 }
1126 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1127 goto error;
1128 }
1129
1130 exit->reason = NVMM_VCPU_EXIT_NONE;
1131 return;
1132
1133 error:
1134 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1135 }
1136
1137 static void
1138 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1139 {
1140 struct vmx_cpudata *cpudata = vcpu->cpudata;
1141 uint64_t cr4;
1142
1143 switch (eax) {
1144 case 0x00000001:
1145 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1146
1147 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1148 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1149 CPUID_LOCAL_APIC_ID);
1150
1151 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1152 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1153 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1154 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1155 }
1156
1157 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1158
1159 /* CPUID2_OSXSAVE depends on CR4. */
1160 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1161 if (!(cr4 & CR4_OSXSAVE)) {
1162 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1163 }
1164 break;
1165 case 0x00000005:
1166 case 0x00000006:
1167 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1168 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1169 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1170 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1171 break;
1172 case 0x00000007:
1173 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1174 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1175 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1176 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1177 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1178 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1179 }
1180 break;
1181 case 0x0000000A:
1182 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1184 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1186 break;
1187 case 0x0000000D:
1188 if (vmx_xcr0_mask == 0) {
1189 break;
1190 }
1191 switch (ecx) {
1192 case 0:
1193 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1194 if (cpudata->gxcr0 & XCR0_SSE) {
1195 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1196 } else {
1197 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1198 }
1199 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1200 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1201 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1202 break;
1203 case 1:
1204 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1205 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1206 CPUID_PES1_XGETBV);
1207 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1208 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1209 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1210 break;
1211 default:
1212 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1213 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1214 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1215 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1216 break;
1217 }
1218 break;
1219 case 0x40000000:
1220 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1221 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1222 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1223 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1224 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1225 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1226 break;
1227 case 0x80000001:
1228 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1229 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1230 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1231 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1232 break;
1233 default:
1234 break;
1235 }
1236 }
1237
1238 static void
1239 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1240 {
1241 uint64_t inslen, rip;
1242
1243 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1244 rip = vmx_vmread(VMCS_GUEST_RIP);
1245 exit->u.insn.npc = rip + inslen;
1246 exit->reason = reason;
1247 }
1248
1249 static void
1250 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1251 struct nvmm_vcpu_exit *exit)
1252 {
1253 struct vmx_cpudata *cpudata = vcpu->cpudata;
1254 struct nvmm_vcpu_conf_cpuid *cpuid;
1255 uint64_t eax, ecx;
1256 u_int descs[4];
1257 size_t i;
1258
1259 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1260 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1261 x86_cpuid2(eax, ecx, descs);
1262
1263 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1264 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1265 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1266 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1267
1268 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1269
1270 for (i = 0; i < VMX_NCPUIDS; i++) {
1271 if (!cpudata->cpuidpresent[i]) {
1272 continue;
1273 }
1274 cpuid = &cpudata->cpuid[i];
1275 if (cpuid->leaf != eax) {
1276 continue;
1277 }
1278
1279 if (cpuid->exit) {
1280 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1281 return;
1282 }
1283 KASSERT(cpuid->mask);
1284
1285 /* del */
1286 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1287 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1288 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1289 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1290
1291 /* set */
1292 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1293 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1294 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1295 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1296
1297 break;
1298 }
1299
1300 vmx_inkernel_advance();
1301 exit->reason = NVMM_VCPU_EXIT_NONE;
1302 }
1303
1304 static void
1305 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1306 struct nvmm_vcpu_exit *exit)
1307 {
1308 struct vmx_cpudata *cpudata = vcpu->cpudata;
1309 uint64_t rflags;
1310
1311 if (cpudata->int_window_exit) {
1312 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1313 if (rflags & PSL_I) {
1314 vmx_event_waitexit_disable(vcpu, false);
1315 }
1316 }
1317
1318 vmx_inkernel_advance();
1319 exit->reason = NVMM_VCPU_EXIT_HALTED;
1320 }
1321
1322 #define VMX_QUAL_CR_NUM __BITS(3,0)
1323 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1324 #define CR_TYPE_WRITE 0
1325 #define CR_TYPE_READ 1
1326 #define CR_TYPE_CLTS 2
1327 #define CR_TYPE_LMSW 3
1328 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1329 #define VMX_QUAL_CR_GPR __BITS(11,8)
1330 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1331
1332 static inline int
1333 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1334 {
1335 /* Bits set to 1 in fixed0 are fixed to 1. */
1336 if ((crval & fixed0) != fixed0) {
1337 return -1;
1338 }
1339 /* Bits set to 0 in fixed1 are fixed to 0. */
1340 if (crval & ~fixed1) {
1341 return -1;
1342 }
1343 return 0;
1344 }
1345
1346 static int
1347 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1348 uint64_t qual)
1349 {
1350 struct vmx_cpudata *cpudata = vcpu->cpudata;
1351 uint64_t type, gpr, cr0;
1352 uint64_t efer, ctls1;
1353
1354 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1355 if (type != CR_TYPE_WRITE) {
1356 return -1;
1357 }
1358
1359 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1360 KASSERT(gpr < 16);
1361
1362 if (gpr == NVMM_X64_GPR_RSP) {
1363 gpr = vmx_vmread(VMCS_GUEST_RSP);
1364 } else {
1365 gpr = cpudata->gprs[gpr];
1366 }
1367
1368 cr0 = gpr | CR0_NE | CR0_ET;
1369 cr0 &= ~(CR0_NW|CR0_CD);
1370
1371 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1372 return -1;
1373 }
1374
1375 /*
1376 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1377 * from CR3.
1378 */
1379
1380 if (cr0 & CR0_PG) {
1381 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1382 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1383 if (efer & EFER_LME) {
1384 ctls1 |= ENTRY_CTLS_LONG_MODE;
1385 efer |= EFER_LMA;
1386 } else {
1387 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1388 efer &= ~EFER_LMA;
1389 }
1390 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1391 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1392 }
1393
1394 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1395 vmx_inkernel_advance();
1396 return 0;
1397 }
1398
1399 static int
1400 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1401 uint64_t qual)
1402 {
1403 struct vmx_cpudata *cpudata = vcpu->cpudata;
1404 uint64_t type, gpr, cr4;
1405
1406 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1407 if (type != CR_TYPE_WRITE) {
1408 return -1;
1409 }
1410
1411 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1412 KASSERT(gpr < 16);
1413
1414 if (gpr == NVMM_X64_GPR_RSP) {
1415 gpr = vmx_vmread(VMCS_GUEST_RSP);
1416 } else {
1417 gpr = cpudata->gprs[gpr];
1418 }
1419
1420 cr4 = gpr | CR4_VMXE;
1421
1422 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1423 return -1;
1424 }
1425
1426 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1427 vmx_inkernel_advance();
1428 return 0;
1429 }
1430
1431 static int
1432 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1433 uint64_t qual, struct nvmm_vcpu_exit *exit)
1434 {
1435 struct vmx_cpudata *cpudata = vcpu->cpudata;
1436 uint64_t type, gpr;
1437 bool write;
1438
1439 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1440 if (type == CR_TYPE_WRITE) {
1441 write = true;
1442 } else if (type == CR_TYPE_READ) {
1443 write = false;
1444 } else {
1445 return -1;
1446 }
1447
1448 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1449 KASSERT(gpr < 16);
1450
1451 if (write) {
1452 if (gpr == NVMM_X64_GPR_RSP) {
1453 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1454 } else {
1455 cpudata->gcr8 = cpudata->gprs[gpr];
1456 }
1457 if (cpudata->tpr.exit_changed) {
1458 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1459 }
1460 } else {
1461 if (gpr == NVMM_X64_GPR_RSP) {
1462 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1463 } else {
1464 cpudata->gprs[gpr] = cpudata->gcr8;
1465 }
1466 }
1467
1468 vmx_inkernel_advance();
1469 return 0;
1470 }
1471
1472 static void
1473 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1474 struct nvmm_vcpu_exit *exit)
1475 {
1476 uint64_t qual;
1477 int ret;
1478
1479 exit->reason = NVMM_VCPU_EXIT_NONE;
1480
1481 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1482
1483 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1484 case 0:
1485 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1486 break;
1487 case 4:
1488 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1489 break;
1490 case 8:
1491 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1492 break;
1493 default:
1494 ret = -1;
1495 break;
1496 }
1497
1498 if (ret == -1) {
1499 vmx_inject_gp(vcpu);
1500 }
1501 }
1502
1503 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1504 #define IO_SIZE_8 0
1505 #define IO_SIZE_16 1
1506 #define IO_SIZE_32 3
1507 #define VMX_QUAL_IO_IN __BIT(3)
1508 #define VMX_QUAL_IO_STR __BIT(4)
1509 #define VMX_QUAL_IO_REP __BIT(5)
1510 #define VMX_QUAL_IO_DX __BIT(6)
1511 #define VMX_QUAL_IO_PORT __BITS(31,16)
1512
1513 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1514 #define IO_ADRSIZE_16 0
1515 #define IO_ADRSIZE_32 1
1516 #define IO_ADRSIZE_64 2
1517 #define VMX_INFO_IO_SEG __BITS(17,15)
1518
1519 static void
1520 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1521 struct nvmm_vcpu_exit *exit)
1522 {
1523 uint64_t qual, info, inslen, rip;
1524
1525 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1526 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1527
1528 exit->reason = NVMM_VCPU_EXIT_IO;
1529
1530 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1531 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1532
1533 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1534 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1535
1536 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1537 exit->u.io.address_size = 8;
1538 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1539 exit->u.io.address_size = 4;
1540 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1541 exit->u.io.address_size = 2;
1542 }
1543
1544 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1545 exit->u.io.operand_size = 4;
1546 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1547 exit->u.io.operand_size = 2;
1548 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1549 exit->u.io.operand_size = 1;
1550 }
1551
1552 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1553 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1554
1555 if (exit->u.io.in && exit->u.io.str) {
1556 exit->u.io.seg = NVMM_X64_SEG_ES;
1557 }
1558
1559 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1560 rip = vmx_vmread(VMCS_GUEST_RIP);
1561 exit->u.io.npc = rip + inslen;
1562
1563 vmx_vcpu_state_provide(vcpu,
1564 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1565 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1566 }
1567
1568 static const uint64_t msr_ignore_list[] = {
1569 MSR_BIOS_SIGN,
1570 MSR_IA32_PLATFORM_ID
1571 };
1572
1573 static bool
1574 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1575 struct nvmm_vcpu_exit *exit)
1576 {
1577 struct vmx_cpudata *cpudata = vcpu->cpudata;
1578 uint64_t val;
1579 size_t i;
1580
1581 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1582 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1583 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1584 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1585 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1586 goto handled;
1587 }
1588 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1589 val = cpudata->gmsr_misc_enable;
1590 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1591 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1592 goto handled;
1593 }
1594 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1595 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1596 continue;
1597 val = 0;
1598 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1599 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1600 goto handled;
1601 }
1602 } else {
1603 if (exit->u.wrmsr.msr == MSR_TSC) {
1604 cpudata->gtsc = exit->u.wrmsr.val;
1605 cpudata->gtsc_want_update = true;
1606 goto handled;
1607 }
1608 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1609 val = exit->u.wrmsr.val;
1610 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1611 goto error;
1612 }
1613 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1614 goto handled;
1615 }
1616 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1617 /* Don't care. */
1618 goto handled;
1619 }
1620 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1621 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1622 continue;
1623 goto handled;
1624 }
1625 }
1626
1627 return false;
1628
1629 handled:
1630 vmx_inkernel_advance();
1631 return true;
1632
1633 error:
1634 vmx_inject_gp(vcpu);
1635 return true;
1636 }
1637
1638 static void
1639 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1640 struct nvmm_vcpu_exit *exit)
1641 {
1642 struct vmx_cpudata *cpudata = vcpu->cpudata;
1643 uint64_t inslen, rip;
1644
1645 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1646 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1647
1648 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1649 exit->reason = NVMM_VCPU_EXIT_NONE;
1650 return;
1651 }
1652
1653 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1654 rip = vmx_vmread(VMCS_GUEST_RIP);
1655 exit->u.rdmsr.npc = rip + inslen;
1656
1657 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1658 }
1659
1660 static void
1661 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1662 struct nvmm_vcpu_exit *exit)
1663 {
1664 struct vmx_cpudata *cpudata = vcpu->cpudata;
1665 uint64_t rdx, rax, inslen, rip;
1666
1667 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1668 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1669
1670 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1671 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1672 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1673
1674 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1675 exit->reason = NVMM_VCPU_EXIT_NONE;
1676 return;
1677 }
1678
1679 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1680 rip = vmx_vmread(VMCS_GUEST_RIP);
1681 exit->u.wrmsr.npc = rip + inslen;
1682
1683 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1684 }
1685
1686 static void
1687 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1688 struct nvmm_vcpu_exit *exit)
1689 {
1690 struct vmx_cpudata *cpudata = vcpu->cpudata;
1691 uint64_t val;
1692
1693 exit->reason = NVMM_VCPU_EXIT_NONE;
1694
1695 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1696 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1697
1698 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1699 goto error;
1700 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1701 goto error;
1702 } else if (__predict_false((val & XCR0_X87) == 0)) {
1703 goto error;
1704 }
1705
1706 cpudata->gxcr0 = val;
1707 if (vmx_xcr0_mask != 0) {
1708 wrxcr(0, cpudata->gxcr0);
1709 }
1710
1711 vmx_inkernel_advance();
1712 return;
1713
1714 error:
1715 vmx_inject_gp(vcpu);
1716 }
1717
1718 #define VMX_EPT_VIOLATION_READ __BIT(0)
1719 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1720 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1721
1722 static void
1723 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1724 struct nvmm_vcpu_exit *exit)
1725 {
1726 uint64_t perm;
1727 gpaddr_t gpa;
1728
1729 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1730
1731 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1732 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1733 if (perm & VMX_EPT_VIOLATION_WRITE)
1734 exit->u.mem.prot = PROT_WRITE;
1735 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1736 exit->u.mem.prot = PROT_EXEC;
1737 else
1738 exit->u.mem.prot = PROT_READ;
1739 exit->u.mem.gpa = gpa;
1740 exit->u.mem.inst_len = 0;
1741
1742 vmx_vcpu_state_provide(vcpu,
1743 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1744 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1745 }
1746
1747 /* -------------------------------------------------------------------------- */
1748
1749 static void
1750 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1751 {
1752 struct vmx_cpudata *cpudata = vcpu->cpudata;
1753
1754 fpu_save();
1755 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1756
1757 if (vmx_xcr0_mask != 0) {
1758 cpudata->hxcr0 = rdxcr(0);
1759 wrxcr(0, cpudata->gxcr0);
1760 }
1761 }
1762
1763 static void
1764 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1765 {
1766 struct vmx_cpudata *cpudata = vcpu->cpudata;
1767
1768 if (vmx_xcr0_mask != 0) {
1769 cpudata->gxcr0 = rdxcr(0);
1770 wrxcr(0, cpudata->hxcr0);
1771 }
1772
1773 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1774 }
1775
1776 static void
1777 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1778 {
1779 struct vmx_cpudata *cpudata = vcpu->cpudata;
1780
1781 x86_dbregs_save(curlwp);
1782
1783 ldr7(0);
1784
1785 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1786 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1787 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1788 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1789 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1790 }
1791
1792 static void
1793 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1794 {
1795 struct vmx_cpudata *cpudata = vcpu->cpudata;
1796
1797 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1798 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1799 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1800 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1801 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1802
1803 x86_dbregs_restore(curlwp);
1804 }
1805
1806 static void
1807 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1808 {
1809 struct vmx_cpudata *cpudata = vcpu->cpudata;
1810
1811 /* This gets restored automatically by the CPU. */
1812 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1813 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1814 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1815
1816 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1817 }
1818
1819 static void
1820 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1821 {
1822 struct vmx_cpudata *cpudata = vcpu->cpudata;
1823
1824 wrmsr(MSR_STAR, cpudata->star);
1825 wrmsr(MSR_LSTAR, cpudata->lstar);
1826 wrmsr(MSR_CSTAR, cpudata->cstar);
1827 wrmsr(MSR_SFMASK, cpudata->sfmask);
1828 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1829 }
1830
1831 /* -------------------------------------------------------------------------- */
1832
1833 #define VMX_INVVPID_ADDRESS 0
1834 #define VMX_INVVPID_CONTEXT 1
1835 #define VMX_INVVPID_ALL 2
1836 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1837
1838 #define VMX_INVEPT_CONTEXT 1
1839 #define VMX_INVEPT_ALL 2
1840
1841 static inline void
1842 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1843 {
1844 struct vmx_cpudata *cpudata = vcpu->cpudata;
1845
1846 if (vcpu->hcpu_last != hcpu) {
1847 cpudata->gtlb_want_flush = true;
1848 }
1849 }
1850
1851 static inline void
1852 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1853 {
1854 struct vmx_cpudata *cpudata = vcpu->cpudata;
1855 struct ept_desc ept_desc;
1856
1857 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1858 return;
1859 }
1860
1861 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1862 ept_desc.mbz = 0;
1863 vmx_invept(vmx_ept_flush_op, &ept_desc);
1864 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1865 }
1866
1867 static inline uint64_t
1868 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1869 {
1870 struct ept_desc ept_desc;
1871 uint64_t machgen;
1872
1873 machgen = machdata->mach_htlb_gen;
1874 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1875 return machgen;
1876 }
1877
1878 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1879
1880 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1881 ept_desc.mbz = 0;
1882 vmx_invept(vmx_ept_flush_op, &ept_desc);
1883
1884 return machgen;
1885 }
1886
1887 static inline void
1888 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1889 {
1890 cpudata->vcpu_htlb_gen = machgen;
1891 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1892 }
1893
1894 static inline void
1895 vmx_exit_evt(struct vmx_cpudata *cpudata)
1896 {
1897 uint64_t info, err;
1898
1899 cpudata->evt_pending = false;
1900
1901 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1902 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1903 return;
1904 }
1905 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1906
1907 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1908 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1909
1910 cpudata->evt_pending = true;
1911 }
1912
1913 static int
1914 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1915 struct nvmm_vcpu_exit *exit)
1916 {
1917 struct nvmm_comm_page *comm = vcpu->comm;
1918 struct vmx_machdata *machdata = mach->machdata;
1919 struct vmx_cpudata *cpudata = vcpu->cpudata;
1920 struct vpid_desc vpid_desc;
1921 struct cpu_info *ci;
1922 uint64_t exitcode;
1923 uint64_t intstate;
1924 uint64_t machgen;
1925 int hcpu, s, ret;
1926 bool launched;
1927
1928 vmx_vmcs_enter(vcpu);
1929
1930 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1931 vmx_vmcs_leave(vcpu);
1932 return EINVAL;
1933 }
1934 vmx_vcpu_state_commit(vcpu);
1935 comm->state_cached = 0;
1936
1937 ci = curcpu();
1938 hcpu = cpu_number();
1939 launched = cpudata->vmcs_launched;
1940
1941 vmx_gtlb_catchup(vcpu, hcpu);
1942 vmx_htlb_catchup(vcpu, hcpu);
1943
1944 if (vcpu->hcpu_last != hcpu) {
1945 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1946 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1947 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1948 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1949 cpudata->gtsc_want_update = true;
1950 vcpu->hcpu_last = hcpu;
1951 }
1952
1953 vmx_vcpu_guest_dbregs_enter(vcpu);
1954 vmx_vcpu_guest_misc_enter(vcpu);
1955 vmx_vcpu_guest_fpu_enter(vcpu);
1956
1957 while (1) {
1958 if (cpudata->gtlb_want_flush) {
1959 vpid_desc.vpid = cpudata->asid;
1960 vpid_desc.addr = 0;
1961 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1962 cpudata->gtlb_want_flush = false;
1963 }
1964
1965 if (__predict_false(cpudata->gtsc_want_update)) {
1966 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1967 cpudata->gtsc_want_update = false;
1968 }
1969
1970 s = splhigh();
1971 machgen = vmx_htlb_flush(machdata, cpudata);
1972 lcr2(cpudata->gcr2);
1973 if (launched) {
1974 ret = vmx_vmresume(cpudata->gprs);
1975 } else {
1976 ret = vmx_vmlaunch(cpudata->gprs);
1977 }
1978 cpudata->gcr2 = rcr2();
1979 vmx_htlb_flush_ack(cpudata, machgen);
1980 splx(s);
1981
1982 if (__predict_false(ret != 0)) {
1983 vmx_exit_invalid(exit, -1);
1984 break;
1985 }
1986 vmx_exit_evt(cpudata);
1987
1988 launched = true;
1989
1990 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1991 exitcode &= __BITS(15,0);
1992
1993 switch (exitcode) {
1994 case VMCS_EXITCODE_EXC_NMI:
1995 vmx_exit_exc_nmi(mach, vcpu, exit);
1996 break;
1997 case VMCS_EXITCODE_EXT_INT:
1998 exit->reason = NVMM_VCPU_EXIT_NONE;
1999 break;
2000 case VMCS_EXITCODE_CPUID:
2001 vmx_exit_cpuid(mach, vcpu, exit);
2002 break;
2003 case VMCS_EXITCODE_HLT:
2004 vmx_exit_hlt(mach, vcpu, exit);
2005 break;
2006 case VMCS_EXITCODE_CR:
2007 vmx_exit_cr(mach, vcpu, exit);
2008 break;
2009 case VMCS_EXITCODE_IO:
2010 vmx_exit_io(mach, vcpu, exit);
2011 break;
2012 case VMCS_EXITCODE_RDMSR:
2013 vmx_exit_rdmsr(mach, vcpu, exit);
2014 break;
2015 case VMCS_EXITCODE_WRMSR:
2016 vmx_exit_wrmsr(mach, vcpu, exit);
2017 break;
2018 case VMCS_EXITCODE_SHUTDOWN:
2019 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2020 break;
2021 case VMCS_EXITCODE_MONITOR:
2022 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2023 break;
2024 case VMCS_EXITCODE_MWAIT:
2025 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2026 break;
2027 case VMCS_EXITCODE_XSETBV:
2028 vmx_exit_xsetbv(mach, vcpu, exit);
2029 break;
2030 case VMCS_EXITCODE_RDPMC:
2031 case VMCS_EXITCODE_RDTSCP:
2032 case VMCS_EXITCODE_INVVPID:
2033 case VMCS_EXITCODE_INVEPT:
2034 case VMCS_EXITCODE_VMCALL:
2035 case VMCS_EXITCODE_VMCLEAR:
2036 case VMCS_EXITCODE_VMLAUNCH:
2037 case VMCS_EXITCODE_VMPTRLD:
2038 case VMCS_EXITCODE_VMPTRST:
2039 case VMCS_EXITCODE_VMREAD:
2040 case VMCS_EXITCODE_VMRESUME:
2041 case VMCS_EXITCODE_VMWRITE:
2042 case VMCS_EXITCODE_VMXOFF:
2043 case VMCS_EXITCODE_VMXON:
2044 vmx_inject_ud(vcpu);
2045 exit->reason = NVMM_VCPU_EXIT_NONE;
2046 break;
2047 case VMCS_EXITCODE_EPT_VIOLATION:
2048 vmx_exit_epf(mach, vcpu, exit);
2049 break;
2050 case VMCS_EXITCODE_INT_WINDOW:
2051 vmx_event_waitexit_disable(vcpu, false);
2052 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2053 break;
2054 case VMCS_EXITCODE_NMI_WINDOW:
2055 vmx_event_waitexit_disable(vcpu, true);
2056 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2057 break;
2058 default:
2059 vmx_exit_invalid(exit, exitcode);
2060 break;
2061 }
2062
2063 /* If no reason to return to userland, keep rolling. */
2064 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2065 break;
2066 }
2067 if (curcpu()->ci_data.cpu_softints != 0) {
2068 break;
2069 }
2070 if (curlwp->l_flag & LW_USERRET) {
2071 break;
2072 }
2073 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2074 break;
2075 }
2076 }
2077
2078 cpudata->vmcs_launched = launched;
2079
2080 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2081
2082 vmx_vcpu_guest_fpu_leave(vcpu);
2083 vmx_vcpu_guest_misc_leave(vcpu);
2084 vmx_vcpu_guest_dbregs_leave(vcpu);
2085
2086 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2087 exit->exitstate.cr8 = cpudata->gcr8;
2088 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2089 exit->exitstate.int_shadow =
2090 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2091 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2092 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2093 exit->exitstate.evt_pending = cpudata->evt_pending;
2094
2095 vmx_vmcs_leave(vcpu);
2096
2097 return 0;
2098 }
2099
2100 /* -------------------------------------------------------------------------- */
2101
2102 static int
2103 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2104 {
2105 struct pglist pglist;
2106 paddr_t _pa;
2107 vaddr_t _va;
2108 size_t i;
2109 int ret;
2110
2111 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2112 &pglist, 1, 0);
2113 if (ret != 0)
2114 return ENOMEM;
2115 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2116 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2117 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2118 if (_va == 0)
2119 goto error;
2120
2121 for (i = 0; i < npages; i++) {
2122 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2123 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2124 }
2125 pmap_update(pmap_kernel());
2126
2127 memset((void *)_va, 0, npages * PAGE_SIZE);
2128
2129 *pa = _pa;
2130 *va = _va;
2131 return 0;
2132
2133 error:
2134 for (i = 0; i < npages; i++) {
2135 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2136 }
2137 return ENOMEM;
2138 }
2139
2140 static void
2141 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2142 {
2143 size_t i;
2144
2145 pmap_kremove(va, npages * PAGE_SIZE);
2146 pmap_update(pmap_kernel());
2147 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2148 for (i = 0; i < npages; i++) {
2149 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2150 }
2151 }
2152
2153 /* -------------------------------------------------------------------------- */
2154
2155 static void
2156 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2157 {
2158 uint64_t byte;
2159 uint8_t bitoff;
2160
2161 if (msr < 0x00002000) {
2162 /* Range 1 */
2163 byte = ((msr - 0x00000000) / 8) + 0;
2164 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2165 /* Range 2 */
2166 byte = ((msr - 0xC0000000) / 8) + 1024;
2167 } else {
2168 panic("%s: wrong range", __func__);
2169 }
2170
2171 bitoff = (msr & 0x7);
2172
2173 if (read) {
2174 bitmap[byte] &= ~__BIT(bitoff);
2175 }
2176 if (write) {
2177 bitmap[2048 + byte] &= ~__BIT(bitoff);
2178 }
2179 }
2180
2181 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2182 #define VMX_SEG_ATTRIB_S __BIT(4)
2183 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2184 #define VMX_SEG_ATTRIB_P __BIT(7)
2185 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2186 #define VMX_SEG_ATTRIB_L __BIT(13)
2187 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2188 #define VMX_SEG_ATTRIB_G __BIT(15)
2189 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2190
2191 static void
2192 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2193 {
2194 uint64_t attrib;
2195
2196 attrib =
2197 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2198 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2199 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2200 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2201 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2202 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2203 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2204 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2205 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2206
2207 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2208 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2209 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2210 }
2211 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2212 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2213 }
2214
2215 static void
2216 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2217 {
2218 uint64_t selector = 0, attrib = 0, base, limit;
2219
2220 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2221 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2222 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2223 }
2224 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2225 base = vmx_vmread(vmx_guest_segs[idx].base);
2226
2227 segs[idx].selector = selector;
2228 segs[idx].limit = limit;
2229 segs[idx].base = base;
2230 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2231 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2232 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2233 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2234 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2235 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2236 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2237 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2238 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2239 segs[idx].attrib.p = 0;
2240 }
2241 }
2242
2243 static inline bool
2244 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2245 {
2246 uint64_t cr0, cr3, cr4, efer;
2247
2248 if (flags & NVMM_X64_STATE_CRS) {
2249 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2250 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2251 return true;
2252 }
2253 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2254 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2255 return true;
2256 }
2257 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2258 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2259 return true;
2260 }
2261 }
2262
2263 if (flags & NVMM_X64_STATE_MSRS) {
2264 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2265 if ((efer ^
2266 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2267 return true;
2268 }
2269 }
2270
2271 return false;
2272 }
2273
2274 static void
2275 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2276 {
2277 struct nvmm_comm_page *comm = vcpu->comm;
2278 const struct nvmm_x64_state *state = &comm->state;
2279 struct vmx_cpudata *cpudata = vcpu->cpudata;
2280 struct fxsave *fpustate;
2281 uint64_t ctls1, intstate;
2282 uint64_t flags;
2283
2284 flags = comm->state_wanted;
2285
2286 vmx_vmcs_enter(vcpu);
2287
2288 if (vmx_state_tlb_flush(state, flags)) {
2289 cpudata->gtlb_want_flush = true;
2290 }
2291
2292 if (flags & NVMM_X64_STATE_SEGS) {
2293 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2294 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2295 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2296 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2297 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2298 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2299 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2300 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2301 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2302 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2303 }
2304
2305 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2306 if (flags & NVMM_X64_STATE_GPRS) {
2307 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2308
2309 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2310 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2311 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2312 }
2313
2314 if (flags & NVMM_X64_STATE_CRS) {
2315 /*
2316 * CR0_NE and CR4_VMXE are mandatory.
2317 */
2318 vmx_vmwrite(VMCS_GUEST_CR0,
2319 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2320 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2321 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2322 vmx_vmwrite(VMCS_GUEST_CR4,
2323 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2324 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2325
2326 if (vmx_xcr0_mask != 0) {
2327 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2328 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2329 cpudata->gxcr0 &= vmx_xcr0_mask;
2330 cpudata->gxcr0 |= XCR0_X87;
2331 }
2332 }
2333
2334 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2335 if (flags & NVMM_X64_STATE_DRS) {
2336 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2337
2338 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2339 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2340 }
2341
2342 if (flags & NVMM_X64_STATE_MSRS) {
2343 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2344 state->msrs[NVMM_X64_MSR_STAR];
2345 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2346 state->msrs[NVMM_X64_MSR_LSTAR];
2347 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2348 state->msrs[NVMM_X64_MSR_CSTAR];
2349 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2350 state->msrs[NVMM_X64_MSR_SFMASK];
2351 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2352 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2353
2354 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2355 state->msrs[NVMM_X64_MSR_EFER]);
2356 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2357 state->msrs[NVMM_X64_MSR_PAT]);
2358 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2359 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2360 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2361 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2362 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2363 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2364
2365 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2366 cpudata->gtsc_want_update = true;
2367
2368 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2369 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2370 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2371 ctls1 |= ENTRY_CTLS_LONG_MODE;
2372 } else {
2373 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2374 }
2375 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2376 }
2377
2378 if (flags & NVMM_X64_STATE_INTR) {
2379 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2380 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2381 if (state->intr.int_shadow) {
2382 intstate |= INT_STATE_MOVSS;
2383 }
2384 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2385
2386 if (state->intr.int_window_exiting) {
2387 vmx_event_waitexit_enable(vcpu, false);
2388 } else {
2389 vmx_event_waitexit_disable(vcpu, false);
2390 }
2391
2392 if (state->intr.nmi_window_exiting) {
2393 vmx_event_waitexit_enable(vcpu, true);
2394 } else {
2395 vmx_event_waitexit_disable(vcpu, true);
2396 }
2397 }
2398
2399 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2400 if (flags & NVMM_X64_STATE_FPU) {
2401 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2402 sizeof(state->fpu));
2403
2404 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2405 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2406 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2407
2408 if (vmx_xcr0_mask != 0) {
2409 /* Reset XSTATE_BV, to force a reload. */
2410 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2411 }
2412 }
2413
2414 vmx_vmcs_leave(vcpu);
2415
2416 comm->state_wanted = 0;
2417 comm->state_cached |= flags;
2418 }
2419
2420 static void
2421 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2422 {
2423 struct nvmm_comm_page *comm = vcpu->comm;
2424 struct nvmm_x64_state *state = &comm->state;
2425 struct vmx_cpudata *cpudata = vcpu->cpudata;
2426 uint64_t intstate, flags;
2427
2428 flags = comm->state_wanted;
2429
2430 vmx_vmcs_enter(vcpu);
2431
2432 if (flags & NVMM_X64_STATE_SEGS) {
2433 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2434 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2435 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2436 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2437 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2438 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2439 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2440 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2441 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2442 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2443 }
2444
2445 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2446 if (flags & NVMM_X64_STATE_GPRS) {
2447 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2448
2449 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2450 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2451 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2452 }
2453
2454 if (flags & NVMM_X64_STATE_CRS) {
2455 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2456 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2457 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2458 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2459 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2460 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2461
2462 /* Hide VMXE. */
2463 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2464 }
2465
2466 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2467 if (flags & NVMM_X64_STATE_DRS) {
2468 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2469
2470 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2471 }
2472
2473 if (flags & NVMM_X64_STATE_MSRS) {
2474 state->msrs[NVMM_X64_MSR_STAR] =
2475 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2476 state->msrs[NVMM_X64_MSR_LSTAR] =
2477 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2478 state->msrs[NVMM_X64_MSR_CSTAR] =
2479 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2480 state->msrs[NVMM_X64_MSR_SFMASK] =
2481 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2482 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2483 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2484 state->msrs[NVMM_X64_MSR_EFER] =
2485 vmx_vmread(VMCS_GUEST_IA32_EFER);
2486 state->msrs[NVMM_X64_MSR_PAT] =
2487 vmx_vmread(VMCS_GUEST_IA32_PAT);
2488 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2489 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2490 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2491 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2492 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2493 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2494 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2495 }
2496
2497 if (flags & NVMM_X64_STATE_INTR) {
2498 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2499 state->intr.int_shadow =
2500 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2501 state->intr.int_window_exiting = cpudata->int_window_exit;
2502 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2503 state->intr.evt_pending = cpudata->evt_pending;
2504 }
2505
2506 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2507 if (flags & NVMM_X64_STATE_FPU) {
2508 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2509 sizeof(state->fpu));
2510 }
2511
2512 vmx_vmcs_leave(vcpu);
2513
2514 comm->state_wanted = 0;
2515 comm->state_cached |= flags;
2516 }
2517
2518 static void
2519 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2520 {
2521 vcpu->comm->state_wanted = flags;
2522 vmx_vcpu_getstate(vcpu);
2523 }
2524
2525 static void
2526 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2527 {
2528 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2529 vcpu->comm->state_commit = 0;
2530 vmx_vcpu_setstate(vcpu);
2531 }
2532
2533 /* -------------------------------------------------------------------------- */
2534
2535 static void
2536 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2537 {
2538 struct vmx_cpudata *cpudata = vcpu->cpudata;
2539 size_t i, oct, bit;
2540
2541 mutex_enter(&vmx_asidlock);
2542
2543 for (i = 0; i < vmx_maxasid; i++) {
2544 oct = i / 8;
2545 bit = i % 8;
2546
2547 if (vmx_asidmap[oct] & __BIT(bit)) {
2548 continue;
2549 }
2550
2551 cpudata->asid = i;
2552
2553 vmx_asidmap[oct] |= __BIT(bit);
2554 vmx_vmwrite(VMCS_VPID, i);
2555 mutex_exit(&vmx_asidlock);
2556 return;
2557 }
2558
2559 mutex_exit(&vmx_asidlock);
2560
2561 panic("%s: impossible", __func__);
2562 }
2563
2564 static void
2565 vmx_asid_free(struct nvmm_cpu *vcpu)
2566 {
2567 size_t oct, bit;
2568 uint64_t asid;
2569
2570 asid = vmx_vmread(VMCS_VPID);
2571
2572 oct = asid / 8;
2573 bit = asid % 8;
2574
2575 mutex_enter(&vmx_asidlock);
2576 vmx_asidmap[oct] &= ~__BIT(bit);
2577 mutex_exit(&vmx_asidlock);
2578 }
2579
2580 static void
2581 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2582 {
2583 struct vmx_cpudata *cpudata = vcpu->cpudata;
2584 struct vmcs *vmcs = cpudata->vmcs;
2585 struct msr_entry *gmsr = cpudata->gmsr;
2586 extern uint8_t vmx_resume_rip;
2587 uint64_t rev, eptp;
2588
2589 rev = vmx_get_revision();
2590
2591 memset(vmcs, 0, VMCS_SIZE);
2592 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2593 vmcs->abort = 0;
2594
2595 vmx_vmcs_enter(vcpu);
2596
2597 /* No link pointer. */
2598 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2599
2600 /* Install the CTLSs. */
2601 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2602 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2603 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2604 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2605 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2606
2607 /* Allow direct access to certain MSRs. */
2608 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2609 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2610 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2611 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2612 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2613 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2614 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2615 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2616 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2617 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2618 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2619 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2620 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2621 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2622 true, false);
2623 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2624
2625 /*
2626 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2627 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2628 */
2629 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2630 gmsr[VMX_MSRLIST_STAR].val = 0;
2631 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2632 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2633 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2634 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2635 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2636 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2637 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2638 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2639 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2640 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2641 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2642 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2643 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2644 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2645
2646 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2647 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2648 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2649
2650 /* Force CR4_VMXE to zero. */
2651 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2652
2653 /* Set the Host state for resuming. */
2654 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2655 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2656 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2657 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2658 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2659 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2660 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2661 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2662 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2663 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2664 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2665 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2666 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2667 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2668
2669 /* Generate ASID. */
2670 vmx_asid_alloc(vcpu);
2671
2672 /* Enable Extended Paging, 4-Level. */
2673 eptp =
2674 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2675 __SHIFTIN(4-1, EPTP_WALKLEN) |
2676 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2677 mach->vm->vm_map.pmap->pm_pdirpa[0];
2678 vmx_vmwrite(VMCS_EPTP, eptp);
2679
2680 /* Init IA32_MISC_ENABLE. */
2681 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2682 cpudata->gmsr_misc_enable &=
2683 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2684 cpudata->gmsr_misc_enable |=
2685 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2686
2687 /* Init XSAVE header. */
2688 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2689 cpudata->gfpu.xsh_xcomp_bv = 0;
2690
2691 /* These MSRs are static. */
2692 cpudata->star = rdmsr(MSR_STAR);
2693 cpudata->lstar = rdmsr(MSR_LSTAR);
2694 cpudata->cstar = rdmsr(MSR_CSTAR);
2695 cpudata->sfmask = rdmsr(MSR_SFMASK);
2696
2697 /* Install the RESET state. */
2698 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2699 sizeof(nvmm_x86_reset_state));
2700 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2701 vcpu->comm->state_cached = 0;
2702 vmx_vcpu_setstate(vcpu);
2703
2704 vmx_vmcs_leave(vcpu);
2705 }
2706
2707 static int
2708 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2709 {
2710 struct vmx_cpudata *cpudata;
2711 int error;
2712
2713 /* Allocate the VMX cpudata. */
2714 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2715 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2716 UVM_KMF_WIRED|UVM_KMF_ZERO);
2717 vcpu->cpudata = cpudata;
2718
2719 /* VMCS */
2720 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2721 VMCS_NPAGES);
2722 if (error)
2723 goto error;
2724
2725 /* MSR Bitmap */
2726 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2727 MSRBM_NPAGES);
2728 if (error)
2729 goto error;
2730
2731 /* Guest MSR List */
2732 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2733 if (error)
2734 goto error;
2735
2736 kcpuset_create(&cpudata->htlb_want_flush, true);
2737
2738 /* Init the VCPU info. */
2739 vmx_vcpu_init(mach, vcpu);
2740
2741 return 0;
2742
2743 error:
2744 if (cpudata->vmcs_pa) {
2745 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2746 VMCS_NPAGES);
2747 }
2748 if (cpudata->msrbm_pa) {
2749 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2750 MSRBM_NPAGES);
2751 }
2752 if (cpudata->gmsr_pa) {
2753 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2754 }
2755
2756 kmem_free(cpudata, sizeof(*cpudata));
2757 return error;
2758 }
2759
2760 static void
2761 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2762 {
2763 struct vmx_cpudata *cpudata = vcpu->cpudata;
2764
2765 vmx_vmcs_enter(vcpu);
2766 vmx_asid_free(vcpu);
2767 vmx_vmcs_destroy(vcpu);
2768
2769 kcpuset_destroy(cpudata->htlb_want_flush);
2770
2771 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2772 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2773 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2774 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2775 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2776 }
2777
2778 /* -------------------------------------------------------------------------- */
2779
2780 static int
2781 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2782 {
2783 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2784 size_t i;
2785
2786 if (__predict_false(cpuid->mask && cpuid->exit)) {
2787 return EINVAL;
2788 }
2789 if (__predict_false(cpuid->mask &&
2790 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2791 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2792 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2793 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2794 return EINVAL;
2795 }
2796
2797 /* If unset, delete, to restore the default behavior. */
2798 if (!cpuid->mask && !cpuid->exit) {
2799 for (i = 0; i < VMX_NCPUIDS; i++) {
2800 if (!cpudata->cpuidpresent[i]) {
2801 continue;
2802 }
2803 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2804 cpudata->cpuidpresent[i] = false;
2805 }
2806 }
2807 return 0;
2808 }
2809
2810 /* If already here, replace. */
2811 for (i = 0; i < VMX_NCPUIDS; i++) {
2812 if (!cpudata->cpuidpresent[i]) {
2813 continue;
2814 }
2815 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2816 memcpy(&cpudata->cpuid[i], cpuid,
2817 sizeof(struct nvmm_vcpu_conf_cpuid));
2818 return 0;
2819 }
2820 }
2821
2822 /* Not here, insert. */
2823 for (i = 0; i < VMX_NCPUIDS; i++) {
2824 if (!cpudata->cpuidpresent[i]) {
2825 cpudata->cpuidpresent[i] = true;
2826 memcpy(&cpudata->cpuid[i], cpuid,
2827 sizeof(struct nvmm_vcpu_conf_cpuid));
2828 return 0;
2829 }
2830 }
2831
2832 return ENOBUFS;
2833 }
2834
2835 static int
2836 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2837 {
2838 struct nvmm_vcpu_conf_tpr *tpr = data;
2839
2840 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2841 return 0;
2842 }
2843
2844 static int
2845 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2846 {
2847 struct vmx_cpudata *cpudata = vcpu->cpudata;
2848
2849 switch (op) {
2850 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2851 return vmx_vcpu_configure_cpuid(cpudata, data);
2852 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2853 return vmx_vcpu_configure_tpr(cpudata, data);
2854 default:
2855 return EINVAL;
2856 }
2857 }
2858
2859 /* -------------------------------------------------------------------------- */
2860
2861 static void
2862 vmx_tlb_flush(struct pmap *pm)
2863 {
2864 struct nvmm_machine *mach = pm->pm_data;
2865 struct vmx_machdata *machdata = mach->machdata;
2866
2867 atomic_inc_64(&machdata->mach_htlb_gen);
2868
2869 /* Generates IPIs, which cause #VMEXITs. */
2870 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2871 }
2872
2873 static void
2874 vmx_machine_create(struct nvmm_machine *mach)
2875 {
2876 struct pmap *pmap = mach->vm->vm_map.pmap;
2877 struct vmx_machdata *machdata;
2878
2879 /* Convert to EPT. */
2880 pmap_ept_transform(pmap);
2881
2882 /* Fill in pmap info. */
2883 pmap->pm_data = (void *)mach;
2884 pmap->pm_tlb_flush = vmx_tlb_flush;
2885
2886 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2887 mach->machdata = machdata;
2888
2889 /* Start with an hTLB flush everywhere. */
2890 machdata->mach_htlb_gen = 1;
2891 }
2892
2893 static void
2894 vmx_machine_destroy(struct nvmm_machine *mach)
2895 {
2896 struct vmx_machdata *machdata = mach->machdata;
2897
2898 kmem_free(machdata, sizeof(struct vmx_machdata));
2899 }
2900
2901 static int
2902 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2903 {
2904 panic("%s: impossible", __func__);
2905 }
2906
2907 /* -------------------------------------------------------------------------- */
2908
2909 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2910 ((msrval & __BIT(32 + bitoff)) != 0)
2911 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2912 ((msrval & __BIT(bitoff)) == 0)
2913
2914 static int
2915 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
2916 {
2917 uint64_t basic, val, true_val;
2918 bool has_true;
2919 size_t i;
2920
2921 basic = rdmsr(MSR_IA32_VMX_BASIC);
2922 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2923
2924 val = rdmsr(msr_ctls);
2925 if (has_true) {
2926 true_val = rdmsr(msr_true_ctls);
2927 } else {
2928 true_val = val;
2929 }
2930
2931 for (i = 0; i < 32; i++) {
2932 if (!(set_one & __BIT(i))) {
2933 continue;
2934 }
2935 if (!CTLS_ONE_ALLOWED(true_val, i)) {
2936 return -1;
2937 }
2938 }
2939
2940 return 0;
2941 }
2942
2943 static int
2944 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2945 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2946 {
2947 uint64_t basic, val, true_val;
2948 bool one_allowed, zero_allowed, has_true;
2949 size_t i;
2950
2951 basic = rdmsr(MSR_IA32_VMX_BASIC);
2952 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2953
2954 val = rdmsr(msr_ctls);
2955 if (has_true) {
2956 true_val = rdmsr(msr_true_ctls);
2957 } else {
2958 true_val = val;
2959 }
2960
2961 for (i = 0; i < 32; i++) {
2962 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
2963 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
2964
2965 if (zero_allowed && !one_allowed) {
2966 if (set_one & __BIT(i))
2967 return -1;
2968 *res &= ~__BIT(i);
2969 } else if (one_allowed && !zero_allowed) {
2970 if (set_zero & __BIT(i))
2971 return -1;
2972 *res |= __BIT(i);
2973 } else {
2974 if (set_zero & __BIT(i)) {
2975 *res &= ~__BIT(i);
2976 } else if (set_one & __BIT(i)) {
2977 *res |= __BIT(i);
2978 } else if (!has_true) {
2979 *res &= ~__BIT(i);
2980 } else if (CTLS_ZERO_ALLOWED(val, i)) {
2981 *res &= ~__BIT(i);
2982 } else if (CTLS_ONE_ALLOWED(val, i)) {
2983 *res |= __BIT(i);
2984 } else {
2985 return -1;
2986 }
2987 }
2988 }
2989
2990 return 0;
2991 }
2992
2993 static bool
2994 vmx_ident(void)
2995 {
2996 uint64_t msr;
2997 int ret;
2998
2999 if (!(cpu_feature[1] & CPUID2_VMX)) {
3000 return false;
3001 }
3002
3003 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3004 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3005 return false;
3006 }
3007 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3008 return false;
3009 }
3010
3011 msr = rdmsr(MSR_IA32_VMX_BASIC);
3012 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3013 return false;
3014 }
3015 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3016 return false;
3017 }
3018
3019 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3020 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3021 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3022 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3023 if (ret == -1) {
3024 return false;
3025 }
3026
3027 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3028 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3029 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3030 if (ret == -1) {
3031 return false;
3032 }
3033
3034 /* Init the CTLSs right now, and check for errors. */
3035 ret = vmx_init_ctls(
3036 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3037 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3038 &vmx_pinbased_ctls);
3039 if (ret == -1) {
3040 return false;
3041 }
3042 ret = vmx_init_ctls(
3043 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3044 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3045 &vmx_procbased_ctls);
3046 if (ret == -1) {
3047 return false;
3048 }
3049 ret = vmx_init_ctls(
3050 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3051 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3052 &vmx_procbased_ctls2);
3053 if (ret == -1) {
3054 return false;
3055 }
3056 ret = vmx_check_ctls(
3057 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3058 PROC_CTLS2_INVPCID_ENABLE);
3059 if (ret != -1) {
3060 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3061 }
3062 ret = vmx_init_ctls(
3063 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3064 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3065 &vmx_entry_ctls);
3066 if (ret == -1) {
3067 return false;
3068 }
3069 ret = vmx_init_ctls(
3070 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3071 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3072 &vmx_exit_ctls);
3073 if (ret == -1) {
3074 return false;
3075 }
3076
3077 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3078 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3079 return false;
3080 }
3081 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3082 return false;
3083 }
3084 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3085 return false;
3086 }
3087 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3088 pmap_ept_has_ad = true;
3089 } else {
3090 pmap_ept_has_ad = false;
3091 }
3092 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3093 return false;
3094 }
3095
3096 return true;
3097 }
3098
3099 static void
3100 vmx_init_asid(uint32_t maxasid)
3101 {
3102 size_t allocsz;
3103
3104 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3105
3106 vmx_maxasid = maxasid;
3107 allocsz = roundup(maxasid, 8) / 8;
3108 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3109
3110 /* ASID 0 is reserved for the host. */
3111 vmx_asidmap[0] |= __BIT(0);
3112 }
3113
3114 static void
3115 vmx_change_cpu(void *arg1, void *arg2)
3116 {
3117 struct cpu_info *ci = curcpu();
3118 bool enable = arg1 != NULL;
3119 uint64_t cr4;
3120
3121 if (!enable) {
3122 vmx_vmxoff();
3123 }
3124
3125 cr4 = rcr4();
3126 if (enable) {
3127 cr4 |= CR4_VMXE;
3128 } else {
3129 cr4 &= ~CR4_VMXE;
3130 }
3131 lcr4(cr4);
3132
3133 if (enable) {
3134 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3135 }
3136 }
3137
3138 static void
3139 vmx_init_l1tf(void)
3140 {
3141 u_int descs[4];
3142 uint64_t msr;
3143
3144 if (cpuid_level < 7) {
3145 return;
3146 }
3147
3148 x86_cpuid(7, descs);
3149
3150 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3151 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3152 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3153 /* No mitigation needed. */
3154 return;
3155 }
3156 }
3157
3158 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3159 /* Enable hardware mitigation. */
3160 vmx_msrlist_entry_nmsr += 1;
3161 }
3162 }
3163
3164 static void
3165 vmx_init(void)
3166 {
3167 CPU_INFO_ITERATOR cii;
3168 struct cpu_info *ci;
3169 uint64_t xc, msr;
3170 struct vmxon *vmxon;
3171 uint32_t revision;
3172 paddr_t pa;
3173 vaddr_t va;
3174 int error;
3175
3176 /* Init the ASID bitmap (VPID). */
3177 vmx_init_asid(VPID_MAX);
3178
3179 /* Init the XCR0 mask. */
3180 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3181
3182 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3183 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3184 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3185 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3186 } else {
3187 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3188 }
3189 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3190 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3191 } else {
3192 vmx_ept_flush_op = VMX_INVEPT_ALL;
3193 }
3194 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3195 vmx_eptp_type = EPTP_TYPE_WB;
3196 } else {
3197 vmx_eptp_type = EPTP_TYPE_UC;
3198 }
3199
3200 /* Init the L1TF mitigation. */
3201 vmx_init_l1tf();
3202
3203 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3204 revision = vmx_get_revision();
3205
3206 for (CPU_INFO_FOREACH(cii, ci)) {
3207 error = vmx_memalloc(&pa, &va, 1);
3208 if (error) {
3209 panic("%s: out of memory", __func__);
3210 }
3211 vmxoncpu[cpu_index(ci)].pa = pa;
3212 vmxoncpu[cpu_index(ci)].va = va;
3213
3214 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3215 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3216 }
3217
3218 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3219 xc_wait(xc);
3220 }
3221
3222 static void
3223 vmx_fini_asid(void)
3224 {
3225 size_t allocsz;
3226
3227 allocsz = roundup(vmx_maxasid, 8) / 8;
3228 kmem_free(vmx_asidmap, allocsz);
3229
3230 mutex_destroy(&vmx_asidlock);
3231 }
3232
3233 static void
3234 vmx_fini(void)
3235 {
3236 uint64_t xc;
3237 size_t i;
3238
3239 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3240 xc_wait(xc);
3241
3242 for (i = 0; i < MAXCPUS; i++) {
3243 if (vmxoncpu[i].pa != 0)
3244 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3245 }
3246
3247 vmx_fini_asid();
3248 }
3249
3250 static void
3251 vmx_capability(struct nvmm_capability *cap)
3252 {
3253 cap->arch.mach_conf_support = 0;
3254 cap->arch.vcpu_conf_support =
3255 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3256 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3257 cap->arch.xcr0_mask = vmx_xcr0_mask;
3258 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3259 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3260 }
3261
3262 const struct nvmm_impl nvmm_x86_vmx = {
3263 .ident = vmx_ident,
3264 .init = vmx_init,
3265 .fini = vmx_fini,
3266 .capability = vmx_capability,
3267 .mach_conf_max = NVMM_X86_MACH_NCONF,
3268 .mach_conf_sizes = NULL,
3269 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3270 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3271 .state_size = sizeof(struct nvmm_x64_state),
3272 .machine_create = vmx_machine_create,
3273 .machine_destroy = vmx_machine_destroy,
3274 .machine_configure = vmx_machine_configure,
3275 .vcpu_create = vmx_vcpu_create,
3276 .vcpu_destroy = vmx_vcpu_destroy,
3277 .vcpu_configure = vmx_vcpu_configure,
3278 .vcpu_setstate = vmx_vcpu_setstate,
3279 .vcpu_getstate = vmx_vcpu_getstate,
3280 .vcpu_inject = vmx_vcpu_inject,
3281 .vcpu_run = vmx_vcpu_run
3282 };
3283