nvmm_x86_vmx.c revision 1.56 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.56 2020/05/09 16:18:57 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.56 2020/05/09 16:18:57 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 #ifdef DIAGNOSTIC
139 static inline paddr_t
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153 #endif
154
155 static inline void
156 vmx_vmptrld(paddr_t *pa)
157 {
158 asm volatile (
159 "vmptrld %[pa];"
160 "jz vmx_insn_failvalid;"
161 "jc vmx_insn_failinvalid;"
162 :
163 : [pa] "m" (*pa)
164 : "memory", "cc"
165 );
166 }
167
168 static inline void
169 vmx_vmclear(paddr_t *pa)
170 {
171 asm volatile (
172 "vmclear %[pa];"
173 "jz vmx_insn_failvalid;"
174 "jc vmx_insn_failinvalid;"
175 :
176 : [pa] "m" (*pa)
177 : "memory", "cc"
178 );
179 }
180
181 #define MSR_IA32_FEATURE_CONTROL 0x003A
182 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
183 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
184 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
185
186 #define MSR_IA32_VMX_BASIC 0x0480
187 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
188 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
189 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
190 #define IA32_VMX_BASIC_DUAL __BIT(49)
191 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
192 #define MEM_TYPE_UC 0
193 #define MEM_TYPE_WB 6
194 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
195 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
196
197 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
198 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
199 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
200 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
201 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
202
203 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
204 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
205 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
206 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
207
208 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
209 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
210 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
211 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
212
213 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
214 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
215 #define IA32_VMX_EPT_VPID_UC __BIT(8)
216 #define IA32_VMX_EPT_VPID_WB __BIT(14)
217 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
218 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
219 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
220 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
221 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
222 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
223 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
224 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
225 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
226
227 /* -------------------------------------------------------------------------- */
228
229 /* 16-bit control fields */
230 #define VMCS_VPID 0x00000000
231 #define VMCS_PIR_VECTOR 0x00000002
232 #define VMCS_EPTP_INDEX 0x00000004
233 /* 16-bit guest-state fields */
234 #define VMCS_GUEST_ES_SELECTOR 0x00000800
235 #define VMCS_GUEST_CS_SELECTOR 0x00000802
236 #define VMCS_GUEST_SS_SELECTOR 0x00000804
237 #define VMCS_GUEST_DS_SELECTOR 0x00000806
238 #define VMCS_GUEST_FS_SELECTOR 0x00000808
239 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
240 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
241 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
242 #define VMCS_GUEST_INTR_STATUS 0x00000810
243 #define VMCS_PML_INDEX 0x00000812
244 /* 16-bit host-state fields */
245 #define VMCS_HOST_ES_SELECTOR 0x00000C00
246 #define VMCS_HOST_CS_SELECTOR 0x00000C02
247 #define VMCS_HOST_SS_SELECTOR 0x00000C04
248 #define VMCS_HOST_DS_SELECTOR 0x00000C06
249 #define VMCS_HOST_FS_SELECTOR 0x00000C08
250 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
251 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
252 /* 64-bit control fields */
253 #define VMCS_IO_BITMAP_A 0x00002000
254 #define VMCS_IO_BITMAP_B 0x00002002
255 #define VMCS_MSR_BITMAP 0x00002004
256 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
257 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
258 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
259 #define VMCS_EXECUTIVE_VMCS 0x0000200C
260 #define VMCS_PML_ADDRESS 0x0000200E
261 #define VMCS_TSC_OFFSET 0x00002010
262 #define VMCS_VIRTUAL_APIC 0x00002012
263 #define VMCS_APIC_ACCESS 0x00002014
264 #define VMCS_PIR_DESC 0x00002016
265 #define VMCS_VM_CONTROL 0x00002018
266 #define VMCS_EPTP 0x0000201A
267 #define EPTP_TYPE __BITS(2,0)
268 #define EPTP_TYPE_UC 0
269 #define EPTP_TYPE_WB 6
270 #define EPTP_WALKLEN __BITS(5,3)
271 #define EPTP_FLAGS_AD __BIT(6)
272 #define EPTP_PHYSADDR __BITS(63,12)
273 #define VMCS_EOI_EXIT0 0x0000201C
274 #define VMCS_EOI_EXIT1 0x0000201E
275 #define VMCS_EOI_EXIT2 0x00002020
276 #define VMCS_EOI_EXIT3 0x00002022
277 #define VMCS_EPTP_LIST 0x00002024
278 #define VMCS_VMREAD_BITMAP 0x00002026
279 #define VMCS_VMWRITE_BITMAP 0x00002028
280 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
281 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
282 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
283 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
284 #define VMCS_TSC_MULTIPLIER 0x00002032
285 /* 64-bit read-only fields */
286 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
287 /* 64-bit guest-state fields */
288 #define VMCS_LINK_POINTER 0x00002800
289 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
290 #define VMCS_GUEST_IA32_PAT 0x00002804
291 #define VMCS_GUEST_IA32_EFER 0x00002806
292 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
293 #define VMCS_GUEST_PDPTE0 0x0000280A
294 #define VMCS_GUEST_PDPTE1 0x0000280C
295 #define VMCS_GUEST_PDPTE2 0x0000280E
296 #define VMCS_GUEST_PDPTE3 0x00002810
297 #define VMCS_GUEST_BNDCFGS 0x00002812
298 /* 64-bit host-state fields */
299 #define VMCS_HOST_IA32_PAT 0x00002C00
300 #define VMCS_HOST_IA32_EFER 0x00002C02
301 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
302 /* 32-bit control fields */
303 #define VMCS_PINBASED_CTLS 0x00004000
304 #define PIN_CTLS_INT_EXITING __BIT(0)
305 #define PIN_CTLS_NMI_EXITING __BIT(3)
306 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
307 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
308 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
309 #define VMCS_PROCBASED_CTLS 0x00004002
310 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
311 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
312 #define PROC_CTLS_HLT_EXITING __BIT(7)
313 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
314 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
315 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
316 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
317 #define PROC_CTLS_RCR3_EXITING __BIT(15)
318 #define PROC_CTLS_LCR3_EXITING __BIT(16)
319 #define PROC_CTLS_RCR8_EXITING __BIT(19)
320 #define PROC_CTLS_LCR8_EXITING __BIT(20)
321 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
322 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
323 #define PROC_CTLS_DR_EXITING __BIT(23)
324 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
325 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
326 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
327 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
328 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
329 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
330 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
331 #define VMCS_EXCEPTION_BITMAP 0x00004004
332 #define VMCS_PF_ERROR_MASK 0x00004006
333 #define VMCS_PF_ERROR_MATCH 0x00004008
334 #define VMCS_CR3_TARGET_COUNT 0x0000400A
335 #define VMCS_EXIT_CTLS 0x0000400C
336 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
337 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
338 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
339 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
340 #define EXIT_CTLS_SAVE_PAT __BIT(18)
341 #define EXIT_CTLS_LOAD_PAT __BIT(19)
342 #define EXIT_CTLS_SAVE_EFER __BIT(20)
343 #define EXIT_CTLS_LOAD_EFER __BIT(21)
344 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
345 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
346 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
347 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
348 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
349 #define VMCS_ENTRY_CTLS 0x00004012
350 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
351 #define ENTRY_CTLS_LONG_MODE __BIT(9)
352 #define ENTRY_CTLS_SMM __BIT(10)
353 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
354 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
355 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
356 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
357 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
358 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
359 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
360 #define VMCS_ENTRY_INTR_INFO 0x00004016
361 #define INTR_INFO_VECTOR __BITS(7,0)
362 #define INTR_INFO_TYPE __BITS(10,8)
363 #define INTR_TYPE_EXT_INT 0
364 #define INTR_TYPE_NMI 2
365 #define INTR_TYPE_HW_EXC 3
366 #define INTR_TYPE_SW_INT 4
367 #define INTR_TYPE_PRIV_SW_EXC 5
368 #define INTR_TYPE_SW_EXC 6
369 #define INTR_TYPE_OTHER 7
370 #define INTR_INFO_ERROR __BIT(11)
371 #define INTR_INFO_VALID __BIT(31)
372 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
373 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
374 #define VMCS_TPR_THRESHOLD 0x0000401C
375 #define VMCS_PROCBASED_CTLS2 0x0000401E
376 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
377 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
378 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
379 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
380 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
381 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
382 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
383 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
384 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
385 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
386 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
387 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
388 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
389 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
390 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
391 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
392 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
393 #define PROC_CTLS2_PML_ENABLE __BIT(17)
394 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
395 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
396 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
397 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
398 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
399 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
400 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
401 #define VMCS_PLE_GAP 0x00004020
402 #define VMCS_PLE_WINDOW 0x00004022
403 /* 32-bit read-only data fields */
404 #define VMCS_INSTRUCTION_ERROR 0x00004400
405 #define VMCS_EXIT_REASON 0x00004402
406 #define VMCS_EXIT_INTR_INFO 0x00004404
407 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
408 #define VMCS_IDT_VECTORING_INFO 0x00004408
409 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
410 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
411 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
412 /* 32-bit guest-state fields */
413 #define VMCS_GUEST_ES_LIMIT 0x00004800
414 #define VMCS_GUEST_CS_LIMIT 0x00004802
415 #define VMCS_GUEST_SS_LIMIT 0x00004804
416 #define VMCS_GUEST_DS_LIMIT 0x00004806
417 #define VMCS_GUEST_FS_LIMIT 0x00004808
418 #define VMCS_GUEST_GS_LIMIT 0x0000480A
419 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
420 #define VMCS_GUEST_TR_LIMIT 0x0000480E
421 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
422 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
423 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
424 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
425 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
426 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
427 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
428 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
429 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
430 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
431 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
432 #define INT_STATE_STI __BIT(0)
433 #define INT_STATE_MOVSS __BIT(1)
434 #define INT_STATE_SMI __BIT(2)
435 #define INT_STATE_NMI __BIT(3)
436 #define INT_STATE_ENCLAVE __BIT(4)
437 #define VMCS_GUEST_ACTIVITY 0x00004826
438 #define VMCS_GUEST_SMBASE 0x00004828
439 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
440 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
441 /* 32-bit host state fields */
442 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
443 /* Natural-Width control fields */
444 #define VMCS_CR0_MASK 0x00006000
445 #define VMCS_CR4_MASK 0x00006002
446 #define VMCS_CR0_SHADOW 0x00006004
447 #define VMCS_CR4_SHADOW 0x00006006
448 #define VMCS_CR3_TARGET0 0x00006008
449 #define VMCS_CR3_TARGET1 0x0000600A
450 #define VMCS_CR3_TARGET2 0x0000600C
451 #define VMCS_CR3_TARGET3 0x0000600E
452 /* Natural-Width read-only fields */
453 #define VMCS_EXIT_QUALIFICATION 0x00006400
454 #define VMCS_IO_RCX 0x00006402
455 #define VMCS_IO_RSI 0x00006404
456 #define VMCS_IO_RDI 0x00006406
457 #define VMCS_IO_RIP 0x00006408
458 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
459 /* Natural-Width guest-state fields */
460 #define VMCS_GUEST_CR0 0x00006800
461 #define VMCS_GUEST_CR3 0x00006802
462 #define VMCS_GUEST_CR4 0x00006804
463 #define VMCS_GUEST_ES_BASE 0x00006806
464 #define VMCS_GUEST_CS_BASE 0x00006808
465 #define VMCS_GUEST_SS_BASE 0x0000680A
466 #define VMCS_GUEST_DS_BASE 0x0000680C
467 #define VMCS_GUEST_FS_BASE 0x0000680E
468 #define VMCS_GUEST_GS_BASE 0x00006810
469 #define VMCS_GUEST_LDTR_BASE 0x00006812
470 #define VMCS_GUEST_TR_BASE 0x00006814
471 #define VMCS_GUEST_GDTR_BASE 0x00006816
472 #define VMCS_GUEST_IDTR_BASE 0x00006818
473 #define VMCS_GUEST_DR7 0x0000681A
474 #define VMCS_GUEST_RSP 0x0000681C
475 #define VMCS_GUEST_RIP 0x0000681E
476 #define VMCS_GUEST_RFLAGS 0x00006820
477 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
478 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
479 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
480 /* Natural-Width host-state fields */
481 #define VMCS_HOST_CR0 0x00006C00
482 #define VMCS_HOST_CR3 0x00006C02
483 #define VMCS_HOST_CR4 0x00006C04
484 #define VMCS_HOST_FS_BASE 0x00006C06
485 #define VMCS_HOST_GS_BASE 0x00006C08
486 #define VMCS_HOST_TR_BASE 0x00006C0A
487 #define VMCS_HOST_GDTR_BASE 0x00006C0C
488 #define VMCS_HOST_IDTR_BASE 0x00006C0E
489 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
490 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
491 #define VMCS_HOST_RSP 0x00006C14
492 #define VMCS_HOST_RIP 0x00006c16
493
494 /* VMX basic exit reasons. */
495 #define VMCS_EXITCODE_EXC_NMI 0
496 #define VMCS_EXITCODE_EXT_INT 1
497 #define VMCS_EXITCODE_SHUTDOWN 2
498 #define VMCS_EXITCODE_INIT 3
499 #define VMCS_EXITCODE_SIPI 4
500 #define VMCS_EXITCODE_SMI 5
501 #define VMCS_EXITCODE_OTHER_SMI 6
502 #define VMCS_EXITCODE_INT_WINDOW 7
503 #define VMCS_EXITCODE_NMI_WINDOW 8
504 #define VMCS_EXITCODE_TASK_SWITCH 9
505 #define VMCS_EXITCODE_CPUID 10
506 #define VMCS_EXITCODE_GETSEC 11
507 #define VMCS_EXITCODE_HLT 12
508 #define VMCS_EXITCODE_INVD 13
509 #define VMCS_EXITCODE_INVLPG 14
510 #define VMCS_EXITCODE_RDPMC 15
511 #define VMCS_EXITCODE_RDTSC 16
512 #define VMCS_EXITCODE_RSM 17
513 #define VMCS_EXITCODE_VMCALL 18
514 #define VMCS_EXITCODE_VMCLEAR 19
515 #define VMCS_EXITCODE_VMLAUNCH 20
516 #define VMCS_EXITCODE_VMPTRLD 21
517 #define VMCS_EXITCODE_VMPTRST 22
518 #define VMCS_EXITCODE_VMREAD 23
519 #define VMCS_EXITCODE_VMRESUME 24
520 #define VMCS_EXITCODE_VMWRITE 25
521 #define VMCS_EXITCODE_VMXOFF 26
522 #define VMCS_EXITCODE_VMXON 27
523 #define VMCS_EXITCODE_CR 28
524 #define VMCS_EXITCODE_DR 29
525 #define VMCS_EXITCODE_IO 30
526 #define VMCS_EXITCODE_RDMSR 31
527 #define VMCS_EXITCODE_WRMSR 32
528 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
529 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
530 #define VMCS_EXITCODE_MWAIT 36
531 #define VMCS_EXITCODE_TRAP_FLAG 37
532 #define VMCS_EXITCODE_MONITOR 39
533 #define VMCS_EXITCODE_PAUSE 40
534 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
535 #define VMCS_EXITCODE_TPR_BELOW 43
536 #define VMCS_EXITCODE_APIC_ACCESS 44
537 #define VMCS_EXITCODE_VEOI 45
538 #define VMCS_EXITCODE_GDTR_IDTR 46
539 #define VMCS_EXITCODE_LDTR_TR 47
540 #define VMCS_EXITCODE_EPT_VIOLATION 48
541 #define VMCS_EXITCODE_EPT_MISCONFIG 49
542 #define VMCS_EXITCODE_INVEPT 50
543 #define VMCS_EXITCODE_RDTSCP 51
544 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
545 #define VMCS_EXITCODE_INVVPID 53
546 #define VMCS_EXITCODE_WBINVD 54
547 #define VMCS_EXITCODE_XSETBV 55
548 #define VMCS_EXITCODE_APIC_WRITE 56
549 #define VMCS_EXITCODE_RDRAND 57
550 #define VMCS_EXITCODE_INVPCID 58
551 #define VMCS_EXITCODE_VMFUNC 59
552 #define VMCS_EXITCODE_ENCLS 60
553 #define VMCS_EXITCODE_RDSEED 61
554 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
555 #define VMCS_EXITCODE_XSAVES 63
556 #define VMCS_EXITCODE_XRSTORS 64
557
558 /* -------------------------------------------------------------------------- */
559
560 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
561 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
562
563 #define VMX_MSRLIST_STAR 0
564 #define VMX_MSRLIST_LSTAR 1
565 #define VMX_MSRLIST_CSTAR 2
566 #define VMX_MSRLIST_SFMASK 3
567 #define VMX_MSRLIST_KERNELGSBASE 4
568 #define VMX_MSRLIST_EXIT_NMSR 5
569 #define VMX_MSRLIST_L1DFLUSH 5
570
571 /* On entry, we may do +1 to include L1DFLUSH. */
572 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
573
574 struct vmxon {
575 uint32_t ident;
576 #define VMXON_IDENT_REVISION __BITS(30,0)
577
578 uint8_t data[PAGE_SIZE - 4];
579 } __packed;
580
581 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
582
583 struct vmxoncpu {
584 vaddr_t va;
585 paddr_t pa;
586 };
587
588 static struct vmxoncpu vmxoncpu[MAXCPUS];
589
590 struct vmcs {
591 uint32_t ident;
592 #define VMCS_IDENT_REVISION __BITS(30,0)
593 #define VMCS_IDENT_SHADOW __BIT(31)
594
595 uint32_t abort;
596 uint8_t data[PAGE_SIZE - 8];
597 } __packed;
598
599 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
600
601 struct msr_entry {
602 uint32_t msr;
603 uint32_t rsvd;
604 uint64_t val;
605 } __packed;
606
607 #define VPID_MAX 0xFFFF
608
609 /* Make sure we never run out of VPIDs. */
610 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
611
612 static uint64_t vmx_tlb_flush_op __read_mostly;
613 static uint64_t vmx_ept_flush_op __read_mostly;
614 static uint64_t vmx_eptp_type __read_mostly;
615
616 static uint64_t vmx_pinbased_ctls __read_mostly;
617 static uint64_t vmx_procbased_ctls __read_mostly;
618 static uint64_t vmx_procbased_ctls2 __read_mostly;
619 static uint64_t vmx_entry_ctls __read_mostly;
620 static uint64_t vmx_exit_ctls __read_mostly;
621
622 static uint64_t vmx_cr0_fixed0 __read_mostly;
623 static uint64_t vmx_cr0_fixed1 __read_mostly;
624 static uint64_t vmx_cr4_fixed0 __read_mostly;
625 static uint64_t vmx_cr4_fixed1 __read_mostly;
626
627 extern bool pmap_ept_has_ad;
628
629 #define VMX_PINBASED_CTLS_ONE \
630 (PIN_CTLS_INT_EXITING| \
631 PIN_CTLS_NMI_EXITING| \
632 PIN_CTLS_VIRTUAL_NMIS)
633
634 #define VMX_PINBASED_CTLS_ZERO 0
635
636 #define VMX_PROCBASED_CTLS_ONE \
637 (PROC_CTLS_USE_TSC_OFFSETTING| \
638 PROC_CTLS_HLT_EXITING| \
639 PROC_CTLS_MWAIT_EXITING | \
640 PROC_CTLS_RDPMC_EXITING | \
641 PROC_CTLS_RCR8_EXITING | \
642 PROC_CTLS_LCR8_EXITING | \
643 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
644 PROC_CTLS_USE_MSR_BITMAPS | \
645 PROC_CTLS_MONITOR_EXITING | \
646 PROC_CTLS_ACTIVATE_CTLS2)
647
648 #define VMX_PROCBASED_CTLS_ZERO \
649 (PROC_CTLS_RCR3_EXITING| \
650 PROC_CTLS_LCR3_EXITING)
651
652 #define VMX_PROCBASED_CTLS2_ONE \
653 (PROC_CTLS2_ENABLE_EPT| \
654 PROC_CTLS2_ENABLE_VPID| \
655 PROC_CTLS2_UNRESTRICTED_GUEST)
656
657 #define VMX_PROCBASED_CTLS2_ZERO 0
658
659 #define VMX_ENTRY_CTLS_ONE \
660 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
661 ENTRY_CTLS_LOAD_EFER| \
662 ENTRY_CTLS_LOAD_PAT)
663
664 #define VMX_ENTRY_CTLS_ZERO \
665 (ENTRY_CTLS_SMM| \
666 ENTRY_CTLS_DISABLE_DUAL)
667
668 #define VMX_EXIT_CTLS_ONE \
669 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
670 EXIT_CTLS_HOST_LONG_MODE| \
671 EXIT_CTLS_SAVE_PAT| \
672 EXIT_CTLS_LOAD_PAT| \
673 EXIT_CTLS_SAVE_EFER| \
674 EXIT_CTLS_LOAD_EFER)
675
676 #define VMX_EXIT_CTLS_ZERO 0
677
678 static uint8_t *vmx_asidmap __read_mostly;
679 static uint32_t vmx_maxasid __read_mostly;
680 static kmutex_t vmx_asidlock __cacheline_aligned;
681
682 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
683 static uint64_t vmx_xcr0_mask __read_mostly;
684
685 #define VMX_NCPUIDS 32
686
687 #define VMCS_NPAGES 1
688 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
689
690 #define MSRBM_NPAGES 1
691 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
692
693 #define EFER_TLB_FLUSH \
694 (EFER_NXE|EFER_LMA|EFER_LME)
695 #define CR0_TLB_FLUSH \
696 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
697 #define CR4_TLB_FLUSH \
698 (CR4_PGE|CR4_PAE|CR4_PSE)
699
700 /* -------------------------------------------------------------------------- */
701
702 struct vmx_machdata {
703 volatile uint64_t mach_htlb_gen;
704 };
705
706 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
707 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
708 sizeof(struct nvmm_vcpu_conf_cpuid),
709 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
710 sizeof(struct nvmm_vcpu_conf_tpr)
711 };
712
713 struct vmx_cpudata {
714 /* General */
715 uint64_t asid;
716 bool gtlb_want_flush;
717 bool gtsc_want_update;
718 uint64_t vcpu_htlb_gen;
719 kcpuset_t *htlb_want_flush;
720
721 /* VMCS */
722 struct vmcs *vmcs;
723 paddr_t vmcs_pa;
724 size_t vmcs_refcnt;
725 struct cpu_info *vmcs_ci;
726 bool vmcs_launched;
727
728 /* MSR bitmap */
729 uint8_t *msrbm;
730 paddr_t msrbm_pa;
731
732 /* Host state */
733 uint64_t hxcr0;
734 uint64_t star;
735 uint64_t lstar;
736 uint64_t cstar;
737 uint64_t sfmask;
738 uint64_t kernelgsbase;
739
740 /* Intr state */
741 bool int_window_exit;
742 bool nmi_window_exit;
743 bool evt_pending;
744
745 /* Guest state */
746 struct msr_entry *gmsr;
747 paddr_t gmsr_pa;
748 uint64_t gmsr_misc_enable;
749 uint64_t gcr2;
750 uint64_t gcr8;
751 uint64_t gxcr0;
752 uint64_t gprs[NVMM_X64_NGPR];
753 uint64_t drs[NVMM_X64_NDR];
754 uint64_t gtsc;
755 struct xsave_header gfpu __aligned(64);
756
757 /* VCPU configuration. */
758 bool cpuidpresent[VMX_NCPUIDS];
759 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
760 struct nvmm_vcpu_conf_tpr tpr;
761 };
762
763 static const struct {
764 uint64_t selector;
765 uint64_t attrib;
766 uint64_t limit;
767 uint64_t base;
768 } vmx_guest_segs[NVMM_X64_NSEG] = {
769 [NVMM_X64_SEG_ES] = {
770 VMCS_GUEST_ES_SELECTOR,
771 VMCS_GUEST_ES_ACCESS_RIGHTS,
772 VMCS_GUEST_ES_LIMIT,
773 VMCS_GUEST_ES_BASE
774 },
775 [NVMM_X64_SEG_CS] = {
776 VMCS_GUEST_CS_SELECTOR,
777 VMCS_GUEST_CS_ACCESS_RIGHTS,
778 VMCS_GUEST_CS_LIMIT,
779 VMCS_GUEST_CS_BASE
780 },
781 [NVMM_X64_SEG_SS] = {
782 VMCS_GUEST_SS_SELECTOR,
783 VMCS_GUEST_SS_ACCESS_RIGHTS,
784 VMCS_GUEST_SS_LIMIT,
785 VMCS_GUEST_SS_BASE
786 },
787 [NVMM_X64_SEG_DS] = {
788 VMCS_GUEST_DS_SELECTOR,
789 VMCS_GUEST_DS_ACCESS_RIGHTS,
790 VMCS_GUEST_DS_LIMIT,
791 VMCS_GUEST_DS_BASE
792 },
793 [NVMM_X64_SEG_FS] = {
794 VMCS_GUEST_FS_SELECTOR,
795 VMCS_GUEST_FS_ACCESS_RIGHTS,
796 VMCS_GUEST_FS_LIMIT,
797 VMCS_GUEST_FS_BASE
798 },
799 [NVMM_X64_SEG_GS] = {
800 VMCS_GUEST_GS_SELECTOR,
801 VMCS_GUEST_GS_ACCESS_RIGHTS,
802 VMCS_GUEST_GS_LIMIT,
803 VMCS_GUEST_GS_BASE
804 },
805 [NVMM_X64_SEG_GDT] = {
806 0, /* doesn't exist */
807 0, /* doesn't exist */
808 VMCS_GUEST_GDTR_LIMIT,
809 VMCS_GUEST_GDTR_BASE
810 },
811 [NVMM_X64_SEG_IDT] = {
812 0, /* doesn't exist */
813 0, /* doesn't exist */
814 VMCS_GUEST_IDTR_LIMIT,
815 VMCS_GUEST_IDTR_BASE
816 },
817 [NVMM_X64_SEG_LDT] = {
818 VMCS_GUEST_LDTR_SELECTOR,
819 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
820 VMCS_GUEST_LDTR_LIMIT,
821 VMCS_GUEST_LDTR_BASE
822 },
823 [NVMM_X64_SEG_TR] = {
824 VMCS_GUEST_TR_SELECTOR,
825 VMCS_GUEST_TR_ACCESS_RIGHTS,
826 VMCS_GUEST_TR_LIMIT,
827 VMCS_GUEST_TR_BASE
828 }
829 };
830
831 /* -------------------------------------------------------------------------- */
832
833 static uint64_t
834 vmx_get_revision(void)
835 {
836 uint64_t msr;
837
838 msr = rdmsr(MSR_IA32_VMX_BASIC);
839 msr &= IA32_VMX_BASIC_IDENT;
840
841 return msr;
842 }
843
844 static void
845 vmx_vmclear_ipi(void *arg1, void *arg2)
846 {
847 paddr_t vmcs_pa = (paddr_t)arg1;
848 vmx_vmclear(&vmcs_pa);
849 }
850
851 static void
852 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
853 {
854 uint64_t xc;
855 int bound;
856
857 KASSERT(kpreempt_disabled());
858
859 bound = curlwp_bind();
860 kpreempt_enable();
861
862 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
863 xc_wait(xc);
864
865 kpreempt_disable();
866 curlwp_bindx(bound);
867 }
868
869 static void
870 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
871 {
872 struct vmx_cpudata *cpudata = vcpu->cpudata;
873 struct cpu_info *vmcs_ci;
874 paddr_t oldpa __diagused;
875
876 cpudata->vmcs_refcnt++;
877 if (cpudata->vmcs_refcnt > 1) {
878 #ifdef DIAGNOSTIC
879 KASSERT(kpreempt_disabled());
880 oldpa = vmx_vmptrst();
881 KASSERT(oldpa == cpudata->vmcs_pa);
882 #endif
883 return;
884 }
885
886 vmcs_ci = cpudata->vmcs_ci;
887 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
888
889 kpreempt_disable();
890
891 if (vmcs_ci == NULL) {
892 /* This VMCS is loaded for the first time. */
893 vmx_vmclear(&cpudata->vmcs_pa);
894 cpudata->vmcs_launched = false;
895 } else if (vmcs_ci != curcpu()) {
896 /* This VMCS is active on a remote CPU. */
897 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
898 cpudata->vmcs_launched = false;
899 } else {
900 /* This VMCS is active on curcpu, nothing to do. */
901 }
902
903 vmx_vmptrld(&cpudata->vmcs_pa);
904 }
905
906 static void
907 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
908 {
909 struct vmx_cpudata *cpudata = vcpu->cpudata;
910
911 KASSERT(kpreempt_disabled());
912 #ifdef DIAGNOSTIC
913 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
914 #endif
915 KASSERT(cpudata->vmcs_refcnt > 0);
916 cpudata->vmcs_refcnt--;
917
918 if (cpudata->vmcs_refcnt > 0) {
919 return;
920 }
921
922 cpudata->vmcs_ci = curcpu();
923 kpreempt_enable();
924 }
925
926 static void
927 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
928 {
929 struct vmx_cpudata *cpudata = vcpu->cpudata;
930
931 KASSERT(kpreempt_disabled());
932 #ifdef DIAGNOSTIC
933 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
934 #endif
935 KASSERT(cpudata->vmcs_refcnt == 1);
936 cpudata->vmcs_refcnt--;
937
938 vmx_vmclear(&cpudata->vmcs_pa);
939 kpreempt_enable();
940 }
941
942 /* -------------------------------------------------------------------------- */
943
944 static void
945 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
946 {
947 struct vmx_cpudata *cpudata = vcpu->cpudata;
948 uint64_t ctls1;
949
950 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
951
952 if (nmi) {
953 // XXX INT_STATE_NMI?
954 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
955 cpudata->nmi_window_exit = true;
956 } else {
957 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
958 cpudata->int_window_exit = true;
959 }
960
961 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
962 }
963
964 static void
965 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
966 {
967 struct vmx_cpudata *cpudata = vcpu->cpudata;
968 uint64_t ctls1;
969
970 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
971
972 if (nmi) {
973 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
974 cpudata->nmi_window_exit = false;
975 } else {
976 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
977 cpudata->int_window_exit = false;
978 }
979
980 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
981 }
982
983 static inline int
984 vmx_event_has_error(uint8_t vector)
985 {
986 switch (vector) {
987 case 8: /* #DF */
988 case 10: /* #TS */
989 case 11: /* #NP */
990 case 12: /* #SS */
991 case 13: /* #GP */
992 case 14: /* #PF */
993 case 17: /* #AC */
994 case 30: /* #SX */
995 return 1;
996 default:
997 return 0;
998 }
999 }
1000
1001 static int
1002 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1003 {
1004 struct nvmm_comm_page *comm = vcpu->comm;
1005 struct vmx_cpudata *cpudata = vcpu->cpudata;
1006 int type = 0, err = 0, ret = EINVAL;
1007 u_int evtype;
1008 uint8_t vector;
1009 uint64_t info, error;
1010
1011 evtype = comm->event.type;
1012 vector = comm->event.vector;
1013 error = comm->event.u.excp.error;
1014 __insn_barrier();
1015
1016 vmx_vmcs_enter(vcpu);
1017
1018 switch (evtype) {
1019 case NVMM_VCPU_EVENT_EXCP:
1020 if (vector == 2 || vector >= 32)
1021 goto out;
1022 if (vector == 3 || vector == 0)
1023 goto out;
1024 type = INTR_TYPE_HW_EXC;
1025 err = vmx_event_has_error(vector);
1026 break;
1027 case NVMM_VCPU_EVENT_INTR:
1028 type = INTR_TYPE_EXT_INT;
1029 if (vector == 2) {
1030 type = INTR_TYPE_NMI;
1031 vmx_event_waitexit_enable(vcpu, true);
1032 }
1033 err = 0;
1034 break;
1035 default:
1036 goto out;
1037 }
1038
1039 info =
1040 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1041 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1042 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1043 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1044 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1045 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1046
1047 cpudata->evt_pending = true;
1048 ret = 0;
1049
1050 out:
1051 vmx_vmcs_leave(vcpu);
1052 return ret;
1053 }
1054
1055 static void
1056 vmx_inject_ud(struct nvmm_cpu *vcpu)
1057 {
1058 struct nvmm_comm_page *comm = vcpu->comm;
1059 int ret __diagused;
1060
1061 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1062 comm->event.vector = 6;
1063 comm->event.u.excp.error = 0;
1064
1065 ret = vmx_vcpu_inject(vcpu);
1066 KASSERT(ret == 0);
1067 }
1068
1069 static void
1070 vmx_inject_gp(struct nvmm_cpu *vcpu)
1071 {
1072 struct nvmm_comm_page *comm = vcpu->comm;
1073 int ret __diagused;
1074
1075 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1076 comm->event.vector = 13;
1077 comm->event.u.excp.error = 0;
1078
1079 ret = vmx_vcpu_inject(vcpu);
1080 KASSERT(ret == 0);
1081 }
1082
1083 static inline int
1084 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1085 {
1086 if (__predict_true(!vcpu->comm->event_commit)) {
1087 return 0;
1088 }
1089 vcpu->comm->event_commit = false;
1090 return vmx_vcpu_inject(vcpu);
1091 }
1092
1093 static inline void
1094 vmx_inkernel_advance(void)
1095 {
1096 uint64_t rip, inslen, intstate;
1097
1098 /*
1099 * Maybe we should also apply single-stepping and debug exceptions.
1100 * Matters for guest-ring3, because it can execute 'cpuid' under a
1101 * debugger.
1102 */
1103 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1104 rip = vmx_vmread(VMCS_GUEST_RIP);
1105 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1106 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1107 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1108 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1109 }
1110
1111 static void
1112 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1113 {
1114 exit->u.inv.hwcode = code;
1115 exit->reason = NVMM_VCPU_EXIT_INVALID;
1116 }
1117
1118 static void
1119 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1120 struct nvmm_vcpu_exit *exit)
1121 {
1122 uint64_t qual;
1123
1124 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1125
1126 if ((qual & INTR_INFO_VALID) == 0) {
1127 goto error;
1128 }
1129 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1130 goto error;
1131 }
1132
1133 exit->reason = NVMM_VCPU_EXIT_NONE;
1134 return;
1135
1136 error:
1137 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1138 }
1139
1140 static void
1141 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1142 uint64_t eax, uint64_t ecx)
1143 {
1144 struct vmx_cpudata *cpudata = vcpu->cpudata;
1145 unsigned int ncpus;
1146 uint64_t cr4;
1147
1148 switch (eax) {
1149 case 0x00000001:
1150 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1151
1152 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1153 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1154 CPUID_LOCAL_APIC_ID);
1155
1156 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1157 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1158 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1159 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1160 }
1161
1162 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1163
1164 /* CPUID2_OSXSAVE depends on CR4. */
1165 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1166 if (!(cr4 & CR4_OSXSAVE)) {
1167 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1168 }
1169 break;
1170 case 0x00000002:
1171 break;
1172 case 0x00000003:
1173 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1174 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1175 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1176 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1177 break;
1178 case 0x00000004: /* Deterministic Cache Parameters */
1179 break; /* TODO? */
1180 case 0x00000005: /* MONITOR/MWAIT */
1181 case 0x00000006: /* Thermal and Power Management */
1182 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1183 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1184 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1186 break;
1187 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1188 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1189 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1190 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1191 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1192 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1193 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1194 }
1195 break;
1196 case 0x00000008: /* Empty */
1197 case 0x00000009: /* Direct Cache Access Information */
1198 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1199 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1200 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1201 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1202 break;
1203 case 0x0000000A: /* Architectural Performance Monitoring */
1204 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1205 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1206 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1207 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1208 break;
1209 case 0x0000000B: /* Extended Topology Enumeration */
1210 switch (ecx) {
1211 case 0: /* Threads */
1212 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1213 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1214 cpudata->gprs[NVMM_X64_GPR_RCX] =
1215 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1216 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1217 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1218 break;
1219 case 1: /* Cores */
1220 ncpus = atomic_load_relaxed(&mach->ncpus);
1221 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1222 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1223 cpudata->gprs[NVMM_X64_GPR_RCX] =
1224 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1225 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1226 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1227 break;
1228 default:
1229 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1230 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1231 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1232 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1233 break;
1234 }
1235 break;
1236 case 0x0000000C: /* Empty */
1237 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1238 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1239 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1240 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1241 break;
1242 case 0x0000000D: /* Processor Extended State Enumeration */
1243 if (vmx_xcr0_mask == 0) {
1244 break;
1245 }
1246 switch (ecx) {
1247 case 0:
1248 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1249 if (cpudata->gxcr0 & XCR0_SSE) {
1250 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1251 } else {
1252 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1253 }
1254 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1255 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1256 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1257 break;
1258 case 1:
1259 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1260 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1261 CPUID_PES1_XGETBV);
1262 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1263 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1264 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1265 break;
1266 default:
1267 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1268 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1269 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1270 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1271 break;
1272 }
1273 break;
1274 case 0x0000000E: /* Empty */
1275 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1276 case 0x00000010: /* Intel RDT Allocation Enumeration */
1277 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1278 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1279 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1280 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1281 break;
1282 case 0x00000011: /* Empty */
1283 case 0x00000012: /* Intel SGX Capability Enumeration */
1284 case 0x00000013: /* Empty */
1285 case 0x00000014: /* Intel Processor Trace Enumeration */
1286 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1287 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1288 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1289 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1290 break;
1291 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1292 case 0x00000016: /* Processor Frequency Information */
1293 break;
1294
1295 case 0x40000000: /* Hypervisor Information */
1296 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1297 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1298 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1299 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1300 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1301 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1302 break;
1303
1304 case 0x80000001:
1305 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1306 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1307 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1308 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1309 break;
1310 default:
1311 break;
1312 }
1313 }
1314
1315 static void
1316 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1317 {
1318 uint64_t inslen, rip;
1319
1320 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1321 rip = vmx_vmread(VMCS_GUEST_RIP);
1322 exit->u.insn.npc = rip + inslen;
1323 exit->reason = reason;
1324 }
1325
1326 static void
1327 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1328 struct nvmm_vcpu_exit *exit)
1329 {
1330 struct vmx_cpudata *cpudata = vcpu->cpudata;
1331 struct nvmm_vcpu_conf_cpuid *cpuid;
1332 uint64_t eax, ecx;
1333 u_int descs[4];
1334 size_t i;
1335
1336 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1337 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1338 x86_cpuid2(eax, ecx, descs);
1339
1340 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1341 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1342 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1343 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1344
1345 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1346
1347 for (i = 0; i < VMX_NCPUIDS; i++) {
1348 if (!cpudata->cpuidpresent[i]) {
1349 continue;
1350 }
1351 cpuid = &cpudata->cpuid[i];
1352 if (cpuid->leaf != eax) {
1353 continue;
1354 }
1355
1356 if (cpuid->exit) {
1357 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1358 return;
1359 }
1360 KASSERT(cpuid->mask);
1361
1362 /* del */
1363 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1364 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1365 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1366 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1367
1368 /* set */
1369 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1370 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1371 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1372 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1373
1374 break;
1375 }
1376
1377 vmx_inkernel_advance();
1378 exit->reason = NVMM_VCPU_EXIT_NONE;
1379 }
1380
1381 static void
1382 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1383 struct nvmm_vcpu_exit *exit)
1384 {
1385 struct vmx_cpudata *cpudata = vcpu->cpudata;
1386 uint64_t rflags;
1387
1388 if (cpudata->int_window_exit) {
1389 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1390 if (rflags & PSL_I) {
1391 vmx_event_waitexit_disable(vcpu, false);
1392 }
1393 }
1394
1395 vmx_inkernel_advance();
1396 exit->reason = NVMM_VCPU_EXIT_HALTED;
1397 }
1398
1399 #define VMX_QUAL_CR_NUM __BITS(3,0)
1400 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1401 #define CR_TYPE_WRITE 0
1402 #define CR_TYPE_READ 1
1403 #define CR_TYPE_CLTS 2
1404 #define CR_TYPE_LMSW 3
1405 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1406 #define VMX_QUAL_CR_GPR __BITS(11,8)
1407 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1408
1409 static inline int
1410 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1411 {
1412 /* Bits set to 1 in fixed0 are fixed to 1. */
1413 if ((crval & fixed0) != fixed0) {
1414 return -1;
1415 }
1416 /* Bits set to 0 in fixed1 are fixed to 0. */
1417 if (crval & ~fixed1) {
1418 return -1;
1419 }
1420 return 0;
1421 }
1422
1423 static int
1424 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1425 uint64_t qual)
1426 {
1427 struct vmx_cpudata *cpudata = vcpu->cpudata;
1428 uint64_t type, gpr, cr0;
1429 uint64_t efer, ctls1;
1430
1431 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1432 if (type != CR_TYPE_WRITE) {
1433 return -1;
1434 }
1435
1436 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1437 KASSERT(gpr < 16);
1438
1439 if (gpr == NVMM_X64_GPR_RSP) {
1440 gpr = vmx_vmread(VMCS_GUEST_RSP);
1441 } else {
1442 gpr = cpudata->gprs[gpr];
1443 }
1444
1445 cr0 = gpr | CR0_NE | CR0_ET;
1446 cr0 &= ~(CR0_NW|CR0_CD);
1447
1448 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1449 return -1;
1450 }
1451
1452 /*
1453 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1454 * from CR3.
1455 */
1456
1457 if (cr0 & CR0_PG) {
1458 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1459 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1460 if (efer & EFER_LME) {
1461 ctls1 |= ENTRY_CTLS_LONG_MODE;
1462 efer |= EFER_LMA;
1463 } else {
1464 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1465 efer &= ~EFER_LMA;
1466 }
1467 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1468 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1469 }
1470
1471 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1472 vmx_inkernel_advance();
1473 return 0;
1474 }
1475
1476 static int
1477 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1478 uint64_t qual)
1479 {
1480 struct vmx_cpudata *cpudata = vcpu->cpudata;
1481 uint64_t type, gpr, cr4;
1482
1483 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1484 if (type != CR_TYPE_WRITE) {
1485 return -1;
1486 }
1487
1488 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1489 KASSERT(gpr < 16);
1490
1491 if (gpr == NVMM_X64_GPR_RSP) {
1492 gpr = vmx_vmread(VMCS_GUEST_RSP);
1493 } else {
1494 gpr = cpudata->gprs[gpr];
1495 }
1496
1497 cr4 = gpr | CR4_VMXE;
1498
1499 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1500 return -1;
1501 }
1502
1503 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1504 vmx_inkernel_advance();
1505 return 0;
1506 }
1507
1508 static int
1509 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1510 uint64_t qual, struct nvmm_vcpu_exit *exit)
1511 {
1512 struct vmx_cpudata *cpudata = vcpu->cpudata;
1513 uint64_t type, gpr;
1514 bool write;
1515
1516 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1517 if (type == CR_TYPE_WRITE) {
1518 write = true;
1519 } else if (type == CR_TYPE_READ) {
1520 write = false;
1521 } else {
1522 return -1;
1523 }
1524
1525 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1526 KASSERT(gpr < 16);
1527
1528 if (write) {
1529 if (gpr == NVMM_X64_GPR_RSP) {
1530 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1531 } else {
1532 cpudata->gcr8 = cpudata->gprs[gpr];
1533 }
1534 if (cpudata->tpr.exit_changed) {
1535 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1536 }
1537 } else {
1538 if (gpr == NVMM_X64_GPR_RSP) {
1539 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1540 } else {
1541 cpudata->gprs[gpr] = cpudata->gcr8;
1542 }
1543 }
1544
1545 vmx_inkernel_advance();
1546 return 0;
1547 }
1548
1549 static void
1550 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1551 struct nvmm_vcpu_exit *exit)
1552 {
1553 uint64_t qual;
1554 int ret;
1555
1556 exit->reason = NVMM_VCPU_EXIT_NONE;
1557
1558 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1559
1560 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1561 case 0:
1562 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1563 break;
1564 case 4:
1565 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1566 break;
1567 case 8:
1568 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1569 break;
1570 default:
1571 ret = -1;
1572 break;
1573 }
1574
1575 if (ret == -1) {
1576 vmx_inject_gp(vcpu);
1577 }
1578 }
1579
1580 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1581 #define IO_SIZE_8 0
1582 #define IO_SIZE_16 1
1583 #define IO_SIZE_32 3
1584 #define VMX_QUAL_IO_IN __BIT(3)
1585 #define VMX_QUAL_IO_STR __BIT(4)
1586 #define VMX_QUAL_IO_REP __BIT(5)
1587 #define VMX_QUAL_IO_DX __BIT(6)
1588 #define VMX_QUAL_IO_PORT __BITS(31,16)
1589
1590 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1591 #define IO_ADRSIZE_16 0
1592 #define IO_ADRSIZE_32 1
1593 #define IO_ADRSIZE_64 2
1594 #define VMX_INFO_IO_SEG __BITS(17,15)
1595
1596 static void
1597 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1598 struct nvmm_vcpu_exit *exit)
1599 {
1600 uint64_t qual, info, inslen, rip;
1601
1602 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1603 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1604
1605 exit->reason = NVMM_VCPU_EXIT_IO;
1606
1607 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1608 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1609
1610 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1611 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1612
1613 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1614 exit->u.io.address_size = 8;
1615 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1616 exit->u.io.address_size = 4;
1617 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1618 exit->u.io.address_size = 2;
1619 }
1620
1621 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1622 exit->u.io.operand_size = 4;
1623 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1624 exit->u.io.operand_size = 2;
1625 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1626 exit->u.io.operand_size = 1;
1627 }
1628
1629 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1630 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1631
1632 if (exit->u.io.in && exit->u.io.str) {
1633 exit->u.io.seg = NVMM_X64_SEG_ES;
1634 }
1635
1636 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1637 rip = vmx_vmread(VMCS_GUEST_RIP);
1638 exit->u.io.npc = rip + inslen;
1639
1640 vmx_vcpu_state_provide(vcpu,
1641 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1642 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1643 }
1644
1645 static const uint64_t msr_ignore_list[] = {
1646 MSR_BIOS_SIGN,
1647 MSR_IA32_PLATFORM_ID
1648 };
1649
1650 static bool
1651 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1652 struct nvmm_vcpu_exit *exit)
1653 {
1654 struct vmx_cpudata *cpudata = vcpu->cpudata;
1655 uint64_t val;
1656 size_t i;
1657
1658 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1659 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1660 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1661 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1662 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1663 goto handled;
1664 }
1665 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1666 val = cpudata->gmsr_misc_enable;
1667 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1668 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1669 goto handled;
1670 }
1671 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1672 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1673 continue;
1674 val = 0;
1675 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1676 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1677 goto handled;
1678 }
1679 } else {
1680 if (exit->u.wrmsr.msr == MSR_TSC) {
1681 cpudata->gtsc = exit->u.wrmsr.val;
1682 cpudata->gtsc_want_update = true;
1683 goto handled;
1684 }
1685 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1686 val = exit->u.wrmsr.val;
1687 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1688 goto error;
1689 }
1690 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1691 goto handled;
1692 }
1693 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1694 /* Don't care. */
1695 goto handled;
1696 }
1697 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1698 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1699 continue;
1700 goto handled;
1701 }
1702 }
1703
1704 return false;
1705
1706 handled:
1707 vmx_inkernel_advance();
1708 return true;
1709
1710 error:
1711 vmx_inject_gp(vcpu);
1712 return true;
1713 }
1714
1715 static void
1716 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1717 struct nvmm_vcpu_exit *exit)
1718 {
1719 struct vmx_cpudata *cpudata = vcpu->cpudata;
1720 uint64_t inslen, rip;
1721
1722 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1723 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1724
1725 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1726 exit->reason = NVMM_VCPU_EXIT_NONE;
1727 return;
1728 }
1729
1730 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1731 rip = vmx_vmread(VMCS_GUEST_RIP);
1732 exit->u.rdmsr.npc = rip + inslen;
1733
1734 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1735 }
1736
1737 static void
1738 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1739 struct nvmm_vcpu_exit *exit)
1740 {
1741 struct vmx_cpudata *cpudata = vcpu->cpudata;
1742 uint64_t rdx, rax, inslen, rip;
1743
1744 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1745 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1746
1747 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1748 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1749 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1750
1751 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1752 exit->reason = NVMM_VCPU_EXIT_NONE;
1753 return;
1754 }
1755
1756 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1757 rip = vmx_vmread(VMCS_GUEST_RIP);
1758 exit->u.wrmsr.npc = rip + inslen;
1759
1760 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1761 }
1762
1763 static void
1764 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1765 struct nvmm_vcpu_exit *exit)
1766 {
1767 struct vmx_cpudata *cpudata = vcpu->cpudata;
1768 uint64_t val;
1769
1770 exit->reason = NVMM_VCPU_EXIT_NONE;
1771
1772 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1773 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1774
1775 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1776 goto error;
1777 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1778 goto error;
1779 } else if (__predict_false((val & XCR0_X87) == 0)) {
1780 goto error;
1781 }
1782
1783 cpudata->gxcr0 = val;
1784 if (vmx_xcr0_mask != 0) {
1785 wrxcr(0, cpudata->gxcr0);
1786 }
1787
1788 vmx_inkernel_advance();
1789 return;
1790
1791 error:
1792 vmx_inject_gp(vcpu);
1793 }
1794
1795 #define VMX_EPT_VIOLATION_READ __BIT(0)
1796 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1797 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1798
1799 static void
1800 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1801 struct nvmm_vcpu_exit *exit)
1802 {
1803 uint64_t perm;
1804 gpaddr_t gpa;
1805
1806 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1807
1808 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1809 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1810 if (perm & VMX_EPT_VIOLATION_WRITE)
1811 exit->u.mem.prot = PROT_WRITE;
1812 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1813 exit->u.mem.prot = PROT_EXEC;
1814 else
1815 exit->u.mem.prot = PROT_READ;
1816 exit->u.mem.gpa = gpa;
1817 exit->u.mem.inst_len = 0;
1818
1819 vmx_vcpu_state_provide(vcpu,
1820 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1821 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1822 }
1823
1824 /* -------------------------------------------------------------------------- */
1825
1826 static void
1827 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1828 {
1829 struct vmx_cpudata *cpudata = vcpu->cpudata;
1830
1831 fpu_save();
1832 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1833
1834 if (vmx_xcr0_mask != 0) {
1835 cpudata->hxcr0 = rdxcr(0);
1836 wrxcr(0, cpudata->gxcr0);
1837 }
1838 }
1839
1840 static void
1841 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1842 {
1843 struct vmx_cpudata *cpudata = vcpu->cpudata;
1844
1845 if (vmx_xcr0_mask != 0) {
1846 cpudata->gxcr0 = rdxcr(0);
1847 wrxcr(0, cpudata->hxcr0);
1848 }
1849
1850 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1851 }
1852
1853 static void
1854 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1855 {
1856 struct vmx_cpudata *cpudata = vcpu->cpudata;
1857
1858 x86_dbregs_save(curlwp);
1859
1860 ldr7(0);
1861
1862 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1863 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1864 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1865 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1866 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1867 }
1868
1869 static void
1870 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1871 {
1872 struct vmx_cpudata *cpudata = vcpu->cpudata;
1873
1874 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1875 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1876 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1877 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1878 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1879
1880 x86_dbregs_restore(curlwp);
1881 }
1882
1883 static void
1884 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1885 {
1886 struct vmx_cpudata *cpudata = vcpu->cpudata;
1887
1888 /* This gets restored automatically by the CPU. */
1889 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1890 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1891 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1892
1893 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1894 }
1895
1896 static void
1897 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1898 {
1899 struct vmx_cpudata *cpudata = vcpu->cpudata;
1900
1901 wrmsr(MSR_STAR, cpudata->star);
1902 wrmsr(MSR_LSTAR, cpudata->lstar);
1903 wrmsr(MSR_CSTAR, cpudata->cstar);
1904 wrmsr(MSR_SFMASK, cpudata->sfmask);
1905 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1906 }
1907
1908 /* -------------------------------------------------------------------------- */
1909
1910 #define VMX_INVVPID_ADDRESS 0
1911 #define VMX_INVVPID_CONTEXT 1
1912 #define VMX_INVVPID_ALL 2
1913 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1914
1915 #define VMX_INVEPT_CONTEXT 1
1916 #define VMX_INVEPT_ALL 2
1917
1918 static inline void
1919 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1920 {
1921 struct vmx_cpudata *cpudata = vcpu->cpudata;
1922
1923 if (vcpu->hcpu_last != hcpu) {
1924 cpudata->gtlb_want_flush = true;
1925 }
1926 }
1927
1928 static inline void
1929 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1930 {
1931 struct vmx_cpudata *cpudata = vcpu->cpudata;
1932 struct ept_desc ept_desc;
1933
1934 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1935 return;
1936 }
1937
1938 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1939 ept_desc.mbz = 0;
1940 vmx_invept(vmx_ept_flush_op, &ept_desc);
1941 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1942 }
1943
1944 static inline uint64_t
1945 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1946 {
1947 struct ept_desc ept_desc;
1948 uint64_t machgen;
1949
1950 machgen = machdata->mach_htlb_gen;
1951 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1952 return machgen;
1953 }
1954
1955 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1956
1957 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1958 ept_desc.mbz = 0;
1959 vmx_invept(vmx_ept_flush_op, &ept_desc);
1960
1961 return machgen;
1962 }
1963
1964 static inline void
1965 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1966 {
1967 cpudata->vcpu_htlb_gen = machgen;
1968 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1969 }
1970
1971 static inline void
1972 vmx_exit_evt(struct vmx_cpudata *cpudata)
1973 {
1974 uint64_t info, err, inslen;
1975
1976 cpudata->evt_pending = false;
1977
1978 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1979 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1980 return;
1981 }
1982 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1983
1984 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1985 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1986
1987 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
1988 case INTR_TYPE_SW_INT:
1989 case INTR_TYPE_PRIV_SW_EXC:
1990 case INTR_TYPE_SW_EXC:
1991 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1992 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
1993 }
1994
1995 cpudata->evt_pending = true;
1996 }
1997
1998 static int
1999 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2000 struct nvmm_vcpu_exit *exit)
2001 {
2002 struct nvmm_comm_page *comm = vcpu->comm;
2003 struct vmx_machdata *machdata = mach->machdata;
2004 struct vmx_cpudata *cpudata = vcpu->cpudata;
2005 struct vpid_desc vpid_desc;
2006 struct cpu_info *ci;
2007 uint64_t exitcode;
2008 uint64_t intstate;
2009 uint64_t machgen;
2010 int hcpu, s, ret;
2011 bool launched;
2012
2013 vmx_vmcs_enter(vcpu);
2014
2015 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2016 vmx_vmcs_leave(vcpu);
2017 return EINVAL;
2018 }
2019 vmx_vcpu_state_commit(vcpu);
2020 comm->state_cached = 0;
2021
2022 ci = curcpu();
2023 hcpu = cpu_number();
2024 launched = cpudata->vmcs_launched;
2025
2026 vmx_gtlb_catchup(vcpu, hcpu);
2027 vmx_htlb_catchup(vcpu, hcpu);
2028
2029 if (vcpu->hcpu_last != hcpu) {
2030 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2031 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2032 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2033 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2034 cpudata->gtsc_want_update = true;
2035 vcpu->hcpu_last = hcpu;
2036 }
2037
2038 vmx_vcpu_guest_dbregs_enter(vcpu);
2039 vmx_vcpu_guest_misc_enter(vcpu);
2040 vmx_vcpu_guest_fpu_enter(vcpu);
2041
2042 while (1) {
2043 if (cpudata->gtlb_want_flush) {
2044 vpid_desc.vpid = cpudata->asid;
2045 vpid_desc.addr = 0;
2046 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2047 cpudata->gtlb_want_flush = false;
2048 }
2049
2050 if (__predict_false(cpudata->gtsc_want_update)) {
2051 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2052 cpudata->gtsc_want_update = false;
2053 }
2054
2055 s = splhigh();
2056 machgen = vmx_htlb_flush(machdata, cpudata);
2057 lcr2(cpudata->gcr2);
2058 if (launched) {
2059 ret = vmx_vmresume(cpudata->gprs);
2060 } else {
2061 ret = vmx_vmlaunch(cpudata->gprs);
2062 }
2063 cpudata->gcr2 = rcr2();
2064 vmx_htlb_flush_ack(cpudata, machgen);
2065 splx(s);
2066
2067 if (__predict_false(ret != 0)) {
2068 vmx_exit_invalid(exit, -1);
2069 break;
2070 }
2071 vmx_exit_evt(cpudata);
2072
2073 launched = true;
2074
2075 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2076 exitcode &= __BITS(15,0);
2077
2078 switch (exitcode) {
2079 case VMCS_EXITCODE_EXC_NMI:
2080 vmx_exit_exc_nmi(mach, vcpu, exit);
2081 break;
2082 case VMCS_EXITCODE_EXT_INT:
2083 exit->reason = NVMM_VCPU_EXIT_NONE;
2084 break;
2085 case VMCS_EXITCODE_CPUID:
2086 vmx_exit_cpuid(mach, vcpu, exit);
2087 break;
2088 case VMCS_EXITCODE_HLT:
2089 vmx_exit_hlt(mach, vcpu, exit);
2090 break;
2091 case VMCS_EXITCODE_CR:
2092 vmx_exit_cr(mach, vcpu, exit);
2093 break;
2094 case VMCS_EXITCODE_IO:
2095 vmx_exit_io(mach, vcpu, exit);
2096 break;
2097 case VMCS_EXITCODE_RDMSR:
2098 vmx_exit_rdmsr(mach, vcpu, exit);
2099 break;
2100 case VMCS_EXITCODE_WRMSR:
2101 vmx_exit_wrmsr(mach, vcpu, exit);
2102 break;
2103 case VMCS_EXITCODE_SHUTDOWN:
2104 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2105 break;
2106 case VMCS_EXITCODE_MONITOR:
2107 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2108 break;
2109 case VMCS_EXITCODE_MWAIT:
2110 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2111 break;
2112 case VMCS_EXITCODE_XSETBV:
2113 vmx_exit_xsetbv(mach, vcpu, exit);
2114 break;
2115 case VMCS_EXITCODE_RDPMC:
2116 case VMCS_EXITCODE_RDTSCP:
2117 case VMCS_EXITCODE_INVVPID:
2118 case VMCS_EXITCODE_INVEPT:
2119 case VMCS_EXITCODE_VMCALL:
2120 case VMCS_EXITCODE_VMCLEAR:
2121 case VMCS_EXITCODE_VMLAUNCH:
2122 case VMCS_EXITCODE_VMPTRLD:
2123 case VMCS_EXITCODE_VMPTRST:
2124 case VMCS_EXITCODE_VMREAD:
2125 case VMCS_EXITCODE_VMRESUME:
2126 case VMCS_EXITCODE_VMWRITE:
2127 case VMCS_EXITCODE_VMXOFF:
2128 case VMCS_EXITCODE_VMXON:
2129 vmx_inject_ud(vcpu);
2130 exit->reason = NVMM_VCPU_EXIT_NONE;
2131 break;
2132 case VMCS_EXITCODE_EPT_VIOLATION:
2133 vmx_exit_epf(mach, vcpu, exit);
2134 break;
2135 case VMCS_EXITCODE_INT_WINDOW:
2136 vmx_event_waitexit_disable(vcpu, false);
2137 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2138 break;
2139 case VMCS_EXITCODE_NMI_WINDOW:
2140 vmx_event_waitexit_disable(vcpu, true);
2141 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2142 break;
2143 default:
2144 vmx_exit_invalid(exit, exitcode);
2145 break;
2146 }
2147
2148 /* If no reason to return to userland, keep rolling. */
2149 if (preempt_needed()) {
2150 break;
2151 }
2152 if (curlwp->l_flag & LW_USERRET) {
2153 break;
2154 }
2155 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2156 break;
2157 }
2158 }
2159
2160 cpudata->vmcs_launched = launched;
2161
2162 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2163
2164 vmx_vcpu_guest_fpu_leave(vcpu);
2165 vmx_vcpu_guest_misc_leave(vcpu);
2166 vmx_vcpu_guest_dbregs_leave(vcpu);
2167
2168 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2169 exit->exitstate.cr8 = cpudata->gcr8;
2170 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2171 exit->exitstate.int_shadow =
2172 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2173 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2174 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2175 exit->exitstate.evt_pending = cpudata->evt_pending;
2176
2177 vmx_vmcs_leave(vcpu);
2178
2179 return 0;
2180 }
2181
2182 /* -------------------------------------------------------------------------- */
2183
2184 static int
2185 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2186 {
2187 struct pglist pglist;
2188 paddr_t _pa;
2189 vaddr_t _va;
2190 size_t i;
2191 int ret;
2192
2193 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2194 &pglist, 1, 0);
2195 if (ret != 0)
2196 return ENOMEM;
2197 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2198 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2199 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2200 if (_va == 0)
2201 goto error;
2202
2203 for (i = 0; i < npages; i++) {
2204 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2205 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2206 }
2207 pmap_update(pmap_kernel());
2208
2209 memset((void *)_va, 0, npages * PAGE_SIZE);
2210
2211 *pa = _pa;
2212 *va = _va;
2213 return 0;
2214
2215 error:
2216 for (i = 0; i < npages; i++) {
2217 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2218 }
2219 return ENOMEM;
2220 }
2221
2222 static void
2223 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2224 {
2225 size_t i;
2226
2227 pmap_kremove(va, npages * PAGE_SIZE);
2228 pmap_update(pmap_kernel());
2229 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2230 for (i = 0; i < npages; i++) {
2231 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2232 }
2233 }
2234
2235 /* -------------------------------------------------------------------------- */
2236
2237 static void
2238 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2239 {
2240 uint64_t byte;
2241 uint8_t bitoff;
2242
2243 if (msr < 0x00002000) {
2244 /* Range 1 */
2245 byte = ((msr - 0x00000000) / 8) + 0;
2246 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2247 /* Range 2 */
2248 byte = ((msr - 0xC0000000) / 8) + 1024;
2249 } else {
2250 panic("%s: wrong range", __func__);
2251 }
2252
2253 bitoff = (msr & 0x7);
2254
2255 if (read) {
2256 bitmap[byte] &= ~__BIT(bitoff);
2257 }
2258 if (write) {
2259 bitmap[2048 + byte] &= ~__BIT(bitoff);
2260 }
2261 }
2262
2263 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2264 #define VMX_SEG_ATTRIB_S __BIT(4)
2265 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2266 #define VMX_SEG_ATTRIB_P __BIT(7)
2267 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2268 #define VMX_SEG_ATTRIB_L __BIT(13)
2269 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2270 #define VMX_SEG_ATTRIB_G __BIT(15)
2271 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2272
2273 static void
2274 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2275 {
2276 uint64_t attrib;
2277
2278 attrib =
2279 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2280 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2281 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2282 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2283 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2284 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2285 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2286 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2287 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2288
2289 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2290 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2291 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2292 }
2293 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2294 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2295 }
2296
2297 static void
2298 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2299 {
2300 uint64_t selector = 0, attrib = 0, base, limit;
2301
2302 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2303 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2304 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2305 }
2306 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2307 base = vmx_vmread(vmx_guest_segs[idx].base);
2308
2309 segs[idx].selector = selector;
2310 segs[idx].limit = limit;
2311 segs[idx].base = base;
2312 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2313 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2314 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2315 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2316 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2317 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2318 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2319 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2320 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2321 segs[idx].attrib.p = 0;
2322 }
2323 }
2324
2325 static inline bool
2326 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2327 {
2328 uint64_t cr0, cr3, cr4, efer;
2329
2330 if (flags & NVMM_X64_STATE_CRS) {
2331 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2332 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2333 return true;
2334 }
2335 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2336 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2337 return true;
2338 }
2339 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2340 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2341 return true;
2342 }
2343 }
2344
2345 if (flags & NVMM_X64_STATE_MSRS) {
2346 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2347 if ((efer ^
2348 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2349 return true;
2350 }
2351 }
2352
2353 return false;
2354 }
2355
2356 static void
2357 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2358 {
2359 struct nvmm_comm_page *comm = vcpu->comm;
2360 const struct nvmm_x64_state *state = &comm->state;
2361 struct vmx_cpudata *cpudata = vcpu->cpudata;
2362 struct fxsave *fpustate;
2363 uint64_t ctls1, intstate;
2364 uint64_t flags;
2365
2366 flags = comm->state_wanted;
2367
2368 vmx_vmcs_enter(vcpu);
2369
2370 if (vmx_state_tlb_flush(state, flags)) {
2371 cpudata->gtlb_want_flush = true;
2372 }
2373
2374 if (flags & NVMM_X64_STATE_SEGS) {
2375 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2376 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2377 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2378 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2379 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2380 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2381 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2382 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2383 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2384 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2385 }
2386
2387 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2388 if (flags & NVMM_X64_STATE_GPRS) {
2389 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2390
2391 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2392 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2393 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2394 }
2395
2396 if (flags & NVMM_X64_STATE_CRS) {
2397 /*
2398 * CR0_NE and CR4_VMXE are mandatory.
2399 */
2400 vmx_vmwrite(VMCS_GUEST_CR0,
2401 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2402 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2403 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2404 vmx_vmwrite(VMCS_GUEST_CR4,
2405 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2406 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2407
2408 if (vmx_xcr0_mask != 0) {
2409 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2410 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2411 cpudata->gxcr0 &= vmx_xcr0_mask;
2412 cpudata->gxcr0 |= XCR0_X87;
2413 }
2414 }
2415
2416 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2417 if (flags & NVMM_X64_STATE_DRS) {
2418 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2419
2420 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2421 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2422 }
2423
2424 if (flags & NVMM_X64_STATE_MSRS) {
2425 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2426 state->msrs[NVMM_X64_MSR_STAR];
2427 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2428 state->msrs[NVMM_X64_MSR_LSTAR];
2429 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2430 state->msrs[NVMM_X64_MSR_CSTAR];
2431 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2432 state->msrs[NVMM_X64_MSR_SFMASK];
2433 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2434 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2435
2436 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2437 state->msrs[NVMM_X64_MSR_EFER]);
2438 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2439 state->msrs[NVMM_X64_MSR_PAT]);
2440 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2441 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2442 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2443 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2444 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2445 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2446
2447 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2448 cpudata->gtsc_want_update = true;
2449
2450 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2451 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2452 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2453 ctls1 |= ENTRY_CTLS_LONG_MODE;
2454 } else {
2455 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2456 }
2457 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2458 }
2459
2460 if (flags & NVMM_X64_STATE_INTR) {
2461 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2462 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2463 if (state->intr.int_shadow) {
2464 intstate |= INT_STATE_MOVSS;
2465 }
2466 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2467
2468 if (state->intr.int_window_exiting) {
2469 vmx_event_waitexit_enable(vcpu, false);
2470 } else {
2471 vmx_event_waitexit_disable(vcpu, false);
2472 }
2473
2474 if (state->intr.nmi_window_exiting) {
2475 vmx_event_waitexit_enable(vcpu, true);
2476 } else {
2477 vmx_event_waitexit_disable(vcpu, true);
2478 }
2479 }
2480
2481 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2482 if (flags & NVMM_X64_STATE_FPU) {
2483 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2484 sizeof(state->fpu));
2485
2486 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2487 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2488 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2489
2490 if (vmx_xcr0_mask != 0) {
2491 /* Reset XSTATE_BV, to force a reload. */
2492 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2493 }
2494 }
2495
2496 vmx_vmcs_leave(vcpu);
2497
2498 comm->state_wanted = 0;
2499 comm->state_cached |= flags;
2500 }
2501
2502 static void
2503 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2504 {
2505 struct nvmm_comm_page *comm = vcpu->comm;
2506 struct nvmm_x64_state *state = &comm->state;
2507 struct vmx_cpudata *cpudata = vcpu->cpudata;
2508 uint64_t intstate, flags;
2509
2510 flags = comm->state_wanted;
2511
2512 vmx_vmcs_enter(vcpu);
2513
2514 if (flags & NVMM_X64_STATE_SEGS) {
2515 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2516 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2517 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2518 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2519 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2520 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2521 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2522 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2523 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2524 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2525 }
2526
2527 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2528 if (flags & NVMM_X64_STATE_GPRS) {
2529 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2530
2531 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2532 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2533 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2534 }
2535
2536 if (flags & NVMM_X64_STATE_CRS) {
2537 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2538 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2539 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2540 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2541 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2542 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2543
2544 /* Hide VMXE. */
2545 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2546 }
2547
2548 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2549 if (flags & NVMM_X64_STATE_DRS) {
2550 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2551
2552 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2553 }
2554
2555 if (flags & NVMM_X64_STATE_MSRS) {
2556 state->msrs[NVMM_X64_MSR_STAR] =
2557 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2558 state->msrs[NVMM_X64_MSR_LSTAR] =
2559 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2560 state->msrs[NVMM_X64_MSR_CSTAR] =
2561 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2562 state->msrs[NVMM_X64_MSR_SFMASK] =
2563 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2564 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2565 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2566 state->msrs[NVMM_X64_MSR_EFER] =
2567 vmx_vmread(VMCS_GUEST_IA32_EFER);
2568 state->msrs[NVMM_X64_MSR_PAT] =
2569 vmx_vmread(VMCS_GUEST_IA32_PAT);
2570 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2571 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2572 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2573 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2574 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2575 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2576 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2577 }
2578
2579 if (flags & NVMM_X64_STATE_INTR) {
2580 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2581 state->intr.int_shadow =
2582 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2583 state->intr.int_window_exiting = cpudata->int_window_exit;
2584 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2585 state->intr.evt_pending = cpudata->evt_pending;
2586 }
2587
2588 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2589 if (flags & NVMM_X64_STATE_FPU) {
2590 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2591 sizeof(state->fpu));
2592 }
2593
2594 vmx_vmcs_leave(vcpu);
2595
2596 comm->state_wanted = 0;
2597 comm->state_cached |= flags;
2598 }
2599
2600 static void
2601 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2602 {
2603 vcpu->comm->state_wanted = flags;
2604 vmx_vcpu_getstate(vcpu);
2605 }
2606
2607 static void
2608 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2609 {
2610 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2611 vcpu->comm->state_commit = 0;
2612 vmx_vcpu_setstate(vcpu);
2613 }
2614
2615 /* -------------------------------------------------------------------------- */
2616
2617 static void
2618 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2619 {
2620 struct vmx_cpudata *cpudata = vcpu->cpudata;
2621 size_t i, oct, bit;
2622
2623 mutex_enter(&vmx_asidlock);
2624
2625 for (i = 0; i < vmx_maxasid; i++) {
2626 oct = i / 8;
2627 bit = i % 8;
2628
2629 if (vmx_asidmap[oct] & __BIT(bit)) {
2630 continue;
2631 }
2632
2633 cpudata->asid = i;
2634
2635 vmx_asidmap[oct] |= __BIT(bit);
2636 vmx_vmwrite(VMCS_VPID, i);
2637 mutex_exit(&vmx_asidlock);
2638 return;
2639 }
2640
2641 mutex_exit(&vmx_asidlock);
2642
2643 panic("%s: impossible", __func__);
2644 }
2645
2646 static void
2647 vmx_asid_free(struct nvmm_cpu *vcpu)
2648 {
2649 size_t oct, bit;
2650 uint64_t asid;
2651
2652 asid = vmx_vmread(VMCS_VPID);
2653
2654 oct = asid / 8;
2655 bit = asid % 8;
2656
2657 mutex_enter(&vmx_asidlock);
2658 vmx_asidmap[oct] &= ~__BIT(bit);
2659 mutex_exit(&vmx_asidlock);
2660 }
2661
2662 static void
2663 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2664 {
2665 struct vmx_cpudata *cpudata = vcpu->cpudata;
2666 struct vmcs *vmcs = cpudata->vmcs;
2667 struct msr_entry *gmsr = cpudata->gmsr;
2668 extern uint8_t vmx_resume_rip;
2669 uint64_t rev, eptp;
2670
2671 rev = vmx_get_revision();
2672
2673 memset(vmcs, 0, VMCS_SIZE);
2674 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2675 vmcs->abort = 0;
2676
2677 vmx_vmcs_enter(vcpu);
2678
2679 /* No link pointer. */
2680 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2681
2682 /* Install the CTLSs. */
2683 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2684 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2685 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2686 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2687 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2688
2689 /* Allow direct access to certain MSRs. */
2690 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2691 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2692 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2693 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2694 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2695 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2696 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2697 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2698 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2699 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2700 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2701 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2702 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2703 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2704 true, false);
2705 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2706
2707 /*
2708 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2709 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2710 */
2711 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2712 gmsr[VMX_MSRLIST_STAR].val = 0;
2713 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2714 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2715 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2716 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2717 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2718 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2719 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2720 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2721 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2722 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2723 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2724 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2725 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2726 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2727
2728 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2729 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2730 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2731
2732 /* Force CR4_VMXE to zero. */
2733 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2734
2735 /* Set the Host state for resuming. */
2736 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2737 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2738 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2739 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2740 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2741 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2742 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2743 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2744 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2745 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2746 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2747 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2748 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2749 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2750
2751 /* Generate ASID. */
2752 vmx_asid_alloc(vcpu);
2753
2754 /* Enable Extended Paging, 4-Level. */
2755 eptp =
2756 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2757 __SHIFTIN(4-1, EPTP_WALKLEN) |
2758 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2759 mach->vm->vm_map.pmap->pm_pdirpa[0];
2760 vmx_vmwrite(VMCS_EPTP, eptp);
2761
2762 /* Init IA32_MISC_ENABLE. */
2763 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2764 cpudata->gmsr_misc_enable &=
2765 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2766 cpudata->gmsr_misc_enable |=
2767 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2768
2769 /* Init XSAVE header. */
2770 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2771 cpudata->gfpu.xsh_xcomp_bv = 0;
2772
2773 /* These MSRs are static. */
2774 cpudata->star = rdmsr(MSR_STAR);
2775 cpudata->lstar = rdmsr(MSR_LSTAR);
2776 cpudata->cstar = rdmsr(MSR_CSTAR);
2777 cpudata->sfmask = rdmsr(MSR_SFMASK);
2778
2779 /* Install the RESET state. */
2780 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2781 sizeof(nvmm_x86_reset_state));
2782 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2783 vcpu->comm->state_cached = 0;
2784 vmx_vcpu_setstate(vcpu);
2785
2786 vmx_vmcs_leave(vcpu);
2787 }
2788
2789 static int
2790 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2791 {
2792 struct vmx_cpudata *cpudata;
2793 int error;
2794
2795 /* Allocate the VMX cpudata. */
2796 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2797 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2798 UVM_KMF_WIRED|UVM_KMF_ZERO);
2799 vcpu->cpudata = cpudata;
2800
2801 /* VMCS */
2802 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2803 VMCS_NPAGES);
2804 if (error)
2805 goto error;
2806
2807 /* MSR Bitmap */
2808 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2809 MSRBM_NPAGES);
2810 if (error)
2811 goto error;
2812
2813 /* Guest MSR List */
2814 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2815 if (error)
2816 goto error;
2817
2818 kcpuset_create(&cpudata->htlb_want_flush, true);
2819
2820 /* Init the VCPU info. */
2821 vmx_vcpu_init(mach, vcpu);
2822
2823 return 0;
2824
2825 error:
2826 if (cpudata->vmcs_pa) {
2827 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2828 VMCS_NPAGES);
2829 }
2830 if (cpudata->msrbm_pa) {
2831 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2832 MSRBM_NPAGES);
2833 }
2834 if (cpudata->gmsr_pa) {
2835 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2836 }
2837
2838 kmem_free(cpudata, sizeof(*cpudata));
2839 return error;
2840 }
2841
2842 static void
2843 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2844 {
2845 struct vmx_cpudata *cpudata = vcpu->cpudata;
2846
2847 vmx_vmcs_enter(vcpu);
2848 vmx_asid_free(vcpu);
2849 vmx_vmcs_destroy(vcpu);
2850
2851 kcpuset_destroy(cpudata->htlb_want_flush);
2852
2853 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2854 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2855 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2856 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2857 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2858 }
2859
2860 /* -------------------------------------------------------------------------- */
2861
2862 static int
2863 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2864 {
2865 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2866 size_t i;
2867
2868 if (__predict_false(cpuid->mask && cpuid->exit)) {
2869 return EINVAL;
2870 }
2871 if (__predict_false(cpuid->mask &&
2872 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2873 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2874 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2875 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2876 return EINVAL;
2877 }
2878
2879 /* If unset, delete, to restore the default behavior. */
2880 if (!cpuid->mask && !cpuid->exit) {
2881 for (i = 0; i < VMX_NCPUIDS; i++) {
2882 if (!cpudata->cpuidpresent[i]) {
2883 continue;
2884 }
2885 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2886 cpudata->cpuidpresent[i] = false;
2887 }
2888 }
2889 return 0;
2890 }
2891
2892 /* If already here, replace. */
2893 for (i = 0; i < VMX_NCPUIDS; i++) {
2894 if (!cpudata->cpuidpresent[i]) {
2895 continue;
2896 }
2897 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2898 memcpy(&cpudata->cpuid[i], cpuid,
2899 sizeof(struct nvmm_vcpu_conf_cpuid));
2900 return 0;
2901 }
2902 }
2903
2904 /* Not here, insert. */
2905 for (i = 0; i < VMX_NCPUIDS; i++) {
2906 if (!cpudata->cpuidpresent[i]) {
2907 cpudata->cpuidpresent[i] = true;
2908 memcpy(&cpudata->cpuid[i], cpuid,
2909 sizeof(struct nvmm_vcpu_conf_cpuid));
2910 return 0;
2911 }
2912 }
2913
2914 return ENOBUFS;
2915 }
2916
2917 static int
2918 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2919 {
2920 struct nvmm_vcpu_conf_tpr *tpr = data;
2921
2922 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2923 return 0;
2924 }
2925
2926 static int
2927 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2928 {
2929 struct vmx_cpudata *cpudata = vcpu->cpudata;
2930
2931 switch (op) {
2932 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2933 return vmx_vcpu_configure_cpuid(cpudata, data);
2934 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2935 return vmx_vcpu_configure_tpr(cpudata, data);
2936 default:
2937 return EINVAL;
2938 }
2939 }
2940
2941 /* -------------------------------------------------------------------------- */
2942
2943 static void
2944 vmx_tlb_flush(struct pmap *pm)
2945 {
2946 struct nvmm_machine *mach = pm->pm_data;
2947 struct vmx_machdata *machdata = mach->machdata;
2948
2949 atomic_inc_64(&machdata->mach_htlb_gen);
2950
2951 /* Generates IPIs, which cause #VMEXITs. */
2952 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2953 }
2954
2955 static void
2956 vmx_machine_create(struct nvmm_machine *mach)
2957 {
2958 struct pmap *pmap = mach->vm->vm_map.pmap;
2959 struct vmx_machdata *machdata;
2960
2961 /* Convert to EPT. */
2962 pmap_ept_transform(pmap);
2963
2964 /* Fill in pmap info. */
2965 pmap->pm_data = (void *)mach;
2966 pmap->pm_tlb_flush = vmx_tlb_flush;
2967
2968 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2969 mach->machdata = machdata;
2970
2971 /* Start with an hTLB flush everywhere. */
2972 machdata->mach_htlb_gen = 1;
2973 }
2974
2975 static void
2976 vmx_machine_destroy(struct nvmm_machine *mach)
2977 {
2978 struct vmx_machdata *machdata = mach->machdata;
2979
2980 kmem_free(machdata, sizeof(struct vmx_machdata));
2981 }
2982
2983 static int
2984 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2985 {
2986 panic("%s: impossible", __func__);
2987 }
2988
2989 /* -------------------------------------------------------------------------- */
2990
2991 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2992 ((msrval & __BIT(32 + bitoff)) != 0)
2993 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2994 ((msrval & __BIT(bitoff)) == 0)
2995
2996 static int
2997 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
2998 {
2999 uint64_t basic, val, true_val;
3000 bool has_true;
3001 size_t i;
3002
3003 basic = rdmsr(MSR_IA32_VMX_BASIC);
3004 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3005
3006 val = rdmsr(msr_ctls);
3007 if (has_true) {
3008 true_val = rdmsr(msr_true_ctls);
3009 } else {
3010 true_val = val;
3011 }
3012
3013 for (i = 0; i < 32; i++) {
3014 if (!(set_one & __BIT(i))) {
3015 continue;
3016 }
3017 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3018 return -1;
3019 }
3020 }
3021
3022 return 0;
3023 }
3024
3025 static int
3026 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3027 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3028 {
3029 uint64_t basic, val, true_val;
3030 bool one_allowed, zero_allowed, has_true;
3031 size_t i;
3032
3033 basic = rdmsr(MSR_IA32_VMX_BASIC);
3034 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3035
3036 val = rdmsr(msr_ctls);
3037 if (has_true) {
3038 true_val = rdmsr(msr_true_ctls);
3039 } else {
3040 true_val = val;
3041 }
3042
3043 for (i = 0; i < 32; i++) {
3044 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3045 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3046
3047 if (zero_allowed && !one_allowed) {
3048 if (set_one & __BIT(i))
3049 return -1;
3050 *res &= ~__BIT(i);
3051 } else if (one_allowed && !zero_allowed) {
3052 if (set_zero & __BIT(i))
3053 return -1;
3054 *res |= __BIT(i);
3055 } else {
3056 if (set_zero & __BIT(i)) {
3057 *res &= ~__BIT(i);
3058 } else if (set_one & __BIT(i)) {
3059 *res |= __BIT(i);
3060 } else if (!has_true) {
3061 *res &= ~__BIT(i);
3062 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3063 *res &= ~__BIT(i);
3064 } else if (CTLS_ONE_ALLOWED(val, i)) {
3065 *res |= __BIT(i);
3066 } else {
3067 return -1;
3068 }
3069 }
3070 }
3071
3072 return 0;
3073 }
3074
3075 static bool
3076 vmx_ident(void)
3077 {
3078 uint64_t msr;
3079 int ret;
3080
3081 if (!(cpu_feature[1] & CPUID2_VMX)) {
3082 return false;
3083 }
3084
3085 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3086 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3087 printf("NVMM: VMX disabled in BIOS\n");
3088 return false;
3089 }
3090 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3091 printf("NVMM: VMX disabled in BIOS\n");
3092 return false;
3093 }
3094
3095 msr = rdmsr(MSR_IA32_VMX_BASIC);
3096 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3097 printf("NVMM: I/O reporting not supported\n");
3098 return false;
3099 }
3100 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3101 printf("NVMM: WB memory not supported\n");
3102 return false;
3103 }
3104
3105 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3106 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3107 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3108 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3109 if (ret == -1) {
3110 printf("NVMM: CR0 requirements not satisfied\n");
3111 return false;
3112 }
3113
3114 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3115 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3116 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3117 if (ret == -1) {
3118 printf("NVMM: CR4 requirements not satisfied\n");
3119 return false;
3120 }
3121
3122 /* Init the CTLSs right now, and check for errors. */
3123 ret = vmx_init_ctls(
3124 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3125 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3126 &vmx_pinbased_ctls);
3127 if (ret == -1) {
3128 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3129 return false;
3130 }
3131 ret = vmx_init_ctls(
3132 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3133 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3134 &vmx_procbased_ctls);
3135 if (ret == -1) {
3136 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3137 return false;
3138 }
3139 ret = vmx_init_ctls(
3140 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3141 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3142 &vmx_procbased_ctls2);
3143 if (ret == -1) {
3144 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3145 return false;
3146 }
3147 ret = vmx_check_ctls(
3148 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3149 PROC_CTLS2_INVPCID_ENABLE);
3150 if (ret != -1) {
3151 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3152 }
3153 ret = vmx_init_ctls(
3154 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3155 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3156 &vmx_entry_ctls);
3157 if (ret == -1) {
3158 printf("NVMM: entry-ctls requirements not satisfied\n");
3159 return false;
3160 }
3161 ret = vmx_init_ctls(
3162 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3163 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3164 &vmx_exit_ctls);
3165 if (ret == -1) {
3166 printf("NVMM: exit-ctls requirements not satisfied\n");
3167 return false;
3168 }
3169
3170 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3171 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3172 printf("NVMM: 4-level page tree not supported\n");
3173 return false;
3174 }
3175 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3176 printf("NVMM: INVEPT not supported\n");
3177 return false;
3178 }
3179 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3180 printf("NVMM: INVVPID not supported\n");
3181 return false;
3182 }
3183 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3184 pmap_ept_has_ad = true;
3185 } else {
3186 pmap_ept_has_ad = false;
3187 }
3188 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3189 printf("NVMM: EPT UC/WB memory types not supported\n");
3190 return false;
3191 }
3192
3193 return true;
3194 }
3195
3196 static void
3197 vmx_init_asid(uint32_t maxasid)
3198 {
3199 size_t allocsz;
3200
3201 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3202
3203 vmx_maxasid = maxasid;
3204 allocsz = roundup(maxasid, 8) / 8;
3205 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3206
3207 /* ASID 0 is reserved for the host. */
3208 vmx_asidmap[0] |= __BIT(0);
3209 }
3210
3211 static void
3212 vmx_change_cpu(void *arg1, void *arg2)
3213 {
3214 struct cpu_info *ci = curcpu();
3215 bool enable = arg1 != NULL;
3216 uint64_t cr4;
3217
3218 if (!enable) {
3219 vmx_vmxoff();
3220 }
3221
3222 cr4 = rcr4();
3223 if (enable) {
3224 cr4 |= CR4_VMXE;
3225 } else {
3226 cr4 &= ~CR4_VMXE;
3227 }
3228 lcr4(cr4);
3229
3230 if (enable) {
3231 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3232 }
3233 }
3234
3235 static void
3236 vmx_init_l1tf(void)
3237 {
3238 u_int descs[4];
3239 uint64_t msr;
3240
3241 if (cpuid_level < 7) {
3242 return;
3243 }
3244
3245 x86_cpuid(7, descs);
3246
3247 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3248 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3249 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3250 /* No mitigation needed. */
3251 return;
3252 }
3253 }
3254
3255 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3256 /* Enable hardware mitigation. */
3257 vmx_msrlist_entry_nmsr += 1;
3258 }
3259 }
3260
3261 static void
3262 vmx_init(void)
3263 {
3264 CPU_INFO_ITERATOR cii;
3265 struct cpu_info *ci;
3266 uint64_t xc, msr;
3267 struct vmxon *vmxon;
3268 uint32_t revision;
3269 paddr_t pa;
3270 vaddr_t va;
3271 int error;
3272
3273 /* Init the ASID bitmap (VPID). */
3274 vmx_init_asid(VPID_MAX);
3275
3276 /* Init the XCR0 mask. */
3277 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3278
3279 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3280 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3281 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3282 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3283 } else {
3284 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3285 }
3286 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3287 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3288 } else {
3289 vmx_ept_flush_op = VMX_INVEPT_ALL;
3290 }
3291 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3292 vmx_eptp_type = EPTP_TYPE_WB;
3293 } else {
3294 vmx_eptp_type = EPTP_TYPE_UC;
3295 }
3296
3297 /* Init the L1TF mitigation. */
3298 vmx_init_l1tf();
3299
3300 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3301 revision = vmx_get_revision();
3302
3303 for (CPU_INFO_FOREACH(cii, ci)) {
3304 error = vmx_memalloc(&pa, &va, 1);
3305 if (error) {
3306 panic("%s: out of memory", __func__);
3307 }
3308 vmxoncpu[cpu_index(ci)].pa = pa;
3309 vmxoncpu[cpu_index(ci)].va = va;
3310
3311 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3312 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3313 }
3314
3315 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3316 xc_wait(xc);
3317 }
3318
3319 static void
3320 vmx_fini_asid(void)
3321 {
3322 size_t allocsz;
3323
3324 allocsz = roundup(vmx_maxasid, 8) / 8;
3325 kmem_free(vmx_asidmap, allocsz);
3326
3327 mutex_destroy(&vmx_asidlock);
3328 }
3329
3330 static void
3331 vmx_fini(void)
3332 {
3333 uint64_t xc;
3334 size_t i;
3335
3336 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3337 xc_wait(xc);
3338
3339 for (i = 0; i < MAXCPUS; i++) {
3340 if (vmxoncpu[i].pa != 0)
3341 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3342 }
3343
3344 vmx_fini_asid();
3345 }
3346
3347 static void
3348 vmx_capability(struct nvmm_capability *cap)
3349 {
3350 cap->arch.mach_conf_support = 0;
3351 cap->arch.vcpu_conf_support =
3352 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3353 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3354 cap->arch.xcr0_mask = vmx_xcr0_mask;
3355 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3356 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3357 }
3358
3359 const struct nvmm_impl nvmm_x86_vmx = {
3360 .ident = vmx_ident,
3361 .init = vmx_init,
3362 .fini = vmx_fini,
3363 .capability = vmx_capability,
3364 .mach_conf_max = NVMM_X86_MACH_NCONF,
3365 .mach_conf_sizes = NULL,
3366 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3367 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3368 .state_size = sizeof(struct nvmm_x64_state),
3369 .machine_create = vmx_machine_create,
3370 .machine_destroy = vmx_machine_destroy,
3371 .machine_configure = vmx_machine_configure,
3372 .vcpu_create = vmx_vcpu_create,
3373 .vcpu_destroy = vmx_vcpu_destroy,
3374 .vcpu_configure = vmx_vcpu_configure,
3375 .vcpu_setstate = vmx_vcpu_setstate,
3376 .vcpu_getstate = vmx_vcpu_getstate,
3377 .vcpu_inject = vmx_vcpu_inject,
3378 .vcpu_run = vmx_vcpu_run
3379 };
3380