nvmm_x86_vmx.c revision 1.52 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.52 2020/03/22 00:16:16 ad Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.52 2020/03/22 00:16:16 ad Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 #ifdef DIAGNOSTIC
138 static inline paddr_t
139 vmx_vmptrst(void)
140 {
141 paddr_t pa;
142
143 asm volatile (
144 "vmptrst %[pa];"
145 :
146 : [pa] "m" (*(paddr_t *)&pa)
147 : "memory"
148 );
149
150 return pa;
151 }
152 #endif
153
154 static inline void
155 vmx_vmptrld(paddr_t *pa)
156 {
157 asm volatile (
158 "vmptrld %[pa];"
159 "jz vmx_insn_failvalid;"
160 "jc vmx_insn_failinvalid;"
161 :
162 : [pa] "m" (*pa)
163 : "memory", "cc"
164 );
165 }
166
167 static inline void
168 vmx_vmclear(paddr_t *pa)
169 {
170 asm volatile (
171 "vmclear %[pa];"
172 "jz vmx_insn_failvalid;"
173 "jc vmx_insn_failinvalid;"
174 :
175 : [pa] "m" (*pa)
176 : "memory", "cc"
177 );
178 }
179
180 #define MSR_IA32_FEATURE_CONTROL 0x003A
181 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
182 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
183 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
184
185 #define MSR_IA32_VMX_BASIC 0x0480
186 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
187 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
188 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
189 #define IA32_VMX_BASIC_DUAL __BIT(49)
190 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
191 #define MEM_TYPE_UC 0
192 #define MEM_TYPE_WB 6
193 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
194 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
195
196 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
197 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
198 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
199 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
200 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
201
202 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
203 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
204 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
205 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
206
207 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
208 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
209 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
210 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
211
212 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
213 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
214 #define IA32_VMX_EPT_VPID_UC __BIT(8)
215 #define IA32_VMX_EPT_VPID_WB __BIT(14)
216 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
217 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
218 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
219 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
220 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
221 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
223 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
224 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
225
226 /* -------------------------------------------------------------------------- */
227
228 /* 16-bit control fields */
229 #define VMCS_VPID 0x00000000
230 #define VMCS_PIR_VECTOR 0x00000002
231 #define VMCS_EPTP_INDEX 0x00000004
232 /* 16-bit guest-state fields */
233 #define VMCS_GUEST_ES_SELECTOR 0x00000800
234 #define VMCS_GUEST_CS_SELECTOR 0x00000802
235 #define VMCS_GUEST_SS_SELECTOR 0x00000804
236 #define VMCS_GUEST_DS_SELECTOR 0x00000806
237 #define VMCS_GUEST_FS_SELECTOR 0x00000808
238 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
239 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
240 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
241 #define VMCS_GUEST_INTR_STATUS 0x00000810
242 #define VMCS_PML_INDEX 0x00000812
243 /* 16-bit host-state fields */
244 #define VMCS_HOST_ES_SELECTOR 0x00000C00
245 #define VMCS_HOST_CS_SELECTOR 0x00000C02
246 #define VMCS_HOST_SS_SELECTOR 0x00000C04
247 #define VMCS_HOST_DS_SELECTOR 0x00000C06
248 #define VMCS_HOST_FS_SELECTOR 0x00000C08
249 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
250 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
251 /* 64-bit control fields */
252 #define VMCS_IO_BITMAP_A 0x00002000
253 #define VMCS_IO_BITMAP_B 0x00002002
254 #define VMCS_MSR_BITMAP 0x00002004
255 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
256 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
257 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
258 #define VMCS_EXECUTIVE_VMCS 0x0000200C
259 #define VMCS_PML_ADDRESS 0x0000200E
260 #define VMCS_TSC_OFFSET 0x00002010
261 #define VMCS_VIRTUAL_APIC 0x00002012
262 #define VMCS_APIC_ACCESS 0x00002014
263 #define VMCS_PIR_DESC 0x00002016
264 #define VMCS_VM_CONTROL 0x00002018
265 #define VMCS_EPTP 0x0000201A
266 #define EPTP_TYPE __BITS(2,0)
267 #define EPTP_TYPE_UC 0
268 #define EPTP_TYPE_WB 6
269 #define EPTP_WALKLEN __BITS(5,3)
270 #define EPTP_FLAGS_AD __BIT(6)
271 #define EPTP_PHYSADDR __BITS(63,12)
272 #define VMCS_EOI_EXIT0 0x0000201C
273 #define VMCS_EOI_EXIT1 0x0000201E
274 #define VMCS_EOI_EXIT2 0x00002020
275 #define VMCS_EOI_EXIT3 0x00002022
276 #define VMCS_EPTP_LIST 0x00002024
277 #define VMCS_VMREAD_BITMAP 0x00002026
278 #define VMCS_VMWRITE_BITMAP 0x00002028
279 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
280 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
281 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
282 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
283 #define VMCS_TSC_MULTIPLIER 0x00002032
284 /* 64-bit read-only fields */
285 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
286 /* 64-bit guest-state fields */
287 #define VMCS_LINK_POINTER 0x00002800
288 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
289 #define VMCS_GUEST_IA32_PAT 0x00002804
290 #define VMCS_GUEST_IA32_EFER 0x00002806
291 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
292 #define VMCS_GUEST_PDPTE0 0x0000280A
293 #define VMCS_GUEST_PDPTE1 0x0000280C
294 #define VMCS_GUEST_PDPTE2 0x0000280E
295 #define VMCS_GUEST_PDPTE3 0x00002810
296 #define VMCS_GUEST_BNDCFGS 0x00002812
297 /* 64-bit host-state fields */
298 #define VMCS_HOST_IA32_PAT 0x00002C00
299 #define VMCS_HOST_IA32_EFER 0x00002C02
300 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
301 /* 32-bit control fields */
302 #define VMCS_PINBASED_CTLS 0x00004000
303 #define PIN_CTLS_INT_EXITING __BIT(0)
304 #define PIN_CTLS_NMI_EXITING __BIT(3)
305 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
306 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
307 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
308 #define VMCS_PROCBASED_CTLS 0x00004002
309 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
310 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
311 #define PROC_CTLS_HLT_EXITING __BIT(7)
312 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
313 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
314 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
315 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
316 #define PROC_CTLS_RCR3_EXITING __BIT(15)
317 #define PROC_CTLS_LCR3_EXITING __BIT(16)
318 #define PROC_CTLS_RCR8_EXITING __BIT(19)
319 #define PROC_CTLS_LCR8_EXITING __BIT(20)
320 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
321 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
322 #define PROC_CTLS_DR_EXITING __BIT(23)
323 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
324 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
325 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
326 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
327 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
328 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
329 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
330 #define VMCS_EXCEPTION_BITMAP 0x00004004
331 #define VMCS_PF_ERROR_MASK 0x00004006
332 #define VMCS_PF_ERROR_MATCH 0x00004008
333 #define VMCS_CR3_TARGET_COUNT 0x0000400A
334 #define VMCS_EXIT_CTLS 0x0000400C
335 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
336 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
337 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
338 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
339 #define EXIT_CTLS_SAVE_PAT __BIT(18)
340 #define EXIT_CTLS_LOAD_PAT __BIT(19)
341 #define EXIT_CTLS_SAVE_EFER __BIT(20)
342 #define EXIT_CTLS_LOAD_EFER __BIT(21)
343 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
344 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
345 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
346 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
347 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
348 #define VMCS_ENTRY_CTLS 0x00004012
349 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
350 #define ENTRY_CTLS_LONG_MODE __BIT(9)
351 #define ENTRY_CTLS_SMM __BIT(10)
352 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
353 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
354 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
355 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
356 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
357 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
358 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
359 #define VMCS_ENTRY_INTR_INFO 0x00004016
360 #define INTR_INFO_VECTOR __BITS(7,0)
361 #define INTR_INFO_TYPE __BITS(10,8)
362 #define INTR_TYPE_EXT_INT 0
363 #define INTR_TYPE_NMI 2
364 #define INTR_TYPE_HW_EXC 3
365 #define INTR_TYPE_SW_INT 4
366 #define INTR_TYPE_PRIV_SW_EXC 5
367 #define INTR_TYPE_SW_EXC 6
368 #define INTR_TYPE_OTHER 7
369 #define INTR_INFO_ERROR __BIT(11)
370 #define INTR_INFO_VALID __BIT(31)
371 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
372 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
373 #define VMCS_TPR_THRESHOLD 0x0000401C
374 #define VMCS_PROCBASED_CTLS2 0x0000401E
375 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
376 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
377 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
378 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
379 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
380 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
381 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
382 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
383 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
384 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
385 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
386 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
387 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
388 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
389 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
390 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
391 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
392 #define PROC_CTLS2_PML_ENABLE __BIT(17)
393 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
394 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
395 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
396 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
397 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
398 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
399 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
400 #define VMCS_PLE_GAP 0x00004020
401 #define VMCS_PLE_WINDOW 0x00004022
402 /* 32-bit read-only data fields */
403 #define VMCS_INSTRUCTION_ERROR 0x00004400
404 #define VMCS_EXIT_REASON 0x00004402
405 #define VMCS_EXIT_INTR_INFO 0x00004404
406 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
407 #define VMCS_IDT_VECTORING_INFO 0x00004408
408 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
409 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
410 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
411 /* 32-bit guest-state fields */
412 #define VMCS_GUEST_ES_LIMIT 0x00004800
413 #define VMCS_GUEST_CS_LIMIT 0x00004802
414 #define VMCS_GUEST_SS_LIMIT 0x00004804
415 #define VMCS_GUEST_DS_LIMIT 0x00004806
416 #define VMCS_GUEST_FS_LIMIT 0x00004808
417 #define VMCS_GUEST_GS_LIMIT 0x0000480A
418 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
419 #define VMCS_GUEST_TR_LIMIT 0x0000480E
420 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
421 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
422 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
423 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
424 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
425 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
426 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
427 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
428 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
429 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
430 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
431 #define INT_STATE_STI __BIT(0)
432 #define INT_STATE_MOVSS __BIT(1)
433 #define INT_STATE_SMI __BIT(2)
434 #define INT_STATE_NMI __BIT(3)
435 #define INT_STATE_ENCLAVE __BIT(4)
436 #define VMCS_GUEST_ACTIVITY 0x00004826
437 #define VMCS_GUEST_SMBASE 0x00004828
438 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
439 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
440 /* 32-bit host state fields */
441 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
442 /* Natural-Width control fields */
443 #define VMCS_CR0_MASK 0x00006000
444 #define VMCS_CR4_MASK 0x00006002
445 #define VMCS_CR0_SHADOW 0x00006004
446 #define VMCS_CR4_SHADOW 0x00006006
447 #define VMCS_CR3_TARGET0 0x00006008
448 #define VMCS_CR3_TARGET1 0x0000600A
449 #define VMCS_CR3_TARGET2 0x0000600C
450 #define VMCS_CR3_TARGET3 0x0000600E
451 /* Natural-Width read-only fields */
452 #define VMCS_EXIT_QUALIFICATION 0x00006400
453 #define VMCS_IO_RCX 0x00006402
454 #define VMCS_IO_RSI 0x00006404
455 #define VMCS_IO_RDI 0x00006406
456 #define VMCS_IO_RIP 0x00006408
457 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
458 /* Natural-Width guest-state fields */
459 #define VMCS_GUEST_CR0 0x00006800
460 #define VMCS_GUEST_CR3 0x00006802
461 #define VMCS_GUEST_CR4 0x00006804
462 #define VMCS_GUEST_ES_BASE 0x00006806
463 #define VMCS_GUEST_CS_BASE 0x00006808
464 #define VMCS_GUEST_SS_BASE 0x0000680A
465 #define VMCS_GUEST_DS_BASE 0x0000680C
466 #define VMCS_GUEST_FS_BASE 0x0000680E
467 #define VMCS_GUEST_GS_BASE 0x00006810
468 #define VMCS_GUEST_LDTR_BASE 0x00006812
469 #define VMCS_GUEST_TR_BASE 0x00006814
470 #define VMCS_GUEST_GDTR_BASE 0x00006816
471 #define VMCS_GUEST_IDTR_BASE 0x00006818
472 #define VMCS_GUEST_DR7 0x0000681A
473 #define VMCS_GUEST_RSP 0x0000681C
474 #define VMCS_GUEST_RIP 0x0000681E
475 #define VMCS_GUEST_RFLAGS 0x00006820
476 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
477 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
478 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
479 /* Natural-Width host-state fields */
480 #define VMCS_HOST_CR0 0x00006C00
481 #define VMCS_HOST_CR3 0x00006C02
482 #define VMCS_HOST_CR4 0x00006C04
483 #define VMCS_HOST_FS_BASE 0x00006C06
484 #define VMCS_HOST_GS_BASE 0x00006C08
485 #define VMCS_HOST_TR_BASE 0x00006C0A
486 #define VMCS_HOST_GDTR_BASE 0x00006C0C
487 #define VMCS_HOST_IDTR_BASE 0x00006C0E
488 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
489 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
490 #define VMCS_HOST_RSP 0x00006C14
491 #define VMCS_HOST_RIP 0x00006c16
492
493 /* VMX basic exit reasons. */
494 #define VMCS_EXITCODE_EXC_NMI 0
495 #define VMCS_EXITCODE_EXT_INT 1
496 #define VMCS_EXITCODE_SHUTDOWN 2
497 #define VMCS_EXITCODE_INIT 3
498 #define VMCS_EXITCODE_SIPI 4
499 #define VMCS_EXITCODE_SMI 5
500 #define VMCS_EXITCODE_OTHER_SMI 6
501 #define VMCS_EXITCODE_INT_WINDOW 7
502 #define VMCS_EXITCODE_NMI_WINDOW 8
503 #define VMCS_EXITCODE_TASK_SWITCH 9
504 #define VMCS_EXITCODE_CPUID 10
505 #define VMCS_EXITCODE_GETSEC 11
506 #define VMCS_EXITCODE_HLT 12
507 #define VMCS_EXITCODE_INVD 13
508 #define VMCS_EXITCODE_INVLPG 14
509 #define VMCS_EXITCODE_RDPMC 15
510 #define VMCS_EXITCODE_RDTSC 16
511 #define VMCS_EXITCODE_RSM 17
512 #define VMCS_EXITCODE_VMCALL 18
513 #define VMCS_EXITCODE_VMCLEAR 19
514 #define VMCS_EXITCODE_VMLAUNCH 20
515 #define VMCS_EXITCODE_VMPTRLD 21
516 #define VMCS_EXITCODE_VMPTRST 22
517 #define VMCS_EXITCODE_VMREAD 23
518 #define VMCS_EXITCODE_VMRESUME 24
519 #define VMCS_EXITCODE_VMWRITE 25
520 #define VMCS_EXITCODE_VMXOFF 26
521 #define VMCS_EXITCODE_VMXON 27
522 #define VMCS_EXITCODE_CR 28
523 #define VMCS_EXITCODE_DR 29
524 #define VMCS_EXITCODE_IO 30
525 #define VMCS_EXITCODE_RDMSR 31
526 #define VMCS_EXITCODE_WRMSR 32
527 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
528 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
529 #define VMCS_EXITCODE_MWAIT 36
530 #define VMCS_EXITCODE_TRAP_FLAG 37
531 #define VMCS_EXITCODE_MONITOR 39
532 #define VMCS_EXITCODE_PAUSE 40
533 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
534 #define VMCS_EXITCODE_TPR_BELOW 43
535 #define VMCS_EXITCODE_APIC_ACCESS 44
536 #define VMCS_EXITCODE_VEOI 45
537 #define VMCS_EXITCODE_GDTR_IDTR 46
538 #define VMCS_EXITCODE_LDTR_TR 47
539 #define VMCS_EXITCODE_EPT_VIOLATION 48
540 #define VMCS_EXITCODE_EPT_MISCONFIG 49
541 #define VMCS_EXITCODE_INVEPT 50
542 #define VMCS_EXITCODE_RDTSCP 51
543 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
544 #define VMCS_EXITCODE_INVVPID 53
545 #define VMCS_EXITCODE_WBINVD 54
546 #define VMCS_EXITCODE_XSETBV 55
547 #define VMCS_EXITCODE_APIC_WRITE 56
548 #define VMCS_EXITCODE_RDRAND 57
549 #define VMCS_EXITCODE_INVPCID 58
550 #define VMCS_EXITCODE_VMFUNC 59
551 #define VMCS_EXITCODE_ENCLS 60
552 #define VMCS_EXITCODE_RDSEED 61
553 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
554 #define VMCS_EXITCODE_XSAVES 63
555 #define VMCS_EXITCODE_XRSTORS 64
556
557 /* -------------------------------------------------------------------------- */
558
559 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
560 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
561
562 #define VMX_MSRLIST_STAR 0
563 #define VMX_MSRLIST_LSTAR 1
564 #define VMX_MSRLIST_CSTAR 2
565 #define VMX_MSRLIST_SFMASK 3
566 #define VMX_MSRLIST_KERNELGSBASE 4
567 #define VMX_MSRLIST_EXIT_NMSR 5
568 #define VMX_MSRLIST_L1DFLUSH 5
569
570 /* On entry, we may do +1 to include L1DFLUSH. */
571 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
572
573 struct vmxon {
574 uint32_t ident;
575 #define VMXON_IDENT_REVISION __BITS(30,0)
576
577 uint8_t data[PAGE_SIZE - 4];
578 } __packed;
579
580 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
581
582 struct vmxoncpu {
583 vaddr_t va;
584 paddr_t pa;
585 };
586
587 static struct vmxoncpu vmxoncpu[MAXCPUS];
588
589 struct vmcs {
590 uint32_t ident;
591 #define VMCS_IDENT_REVISION __BITS(30,0)
592 #define VMCS_IDENT_SHADOW __BIT(31)
593
594 uint32_t abort;
595 uint8_t data[PAGE_SIZE - 8];
596 } __packed;
597
598 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
599
600 struct msr_entry {
601 uint32_t msr;
602 uint32_t rsvd;
603 uint64_t val;
604 } __packed;
605
606 #define VPID_MAX 0xFFFF
607
608 /* Make sure we never run out of VPIDs. */
609 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
610
611 static uint64_t vmx_tlb_flush_op __read_mostly;
612 static uint64_t vmx_ept_flush_op __read_mostly;
613 static uint64_t vmx_eptp_type __read_mostly;
614
615 static uint64_t vmx_pinbased_ctls __read_mostly;
616 static uint64_t vmx_procbased_ctls __read_mostly;
617 static uint64_t vmx_procbased_ctls2 __read_mostly;
618 static uint64_t vmx_entry_ctls __read_mostly;
619 static uint64_t vmx_exit_ctls __read_mostly;
620
621 static uint64_t vmx_cr0_fixed0 __read_mostly;
622 static uint64_t vmx_cr0_fixed1 __read_mostly;
623 static uint64_t vmx_cr4_fixed0 __read_mostly;
624 static uint64_t vmx_cr4_fixed1 __read_mostly;
625
626 extern bool pmap_ept_has_ad;
627
628 #define VMX_PINBASED_CTLS_ONE \
629 (PIN_CTLS_INT_EXITING| \
630 PIN_CTLS_NMI_EXITING| \
631 PIN_CTLS_VIRTUAL_NMIS)
632
633 #define VMX_PINBASED_CTLS_ZERO 0
634
635 #define VMX_PROCBASED_CTLS_ONE \
636 (PROC_CTLS_USE_TSC_OFFSETTING| \
637 PROC_CTLS_HLT_EXITING| \
638 PROC_CTLS_MWAIT_EXITING | \
639 PROC_CTLS_RDPMC_EXITING | \
640 PROC_CTLS_RCR8_EXITING | \
641 PROC_CTLS_LCR8_EXITING | \
642 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
643 PROC_CTLS_USE_MSR_BITMAPS | \
644 PROC_CTLS_MONITOR_EXITING | \
645 PROC_CTLS_ACTIVATE_CTLS2)
646
647 #define VMX_PROCBASED_CTLS_ZERO \
648 (PROC_CTLS_RCR3_EXITING| \
649 PROC_CTLS_LCR3_EXITING)
650
651 #define VMX_PROCBASED_CTLS2_ONE \
652 (PROC_CTLS2_ENABLE_EPT| \
653 PROC_CTLS2_ENABLE_VPID| \
654 PROC_CTLS2_UNRESTRICTED_GUEST)
655
656 #define VMX_PROCBASED_CTLS2_ZERO 0
657
658 #define VMX_ENTRY_CTLS_ONE \
659 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
660 ENTRY_CTLS_LOAD_EFER| \
661 ENTRY_CTLS_LOAD_PAT)
662
663 #define VMX_ENTRY_CTLS_ZERO \
664 (ENTRY_CTLS_SMM| \
665 ENTRY_CTLS_DISABLE_DUAL)
666
667 #define VMX_EXIT_CTLS_ONE \
668 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
669 EXIT_CTLS_HOST_LONG_MODE| \
670 EXIT_CTLS_SAVE_PAT| \
671 EXIT_CTLS_LOAD_PAT| \
672 EXIT_CTLS_SAVE_EFER| \
673 EXIT_CTLS_LOAD_EFER)
674
675 #define VMX_EXIT_CTLS_ZERO 0
676
677 static uint8_t *vmx_asidmap __read_mostly;
678 static uint32_t vmx_maxasid __read_mostly;
679 static kmutex_t vmx_asidlock __cacheline_aligned;
680
681 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
682 static uint64_t vmx_xcr0_mask __read_mostly;
683
684 #define VMX_NCPUIDS 32
685
686 #define VMCS_NPAGES 1
687 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
688
689 #define MSRBM_NPAGES 1
690 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
691
692 #define EFER_TLB_FLUSH \
693 (EFER_NXE|EFER_LMA|EFER_LME)
694 #define CR0_TLB_FLUSH \
695 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
696 #define CR4_TLB_FLUSH \
697 (CR4_PGE|CR4_PAE|CR4_PSE)
698
699 /* -------------------------------------------------------------------------- */
700
701 struct vmx_machdata {
702 volatile uint64_t mach_htlb_gen;
703 };
704
705 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
706 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
707 sizeof(struct nvmm_vcpu_conf_cpuid),
708 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
709 sizeof(struct nvmm_vcpu_conf_tpr)
710 };
711
712 struct vmx_cpudata {
713 /* General */
714 uint64_t asid;
715 bool gtlb_want_flush;
716 bool gtsc_want_update;
717 uint64_t vcpu_htlb_gen;
718 kcpuset_t *htlb_want_flush;
719
720 /* VMCS */
721 struct vmcs *vmcs;
722 paddr_t vmcs_pa;
723 size_t vmcs_refcnt;
724 struct cpu_info *vmcs_ci;
725 bool vmcs_launched;
726
727 /* MSR bitmap */
728 uint8_t *msrbm;
729 paddr_t msrbm_pa;
730
731 /* Host state */
732 uint64_t hxcr0;
733 uint64_t star;
734 uint64_t lstar;
735 uint64_t cstar;
736 uint64_t sfmask;
737 uint64_t kernelgsbase;
738
739 /* Intr state */
740 bool int_window_exit;
741 bool nmi_window_exit;
742 bool evt_pending;
743
744 /* Guest state */
745 struct msr_entry *gmsr;
746 paddr_t gmsr_pa;
747 uint64_t gmsr_misc_enable;
748 uint64_t gcr2;
749 uint64_t gcr8;
750 uint64_t gxcr0;
751 uint64_t gprs[NVMM_X64_NGPR];
752 uint64_t drs[NVMM_X64_NDR];
753 uint64_t gtsc;
754 struct xsave_header gfpu __aligned(64);
755
756 /* VCPU configuration. */
757 bool cpuidpresent[VMX_NCPUIDS];
758 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
759 struct nvmm_vcpu_conf_tpr tpr;
760 };
761
762 static const struct {
763 uint64_t selector;
764 uint64_t attrib;
765 uint64_t limit;
766 uint64_t base;
767 } vmx_guest_segs[NVMM_X64_NSEG] = {
768 [NVMM_X64_SEG_ES] = {
769 VMCS_GUEST_ES_SELECTOR,
770 VMCS_GUEST_ES_ACCESS_RIGHTS,
771 VMCS_GUEST_ES_LIMIT,
772 VMCS_GUEST_ES_BASE
773 },
774 [NVMM_X64_SEG_CS] = {
775 VMCS_GUEST_CS_SELECTOR,
776 VMCS_GUEST_CS_ACCESS_RIGHTS,
777 VMCS_GUEST_CS_LIMIT,
778 VMCS_GUEST_CS_BASE
779 },
780 [NVMM_X64_SEG_SS] = {
781 VMCS_GUEST_SS_SELECTOR,
782 VMCS_GUEST_SS_ACCESS_RIGHTS,
783 VMCS_GUEST_SS_LIMIT,
784 VMCS_GUEST_SS_BASE
785 },
786 [NVMM_X64_SEG_DS] = {
787 VMCS_GUEST_DS_SELECTOR,
788 VMCS_GUEST_DS_ACCESS_RIGHTS,
789 VMCS_GUEST_DS_LIMIT,
790 VMCS_GUEST_DS_BASE
791 },
792 [NVMM_X64_SEG_FS] = {
793 VMCS_GUEST_FS_SELECTOR,
794 VMCS_GUEST_FS_ACCESS_RIGHTS,
795 VMCS_GUEST_FS_LIMIT,
796 VMCS_GUEST_FS_BASE
797 },
798 [NVMM_X64_SEG_GS] = {
799 VMCS_GUEST_GS_SELECTOR,
800 VMCS_GUEST_GS_ACCESS_RIGHTS,
801 VMCS_GUEST_GS_LIMIT,
802 VMCS_GUEST_GS_BASE
803 },
804 [NVMM_X64_SEG_GDT] = {
805 0, /* doesn't exist */
806 0, /* doesn't exist */
807 VMCS_GUEST_GDTR_LIMIT,
808 VMCS_GUEST_GDTR_BASE
809 },
810 [NVMM_X64_SEG_IDT] = {
811 0, /* doesn't exist */
812 0, /* doesn't exist */
813 VMCS_GUEST_IDTR_LIMIT,
814 VMCS_GUEST_IDTR_BASE
815 },
816 [NVMM_X64_SEG_LDT] = {
817 VMCS_GUEST_LDTR_SELECTOR,
818 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
819 VMCS_GUEST_LDTR_LIMIT,
820 VMCS_GUEST_LDTR_BASE
821 },
822 [NVMM_X64_SEG_TR] = {
823 VMCS_GUEST_TR_SELECTOR,
824 VMCS_GUEST_TR_ACCESS_RIGHTS,
825 VMCS_GUEST_TR_LIMIT,
826 VMCS_GUEST_TR_BASE
827 }
828 };
829
830 /* -------------------------------------------------------------------------- */
831
832 static uint64_t
833 vmx_get_revision(void)
834 {
835 uint64_t msr;
836
837 msr = rdmsr(MSR_IA32_VMX_BASIC);
838 msr &= IA32_VMX_BASIC_IDENT;
839
840 return msr;
841 }
842
843 static void
844 vmx_vmclear_ipi(void *arg1, void *arg2)
845 {
846 paddr_t vmcs_pa = (paddr_t)arg1;
847 vmx_vmclear(&vmcs_pa);
848 }
849
850 static void
851 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
852 {
853 uint64_t xc;
854 int bound;
855
856 KASSERT(kpreempt_disabled());
857
858 bound = curlwp_bind();
859 kpreempt_enable();
860
861 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
862 xc_wait(xc);
863
864 kpreempt_disable();
865 curlwp_bindx(bound);
866 }
867
868 static void
869 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
870 {
871 struct vmx_cpudata *cpudata = vcpu->cpudata;
872 struct cpu_info *vmcs_ci;
873 paddr_t oldpa __diagused;
874
875 cpudata->vmcs_refcnt++;
876 if (cpudata->vmcs_refcnt > 1) {
877 #ifdef DIAGNOSTIC
878 KASSERT(kpreempt_disabled());
879 oldpa = vmx_vmptrst();
880 KASSERT(oldpa == cpudata->vmcs_pa);
881 #endif
882 return;
883 }
884
885 vmcs_ci = cpudata->vmcs_ci;
886 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
887
888 kpreempt_disable();
889
890 if (vmcs_ci == NULL) {
891 /* This VMCS is loaded for the first time. */
892 vmx_vmclear(&cpudata->vmcs_pa);
893 cpudata->vmcs_launched = false;
894 } else if (vmcs_ci != curcpu()) {
895 /* This VMCS is active on a remote CPU. */
896 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
897 cpudata->vmcs_launched = false;
898 } else {
899 /* This VMCS is active on curcpu, nothing to do. */
900 }
901
902 vmx_vmptrld(&cpudata->vmcs_pa);
903 }
904
905 static void
906 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
907 {
908 struct vmx_cpudata *cpudata = vcpu->cpudata;
909
910 KASSERT(kpreempt_disabled());
911 #ifdef DIAGNOSTIC
912 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
913 #endif
914 KASSERT(cpudata->vmcs_refcnt > 0);
915 cpudata->vmcs_refcnt--;
916
917 if (cpudata->vmcs_refcnt > 0) {
918 return;
919 }
920
921 cpudata->vmcs_ci = curcpu();
922 kpreempt_enable();
923 }
924
925 static void
926 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
927 {
928 struct vmx_cpudata *cpudata = vcpu->cpudata;
929
930 KASSERT(kpreempt_disabled());
931 #ifdef DIAGNOSTIC
932 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
933 #endif
934 KASSERT(cpudata->vmcs_refcnt == 1);
935 cpudata->vmcs_refcnt--;
936
937 vmx_vmclear(&cpudata->vmcs_pa);
938 kpreempt_enable();
939 }
940
941 /* -------------------------------------------------------------------------- */
942
943 static void
944 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
945 {
946 struct vmx_cpudata *cpudata = vcpu->cpudata;
947 uint64_t ctls1;
948
949 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
950
951 if (nmi) {
952 // XXX INT_STATE_NMI?
953 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
954 cpudata->nmi_window_exit = true;
955 } else {
956 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
957 cpudata->int_window_exit = true;
958 }
959
960 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
961 }
962
963 static void
964 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
965 {
966 struct vmx_cpudata *cpudata = vcpu->cpudata;
967 uint64_t ctls1;
968
969 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
970
971 if (nmi) {
972 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
973 cpudata->nmi_window_exit = false;
974 } else {
975 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
976 cpudata->int_window_exit = false;
977 }
978
979 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
980 }
981
982 static inline int
983 vmx_event_has_error(uint8_t vector)
984 {
985 switch (vector) {
986 case 8: /* #DF */
987 case 10: /* #TS */
988 case 11: /* #NP */
989 case 12: /* #SS */
990 case 13: /* #GP */
991 case 14: /* #PF */
992 case 17: /* #AC */
993 case 30: /* #SX */
994 return 1;
995 default:
996 return 0;
997 }
998 }
999
1000 static int
1001 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1002 {
1003 struct nvmm_comm_page *comm = vcpu->comm;
1004 struct vmx_cpudata *cpudata = vcpu->cpudata;
1005 int type = 0, err = 0, ret = EINVAL;
1006 u_int evtype;
1007 uint8_t vector;
1008 uint64_t info, error;
1009
1010 evtype = comm->event.type;
1011 vector = comm->event.vector;
1012 error = comm->event.u.excp.error;
1013 __insn_barrier();
1014
1015 vmx_vmcs_enter(vcpu);
1016
1017 switch (evtype) {
1018 case NVMM_VCPU_EVENT_EXCP:
1019 if (vector == 2 || vector >= 32)
1020 goto out;
1021 if (vector == 3 || vector == 0)
1022 goto out;
1023 type = INTR_TYPE_HW_EXC;
1024 err = vmx_event_has_error(vector);
1025 break;
1026 case NVMM_VCPU_EVENT_INTR:
1027 type = INTR_TYPE_EXT_INT;
1028 if (vector == 2) {
1029 type = INTR_TYPE_NMI;
1030 vmx_event_waitexit_enable(vcpu, true);
1031 }
1032 err = 0;
1033 break;
1034 default:
1035 goto out;
1036 }
1037
1038 info =
1039 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1040 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1041 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1042 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1043 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1044 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1045
1046 cpudata->evt_pending = true;
1047 ret = 0;
1048
1049 out:
1050 vmx_vmcs_leave(vcpu);
1051 return ret;
1052 }
1053
1054 static void
1055 vmx_inject_ud(struct nvmm_cpu *vcpu)
1056 {
1057 struct nvmm_comm_page *comm = vcpu->comm;
1058 int ret __diagused;
1059
1060 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1061 comm->event.vector = 6;
1062 comm->event.u.excp.error = 0;
1063
1064 ret = vmx_vcpu_inject(vcpu);
1065 KASSERT(ret == 0);
1066 }
1067
1068 static void
1069 vmx_inject_gp(struct nvmm_cpu *vcpu)
1070 {
1071 struct nvmm_comm_page *comm = vcpu->comm;
1072 int ret __diagused;
1073
1074 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1075 comm->event.vector = 13;
1076 comm->event.u.excp.error = 0;
1077
1078 ret = vmx_vcpu_inject(vcpu);
1079 KASSERT(ret == 0);
1080 }
1081
1082 static inline int
1083 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1084 {
1085 if (__predict_true(!vcpu->comm->event_commit)) {
1086 return 0;
1087 }
1088 vcpu->comm->event_commit = false;
1089 return vmx_vcpu_inject(vcpu);
1090 }
1091
1092 static inline void
1093 vmx_inkernel_advance(void)
1094 {
1095 uint64_t rip, inslen, intstate;
1096
1097 /*
1098 * Maybe we should also apply single-stepping and debug exceptions.
1099 * Matters for guest-ring3, because it can execute 'cpuid' under a
1100 * debugger.
1101 */
1102 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1103 rip = vmx_vmread(VMCS_GUEST_RIP);
1104 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1105 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1106 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1107 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1108 }
1109
1110 static void
1111 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1112 {
1113 exit->u.inv.hwcode = code;
1114 exit->reason = NVMM_VCPU_EXIT_INVALID;
1115 }
1116
1117 static void
1118 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1119 struct nvmm_vcpu_exit *exit)
1120 {
1121 uint64_t qual;
1122
1123 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1124
1125 if ((qual & INTR_INFO_VALID) == 0) {
1126 goto error;
1127 }
1128 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1129 goto error;
1130 }
1131
1132 exit->reason = NVMM_VCPU_EXIT_NONE;
1133 return;
1134
1135 error:
1136 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1137 }
1138
1139 static void
1140 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1141 {
1142 struct vmx_cpudata *cpudata = vcpu->cpudata;
1143 uint64_t cr4;
1144
1145 switch (eax) {
1146 case 0x00000001:
1147 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1148
1149 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1150 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1151 CPUID_LOCAL_APIC_ID);
1152
1153 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1154 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1155 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1156 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1157 }
1158
1159 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1160
1161 /* CPUID2_OSXSAVE depends on CR4. */
1162 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1163 if (!(cr4 & CR4_OSXSAVE)) {
1164 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1165 }
1166 break;
1167 case 0x00000005:
1168 case 0x00000006:
1169 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1170 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1171 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1172 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1173 break;
1174 case 0x00000007:
1175 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1176 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1177 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1178 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1179 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1180 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1181 }
1182 break;
1183 case 0x0000000A:
1184 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1186 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1187 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1188 break;
1189 case 0x0000000D:
1190 if (vmx_xcr0_mask == 0) {
1191 break;
1192 }
1193 switch (ecx) {
1194 case 0:
1195 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1196 if (cpudata->gxcr0 & XCR0_SSE) {
1197 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1198 } else {
1199 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1200 }
1201 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1202 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1203 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1204 break;
1205 case 1:
1206 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1207 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1208 CPUID_PES1_XGETBV);
1209 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1210 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1211 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1212 break;
1213 default:
1214 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1215 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1216 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1217 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1218 break;
1219 }
1220 break;
1221 case 0x40000000:
1222 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1223 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1224 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1225 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1226 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1227 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1228 break;
1229 case 0x80000001:
1230 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1231 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1232 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1233 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1234 break;
1235 default:
1236 break;
1237 }
1238 }
1239
1240 static void
1241 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1242 {
1243 uint64_t inslen, rip;
1244
1245 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1246 rip = vmx_vmread(VMCS_GUEST_RIP);
1247 exit->u.insn.npc = rip + inslen;
1248 exit->reason = reason;
1249 }
1250
1251 static void
1252 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1253 struct nvmm_vcpu_exit *exit)
1254 {
1255 struct vmx_cpudata *cpudata = vcpu->cpudata;
1256 struct nvmm_vcpu_conf_cpuid *cpuid;
1257 uint64_t eax, ecx;
1258 u_int descs[4];
1259 size_t i;
1260
1261 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1262 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1263 x86_cpuid2(eax, ecx, descs);
1264
1265 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1266 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1267 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1268 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1269
1270 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1271
1272 for (i = 0; i < VMX_NCPUIDS; i++) {
1273 if (!cpudata->cpuidpresent[i]) {
1274 continue;
1275 }
1276 cpuid = &cpudata->cpuid[i];
1277 if (cpuid->leaf != eax) {
1278 continue;
1279 }
1280
1281 if (cpuid->exit) {
1282 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1283 return;
1284 }
1285 KASSERT(cpuid->mask);
1286
1287 /* del */
1288 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1289 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1290 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1291 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1292
1293 /* set */
1294 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1295 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1296 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1297 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1298
1299 break;
1300 }
1301
1302 vmx_inkernel_advance();
1303 exit->reason = NVMM_VCPU_EXIT_NONE;
1304 }
1305
1306 static void
1307 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1308 struct nvmm_vcpu_exit *exit)
1309 {
1310 struct vmx_cpudata *cpudata = vcpu->cpudata;
1311 uint64_t rflags;
1312
1313 if (cpudata->int_window_exit) {
1314 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1315 if (rflags & PSL_I) {
1316 vmx_event_waitexit_disable(vcpu, false);
1317 }
1318 }
1319
1320 vmx_inkernel_advance();
1321 exit->reason = NVMM_VCPU_EXIT_HALTED;
1322 }
1323
1324 #define VMX_QUAL_CR_NUM __BITS(3,0)
1325 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1326 #define CR_TYPE_WRITE 0
1327 #define CR_TYPE_READ 1
1328 #define CR_TYPE_CLTS 2
1329 #define CR_TYPE_LMSW 3
1330 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1331 #define VMX_QUAL_CR_GPR __BITS(11,8)
1332 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1333
1334 static inline int
1335 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1336 {
1337 /* Bits set to 1 in fixed0 are fixed to 1. */
1338 if ((crval & fixed0) != fixed0) {
1339 return -1;
1340 }
1341 /* Bits set to 0 in fixed1 are fixed to 0. */
1342 if (crval & ~fixed1) {
1343 return -1;
1344 }
1345 return 0;
1346 }
1347
1348 static int
1349 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1350 uint64_t qual)
1351 {
1352 struct vmx_cpudata *cpudata = vcpu->cpudata;
1353 uint64_t type, gpr, cr0;
1354 uint64_t efer, ctls1;
1355
1356 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1357 if (type != CR_TYPE_WRITE) {
1358 return -1;
1359 }
1360
1361 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1362 KASSERT(gpr < 16);
1363
1364 if (gpr == NVMM_X64_GPR_RSP) {
1365 gpr = vmx_vmread(VMCS_GUEST_RSP);
1366 } else {
1367 gpr = cpudata->gprs[gpr];
1368 }
1369
1370 cr0 = gpr | CR0_NE | CR0_ET;
1371 cr0 &= ~(CR0_NW|CR0_CD);
1372
1373 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1374 return -1;
1375 }
1376
1377 /*
1378 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1379 * from CR3.
1380 */
1381
1382 if (cr0 & CR0_PG) {
1383 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1384 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1385 if (efer & EFER_LME) {
1386 ctls1 |= ENTRY_CTLS_LONG_MODE;
1387 efer |= EFER_LMA;
1388 } else {
1389 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1390 efer &= ~EFER_LMA;
1391 }
1392 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1393 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1394 }
1395
1396 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1397 vmx_inkernel_advance();
1398 return 0;
1399 }
1400
1401 static int
1402 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1403 uint64_t qual)
1404 {
1405 struct vmx_cpudata *cpudata = vcpu->cpudata;
1406 uint64_t type, gpr, cr4;
1407
1408 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1409 if (type != CR_TYPE_WRITE) {
1410 return -1;
1411 }
1412
1413 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1414 KASSERT(gpr < 16);
1415
1416 if (gpr == NVMM_X64_GPR_RSP) {
1417 gpr = vmx_vmread(VMCS_GUEST_RSP);
1418 } else {
1419 gpr = cpudata->gprs[gpr];
1420 }
1421
1422 cr4 = gpr | CR4_VMXE;
1423
1424 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1425 return -1;
1426 }
1427
1428 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1429 vmx_inkernel_advance();
1430 return 0;
1431 }
1432
1433 static int
1434 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1435 uint64_t qual, struct nvmm_vcpu_exit *exit)
1436 {
1437 struct vmx_cpudata *cpudata = vcpu->cpudata;
1438 uint64_t type, gpr;
1439 bool write;
1440
1441 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1442 if (type == CR_TYPE_WRITE) {
1443 write = true;
1444 } else if (type == CR_TYPE_READ) {
1445 write = false;
1446 } else {
1447 return -1;
1448 }
1449
1450 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1451 KASSERT(gpr < 16);
1452
1453 if (write) {
1454 if (gpr == NVMM_X64_GPR_RSP) {
1455 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1456 } else {
1457 cpudata->gcr8 = cpudata->gprs[gpr];
1458 }
1459 if (cpudata->tpr.exit_changed) {
1460 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1461 }
1462 } else {
1463 if (gpr == NVMM_X64_GPR_RSP) {
1464 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1465 } else {
1466 cpudata->gprs[gpr] = cpudata->gcr8;
1467 }
1468 }
1469
1470 vmx_inkernel_advance();
1471 return 0;
1472 }
1473
1474 static void
1475 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1476 struct nvmm_vcpu_exit *exit)
1477 {
1478 uint64_t qual;
1479 int ret;
1480
1481 exit->reason = NVMM_VCPU_EXIT_NONE;
1482
1483 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1484
1485 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1486 case 0:
1487 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1488 break;
1489 case 4:
1490 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1491 break;
1492 case 8:
1493 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1494 break;
1495 default:
1496 ret = -1;
1497 break;
1498 }
1499
1500 if (ret == -1) {
1501 vmx_inject_gp(vcpu);
1502 }
1503 }
1504
1505 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1506 #define IO_SIZE_8 0
1507 #define IO_SIZE_16 1
1508 #define IO_SIZE_32 3
1509 #define VMX_QUAL_IO_IN __BIT(3)
1510 #define VMX_QUAL_IO_STR __BIT(4)
1511 #define VMX_QUAL_IO_REP __BIT(5)
1512 #define VMX_QUAL_IO_DX __BIT(6)
1513 #define VMX_QUAL_IO_PORT __BITS(31,16)
1514
1515 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1516 #define IO_ADRSIZE_16 0
1517 #define IO_ADRSIZE_32 1
1518 #define IO_ADRSIZE_64 2
1519 #define VMX_INFO_IO_SEG __BITS(17,15)
1520
1521 static void
1522 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1523 struct nvmm_vcpu_exit *exit)
1524 {
1525 uint64_t qual, info, inslen, rip;
1526
1527 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1528 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1529
1530 exit->reason = NVMM_VCPU_EXIT_IO;
1531
1532 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1533 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1534
1535 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1536 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1537
1538 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1539 exit->u.io.address_size = 8;
1540 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1541 exit->u.io.address_size = 4;
1542 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1543 exit->u.io.address_size = 2;
1544 }
1545
1546 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1547 exit->u.io.operand_size = 4;
1548 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1549 exit->u.io.operand_size = 2;
1550 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1551 exit->u.io.operand_size = 1;
1552 }
1553
1554 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1555 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1556
1557 if (exit->u.io.in && exit->u.io.str) {
1558 exit->u.io.seg = NVMM_X64_SEG_ES;
1559 }
1560
1561 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1562 rip = vmx_vmread(VMCS_GUEST_RIP);
1563 exit->u.io.npc = rip + inslen;
1564
1565 vmx_vcpu_state_provide(vcpu,
1566 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1567 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1568 }
1569
1570 static const uint64_t msr_ignore_list[] = {
1571 MSR_BIOS_SIGN,
1572 MSR_IA32_PLATFORM_ID
1573 };
1574
1575 static bool
1576 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1577 struct nvmm_vcpu_exit *exit)
1578 {
1579 struct vmx_cpudata *cpudata = vcpu->cpudata;
1580 uint64_t val;
1581 size_t i;
1582
1583 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1584 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1585 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1586 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1587 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1588 goto handled;
1589 }
1590 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1591 val = cpudata->gmsr_misc_enable;
1592 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1593 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1594 goto handled;
1595 }
1596 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1597 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1598 continue;
1599 val = 0;
1600 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1601 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1602 goto handled;
1603 }
1604 } else {
1605 if (exit->u.wrmsr.msr == MSR_TSC) {
1606 cpudata->gtsc = exit->u.wrmsr.val;
1607 cpudata->gtsc_want_update = true;
1608 goto handled;
1609 }
1610 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1611 val = exit->u.wrmsr.val;
1612 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1613 goto error;
1614 }
1615 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1616 goto handled;
1617 }
1618 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1619 /* Don't care. */
1620 goto handled;
1621 }
1622 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1623 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1624 continue;
1625 goto handled;
1626 }
1627 }
1628
1629 return false;
1630
1631 handled:
1632 vmx_inkernel_advance();
1633 return true;
1634
1635 error:
1636 vmx_inject_gp(vcpu);
1637 return true;
1638 }
1639
1640 static void
1641 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1642 struct nvmm_vcpu_exit *exit)
1643 {
1644 struct vmx_cpudata *cpudata = vcpu->cpudata;
1645 uint64_t inslen, rip;
1646
1647 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1648 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1649
1650 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1651 exit->reason = NVMM_VCPU_EXIT_NONE;
1652 return;
1653 }
1654
1655 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1656 rip = vmx_vmread(VMCS_GUEST_RIP);
1657 exit->u.rdmsr.npc = rip + inslen;
1658
1659 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1660 }
1661
1662 static void
1663 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1664 struct nvmm_vcpu_exit *exit)
1665 {
1666 struct vmx_cpudata *cpudata = vcpu->cpudata;
1667 uint64_t rdx, rax, inslen, rip;
1668
1669 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1670 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1671
1672 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1673 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1674 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1675
1676 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1677 exit->reason = NVMM_VCPU_EXIT_NONE;
1678 return;
1679 }
1680
1681 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1682 rip = vmx_vmread(VMCS_GUEST_RIP);
1683 exit->u.wrmsr.npc = rip + inslen;
1684
1685 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1686 }
1687
1688 static void
1689 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1690 struct nvmm_vcpu_exit *exit)
1691 {
1692 struct vmx_cpudata *cpudata = vcpu->cpudata;
1693 uint64_t val;
1694
1695 exit->reason = NVMM_VCPU_EXIT_NONE;
1696
1697 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1698 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1699
1700 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1701 goto error;
1702 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1703 goto error;
1704 } else if (__predict_false((val & XCR0_X87) == 0)) {
1705 goto error;
1706 }
1707
1708 cpudata->gxcr0 = val;
1709 if (vmx_xcr0_mask != 0) {
1710 wrxcr(0, cpudata->gxcr0);
1711 }
1712
1713 vmx_inkernel_advance();
1714 return;
1715
1716 error:
1717 vmx_inject_gp(vcpu);
1718 }
1719
1720 #define VMX_EPT_VIOLATION_READ __BIT(0)
1721 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1722 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1723
1724 static void
1725 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1726 struct nvmm_vcpu_exit *exit)
1727 {
1728 uint64_t perm;
1729 gpaddr_t gpa;
1730
1731 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1732
1733 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1734 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1735 if (perm & VMX_EPT_VIOLATION_WRITE)
1736 exit->u.mem.prot = PROT_WRITE;
1737 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1738 exit->u.mem.prot = PROT_EXEC;
1739 else
1740 exit->u.mem.prot = PROT_READ;
1741 exit->u.mem.gpa = gpa;
1742 exit->u.mem.inst_len = 0;
1743
1744 vmx_vcpu_state_provide(vcpu,
1745 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1746 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1747 }
1748
1749 /* -------------------------------------------------------------------------- */
1750
1751 static void
1752 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1753 {
1754 struct vmx_cpudata *cpudata = vcpu->cpudata;
1755
1756 fpu_save();
1757 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1758
1759 if (vmx_xcr0_mask != 0) {
1760 cpudata->hxcr0 = rdxcr(0);
1761 wrxcr(0, cpudata->gxcr0);
1762 }
1763 }
1764
1765 static void
1766 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1767 {
1768 struct vmx_cpudata *cpudata = vcpu->cpudata;
1769
1770 if (vmx_xcr0_mask != 0) {
1771 cpudata->gxcr0 = rdxcr(0);
1772 wrxcr(0, cpudata->hxcr0);
1773 }
1774
1775 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1776 }
1777
1778 static void
1779 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1780 {
1781 struct vmx_cpudata *cpudata = vcpu->cpudata;
1782
1783 x86_dbregs_save(curlwp);
1784
1785 ldr7(0);
1786
1787 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1788 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1789 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1790 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1791 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1792 }
1793
1794 static void
1795 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1796 {
1797 struct vmx_cpudata *cpudata = vcpu->cpudata;
1798
1799 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1800 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1801 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1802 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1803 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1804
1805 x86_dbregs_restore(curlwp);
1806 }
1807
1808 static void
1809 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1810 {
1811 struct vmx_cpudata *cpudata = vcpu->cpudata;
1812
1813 /* This gets restored automatically by the CPU. */
1814 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1815 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1816 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1817
1818 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1819 }
1820
1821 static void
1822 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1823 {
1824 struct vmx_cpudata *cpudata = vcpu->cpudata;
1825
1826 wrmsr(MSR_STAR, cpudata->star);
1827 wrmsr(MSR_LSTAR, cpudata->lstar);
1828 wrmsr(MSR_CSTAR, cpudata->cstar);
1829 wrmsr(MSR_SFMASK, cpudata->sfmask);
1830 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1831 }
1832
1833 /* -------------------------------------------------------------------------- */
1834
1835 #define VMX_INVVPID_ADDRESS 0
1836 #define VMX_INVVPID_CONTEXT 1
1837 #define VMX_INVVPID_ALL 2
1838 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1839
1840 #define VMX_INVEPT_CONTEXT 1
1841 #define VMX_INVEPT_ALL 2
1842
1843 static inline void
1844 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1845 {
1846 struct vmx_cpudata *cpudata = vcpu->cpudata;
1847
1848 if (vcpu->hcpu_last != hcpu) {
1849 cpudata->gtlb_want_flush = true;
1850 }
1851 }
1852
1853 static inline void
1854 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1855 {
1856 struct vmx_cpudata *cpudata = vcpu->cpudata;
1857 struct ept_desc ept_desc;
1858
1859 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1860 return;
1861 }
1862
1863 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1864 ept_desc.mbz = 0;
1865 vmx_invept(vmx_ept_flush_op, &ept_desc);
1866 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1867 }
1868
1869 static inline uint64_t
1870 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1871 {
1872 struct ept_desc ept_desc;
1873 uint64_t machgen;
1874
1875 machgen = machdata->mach_htlb_gen;
1876 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1877 return machgen;
1878 }
1879
1880 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1881
1882 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1883 ept_desc.mbz = 0;
1884 vmx_invept(vmx_ept_flush_op, &ept_desc);
1885
1886 return machgen;
1887 }
1888
1889 static inline void
1890 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1891 {
1892 cpudata->vcpu_htlb_gen = machgen;
1893 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1894 }
1895
1896 static inline void
1897 vmx_exit_evt(struct vmx_cpudata *cpudata)
1898 {
1899 uint64_t info, err;
1900
1901 cpudata->evt_pending = false;
1902
1903 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1904 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1905 return;
1906 }
1907 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1908
1909 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1910 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1911
1912 cpudata->evt_pending = true;
1913 }
1914
1915 static int
1916 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1917 struct nvmm_vcpu_exit *exit)
1918 {
1919 struct nvmm_comm_page *comm = vcpu->comm;
1920 struct vmx_machdata *machdata = mach->machdata;
1921 struct vmx_cpudata *cpudata = vcpu->cpudata;
1922 struct vpid_desc vpid_desc;
1923 struct cpu_info *ci;
1924 uint64_t exitcode;
1925 uint64_t intstate;
1926 uint64_t machgen;
1927 int hcpu, s, ret;
1928 bool launched;
1929
1930 vmx_vmcs_enter(vcpu);
1931
1932 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
1933 vmx_vmcs_leave(vcpu);
1934 return EINVAL;
1935 }
1936 vmx_vcpu_state_commit(vcpu);
1937 comm->state_cached = 0;
1938
1939 ci = curcpu();
1940 hcpu = cpu_number();
1941 launched = cpudata->vmcs_launched;
1942
1943 vmx_gtlb_catchup(vcpu, hcpu);
1944 vmx_htlb_catchup(vcpu, hcpu);
1945
1946 if (vcpu->hcpu_last != hcpu) {
1947 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1948 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1949 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1950 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1951 cpudata->gtsc_want_update = true;
1952 vcpu->hcpu_last = hcpu;
1953 }
1954
1955 vmx_vcpu_guest_dbregs_enter(vcpu);
1956 vmx_vcpu_guest_misc_enter(vcpu);
1957 vmx_vcpu_guest_fpu_enter(vcpu);
1958
1959 while (1) {
1960 if (cpudata->gtlb_want_flush) {
1961 vpid_desc.vpid = cpudata->asid;
1962 vpid_desc.addr = 0;
1963 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1964 cpudata->gtlb_want_flush = false;
1965 }
1966
1967 if (__predict_false(cpudata->gtsc_want_update)) {
1968 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1969 cpudata->gtsc_want_update = false;
1970 }
1971
1972 s = splhigh();
1973 machgen = vmx_htlb_flush(machdata, cpudata);
1974 lcr2(cpudata->gcr2);
1975 if (launched) {
1976 ret = vmx_vmresume(cpudata->gprs);
1977 } else {
1978 ret = vmx_vmlaunch(cpudata->gprs);
1979 }
1980 cpudata->gcr2 = rcr2();
1981 vmx_htlb_flush_ack(cpudata, machgen);
1982 splx(s);
1983
1984 if (__predict_false(ret != 0)) {
1985 vmx_exit_invalid(exit, -1);
1986 break;
1987 }
1988 vmx_exit_evt(cpudata);
1989
1990 launched = true;
1991
1992 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1993 exitcode &= __BITS(15,0);
1994
1995 switch (exitcode) {
1996 case VMCS_EXITCODE_EXC_NMI:
1997 vmx_exit_exc_nmi(mach, vcpu, exit);
1998 break;
1999 case VMCS_EXITCODE_EXT_INT:
2000 exit->reason = NVMM_VCPU_EXIT_NONE;
2001 break;
2002 case VMCS_EXITCODE_CPUID:
2003 vmx_exit_cpuid(mach, vcpu, exit);
2004 break;
2005 case VMCS_EXITCODE_HLT:
2006 vmx_exit_hlt(mach, vcpu, exit);
2007 break;
2008 case VMCS_EXITCODE_CR:
2009 vmx_exit_cr(mach, vcpu, exit);
2010 break;
2011 case VMCS_EXITCODE_IO:
2012 vmx_exit_io(mach, vcpu, exit);
2013 break;
2014 case VMCS_EXITCODE_RDMSR:
2015 vmx_exit_rdmsr(mach, vcpu, exit);
2016 break;
2017 case VMCS_EXITCODE_WRMSR:
2018 vmx_exit_wrmsr(mach, vcpu, exit);
2019 break;
2020 case VMCS_EXITCODE_SHUTDOWN:
2021 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2022 break;
2023 case VMCS_EXITCODE_MONITOR:
2024 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2025 break;
2026 case VMCS_EXITCODE_MWAIT:
2027 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2028 break;
2029 case VMCS_EXITCODE_XSETBV:
2030 vmx_exit_xsetbv(mach, vcpu, exit);
2031 break;
2032 case VMCS_EXITCODE_RDPMC:
2033 case VMCS_EXITCODE_RDTSCP:
2034 case VMCS_EXITCODE_INVVPID:
2035 case VMCS_EXITCODE_INVEPT:
2036 case VMCS_EXITCODE_VMCALL:
2037 case VMCS_EXITCODE_VMCLEAR:
2038 case VMCS_EXITCODE_VMLAUNCH:
2039 case VMCS_EXITCODE_VMPTRLD:
2040 case VMCS_EXITCODE_VMPTRST:
2041 case VMCS_EXITCODE_VMREAD:
2042 case VMCS_EXITCODE_VMRESUME:
2043 case VMCS_EXITCODE_VMWRITE:
2044 case VMCS_EXITCODE_VMXOFF:
2045 case VMCS_EXITCODE_VMXON:
2046 vmx_inject_ud(vcpu);
2047 exit->reason = NVMM_VCPU_EXIT_NONE;
2048 break;
2049 case VMCS_EXITCODE_EPT_VIOLATION:
2050 vmx_exit_epf(mach, vcpu, exit);
2051 break;
2052 case VMCS_EXITCODE_INT_WINDOW:
2053 vmx_event_waitexit_disable(vcpu, false);
2054 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2055 break;
2056 case VMCS_EXITCODE_NMI_WINDOW:
2057 vmx_event_waitexit_disable(vcpu, true);
2058 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2059 break;
2060 default:
2061 vmx_exit_invalid(exit, exitcode);
2062 break;
2063 }
2064
2065 /* If no reason to return to userland, keep rolling. */
2066 if (preempt_needed()) {
2067 break;
2068 }
2069 if (curlwp->l_flag & LW_USERRET) {
2070 break;
2071 }
2072 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2073 break;
2074 }
2075 }
2076
2077 cpudata->vmcs_launched = launched;
2078
2079 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2080
2081 vmx_vcpu_guest_fpu_leave(vcpu);
2082 vmx_vcpu_guest_misc_leave(vcpu);
2083 vmx_vcpu_guest_dbregs_leave(vcpu);
2084
2085 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2086 exit->exitstate.cr8 = cpudata->gcr8;
2087 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2088 exit->exitstate.int_shadow =
2089 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2090 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2091 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2092 exit->exitstate.evt_pending = cpudata->evt_pending;
2093
2094 vmx_vmcs_leave(vcpu);
2095
2096 return 0;
2097 }
2098
2099 /* -------------------------------------------------------------------------- */
2100
2101 static int
2102 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2103 {
2104 struct pglist pglist;
2105 paddr_t _pa;
2106 vaddr_t _va;
2107 size_t i;
2108 int ret;
2109
2110 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2111 &pglist, 1, 0);
2112 if (ret != 0)
2113 return ENOMEM;
2114 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2115 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2116 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2117 if (_va == 0)
2118 goto error;
2119
2120 for (i = 0; i < npages; i++) {
2121 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2122 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2123 }
2124 pmap_update(pmap_kernel());
2125
2126 memset((void *)_va, 0, npages * PAGE_SIZE);
2127
2128 *pa = _pa;
2129 *va = _va;
2130 return 0;
2131
2132 error:
2133 for (i = 0; i < npages; i++) {
2134 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2135 }
2136 return ENOMEM;
2137 }
2138
2139 static void
2140 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2141 {
2142 size_t i;
2143
2144 pmap_kremove(va, npages * PAGE_SIZE);
2145 pmap_update(pmap_kernel());
2146 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2147 for (i = 0; i < npages; i++) {
2148 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2149 }
2150 }
2151
2152 /* -------------------------------------------------------------------------- */
2153
2154 static void
2155 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2156 {
2157 uint64_t byte;
2158 uint8_t bitoff;
2159
2160 if (msr < 0x00002000) {
2161 /* Range 1 */
2162 byte = ((msr - 0x00000000) / 8) + 0;
2163 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2164 /* Range 2 */
2165 byte = ((msr - 0xC0000000) / 8) + 1024;
2166 } else {
2167 panic("%s: wrong range", __func__);
2168 }
2169
2170 bitoff = (msr & 0x7);
2171
2172 if (read) {
2173 bitmap[byte] &= ~__BIT(bitoff);
2174 }
2175 if (write) {
2176 bitmap[2048 + byte] &= ~__BIT(bitoff);
2177 }
2178 }
2179
2180 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2181 #define VMX_SEG_ATTRIB_S __BIT(4)
2182 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2183 #define VMX_SEG_ATTRIB_P __BIT(7)
2184 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2185 #define VMX_SEG_ATTRIB_L __BIT(13)
2186 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2187 #define VMX_SEG_ATTRIB_G __BIT(15)
2188 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2189
2190 static void
2191 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2192 {
2193 uint64_t attrib;
2194
2195 attrib =
2196 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2197 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2198 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2199 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2200 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2201 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2202 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2203 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2204 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2205
2206 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2207 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2208 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2209 }
2210 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2211 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2212 }
2213
2214 static void
2215 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2216 {
2217 uint64_t selector = 0, attrib = 0, base, limit;
2218
2219 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2220 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2221 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2222 }
2223 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2224 base = vmx_vmread(vmx_guest_segs[idx].base);
2225
2226 segs[idx].selector = selector;
2227 segs[idx].limit = limit;
2228 segs[idx].base = base;
2229 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2230 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2231 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2232 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2233 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2234 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2235 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2236 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2237 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2238 segs[idx].attrib.p = 0;
2239 }
2240 }
2241
2242 static inline bool
2243 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2244 {
2245 uint64_t cr0, cr3, cr4, efer;
2246
2247 if (flags & NVMM_X64_STATE_CRS) {
2248 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2249 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2250 return true;
2251 }
2252 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2253 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2254 return true;
2255 }
2256 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2257 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2258 return true;
2259 }
2260 }
2261
2262 if (flags & NVMM_X64_STATE_MSRS) {
2263 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2264 if ((efer ^
2265 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2266 return true;
2267 }
2268 }
2269
2270 return false;
2271 }
2272
2273 static void
2274 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2275 {
2276 struct nvmm_comm_page *comm = vcpu->comm;
2277 const struct nvmm_x64_state *state = &comm->state;
2278 struct vmx_cpudata *cpudata = vcpu->cpudata;
2279 struct fxsave *fpustate;
2280 uint64_t ctls1, intstate;
2281 uint64_t flags;
2282
2283 flags = comm->state_wanted;
2284
2285 vmx_vmcs_enter(vcpu);
2286
2287 if (vmx_state_tlb_flush(state, flags)) {
2288 cpudata->gtlb_want_flush = true;
2289 }
2290
2291 if (flags & NVMM_X64_STATE_SEGS) {
2292 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2293 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2294 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2295 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2296 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2297 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2298 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2299 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2300 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2301 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2302 }
2303
2304 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2305 if (flags & NVMM_X64_STATE_GPRS) {
2306 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2307
2308 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2309 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2310 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2311 }
2312
2313 if (flags & NVMM_X64_STATE_CRS) {
2314 /*
2315 * CR0_NE and CR4_VMXE are mandatory.
2316 */
2317 vmx_vmwrite(VMCS_GUEST_CR0,
2318 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2319 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2320 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2321 vmx_vmwrite(VMCS_GUEST_CR4,
2322 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2323 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2324
2325 if (vmx_xcr0_mask != 0) {
2326 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2327 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2328 cpudata->gxcr0 &= vmx_xcr0_mask;
2329 cpudata->gxcr0 |= XCR0_X87;
2330 }
2331 }
2332
2333 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2334 if (flags & NVMM_X64_STATE_DRS) {
2335 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2336
2337 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2338 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2339 }
2340
2341 if (flags & NVMM_X64_STATE_MSRS) {
2342 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2343 state->msrs[NVMM_X64_MSR_STAR];
2344 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2345 state->msrs[NVMM_X64_MSR_LSTAR];
2346 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2347 state->msrs[NVMM_X64_MSR_CSTAR];
2348 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2349 state->msrs[NVMM_X64_MSR_SFMASK];
2350 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2351 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2352
2353 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2354 state->msrs[NVMM_X64_MSR_EFER]);
2355 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2356 state->msrs[NVMM_X64_MSR_PAT]);
2357 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2358 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2359 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2360 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2361 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2362 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2363
2364 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2365 cpudata->gtsc_want_update = true;
2366
2367 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2368 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2369 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2370 ctls1 |= ENTRY_CTLS_LONG_MODE;
2371 } else {
2372 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2373 }
2374 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2375 }
2376
2377 if (flags & NVMM_X64_STATE_INTR) {
2378 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2379 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2380 if (state->intr.int_shadow) {
2381 intstate |= INT_STATE_MOVSS;
2382 }
2383 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2384
2385 if (state->intr.int_window_exiting) {
2386 vmx_event_waitexit_enable(vcpu, false);
2387 } else {
2388 vmx_event_waitexit_disable(vcpu, false);
2389 }
2390
2391 if (state->intr.nmi_window_exiting) {
2392 vmx_event_waitexit_enable(vcpu, true);
2393 } else {
2394 vmx_event_waitexit_disable(vcpu, true);
2395 }
2396 }
2397
2398 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2399 if (flags & NVMM_X64_STATE_FPU) {
2400 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2401 sizeof(state->fpu));
2402
2403 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2404 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2405 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2406
2407 if (vmx_xcr0_mask != 0) {
2408 /* Reset XSTATE_BV, to force a reload. */
2409 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2410 }
2411 }
2412
2413 vmx_vmcs_leave(vcpu);
2414
2415 comm->state_wanted = 0;
2416 comm->state_cached |= flags;
2417 }
2418
2419 static void
2420 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2421 {
2422 struct nvmm_comm_page *comm = vcpu->comm;
2423 struct nvmm_x64_state *state = &comm->state;
2424 struct vmx_cpudata *cpudata = vcpu->cpudata;
2425 uint64_t intstate, flags;
2426
2427 flags = comm->state_wanted;
2428
2429 vmx_vmcs_enter(vcpu);
2430
2431 if (flags & NVMM_X64_STATE_SEGS) {
2432 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2433 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2434 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2435 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2436 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2437 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2438 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2439 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2440 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2441 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2442 }
2443
2444 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2445 if (flags & NVMM_X64_STATE_GPRS) {
2446 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2447
2448 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2449 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2450 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2451 }
2452
2453 if (flags & NVMM_X64_STATE_CRS) {
2454 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2455 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2456 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2457 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2458 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2459 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2460
2461 /* Hide VMXE. */
2462 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2463 }
2464
2465 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2466 if (flags & NVMM_X64_STATE_DRS) {
2467 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2468
2469 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2470 }
2471
2472 if (flags & NVMM_X64_STATE_MSRS) {
2473 state->msrs[NVMM_X64_MSR_STAR] =
2474 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2475 state->msrs[NVMM_X64_MSR_LSTAR] =
2476 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2477 state->msrs[NVMM_X64_MSR_CSTAR] =
2478 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2479 state->msrs[NVMM_X64_MSR_SFMASK] =
2480 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2481 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2482 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2483 state->msrs[NVMM_X64_MSR_EFER] =
2484 vmx_vmread(VMCS_GUEST_IA32_EFER);
2485 state->msrs[NVMM_X64_MSR_PAT] =
2486 vmx_vmread(VMCS_GUEST_IA32_PAT);
2487 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2488 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2489 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2490 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2491 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2492 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2493 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2494 }
2495
2496 if (flags & NVMM_X64_STATE_INTR) {
2497 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2498 state->intr.int_shadow =
2499 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2500 state->intr.int_window_exiting = cpudata->int_window_exit;
2501 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2502 state->intr.evt_pending = cpudata->evt_pending;
2503 }
2504
2505 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2506 if (flags & NVMM_X64_STATE_FPU) {
2507 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2508 sizeof(state->fpu));
2509 }
2510
2511 vmx_vmcs_leave(vcpu);
2512
2513 comm->state_wanted = 0;
2514 comm->state_cached |= flags;
2515 }
2516
2517 static void
2518 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2519 {
2520 vcpu->comm->state_wanted = flags;
2521 vmx_vcpu_getstate(vcpu);
2522 }
2523
2524 static void
2525 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2526 {
2527 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2528 vcpu->comm->state_commit = 0;
2529 vmx_vcpu_setstate(vcpu);
2530 }
2531
2532 /* -------------------------------------------------------------------------- */
2533
2534 static void
2535 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2536 {
2537 struct vmx_cpudata *cpudata = vcpu->cpudata;
2538 size_t i, oct, bit;
2539
2540 mutex_enter(&vmx_asidlock);
2541
2542 for (i = 0; i < vmx_maxasid; i++) {
2543 oct = i / 8;
2544 bit = i % 8;
2545
2546 if (vmx_asidmap[oct] & __BIT(bit)) {
2547 continue;
2548 }
2549
2550 cpudata->asid = i;
2551
2552 vmx_asidmap[oct] |= __BIT(bit);
2553 vmx_vmwrite(VMCS_VPID, i);
2554 mutex_exit(&vmx_asidlock);
2555 return;
2556 }
2557
2558 mutex_exit(&vmx_asidlock);
2559
2560 panic("%s: impossible", __func__);
2561 }
2562
2563 static void
2564 vmx_asid_free(struct nvmm_cpu *vcpu)
2565 {
2566 size_t oct, bit;
2567 uint64_t asid;
2568
2569 asid = vmx_vmread(VMCS_VPID);
2570
2571 oct = asid / 8;
2572 bit = asid % 8;
2573
2574 mutex_enter(&vmx_asidlock);
2575 vmx_asidmap[oct] &= ~__BIT(bit);
2576 mutex_exit(&vmx_asidlock);
2577 }
2578
2579 static void
2580 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2581 {
2582 struct vmx_cpudata *cpudata = vcpu->cpudata;
2583 struct vmcs *vmcs = cpudata->vmcs;
2584 struct msr_entry *gmsr = cpudata->gmsr;
2585 extern uint8_t vmx_resume_rip;
2586 uint64_t rev, eptp;
2587
2588 rev = vmx_get_revision();
2589
2590 memset(vmcs, 0, VMCS_SIZE);
2591 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2592 vmcs->abort = 0;
2593
2594 vmx_vmcs_enter(vcpu);
2595
2596 /* No link pointer. */
2597 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2598
2599 /* Install the CTLSs. */
2600 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2601 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2602 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2603 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2604 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2605
2606 /* Allow direct access to certain MSRs. */
2607 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2608 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2609 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2610 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2611 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2612 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2613 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2614 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2615 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2616 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2617 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2618 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2619 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2620 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2621 true, false);
2622 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2623
2624 /*
2625 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2626 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2627 */
2628 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2629 gmsr[VMX_MSRLIST_STAR].val = 0;
2630 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2631 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2632 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2633 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2634 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2635 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2636 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2637 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2638 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2639 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2640 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2641 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2642 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2643 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2644
2645 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2646 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2647 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2648
2649 /* Force CR4_VMXE to zero. */
2650 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2651
2652 /* Set the Host state for resuming. */
2653 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2654 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2655 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2656 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2657 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2658 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2659 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2660 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2661 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2662 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2663 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2664 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2665 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2666 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2667
2668 /* Generate ASID. */
2669 vmx_asid_alloc(vcpu);
2670
2671 /* Enable Extended Paging, 4-Level. */
2672 eptp =
2673 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2674 __SHIFTIN(4-1, EPTP_WALKLEN) |
2675 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2676 mach->vm->vm_map.pmap->pm_pdirpa[0];
2677 vmx_vmwrite(VMCS_EPTP, eptp);
2678
2679 /* Init IA32_MISC_ENABLE. */
2680 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2681 cpudata->gmsr_misc_enable &=
2682 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2683 cpudata->gmsr_misc_enable |=
2684 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2685
2686 /* Init XSAVE header. */
2687 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2688 cpudata->gfpu.xsh_xcomp_bv = 0;
2689
2690 /* These MSRs are static. */
2691 cpudata->star = rdmsr(MSR_STAR);
2692 cpudata->lstar = rdmsr(MSR_LSTAR);
2693 cpudata->cstar = rdmsr(MSR_CSTAR);
2694 cpudata->sfmask = rdmsr(MSR_SFMASK);
2695
2696 /* Install the RESET state. */
2697 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2698 sizeof(nvmm_x86_reset_state));
2699 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2700 vcpu->comm->state_cached = 0;
2701 vmx_vcpu_setstate(vcpu);
2702
2703 vmx_vmcs_leave(vcpu);
2704 }
2705
2706 static int
2707 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2708 {
2709 struct vmx_cpudata *cpudata;
2710 int error;
2711
2712 /* Allocate the VMX cpudata. */
2713 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2714 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2715 UVM_KMF_WIRED|UVM_KMF_ZERO);
2716 vcpu->cpudata = cpudata;
2717
2718 /* VMCS */
2719 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2720 VMCS_NPAGES);
2721 if (error)
2722 goto error;
2723
2724 /* MSR Bitmap */
2725 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2726 MSRBM_NPAGES);
2727 if (error)
2728 goto error;
2729
2730 /* Guest MSR List */
2731 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2732 if (error)
2733 goto error;
2734
2735 kcpuset_create(&cpudata->htlb_want_flush, true);
2736
2737 /* Init the VCPU info. */
2738 vmx_vcpu_init(mach, vcpu);
2739
2740 return 0;
2741
2742 error:
2743 if (cpudata->vmcs_pa) {
2744 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2745 VMCS_NPAGES);
2746 }
2747 if (cpudata->msrbm_pa) {
2748 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2749 MSRBM_NPAGES);
2750 }
2751 if (cpudata->gmsr_pa) {
2752 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2753 }
2754
2755 kmem_free(cpudata, sizeof(*cpudata));
2756 return error;
2757 }
2758
2759 static void
2760 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2761 {
2762 struct vmx_cpudata *cpudata = vcpu->cpudata;
2763
2764 vmx_vmcs_enter(vcpu);
2765 vmx_asid_free(vcpu);
2766 vmx_vmcs_destroy(vcpu);
2767
2768 kcpuset_destroy(cpudata->htlb_want_flush);
2769
2770 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2771 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2772 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2773 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2774 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2775 }
2776
2777 /* -------------------------------------------------------------------------- */
2778
2779 static int
2780 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2781 {
2782 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2783 size_t i;
2784
2785 if (__predict_false(cpuid->mask && cpuid->exit)) {
2786 return EINVAL;
2787 }
2788 if (__predict_false(cpuid->mask &&
2789 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2790 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2791 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2792 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2793 return EINVAL;
2794 }
2795
2796 /* If unset, delete, to restore the default behavior. */
2797 if (!cpuid->mask && !cpuid->exit) {
2798 for (i = 0; i < VMX_NCPUIDS; i++) {
2799 if (!cpudata->cpuidpresent[i]) {
2800 continue;
2801 }
2802 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2803 cpudata->cpuidpresent[i] = false;
2804 }
2805 }
2806 return 0;
2807 }
2808
2809 /* If already here, replace. */
2810 for (i = 0; i < VMX_NCPUIDS; i++) {
2811 if (!cpudata->cpuidpresent[i]) {
2812 continue;
2813 }
2814 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2815 memcpy(&cpudata->cpuid[i], cpuid,
2816 sizeof(struct nvmm_vcpu_conf_cpuid));
2817 return 0;
2818 }
2819 }
2820
2821 /* Not here, insert. */
2822 for (i = 0; i < VMX_NCPUIDS; i++) {
2823 if (!cpudata->cpuidpresent[i]) {
2824 cpudata->cpuidpresent[i] = true;
2825 memcpy(&cpudata->cpuid[i], cpuid,
2826 sizeof(struct nvmm_vcpu_conf_cpuid));
2827 return 0;
2828 }
2829 }
2830
2831 return ENOBUFS;
2832 }
2833
2834 static int
2835 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2836 {
2837 struct nvmm_vcpu_conf_tpr *tpr = data;
2838
2839 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2840 return 0;
2841 }
2842
2843 static int
2844 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2845 {
2846 struct vmx_cpudata *cpudata = vcpu->cpudata;
2847
2848 switch (op) {
2849 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2850 return vmx_vcpu_configure_cpuid(cpudata, data);
2851 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2852 return vmx_vcpu_configure_tpr(cpudata, data);
2853 default:
2854 return EINVAL;
2855 }
2856 }
2857
2858 /* -------------------------------------------------------------------------- */
2859
2860 static void
2861 vmx_tlb_flush(struct pmap *pm)
2862 {
2863 struct nvmm_machine *mach = pm->pm_data;
2864 struct vmx_machdata *machdata = mach->machdata;
2865
2866 atomic_inc_64(&machdata->mach_htlb_gen);
2867
2868 /* Generates IPIs, which cause #VMEXITs. */
2869 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2870 }
2871
2872 static void
2873 vmx_machine_create(struct nvmm_machine *mach)
2874 {
2875 struct pmap *pmap = mach->vm->vm_map.pmap;
2876 struct vmx_machdata *machdata;
2877
2878 /* Convert to EPT. */
2879 pmap_ept_transform(pmap);
2880
2881 /* Fill in pmap info. */
2882 pmap->pm_data = (void *)mach;
2883 pmap->pm_tlb_flush = vmx_tlb_flush;
2884
2885 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2886 mach->machdata = machdata;
2887
2888 /* Start with an hTLB flush everywhere. */
2889 machdata->mach_htlb_gen = 1;
2890 }
2891
2892 static void
2893 vmx_machine_destroy(struct nvmm_machine *mach)
2894 {
2895 struct vmx_machdata *machdata = mach->machdata;
2896
2897 kmem_free(machdata, sizeof(struct vmx_machdata));
2898 }
2899
2900 static int
2901 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2902 {
2903 panic("%s: impossible", __func__);
2904 }
2905
2906 /* -------------------------------------------------------------------------- */
2907
2908 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2909 ((msrval & __BIT(32 + bitoff)) != 0)
2910 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2911 ((msrval & __BIT(bitoff)) == 0)
2912
2913 static int
2914 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
2915 {
2916 uint64_t basic, val, true_val;
2917 bool has_true;
2918 size_t i;
2919
2920 basic = rdmsr(MSR_IA32_VMX_BASIC);
2921 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2922
2923 val = rdmsr(msr_ctls);
2924 if (has_true) {
2925 true_val = rdmsr(msr_true_ctls);
2926 } else {
2927 true_val = val;
2928 }
2929
2930 for (i = 0; i < 32; i++) {
2931 if (!(set_one & __BIT(i))) {
2932 continue;
2933 }
2934 if (!CTLS_ONE_ALLOWED(true_val, i)) {
2935 return -1;
2936 }
2937 }
2938
2939 return 0;
2940 }
2941
2942 static int
2943 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2944 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2945 {
2946 uint64_t basic, val, true_val;
2947 bool one_allowed, zero_allowed, has_true;
2948 size_t i;
2949
2950 basic = rdmsr(MSR_IA32_VMX_BASIC);
2951 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2952
2953 val = rdmsr(msr_ctls);
2954 if (has_true) {
2955 true_val = rdmsr(msr_true_ctls);
2956 } else {
2957 true_val = val;
2958 }
2959
2960 for (i = 0; i < 32; i++) {
2961 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
2962 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
2963
2964 if (zero_allowed && !one_allowed) {
2965 if (set_one & __BIT(i))
2966 return -1;
2967 *res &= ~__BIT(i);
2968 } else if (one_allowed && !zero_allowed) {
2969 if (set_zero & __BIT(i))
2970 return -1;
2971 *res |= __BIT(i);
2972 } else {
2973 if (set_zero & __BIT(i)) {
2974 *res &= ~__BIT(i);
2975 } else if (set_one & __BIT(i)) {
2976 *res |= __BIT(i);
2977 } else if (!has_true) {
2978 *res &= ~__BIT(i);
2979 } else if (CTLS_ZERO_ALLOWED(val, i)) {
2980 *res &= ~__BIT(i);
2981 } else if (CTLS_ONE_ALLOWED(val, i)) {
2982 *res |= __BIT(i);
2983 } else {
2984 return -1;
2985 }
2986 }
2987 }
2988
2989 return 0;
2990 }
2991
2992 static bool
2993 vmx_ident(void)
2994 {
2995 uint64_t msr;
2996 int ret;
2997
2998 if (!(cpu_feature[1] & CPUID2_VMX)) {
2999 return false;
3000 }
3001
3002 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3003 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3004 return false;
3005 }
3006 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3007 return false;
3008 }
3009
3010 msr = rdmsr(MSR_IA32_VMX_BASIC);
3011 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3012 return false;
3013 }
3014 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3015 return false;
3016 }
3017
3018 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3019 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3020 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3021 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3022 if (ret == -1) {
3023 return false;
3024 }
3025
3026 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3027 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3028 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3029 if (ret == -1) {
3030 return false;
3031 }
3032
3033 /* Init the CTLSs right now, and check for errors. */
3034 ret = vmx_init_ctls(
3035 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3036 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3037 &vmx_pinbased_ctls);
3038 if (ret == -1) {
3039 return false;
3040 }
3041 ret = vmx_init_ctls(
3042 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3043 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3044 &vmx_procbased_ctls);
3045 if (ret == -1) {
3046 return false;
3047 }
3048 ret = vmx_init_ctls(
3049 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3050 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3051 &vmx_procbased_ctls2);
3052 if (ret == -1) {
3053 return false;
3054 }
3055 ret = vmx_check_ctls(
3056 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3057 PROC_CTLS2_INVPCID_ENABLE);
3058 if (ret != -1) {
3059 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3060 }
3061 ret = vmx_init_ctls(
3062 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3063 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3064 &vmx_entry_ctls);
3065 if (ret == -1) {
3066 return false;
3067 }
3068 ret = vmx_init_ctls(
3069 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3070 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3071 &vmx_exit_ctls);
3072 if (ret == -1) {
3073 return false;
3074 }
3075
3076 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3077 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3078 return false;
3079 }
3080 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3081 return false;
3082 }
3083 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3084 return false;
3085 }
3086 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3087 pmap_ept_has_ad = true;
3088 } else {
3089 pmap_ept_has_ad = false;
3090 }
3091 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3092 return false;
3093 }
3094
3095 return true;
3096 }
3097
3098 static void
3099 vmx_init_asid(uint32_t maxasid)
3100 {
3101 size_t allocsz;
3102
3103 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3104
3105 vmx_maxasid = maxasid;
3106 allocsz = roundup(maxasid, 8) / 8;
3107 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3108
3109 /* ASID 0 is reserved for the host. */
3110 vmx_asidmap[0] |= __BIT(0);
3111 }
3112
3113 static void
3114 vmx_change_cpu(void *arg1, void *arg2)
3115 {
3116 struct cpu_info *ci = curcpu();
3117 bool enable = arg1 != NULL;
3118 uint64_t cr4;
3119
3120 if (!enable) {
3121 vmx_vmxoff();
3122 }
3123
3124 cr4 = rcr4();
3125 if (enable) {
3126 cr4 |= CR4_VMXE;
3127 } else {
3128 cr4 &= ~CR4_VMXE;
3129 }
3130 lcr4(cr4);
3131
3132 if (enable) {
3133 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3134 }
3135 }
3136
3137 static void
3138 vmx_init_l1tf(void)
3139 {
3140 u_int descs[4];
3141 uint64_t msr;
3142
3143 if (cpuid_level < 7) {
3144 return;
3145 }
3146
3147 x86_cpuid(7, descs);
3148
3149 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3150 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3151 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3152 /* No mitigation needed. */
3153 return;
3154 }
3155 }
3156
3157 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3158 /* Enable hardware mitigation. */
3159 vmx_msrlist_entry_nmsr += 1;
3160 }
3161 }
3162
3163 static void
3164 vmx_init(void)
3165 {
3166 CPU_INFO_ITERATOR cii;
3167 struct cpu_info *ci;
3168 uint64_t xc, msr;
3169 struct vmxon *vmxon;
3170 uint32_t revision;
3171 paddr_t pa;
3172 vaddr_t va;
3173 int error;
3174
3175 /* Init the ASID bitmap (VPID). */
3176 vmx_init_asid(VPID_MAX);
3177
3178 /* Init the XCR0 mask. */
3179 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3180
3181 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3182 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3183 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3184 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3185 } else {
3186 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3187 }
3188 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3189 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3190 } else {
3191 vmx_ept_flush_op = VMX_INVEPT_ALL;
3192 }
3193 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3194 vmx_eptp_type = EPTP_TYPE_WB;
3195 } else {
3196 vmx_eptp_type = EPTP_TYPE_UC;
3197 }
3198
3199 /* Init the L1TF mitigation. */
3200 vmx_init_l1tf();
3201
3202 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3203 revision = vmx_get_revision();
3204
3205 for (CPU_INFO_FOREACH(cii, ci)) {
3206 error = vmx_memalloc(&pa, &va, 1);
3207 if (error) {
3208 panic("%s: out of memory", __func__);
3209 }
3210 vmxoncpu[cpu_index(ci)].pa = pa;
3211 vmxoncpu[cpu_index(ci)].va = va;
3212
3213 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3214 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3215 }
3216
3217 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3218 xc_wait(xc);
3219 }
3220
3221 static void
3222 vmx_fini_asid(void)
3223 {
3224 size_t allocsz;
3225
3226 allocsz = roundup(vmx_maxasid, 8) / 8;
3227 kmem_free(vmx_asidmap, allocsz);
3228
3229 mutex_destroy(&vmx_asidlock);
3230 }
3231
3232 static void
3233 vmx_fini(void)
3234 {
3235 uint64_t xc;
3236 size_t i;
3237
3238 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3239 xc_wait(xc);
3240
3241 for (i = 0; i < MAXCPUS; i++) {
3242 if (vmxoncpu[i].pa != 0)
3243 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3244 }
3245
3246 vmx_fini_asid();
3247 }
3248
3249 static void
3250 vmx_capability(struct nvmm_capability *cap)
3251 {
3252 cap->arch.mach_conf_support = 0;
3253 cap->arch.vcpu_conf_support =
3254 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3255 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3256 cap->arch.xcr0_mask = vmx_xcr0_mask;
3257 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3258 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3259 }
3260
3261 const struct nvmm_impl nvmm_x86_vmx = {
3262 .ident = vmx_ident,
3263 .init = vmx_init,
3264 .fini = vmx_fini,
3265 .capability = vmx_capability,
3266 .mach_conf_max = NVMM_X86_MACH_NCONF,
3267 .mach_conf_sizes = NULL,
3268 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3269 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3270 .state_size = sizeof(struct nvmm_x64_state),
3271 .machine_create = vmx_machine_create,
3272 .machine_destroy = vmx_machine_destroy,
3273 .machine_configure = vmx_machine_configure,
3274 .vcpu_create = vmx_vcpu_create,
3275 .vcpu_destroy = vmx_vcpu_destroy,
3276 .vcpu_configure = vmx_vcpu_configure,
3277 .vcpu_setstate = vmx_vcpu_setstate,
3278 .vcpu_getstate = vmx_vcpu_getstate,
3279 .vcpu_inject = vmx_vcpu_inject,
3280 .vcpu_run = vmx_vcpu_run
3281 };
3282