nvmm_x86_vmx.c revision 1.57 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.57 2020/05/10 06:24:16 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.57 2020/05/10 06:24:16 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 #ifdef DIAGNOSTIC
139 static inline paddr_t
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153 #endif
154
155 static inline void
156 vmx_vmptrld(paddr_t *pa)
157 {
158 asm volatile (
159 "vmptrld %[pa];"
160 "jz vmx_insn_failvalid;"
161 "jc vmx_insn_failinvalid;"
162 :
163 : [pa] "m" (*pa)
164 : "memory", "cc"
165 );
166 }
167
168 static inline void
169 vmx_vmclear(paddr_t *pa)
170 {
171 asm volatile (
172 "vmclear %[pa];"
173 "jz vmx_insn_failvalid;"
174 "jc vmx_insn_failinvalid;"
175 :
176 : [pa] "m" (*pa)
177 : "memory", "cc"
178 );
179 }
180
181 #define MSR_IA32_FEATURE_CONTROL 0x003A
182 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
183 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
184 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
185
186 #define MSR_IA32_VMX_BASIC 0x0480
187 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
188 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
189 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
190 #define IA32_VMX_BASIC_DUAL __BIT(49)
191 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
192 #define MEM_TYPE_UC 0
193 #define MEM_TYPE_WB 6
194 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
195 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
196
197 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
198 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
199 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
200 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
201 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
202
203 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
204 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
205 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
206 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
207
208 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
209 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
210 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
211 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
212
213 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
214 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
215 #define IA32_VMX_EPT_VPID_UC __BIT(8)
216 #define IA32_VMX_EPT_VPID_WB __BIT(14)
217 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
218 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
219 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
220 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
221 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
222 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
223 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
224 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
225 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
226
227 /* -------------------------------------------------------------------------- */
228
229 /* 16-bit control fields */
230 #define VMCS_VPID 0x00000000
231 #define VMCS_PIR_VECTOR 0x00000002
232 #define VMCS_EPTP_INDEX 0x00000004
233 /* 16-bit guest-state fields */
234 #define VMCS_GUEST_ES_SELECTOR 0x00000800
235 #define VMCS_GUEST_CS_SELECTOR 0x00000802
236 #define VMCS_GUEST_SS_SELECTOR 0x00000804
237 #define VMCS_GUEST_DS_SELECTOR 0x00000806
238 #define VMCS_GUEST_FS_SELECTOR 0x00000808
239 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
240 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
241 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
242 #define VMCS_GUEST_INTR_STATUS 0x00000810
243 #define VMCS_PML_INDEX 0x00000812
244 /* 16-bit host-state fields */
245 #define VMCS_HOST_ES_SELECTOR 0x00000C00
246 #define VMCS_HOST_CS_SELECTOR 0x00000C02
247 #define VMCS_HOST_SS_SELECTOR 0x00000C04
248 #define VMCS_HOST_DS_SELECTOR 0x00000C06
249 #define VMCS_HOST_FS_SELECTOR 0x00000C08
250 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
251 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
252 /* 64-bit control fields */
253 #define VMCS_IO_BITMAP_A 0x00002000
254 #define VMCS_IO_BITMAP_B 0x00002002
255 #define VMCS_MSR_BITMAP 0x00002004
256 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
257 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
258 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
259 #define VMCS_EXECUTIVE_VMCS 0x0000200C
260 #define VMCS_PML_ADDRESS 0x0000200E
261 #define VMCS_TSC_OFFSET 0x00002010
262 #define VMCS_VIRTUAL_APIC 0x00002012
263 #define VMCS_APIC_ACCESS 0x00002014
264 #define VMCS_PIR_DESC 0x00002016
265 #define VMCS_VM_CONTROL 0x00002018
266 #define VMCS_EPTP 0x0000201A
267 #define EPTP_TYPE __BITS(2,0)
268 #define EPTP_TYPE_UC 0
269 #define EPTP_TYPE_WB 6
270 #define EPTP_WALKLEN __BITS(5,3)
271 #define EPTP_FLAGS_AD __BIT(6)
272 #define EPTP_PHYSADDR __BITS(63,12)
273 #define VMCS_EOI_EXIT0 0x0000201C
274 #define VMCS_EOI_EXIT1 0x0000201E
275 #define VMCS_EOI_EXIT2 0x00002020
276 #define VMCS_EOI_EXIT3 0x00002022
277 #define VMCS_EPTP_LIST 0x00002024
278 #define VMCS_VMREAD_BITMAP 0x00002026
279 #define VMCS_VMWRITE_BITMAP 0x00002028
280 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
281 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
282 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
283 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
284 #define VMCS_TSC_MULTIPLIER 0x00002032
285 /* 64-bit read-only fields */
286 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
287 /* 64-bit guest-state fields */
288 #define VMCS_LINK_POINTER 0x00002800
289 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
290 #define VMCS_GUEST_IA32_PAT 0x00002804
291 #define VMCS_GUEST_IA32_EFER 0x00002806
292 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
293 #define VMCS_GUEST_PDPTE0 0x0000280A
294 #define VMCS_GUEST_PDPTE1 0x0000280C
295 #define VMCS_GUEST_PDPTE2 0x0000280E
296 #define VMCS_GUEST_PDPTE3 0x00002810
297 #define VMCS_GUEST_BNDCFGS 0x00002812
298 /* 64-bit host-state fields */
299 #define VMCS_HOST_IA32_PAT 0x00002C00
300 #define VMCS_HOST_IA32_EFER 0x00002C02
301 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
302 /* 32-bit control fields */
303 #define VMCS_PINBASED_CTLS 0x00004000
304 #define PIN_CTLS_INT_EXITING __BIT(0)
305 #define PIN_CTLS_NMI_EXITING __BIT(3)
306 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
307 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
308 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
309 #define VMCS_PROCBASED_CTLS 0x00004002
310 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
311 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
312 #define PROC_CTLS_HLT_EXITING __BIT(7)
313 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
314 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
315 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
316 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
317 #define PROC_CTLS_RCR3_EXITING __BIT(15)
318 #define PROC_CTLS_LCR3_EXITING __BIT(16)
319 #define PROC_CTLS_RCR8_EXITING __BIT(19)
320 #define PROC_CTLS_LCR8_EXITING __BIT(20)
321 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
322 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
323 #define PROC_CTLS_DR_EXITING __BIT(23)
324 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
325 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
326 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
327 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
328 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
329 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
330 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
331 #define VMCS_EXCEPTION_BITMAP 0x00004004
332 #define VMCS_PF_ERROR_MASK 0x00004006
333 #define VMCS_PF_ERROR_MATCH 0x00004008
334 #define VMCS_CR3_TARGET_COUNT 0x0000400A
335 #define VMCS_EXIT_CTLS 0x0000400C
336 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
337 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
338 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
339 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
340 #define EXIT_CTLS_SAVE_PAT __BIT(18)
341 #define EXIT_CTLS_LOAD_PAT __BIT(19)
342 #define EXIT_CTLS_SAVE_EFER __BIT(20)
343 #define EXIT_CTLS_LOAD_EFER __BIT(21)
344 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
345 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
346 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
347 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
348 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
349 #define VMCS_ENTRY_CTLS 0x00004012
350 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
351 #define ENTRY_CTLS_LONG_MODE __BIT(9)
352 #define ENTRY_CTLS_SMM __BIT(10)
353 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
354 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
355 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
356 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
357 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
358 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
359 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
360 #define VMCS_ENTRY_INTR_INFO 0x00004016
361 #define INTR_INFO_VECTOR __BITS(7,0)
362 #define INTR_INFO_TYPE __BITS(10,8)
363 #define INTR_TYPE_EXT_INT 0
364 #define INTR_TYPE_NMI 2
365 #define INTR_TYPE_HW_EXC 3
366 #define INTR_TYPE_SW_INT 4
367 #define INTR_TYPE_PRIV_SW_EXC 5
368 #define INTR_TYPE_SW_EXC 6
369 #define INTR_TYPE_OTHER 7
370 #define INTR_INFO_ERROR __BIT(11)
371 #define INTR_INFO_VALID __BIT(31)
372 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
373 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
374 #define VMCS_TPR_THRESHOLD 0x0000401C
375 #define VMCS_PROCBASED_CTLS2 0x0000401E
376 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
377 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
378 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
379 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
380 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
381 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
382 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
383 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
384 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
385 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
386 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
387 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
388 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
389 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
390 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
391 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
392 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
393 #define PROC_CTLS2_PML_ENABLE __BIT(17)
394 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
395 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
396 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
397 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
398 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
399 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
400 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
401 #define VMCS_PLE_GAP 0x00004020
402 #define VMCS_PLE_WINDOW 0x00004022
403 /* 32-bit read-only data fields */
404 #define VMCS_INSTRUCTION_ERROR 0x00004400
405 #define VMCS_EXIT_REASON 0x00004402
406 #define VMCS_EXIT_INTR_INFO 0x00004404
407 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
408 #define VMCS_IDT_VECTORING_INFO 0x00004408
409 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
410 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
411 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
412 /* 32-bit guest-state fields */
413 #define VMCS_GUEST_ES_LIMIT 0x00004800
414 #define VMCS_GUEST_CS_LIMIT 0x00004802
415 #define VMCS_GUEST_SS_LIMIT 0x00004804
416 #define VMCS_GUEST_DS_LIMIT 0x00004806
417 #define VMCS_GUEST_FS_LIMIT 0x00004808
418 #define VMCS_GUEST_GS_LIMIT 0x0000480A
419 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
420 #define VMCS_GUEST_TR_LIMIT 0x0000480E
421 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
422 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
423 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
424 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
425 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
426 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
427 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
428 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
429 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
430 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
431 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
432 #define INT_STATE_STI __BIT(0)
433 #define INT_STATE_MOVSS __BIT(1)
434 #define INT_STATE_SMI __BIT(2)
435 #define INT_STATE_NMI __BIT(3)
436 #define INT_STATE_ENCLAVE __BIT(4)
437 #define VMCS_GUEST_ACTIVITY 0x00004826
438 #define VMCS_GUEST_SMBASE 0x00004828
439 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
440 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
441 /* 32-bit host state fields */
442 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
443 /* Natural-Width control fields */
444 #define VMCS_CR0_MASK 0x00006000
445 #define VMCS_CR4_MASK 0x00006002
446 #define VMCS_CR0_SHADOW 0x00006004
447 #define VMCS_CR4_SHADOW 0x00006006
448 #define VMCS_CR3_TARGET0 0x00006008
449 #define VMCS_CR3_TARGET1 0x0000600A
450 #define VMCS_CR3_TARGET2 0x0000600C
451 #define VMCS_CR3_TARGET3 0x0000600E
452 /* Natural-Width read-only fields */
453 #define VMCS_EXIT_QUALIFICATION 0x00006400
454 #define VMCS_IO_RCX 0x00006402
455 #define VMCS_IO_RSI 0x00006404
456 #define VMCS_IO_RDI 0x00006406
457 #define VMCS_IO_RIP 0x00006408
458 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
459 /* Natural-Width guest-state fields */
460 #define VMCS_GUEST_CR0 0x00006800
461 #define VMCS_GUEST_CR3 0x00006802
462 #define VMCS_GUEST_CR4 0x00006804
463 #define VMCS_GUEST_ES_BASE 0x00006806
464 #define VMCS_GUEST_CS_BASE 0x00006808
465 #define VMCS_GUEST_SS_BASE 0x0000680A
466 #define VMCS_GUEST_DS_BASE 0x0000680C
467 #define VMCS_GUEST_FS_BASE 0x0000680E
468 #define VMCS_GUEST_GS_BASE 0x00006810
469 #define VMCS_GUEST_LDTR_BASE 0x00006812
470 #define VMCS_GUEST_TR_BASE 0x00006814
471 #define VMCS_GUEST_GDTR_BASE 0x00006816
472 #define VMCS_GUEST_IDTR_BASE 0x00006818
473 #define VMCS_GUEST_DR7 0x0000681A
474 #define VMCS_GUEST_RSP 0x0000681C
475 #define VMCS_GUEST_RIP 0x0000681E
476 #define VMCS_GUEST_RFLAGS 0x00006820
477 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
478 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
479 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
480 /* Natural-Width host-state fields */
481 #define VMCS_HOST_CR0 0x00006C00
482 #define VMCS_HOST_CR3 0x00006C02
483 #define VMCS_HOST_CR4 0x00006C04
484 #define VMCS_HOST_FS_BASE 0x00006C06
485 #define VMCS_HOST_GS_BASE 0x00006C08
486 #define VMCS_HOST_TR_BASE 0x00006C0A
487 #define VMCS_HOST_GDTR_BASE 0x00006C0C
488 #define VMCS_HOST_IDTR_BASE 0x00006C0E
489 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
490 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
491 #define VMCS_HOST_RSP 0x00006C14
492 #define VMCS_HOST_RIP 0x00006c16
493
494 /* VMX basic exit reasons. */
495 #define VMCS_EXITCODE_EXC_NMI 0
496 #define VMCS_EXITCODE_EXT_INT 1
497 #define VMCS_EXITCODE_SHUTDOWN 2
498 #define VMCS_EXITCODE_INIT 3
499 #define VMCS_EXITCODE_SIPI 4
500 #define VMCS_EXITCODE_SMI 5
501 #define VMCS_EXITCODE_OTHER_SMI 6
502 #define VMCS_EXITCODE_INT_WINDOW 7
503 #define VMCS_EXITCODE_NMI_WINDOW 8
504 #define VMCS_EXITCODE_TASK_SWITCH 9
505 #define VMCS_EXITCODE_CPUID 10
506 #define VMCS_EXITCODE_GETSEC 11
507 #define VMCS_EXITCODE_HLT 12
508 #define VMCS_EXITCODE_INVD 13
509 #define VMCS_EXITCODE_INVLPG 14
510 #define VMCS_EXITCODE_RDPMC 15
511 #define VMCS_EXITCODE_RDTSC 16
512 #define VMCS_EXITCODE_RSM 17
513 #define VMCS_EXITCODE_VMCALL 18
514 #define VMCS_EXITCODE_VMCLEAR 19
515 #define VMCS_EXITCODE_VMLAUNCH 20
516 #define VMCS_EXITCODE_VMPTRLD 21
517 #define VMCS_EXITCODE_VMPTRST 22
518 #define VMCS_EXITCODE_VMREAD 23
519 #define VMCS_EXITCODE_VMRESUME 24
520 #define VMCS_EXITCODE_VMWRITE 25
521 #define VMCS_EXITCODE_VMXOFF 26
522 #define VMCS_EXITCODE_VMXON 27
523 #define VMCS_EXITCODE_CR 28
524 #define VMCS_EXITCODE_DR 29
525 #define VMCS_EXITCODE_IO 30
526 #define VMCS_EXITCODE_RDMSR 31
527 #define VMCS_EXITCODE_WRMSR 32
528 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
529 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
530 #define VMCS_EXITCODE_MWAIT 36
531 #define VMCS_EXITCODE_TRAP_FLAG 37
532 #define VMCS_EXITCODE_MONITOR 39
533 #define VMCS_EXITCODE_PAUSE 40
534 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
535 #define VMCS_EXITCODE_TPR_BELOW 43
536 #define VMCS_EXITCODE_APIC_ACCESS 44
537 #define VMCS_EXITCODE_VEOI 45
538 #define VMCS_EXITCODE_GDTR_IDTR 46
539 #define VMCS_EXITCODE_LDTR_TR 47
540 #define VMCS_EXITCODE_EPT_VIOLATION 48
541 #define VMCS_EXITCODE_EPT_MISCONFIG 49
542 #define VMCS_EXITCODE_INVEPT 50
543 #define VMCS_EXITCODE_RDTSCP 51
544 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
545 #define VMCS_EXITCODE_INVVPID 53
546 #define VMCS_EXITCODE_WBINVD 54
547 #define VMCS_EXITCODE_XSETBV 55
548 #define VMCS_EXITCODE_APIC_WRITE 56
549 #define VMCS_EXITCODE_RDRAND 57
550 #define VMCS_EXITCODE_INVPCID 58
551 #define VMCS_EXITCODE_VMFUNC 59
552 #define VMCS_EXITCODE_ENCLS 60
553 #define VMCS_EXITCODE_RDSEED 61
554 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
555 #define VMCS_EXITCODE_XSAVES 63
556 #define VMCS_EXITCODE_XRSTORS 64
557
558 /* -------------------------------------------------------------------------- */
559
560 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
561 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
562
563 #define VMX_MSRLIST_STAR 0
564 #define VMX_MSRLIST_LSTAR 1
565 #define VMX_MSRLIST_CSTAR 2
566 #define VMX_MSRLIST_SFMASK 3
567 #define VMX_MSRLIST_KERNELGSBASE 4
568 #define VMX_MSRLIST_EXIT_NMSR 5
569 #define VMX_MSRLIST_L1DFLUSH 5
570
571 /* On entry, we may do +1 to include L1DFLUSH. */
572 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
573
574 struct vmxon {
575 uint32_t ident;
576 #define VMXON_IDENT_REVISION __BITS(30,0)
577
578 uint8_t data[PAGE_SIZE - 4];
579 } __packed;
580
581 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
582
583 struct vmxoncpu {
584 vaddr_t va;
585 paddr_t pa;
586 };
587
588 static struct vmxoncpu vmxoncpu[MAXCPUS];
589
590 struct vmcs {
591 uint32_t ident;
592 #define VMCS_IDENT_REVISION __BITS(30,0)
593 #define VMCS_IDENT_SHADOW __BIT(31)
594
595 uint32_t abort;
596 uint8_t data[PAGE_SIZE - 8];
597 } __packed;
598
599 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
600
601 struct msr_entry {
602 uint32_t msr;
603 uint32_t rsvd;
604 uint64_t val;
605 } __packed;
606
607 #define VPID_MAX 0xFFFF
608
609 /* Make sure we never run out of VPIDs. */
610 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
611
612 static uint64_t vmx_tlb_flush_op __read_mostly;
613 static uint64_t vmx_ept_flush_op __read_mostly;
614 static uint64_t vmx_eptp_type __read_mostly;
615
616 static uint64_t vmx_pinbased_ctls __read_mostly;
617 static uint64_t vmx_procbased_ctls __read_mostly;
618 static uint64_t vmx_procbased_ctls2 __read_mostly;
619 static uint64_t vmx_entry_ctls __read_mostly;
620 static uint64_t vmx_exit_ctls __read_mostly;
621
622 static uint64_t vmx_cr0_fixed0 __read_mostly;
623 static uint64_t vmx_cr0_fixed1 __read_mostly;
624 static uint64_t vmx_cr4_fixed0 __read_mostly;
625 static uint64_t vmx_cr4_fixed1 __read_mostly;
626
627 extern bool pmap_ept_has_ad;
628
629 #define VMX_PINBASED_CTLS_ONE \
630 (PIN_CTLS_INT_EXITING| \
631 PIN_CTLS_NMI_EXITING| \
632 PIN_CTLS_VIRTUAL_NMIS)
633
634 #define VMX_PINBASED_CTLS_ZERO 0
635
636 #define VMX_PROCBASED_CTLS_ONE \
637 (PROC_CTLS_USE_TSC_OFFSETTING| \
638 PROC_CTLS_HLT_EXITING| \
639 PROC_CTLS_MWAIT_EXITING | \
640 PROC_CTLS_RDPMC_EXITING | \
641 PROC_CTLS_RCR8_EXITING | \
642 PROC_CTLS_LCR8_EXITING | \
643 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
644 PROC_CTLS_USE_MSR_BITMAPS | \
645 PROC_CTLS_MONITOR_EXITING | \
646 PROC_CTLS_ACTIVATE_CTLS2)
647
648 #define VMX_PROCBASED_CTLS_ZERO \
649 (PROC_CTLS_RCR3_EXITING| \
650 PROC_CTLS_LCR3_EXITING)
651
652 #define VMX_PROCBASED_CTLS2_ONE \
653 (PROC_CTLS2_ENABLE_EPT| \
654 PROC_CTLS2_ENABLE_VPID| \
655 PROC_CTLS2_UNRESTRICTED_GUEST)
656
657 #define VMX_PROCBASED_CTLS2_ZERO 0
658
659 #define VMX_ENTRY_CTLS_ONE \
660 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
661 ENTRY_CTLS_LOAD_EFER| \
662 ENTRY_CTLS_LOAD_PAT)
663
664 #define VMX_ENTRY_CTLS_ZERO \
665 (ENTRY_CTLS_SMM| \
666 ENTRY_CTLS_DISABLE_DUAL)
667
668 #define VMX_EXIT_CTLS_ONE \
669 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
670 EXIT_CTLS_HOST_LONG_MODE| \
671 EXIT_CTLS_SAVE_PAT| \
672 EXIT_CTLS_LOAD_PAT| \
673 EXIT_CTLS_SAVE_EFER| \
674 EXIT_CTLS_LOAD_EFER)
675
676 #define VMX_EXIT_CTLS_ZERO 0
677
678 static uint8_t *vmx_asidmap __read_mostly;
679 static uint32_t vmx_maxasid __read_mostly;
680 static kmutex_t vmx_asidlock __cacheline_aligned;
681
682 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
683 static uint64_t vmx_xcr0_mask __read_mostly;
684
685 #define VMX_NCPUIDS 32
686
687 #define VMCS_NPAGES 1
688 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
689
690 #define MSRBM_NPAGES 1
691 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
692
693 #define EFER_TLB_FLUSH \
694 (EFER_NXE|EFER_LMA|EFER_LME)
695 #define CR0_TLB_FLUSH \
696 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
697 #define CR4_TLB_FLUSH \
698 (CR4_PGE|CR4_PAE|CR4_PSE)
699
700 /* -------------------------------------------------------------------------- */
701
702 struct vmx_machdata {
703 volatile uint64_t mach_htlb_gen;
704 };
705
706 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
707 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
708 sizeof(struct nvmm_vcpu_conf_cpuid),
709 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
710 sizeof(struct nvmm_vcpu_conf_tpr)
711 };
712
713 struct vmx_cpudata {
714 /* General */
715 uint64_t asid;
716 bool gtlb_want_flush;
717 bool gtsc_want_update;
718 uint64_t vcpu_htlb_gen;
719 kcpuset_t *htlb_want_flush;
720
721 /* VMCS */
722 struct vmcs *vmcs;
723 paddr_t vmcs_pa;
724 size_t vmcs_refcnt;
725 struct cpu_info *vmcs_ci;
726 bool vmcs_launched;
727
728 /* MSR bitmap */
729 uint8_t *msrbm;
730 paddr_t msrbm_pa;
731
732 /* Host state */
733 uint64_t hxcr0;
734 uint64_t star;
735 uint64_t lstar;
736 uint64_t cstar;
737 uint64_t sfmask;
738 uint64_t kernelgsbase;
739
740 /* Intr state */
741 bool int_window_exit;
742 bool nmi_window_exit;
743 bool evt_pending;
744
745 /* Guest state */
746 struct msr_entry *gmsr;
747 paddr_t gmsr_pa;
748 uint64_t gmsr_misc_enable;
749 uint64_t gcr2;
750 uint64_t gcr8;
751 uint64_t gxcr0;
752 uint64_t gprs[NVMM_X64_NGPR];
753 uint64_t drs[NVMM_X64_NDR];
754 uint64_t gtsc;
755 struct xsave_header gfpu __aligned(64);
756
757 /* VCPU configuration. */
758 bool cpuidpresent[VMX_NCPUIDS];
759 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
760 struct nvmm_vcpu_conf_tpr tpr;
761 };
762
763 static const struct {
764 uint64_t selector;
765 uint64_t attrib;
766 uint64_t limit;
767 uint64_t base;
768 } vmx_guest_segs[NVMM_X64_NSEG] = {
769 [NVMM_X64_SEG_ES] = {
770 VMCS_GUEST_ES_SELECTOR,
771 VMCS_GUEST_ES_ACCESS_RIGHTS,
772 VMCS_GUEST_ES_LIMIT,
773 VMCS_GUEST_ES_BASE
774 },
775 [NVMM_X64_SEG_CS] = {
776 VMCS_GUEST_CS_SELECTOR,
777 VMCS_GUEST_CS_ACCESS_RIGHTS,
778 VMCS_GUEST_CS_LIMIT,
779 VMCS_GUEST_CS_BASE
780 },
781 [NVMM_X64_SEG_SS] = {
782 VMCS_GUEST_SS_SELECTOR,
783 VMCS_GUEST_SS_ACCESS_RIGHTS,
784 VMCS_GUEST_SS_LIMIT,
785 VMCS_GUEST_SS_BASE
786 },
787 [NVMM_X64_SEG_DS] = {
788 VMCS_GUEST_DS_SELECTOR,
789 VMCS_GUEST_DS_ACCESS_RIGHTS,
790 VMCS_GUEST_DS_LIMIT,
791 VMCS_GUEST_DS_BASE
792 },
793 [NVMM_X64_SEG_FS] = {
794 VMCS_GUEST_FS_SELECTOR,
795 VMCS_GUEST_FS_ACCESS_RIGHTS,
796 VMCS_GUEST_FS_LIMIT,
797 VMCS_GUEST_FS_BASE
798 },
799 [NVMM_X64_SEG_GS] = {
800 VMCS_GUEST_GS_SELECTOR,
801 VMCS_GUEST_GS_ACCESS_RIGHTS,
802 VMCS_GUEST_GS_LIMIT,
803 VMCS_GUEST_GS_BASE
804 },
805 [NVMM_X64_SEG_GDT] = {
806 0, /* doesn't exist */
807 0, /* doesn't exist */
808 VMCS_GUEST_GDTR_LIMIT,
809 VMCS_GUEST_GDTR_BASE
810 },
811 [NVMM_X64_SEG_IDT] = {
812 0, /* doesn't exist */
813 0, /* doesn't exist */
814 VMCS_GUEST_IDTR_LIMIT,
815 VMCS_GUEST_IDTR_BASE
816 },
817 [NVMM_X64_SEG_LDT] = {
818 VMCS_GUEST_LDTR_SELECTOR,
819 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
820 VMCS_GUEST_LDTR_LIMIT,
821 VMCS_GUEST_LDTR_BASE
822 },
823 [NVMM_X64_SEG_TR] = {
824 VMCS_GUEST_TR_SELECTOR,
825 VMCS_GUEST_TR_ACCESS_RIGHTS,
826 VMCS_GUEST_TR_LIMIT,
827 VMCS_GUEST_TR_BASE
828 }
829 };
830
831 /* -------------------------------------------------------------------------- */
832
833 static uint64_t
834 vmx_get_revision(void)
835 {
836 uint64_t msr;
837
838 msr = rdmsr(MSR_IA32_VMX_BASIC);
839 msr &= IA32_VMX_BASIC_IDENT;
840
841 return msr;
842 }
843
844 static void
845 vmx_vmclear_ipi(void *arg1, void *arg2)
846 {
847 paddr_t vmcs_pa = (paddr_t)arg1;
848 vmx_vmclear(&vmcs_pa);
849 }
850
851 static void
852 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
853 {
854 uint64_t xc;
855 int bound;
856
857 KASSERT(kpreempt_disabled());
858
859 bound = curlwp_bind();
860 kpreempt_enable();
861
862 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
863 xc_wait(xc);
864
865 kpreempt_disable();
866 curlwp_bindx(bound);
867 }
868
869 static void
870 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
871 {
872 struct vmx_cpudata *cpudata = vcpu->cpudata;
873 struct cpu_info *vmcs_ci;
874 paddr_t oldpa __diagused;
875
876 cpudata->vmcs_refcnt++;
877 if (cpudata->vmcs_refcnt > 1) {
878 #ifdef DIAGNOSTIC
879 KASSERT(kpreempt_disabled());
880 oldpa = vmx_vmptrst();
881 KASSERT(oldpa == cpudata->vmcs_pa);
882 #endif
883 return;
884 }
885
886 vmcs_ci = cpudata->vmcs_ci;
887 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
888
889 kpreempt_disable();
890
891 if (vmcs_ci == NULL) {
892 /* This VMCS is loaded for the first time. */
893 vmx_vmclear(&cpudata->vmcs_pa);
894 cpudata->vmcs_launched = false;
895 } else if (vmcs_ci != curcpu()) {
896 /* This VMCS is active on a remote CPU. */
897 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
898 cpudata->vmcs_launched = false;
899 } else {
900 /* This VMCS is active on curcpu, nothing to do. */
901 }
902
903 vmx_vmptrld(&cpudata->vmcs_pa);
904 }
905
906 static void
907 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
908 {
909 struct vmx_cpudata *cpudata = vcpu->cpudata;
910
911 KASSERT(kpreempt_disabled());
912 #ifdef DIAGNOSTIC
913 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
914 #endif
915 KASSERT(cpudata->vmcs_refcnt > 0);
916 cpudata->vmcs_refcnt--;
917
918 if (cpudata->vmcs_refcnt > 0) {
919 return;
920 }
921
922 cpudata->vmcs_ci = curcpu();
923 kpreempt_enable();
924 }
925
926 static void
927 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
928 {
929 struct vmx_cpudata *cpudata = vcpu->cpudata;
930
931 KASSERT(kpreempt_disabled());
932 #ifdef DIAGNOSTIC
933 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
934 #endif
935 KASSERT(cpudata->vmcs_refcnt == 1);
936 cpudata->vmcs_refcnt--;
937
938 vmx_vmclear(&cpudata->vmcs_pa);
939 kpreempt_enable();
940 }
941
942 /* -------------------------------------------------------------------------- */
943
944 static void
945 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
946 {
947 struct vmx_cpudata *cpudata = vcpu->cpudata;
948 uint64_t ctls1;
949
950 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
951
952 if (nmi) {
953 // XXX INT_STATE_NMI?
954 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
955 cpudata->nmi_window_exit = true;
956 } else {
957 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
958 cpudata->int_window_exit = true;
959 }
960
961 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
962 }
963
964 static void
965 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
966 {
967 struct vmx_cpudata *cpudata = vcpu->cpudata;
968 uint64_t ctls1;
969
970 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
971
972 if (nmi) {
973 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
974 cpudata->nmi_window_exit = false;
975 } else {
976 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
977 cpudata->int_window_exit = false;
978 }
979
980 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
981 }
982
983 static inline int
984 vmx_event_has_error(uint8_t vector)
985 {
986 switch (vector) {
987 case 8: /* #DF */
988 case 10: /* #TS */
989 case 11: /* #NP */
990 case 12: /* #SS */
991 case 13: /* #GP */
992 case 14: /* #PF */
993 case 17: /* #AC */
994 case 30: /* #SX */
995 return 1;
996 default:
997 return 0;
998 }
999 }
1000
1001 static int
1002 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1003 {
1004 struct nvmm_comm_page *comm = vcpu->comm;
1005 struct vmx_cpudata *cpudata = vcpu->cpudata;
1006 int type = 0, err = 0, ret = EINVAL;
1007 u_int evtype;
1008 uint8_t vector;
1009 uint64_t info, error;
1010
1011 evtype = comm->event.type;
1012 vector = comm->event.vector;
1013 error = comm->event.u.excp.error;
1014 __insn_barrier();
1015
1016 vmx_vmcs_enter(vcpu);
1017
1018 switch (evtype) {
1019 case NVMM_VCPU_EVENT_EXCP:
1020 if (vector == 2 || vector >= 32)
1021 goto out;
1022 if (vector == 3 || vector == 0)
1023 goto out;
1024 type = INTR_TYPE_HW_EXC;
1025 err = vmx_event_has_error(vector);
1026 break;
1027 case NVMM_VCPU_EVENT_INTR:
1028 type = INTR_TYPE_EXT_INT;
1029 if (vector == 2) {
1030 type = INTR_TYPE_NMI;
1031 vmx_event_waitexit_enable(vcpu, true);
1032 }
1033 err = 0;
1034 break;
1035 default:
1036 goto out;
1037 }
1038
1039 info =
1040 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1041 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1042 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1043 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1044 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1045 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1046
1047 cpudata->evt_pending = true;
1048 ret = 0;
1049
1050 out:
1051 vmx_vmcs_leave(vcpu);
1052 return ret;
1053 }
1054
1055 static void
1056 vmx_inject_ud(struct nvmm_cpu *vcpu)
1057 {
1058 struct nvmm_comm_page *comm = vcpu->comm;
1059 int ret __diagused;
1060
1061 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1062 comm->event.vector = 6;
1063 comm->event.u.excp.error = 0;
1064
1065 ret = vmx_vcpu_inject(vcpu);
1066 KASSERT(ret == 0);
1067 }
1068
1069 static void
1070 vmx_inject_gp(struct nvmm_cpu *vcpu)
1071 {
1072 struct nvmm_comm_page *comm = vcpu->comm;
1073 int ret __diagused;
1074
1075 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1076 comm->event.vector = 13;
1077 comm->event.u.excp.error = 0;
1078
1079 ret = vmx_vcpu_inject(vcpu);
1080 KASSERT(ret == 0);
1081 }
1082
1083 static inline int
1084 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1085 {
1086 if (__predict_true(!vcpu->comm->event_commit)) {
1087 return 0;
1088 }
1089 vcpu->comm->event_commit = false;
1090 return vmx_vcpu_inject(vcpu);
1091 }
1092
1093 static inline void
1094 vmx_inkernel_advance(void)
1095 {
1096 uint64_t rip, inslen, intstate;
1097
1098 /*
1099 * Maybe we should also apply single-stepping and debug exceptions.
1100 * Matters for guest-ring3, because it can execute 'cpuid' under a
1101 * debugger.
1102 */
1103 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1104 rip = vmx_vmread(VMCS_GUEST_RIP);
1105 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1106 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1107 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1108 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1109 }
1110
1111 static void
1112 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1113 {
1114 exit->u.inv.hwcode = code;
1115 exit->reason = NVMM_VCPU_EXIT_INVALID;
1116 }
1117
1118 static void
1119 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1120 struct nvmm_vcpu_exit *exit)
1121 {
1122 uint64_t qual;
1123
1124 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1125
1126 if ((qual & INTR_INFO_VALID) == 0) {
1127 goto error;
1128 }
1129 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1130 goto error;
1131 }
1132
1133 exit->reason = NVMM_VCPU_EXIT_NONE;
1134 return;
1135
1136 error:
1137 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1138 }
1139
1140 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1141
1142 static void
1143 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1144 uint64_t eax, uint64_t ecx)
1145 {
1146 struct vmx_cpudata *cpudata = vcpu->cpudata;
1147 unsigned int ncpus;
1148 uint64_t cr4;
1149
1150 switch (eax) {
1151 case 0x00000001:
1152 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1153
1154 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1155 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1156 CPUID_LOCAL_APIC_ID);
1157
1158 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1159 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1160 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1161 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1162 }
1163
1164 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1165
1166 /* CPUID2_OSXSAVE depends on CR4. */
1167 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1168 if (!(cr4 & CR4_OSXSAVE)) {
1169 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1170 }
1171 break;
1172 case 0x00000002:
1173 break;
1174 case 0x00000003:
1175 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1176 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1177 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1178 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1179 break;
1180 case 0x00000004: /* Deterministic Cache Parameters */
1181 break; /* TODO? */
1182 case 0x00000005: /* MONITOR/MWAIT */
1183 case 0x00000006: /* Thermal and Power Management */
1184 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1185 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1186 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1187 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1188 break;
1189 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1190 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1191 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1192 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1193 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1194 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1195 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1196 }
1197 break;
1198 case 0x00000008: /* Empty */
1199 case 0x00000009: /* Direct Cache Access Information */
1200 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1201 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1202 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1203 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1204 break;
1205 case 0x0000000A: /* Architectural Performance Monitoring */
1206 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1207 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1208 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1209 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1210 break;
1211 case 0x0000000B: /* Extended Topology Enumeration */
1212 switch (ecx) {
1213 case 0: /* Threads */
1214 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1215 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1216 cpudata->gprs[NVMM_X64_GPR_RCX] =
1217 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1218 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1219 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1220 break;
1221 case 1: /* Cores */
1222 ncpus = atomic_load_relaxed(&mach->ncpus);
1223 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1224 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1225 cpudata->gprs[NVMM_X64_GPR_RCX] =
1226 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1227 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1228 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1229 break;
1230 default:
1231 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1232 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1233 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1234 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1235 break;
1236 }
1237 break;
1238 case 0x0000000C: /* Empty */
1239 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1240 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1241 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1242 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1243 break;
1244 case 0x0000000D: /* Processor Extended State Enumeration */
1245 if (vmx_xcr0_mask == 0) {
1246 break;
1247 }
1248 switch (ecx) {
1249 case 0:
1250 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1251 if (cpudata->gxcr0 & XCR0_SSE) {
1252 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1253 } else {
1254 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1255 }
1256 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1257 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1258 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1259 break;
1260 case 1:
1261 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1262 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1263 CPUID_PES1_XGETBV);
1264 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1265 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1266 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1267 break;
1268 default:
1269 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1270 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1271 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1272 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1273 break;
1274 }
1275 break;
1276 case 0x0000000E: /* Empty */
1277 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1278 case 0x00000010: /* Intel RDT Allocation Enumeration */
1279 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1280 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1281 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1282 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1283 break;
1284 case 0x00000011: /* Empty */
1285 case 0x00000012: /* Intel SGX Capability Enumeration */
1286 case 0x00000013: /* Empty */
1287 case 0x00000014: /* Intel Processor Trace Enumeration */
1288 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1289 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1290 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1291 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1292 break;
1293 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1294 case 0x00000016: /* Processor Frequency Information */
1295 break;
1296
1297 case 0x40000000: /* Hypervisor Information */
1298 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1299 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1300 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1301 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1302 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1303 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1304 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1305 break;
1306
1307 case 0x80000001:
1308 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1309 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1310 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1311 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1312 break;
1313 default:
1314 break;
1315 }
1316 }
1317
1318 static void
1319 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1320 {
1321 uint64_t inslen, rip;
1322
1323 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1324 rip = vmx_vmread(VMCS_GUEST_RIP);
1325 exit->u.insn.npc = rip + inslen;
1326 exit->reason = reason;
1327 }
1328
1329 static void
1330 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1331 struct nvmm_vcpu_exit *exit)
1332 {
1333 struct vmx_cpudata *cpudata = vcpu->cpudata;
1334 struct nvmm_vcpu_conf_cpuid *cpuid;
1335 uint64_t eax, ecx;
1336 u_int descs[4];
1337 size_t i;
1338
1339 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1340 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1341 x86_cpuid2(eax, ecx, descs);
1342
1343 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1344 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1345 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1346 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1347
1348 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1349
1350 for (i = 0; i < VMX_NCPUIDS; i++) {
1351 if (!cpudata->cpuidpresent[i]) {
1352 continue;
1353 }
1354 cpuid = &cpudata->cpuid[i];
1355 if (cpuid->leaf != eax) {
1356 continue;
1357 }
1358
1359 if (cpuid->exit) {
1360 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1361 return;
1362 }
1363 KASSERT(cpuid->mask);
1364
1365 /* del */
1366 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1367 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1368 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1369 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1370
1371 /* set */
1372 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1373 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1374 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1375 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1376
1377 break;
1378 }
1379
1380 vmx_inkernel_advance();
1381 exit->reason = NVMM_VCPU_EXIT_NONE;
1382 }
1383
1384 static void
1385 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1386 struct nvmm_vcpu_exit *exit)
1387 {
1388 struct vmx_cpudata *cpudata = vcpu->cpudata;
1389 uint64_t rflags;
1390
1391 if (cpudata->int_window_exit) {
1392 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1393 if (rflags & PSL_I) {
1394 vmx_event_waitexit_disable(vcpu, false);
1395 }
1396 }
1397
1398 vmx_inkernel_advance();
1399 exit->reason = NVMM_VCPU_EXIT_HALTED;
1400 }
1401
1402 #define VMX_QUAL_CR_NUM __BITS(3,0)
1403 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1404 #define CR_TYPE_WRITE 0
1405 #define CR_TYPE_READ 1
1406 #define CR_TYPE_CLTS 2
1407 #define CR_TYPE_LMSW 3
1408 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1409 #define VMX_QUAL_CR_GPR __BITS(11,8)
1410 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1411
1412 static inline int
1413 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1414 {
1415 /* Bits set to 1 in fixed0 are fixed to 1. */
1416 if ((crval & fixed0) != fixed0) {
1417 return -1;
1418 }
1419 /* Bits set to 0 in fixed1 are fixed to 0. */
1420 if (crval & ~fixed1) {
1421 return -1;
1422 }
1423 return 0;
1424 }
1425
1426 static int
1427 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1428 uint64_t qual)
1429 {
1430 struct vmx_cpudata *cpudata = vcpu->cpudata;
1431 uint64_t type, gpr, cr0;
1432 uint64_t efer, ctls1;
1433
1434 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1435 if (type != CR_TYPE_WRITE) {
1436 return -1;
1437 }
1438
1439 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1440 KASSERT(gpr < 16);
1441
1442 if (gpr == NVMM_X64_GPR_RSP) {
1443 gpr = vmx_vmread(VMCS_GUEST_RSP);
1444 } else {
1445 gpr = cpudata->gprs[gpr];
1446 }
1447
1448 cr0 = gpr | CR0_NE | CR0_ET;
1449 cr0 &= ~(CR0_NW|CR0_CD);
1450
1451 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1452 return -1;
1453 }
1454
1455 /*
1456 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1457 * from CR3.
1458 */
1459
1460 if (cr0 & CR0_PG) {
1461 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1462 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1463 if (efer & EFER_LME) {
1464 ctls1 |= ENTRY_CTLS_LONG_MODE;
1465 efer |= EFER_LMA;
1466 } else {
1467 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1468 efer &= ~EFER_LMA;
1469 }
1470 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1471 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1472 }
1473
1474 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1475 vmx_inkernel_advance();
1476 return 0;
1477 }
1478
1479 static int
1480 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1481 uint64_t qual)
1482 {
1483 struct vmx_cpudata *cpudata = vcpu->cpudata;
1484 uint64_t type, gpr, cr4;
1485
1486 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1487 if (type != CR_TYPE_WRITE) {
1488 return -1;
1489 }
1490
1491 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1492 KASSERT(gpr < 16);
1493
1494 if (gpr == NVMM_X64_GPR_RSP) {
1495 gpr = vmx_vmread(VMCS_GUEST_RSP);
1496 } else {
1497 gpr = cpudata->gprs[gpr];
1498 }
1499
1500 cr4 = gpr | CR4_VMXE;
1501
1502 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1503 return -1;
1504 }
1505
1506 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1507 vmx_inkernel_advance();
1508 return 0;
1509 }
1510
1511 static int
1512 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1513 uint64_t qual, struct nvmm_vcpu_exit *exit)
1514 {
1515 struct vmx_cpudata *cpudata = vcpu->cpudata;
1516 uint64_t type, gpr;
1517 bool write;
1518
1519 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1520 if (type == CR_TYPE_WRITE) {
1521 write = true;
1522 } else if (type == CR_TYPE_READ) {
1523 write = false;
1524 } else {
1525 return -1;
1526 }
1527
1528 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1529 KASSERT(gpr < 16);
1530
1531 if (write) {
1532 if (gpr == NVMM_X64_GPR_RSP) {
1533 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1534 } else {
1535 cpudata->gcr8 = cpudata->gprs[gpr];
1536 }
1537 if (cpudata->tpr.exit_changed) {
1538 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1539 }
1540 } else {
1541 if (gpr == NVMM_X64_GPR_RSP) {
1542 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1543 } else {
1544 cpudata->gprs[gpr] = cpudata->gcr8;
1545 }
1546 }
1547
1548 vmx_inkernel_advance();
1549 return 0;
1550 }
1551
1552 static void
1553 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1554 struct nvmm_vcpu_exit *exit)
1555 {
1556 uint64_t qual;
1557 int ret;
1558
1559 exit->reason = NVMM_VCPU_EXIT_NONE;
1560
1561 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1562
1563 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1564 case 0:
1565 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1566 break;
1567 case 4:
1568 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1569 break;
1570 case 8:
1571 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1572 break;
1573 default:
1574 ret = -1;
1575 break;
1576 }
1577
1578 if (ret == -1) {
1579 vmx_inject_gp(vcpu);
1580 }
1581 }
1582
1583 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1584 #define IO_SIZE_8 0
1585 #define IO_SIZE_16 1
1586 #define IO_SIZE_32 3
1587 #define VMX_QUAL_IO_IN __BIT(3)
1588 #define VMX_QUAL_IO_STR __BIT(4)
1589 #define VMX_QUAL_IO_REP __BIT(5)
1590 #define VMX_QUAL_IO_DX __BIT(6)
1591 #define VMX_QUAL_IO_PORT __BITS(31,16)
1592
1593 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1594 #define IO_ADRSIZE_16 0
1595 #define IO_ADRSIZE_32 1
1596 #define IO_ADRSIZE_64 2
1597 #define VMX_INFO_IO_SEG __BITS(17,15)
1598
1599 static void
1600 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1601 struct nvmm_vcpu_exit *exit)
1602 {
1603 uint64_t qual, info, inslen, rip;
1604
1605 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1606 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1607
1608 exit->reason = NVMM_VCPU_EXIT_IO;
1609
1610 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1611 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1612
1613 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1614 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1615
1616 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1617 exit->u.io.address_size = 8;
1618 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1619 exit->u.io.address_size = 4;
1620 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1621 exit->u.io.address_size = 2;
1622 }
1623
1624 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1625 exit->u.io.operand_size = 4;
1626 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1627 exit->u.io.operand_size = 2;
1628 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1629 exit->u.io.operand_size = 1;
1630 }
1631
1632 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1633 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1634
1635 if (exit->u.io.in && exit->u.io.str) {
1636 exit->u.io.seg = NVMM_X64_SEG_ES;
1637 }
1638
1639 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1640 rip = vmx_vmread(VMCS_GUEST_RIP);
1641 exit->u.io.npc = rip + inslen;
1642
1643 vmx_vcpu_state_provide(vcpu,
1644 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1645 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1646 }
1647
1648 static const uint64_t msr_ignore_list[] = {
1649 MSR_BIOS_SIGN,
1650 MSR_IA32_PLATFORM_ID
1651 };
1652
1653 static bool
1654 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1655 struct nvmm_vcpu_exit *exit)
1656 {
1657 struct vmx_cpudata *cpudata = vcpu->cpudata;
1658 uint64_t val;
1659 size_t i;
1660
1661 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1662 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1663 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1664 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1665 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1666 goto handled;
1667 }
1668 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1669 val = cpudata->gmsr_misc_enable;
1670 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1671 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1672 goto handled;
1673 }
1674 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1675 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1676 continue;
1677 val = 0;
1678 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1679 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1680 goto handled;
1681 }
1682 } else {
1683 if (exit->u.wrmsr.msr == MSR_TSC) {
1684 cpudata->gtsc = exit->u.wrmsr.val;
1685 cpudata->gtsc_want_update = true;
1686 goto handled;
1687 }
1688 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1689 val = exit->u.wrmsr.val;
1690 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1691 goto error;
1692 }
1693 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1694 goto handled;
1695 }
1696 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1697 /* Don't care. */
1698 goto handled;
1699 }
1700 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1701 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1702 continue;
1703 goto handled;
1704 }
1705 }
1706
1707 return false;
1708
1709 handled:
1710 vmx_inkernel_advance();
1711 return true;
1712
1713 error:
1714 vmx_inject_gp(vcpu);
1715 return true;
1716 }
1717
1718 static void
1719 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1720 struct nvmm_vcpu_exit *exit)
1721 {
1722 struct vmx_cpudata *cpudata = vcpu->cpudata;
1723 uint64_t inslen, rip;
1724
1725 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1726 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1727
1728 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1729 exit->reason = NVMM_VCPU_EXIT_NONE;
1730 return;
1731 }
1732
1733 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1734 rip = vmx_vmread(VMCS_GUEST_RIP);
1735 exit->u.rdmsr.npc = rip + inslen;
1736
1737 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1738 }
1739
1740 static void
1741 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1742 struct nvmm_vcpu_exit *exit)
1743 {
1744 struct vmx_cpudata *cpudata = vcpu->cpudata;
1745 uint64_t rdx, rax, inslen, rip;
1746
1747 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1748 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1749
1750 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1751 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1752 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1753
1754 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1755 exit->reason = NVMM_VCPU_EXIT_NONE;
1756 return;
1757 }
1758
1759 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1760 rip = vmx_vmread(VMCS_GUEST_RIP);
1761 exit->u.wrmsr.npc = rip + inslen;
1762
1763 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1764 }
1765
1766 static void
1767 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1768 struct nvmm_vcpu_exit *exit)
1769 {
1770 struct vmx_cpudata *cpudata = vcpu->cpudata;
1771 uint64_t val;
1772
1773 exit->reason = NVMM_VCPU_EXIT_NONE;
1774
1775 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1776 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1777
1778 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1779 goto error;
1780 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1781 goto error;
1782 } else if (__predict_false((val & XCR0_X87) == 0)) {
1783 goto error;
1784 }
1785
1786 cpudata->gxcr0 = val;
1787 if (vmx_xcr0_mask != 0) {
1788 wrxcr(0, cpudata->gxcr0);
1789 }
1790
1791 vmx_inkernel_advance();
1792 return;
1793
1794 error:
1795 vmx_inject_gp(vcpu);
1796 }
1797
1798 #define VMX_EPT_VIOLATION_READ __BIT(0)
1799 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1800 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1801
1802 static void
1803 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1804 struct nvmm_vcpu_exit *exit)
1805 {
1806 uint64_t perm;
1807 gpaddr_t gpa;
1808
1809 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1810
1811 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1812 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1813 if (perm & VMX_EPT_VIOLATION_WRITE)
1814 exit->u.mem.prot = PROT_WRITE;
1815 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1816 exit->u.mem.prot = PROT_EXEC;
1817 else
1818 exit->u.mem.prot = PROT_READ;
1819 exit->u.mem.gpa = gpa;
1820 exit->u.mem.inst_len = 0;
1821
1822 vmx_vcpu_state_provide(vcpu,
1823 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1824 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1825 }
1826
1827 /* -------------------------------------------------------------------------- */
1828
1829 static void
1830 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1831 {
1832 struct vmx_cpudata *cpudata = vcpu->cpudata;
1833
1834 fpu_save();
1835 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1836
1837 if (vmx_xcr0_mask != 0) {
1838 cpudata->hxcr0 = rdxcr(0);
1839 wrxcr(0, cpudata->gxcr0);
1840 }
1841 }
1842
1843 static void
1844 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1845 {
1846 struct vmx_cpudata *cpudata = vcpu->cpudata;
1847
1848 if (vmx_xcr0_mask != 0) {
1849 cpudata->gxcr0 = rdxcr(0);
1850 wrxcr(0, cpudata->hxcr0);
1851 }
1852
1853 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1854 }
1855
1856 static void
1857 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1858 {
1859 struct vmx_cpudata *cpudata = vcpu->cpudata;
1860
1861 x86_dbregs_save(curlwp);
1862
1863 ldr7(0);
1864
1865 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1866 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1867 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1868 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1869 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1870 }
1871
1872 static void
1873 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1874 {
1875 struct vmx_cpudata *cpudata = vcpu->cpudata;
1876
1877 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1878 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1879 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1880 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1881 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1882
1883 x86_dbregs_restore(curlwp);
1884 }
1885
1886 static void
1887 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1888 {
1889 struct vmx_cpudata *cpudata = vcpu->cpudata;
1890
1891 /* This gets restored automatically by the CPU. */
1892 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1893 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1894 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1895
1896 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1897 }
1898
1899 static void
1900 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1901 {
1902 struct vmx_cpudata *cpudata = vcpu->cpudata;
1903
1904 wrmsr(MSR_STAR, cpudata->star);
1905 wrmsr(MSR_LSTAR, cpudata->lstar);
1906 wrmsr(MSR_CSTAR, cpudata->cstar);
1907 wrmsr(MSR_SFMASK, cpudata->sfmask);
1908 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1909 }
1910
1911 /* -------------------------------------------------------------------------- */
1912
1913 #define VMX_INVVPID_ADDRESS 0
1914 #define VMX_INVVPID_CONTEXT 1
1915 #define VMX_INVVPID_ALL 2
1916 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1917
1918 #define VMX_INVEPT_CONTEXT 1
1919 #define VMX_INVEPT_ALL 2
1920
1921 static inline void
1922 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1923 {
1924 struct vmx_cpudata *cpudata = vcpu->cpudata;
1925
1926 if (vcpu->hcpu_last != hcpu) {
1927 cpudata->gtlb_want_flush = true;
1928 }
1929 }
1930
1931 static inline void
1932 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1933 {
1934 struct vmx_cpudata *cpudata = vcpu->cpudata;
1935 struct ept_desc ept_desc;
1936
1937 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1938 return;
1939 }
1940
1941 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1942 ept_desc.mbz = 0;
1943 vmx_invept(vmx_ept_flush_op, &ept_desc);
1944 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1945 }
1946
1947 static inline uint64_t
1948 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1949 {
1950 struct ept_desc ept_desc;
1951 uint64_t machgen;
1952
1953 machgen = machdata->mach_htlb_gen;
1954 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1955 return machgen;
1956 }
1957
1958 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1959
1960 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1961 ept_desc.mbz = 0;
1962 vmx_invept(vmx_ept_flush_op, &ept_desc);
1963
1964 return machgen;
1965 }
1966
1967 static inline void
1968 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1969 {
1970 cpudata->vcpu_htlb_gen = machgen;
1971 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1972 }
1973
1974 static inline void
1975 vmx_exit_evt(struct vmx_cpudata *cpudata)
1976 {
1977 uint64_t info, err, inslen;
1978
1979 cpudata->evt_pending = false;
1980
1981 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1982 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1983 return;
1984 }
1985 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1986
1987 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1988 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1989
1990 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
1991 case INTR_TYPE_SW_INT:
1992 case INTR_TYPE_PRIV_SW_EXC:
1993 case INTR_TYPE_SW_EXC:
1994 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1995 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
1996 }
1997
1998 cpudata->evt_pending = true;
1999 }
2000
2001 static int
2002 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2003 struct nvmm_vcpu_exit *exit)
2004 {
2005 struct nvmm_comm_page *comm = vcpu->comm;
2006 struct vmx_machdata *machdata = mach->machdata;
2007 struct vmx_cpudata *cpudata = vcpu->cpudata;
2008 struct vpid_desc vpid_desc;
2009 struct cpu_info *ci;
2010 uint64_t exitcode;
2011 uint64_t intstate;
2012 uint64_t machgen;
2013 int hcpu, s, ret;
2014 bool launched;
2015
2016 vmx_vmcs_enter(vcpu);
2017
2018 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2019 vmx_vmcs_leave(vcpu);
2020 return EINVAL;
2021 }
2022 vmx_vcpu_state_commit(vcpu);
2023 comm->state_cached = 0;
2024
2025 ci = curcpu();
2026 hcpu = cpu_number();
2027 launched = cpudata->vmcs_launched;
2028
2029 vmx_gtlb_catchup(vcpu, hcpu);
2030 vmx_htlb_catchup(vcpu, hcpu);
2031
2032 if (vcpu->hcpu_last != hcpu) {
2033 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2034 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2035 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2036 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2037 cpudata->gtsc_want_update = true;
2038 vcpu->hcpu_last = hcpu;
2039 }
2040
2041 vmx_vcpu_guest_dbregs_enter(vcpu);
2042 vmx_vcpu_guest_misc_enter(vcpu);
2043 vmx_vcpu_guest_fpu_enter(vcpu);
2044
2045 while (1) {
2046 if (cpudata->gtlb_want_flush) {
2047 vpid_desc.vpid = cpudata->asid;
2048 vpid_desc.addr = 0;
2049 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2050 cpudata->gtlb_want_flush = false;
2051 }
2052
2053 if (__predict_false(cpudata->gtsc_want_update)) {
2054 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2055 cpudata->gtsc_want_update = false;
2056 }
2057
2058 s = splhigh();
2059 machgen = vmx_htlb_flush(machdata, cpudata);
2060 lcr2(cpudata->gcr2);
2061 if (launched) {
2062 ret = vmx_vmresume(cpudata->gprs);
2063 } else {
2064 ret = vmx_vmlaunch(cpudata->gprs);
2065 }
2066 cpudata->gcr2 = rcr2();
2067 vmx_htlb_flush_ack(cpudata, machgen);
2068 splx(s);
2069
2070 if (__predict_false(ret != 0)) {
2071 vmx_exit_invalid(exit, -1);
2072 break;
2073 }
2074 vmx_exit_evt(cpudata);
2075
2076 launched = true;
2077
2078 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2079 exitcode &= __BITS(15,0);
2080
2081 switch (exitcode) {
2082 case VMCS_EXITCODE_EXC_NMI:
2083 vmx_exit_exc_nmi(mach, vcpu, exit);
2084 break;
2085 case VMCS_EXITCODE_EXT_INT:
2086 exit->reason = NVMM_VCPU_EXIT_NONE;
2087 break;
2088 case VMCS_EXITCODE_CPUID:
2089 vmx_exit_cpuid(mach, vcpu, exit);
2090 break;
2091 case VMCS_EXITCODE_HLT:
2092 vmx_exit_hlt(mach, vcpu, exit);
2093 break;
2094 case VMCS_EXITCODE_CR:
2095 vmx_exit_cr(mach, vcpu, exit);
2096 break;
2097 case VMCS_EXITCODE_IO:
2098 vmx_exit_io(mach, vcpu, exit);
2099 break;
2100 case VMCS_EXITCODE_RDMSR:
2101 vmx_exit_rdmsr(mach, vcpu, exit);
2102 break;
2103 case VMCS_EXITCODE_WRMSR:
2104 vmx_exit_wrmsr(mach, vcpu, exit);
2105 break;
2106 case VMCS_EXITCODE_SHUTDOWN:
2107 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2108 break;
2109 case VMCS_EXITCODE_MONITOR:
2110 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2111 break;
2112 case VMCS_EXITCODE_MWAIT:
2113 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2114 break;
2115 case VMCS_EXITCODE_XSETBV:
2116 vmx_exit_xsetbv(mach, vcpu, exit);
2117 break;
2118 case VMCS_EXITCODE_RDPMC:
2119 case VMCS_EXITCODE_RDTSCP:
2120 case VMCS_EXITCODE_INVVPID:
2121 case VMCS_EXITCODE_INVEPT:
2122 case VMCS_EXITCODE_VMCALL:
2123 case VMCS_EXITCODE_VMCLEAR:
2124 case VMCS_EXITCODE_VMLAUNCH:
2125 case VMCS_EXITCODE_VMPTRLD:
2126 case VMCS_EXITCODE_VMPTRST:
2127 case VMCS_EXITCODE_VMREAD:
2128 case VMCS_EXITCODE_VMRESUME:
2129 case VMCS_EXITCODE_VMWRITE:
2130 case VMCS_EXITCODE_VMXOFF:
2131 case VMCS_EXITCODE_VMXON:
2132 vmx_inject_ud(vcpu);
2133 exit->reason = NVMM_VCPU_EXIT_NONE;
2134 break;
2135 case VMCS_EXITCODE_EPT_VIOLATION:
2136 vmx_exit_epf(mach, vcpu, exit);
2137 break;
2138 case VMCS_EXITCODE_INT_WINDOW:
2139 vmx_event_waitexit_disable(vcpu, false);
2140 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2141 break;
2142 case VMCS_EXITCODE_NMI_WINDOW:
2143 vmx_event_waitexit_disable(vcpu, true);
2144 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2145 break;
2146 default:
2147 vmx_exit_invalid(exit, exitcode);
2148 break;
2149 }
2150
2151 /* If no reason to return to userland, keep rolling. */
2152 if (preempt_needed()) {
2153 break;
2154 }
2155 if (curlwp->l_flag & LW_USERRET) {
2156 break;
2157 }
2158 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2159 break;
2160 }
2161 }
2162
2163 cpudata->vmcs_launched = launched;
2164
2165 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2166
2167 vmx_vcpu_guest_fpu_leave(vcpu);
2168 vmx_vcpu_guest_misc_leave(vcpu);
2169 vmx_vcpu_guest_dbregs_leave(vcpu);
2170
2171 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2172 exit->exitstate.cr8 = cpudata->gcr8;
2173 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2174 exit->exitstate.int_shadow =
2175 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2176 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2177 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2178 exit->exitstate.evt_pending = cpudata->evt_pending;
2179
2180 vmx_vmcs_leave(vcpu);
2181
2182 return 0;
2183 }
2184
2185 /* -------------------------------------------------------------------------- */
2186
2187 static int
2188 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2189 {
2190 struct pglist pglist;
2191 paddr_t _pa;
2192 vaddr_t _va;
2193 size_t i;
2194 int ret;
2195
2196 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2197 &pglist, 1, 0);
2198 if (ret != 0)
2199 return ENOMEM;
2200 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2201 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2202 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2203 if (_va == 0)
2204 goto error;
2205
2206 for (i = 0; i < npages; i++) {
2207 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2208 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2209 }
2210 pmap_update(pmap_kernel());
2211
2212 memset((void *)_va, 0, npages * PAGE_SIZE);
2213
2214 *pa = _pa;
2215 *va = _va;
2216 return 0;
2217
2218 error:
2219 for (i = 0; i < npages; i++) {
2220 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2221 }
2222 return ENOMEM;
2223 }
2224
2225 static void
2226 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2227 {
2228 size_t i;
2229
2230 pmap_kremove(va, npages * PAGE_SIZE);
2231 pmap_update(pmap_kernel());
2232 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2233 for (i = 0; i < npages; i++) {
2234 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2235 }
2236 }
2237
2238 /* -------------------------------------------------------------------------- */
2239
2240 static void
2241 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2242 {
2243 uint64_t byte;
2244 uint8_t bitoff;
2245
2246 if (msr < 0x00002000) {
2247 /* Range 1 */
2248 byte = ((msr - 0x00000000) / 8) + 0;
2249 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2250 /* Range 2 */
2251 byte = ((msr - 0xC0000000) / 8) + 1024;
2252 } else {
2253 panic("%s: wrong range", __func__);
2254 }
2255
2256 bitoff = (msr & 0x7);
2257
2258 if (read) {
2259 bitmap[byte] &= ~__BIT(bitoff);
2260 }
2261 if (write) {
2262 bitmap[2048 + byte] &= ~__BIT(bitoff);
2263 }
2264 }
2265
2266 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2267 #define VMX_SEG_ATTRIB_S __BIT(4)
2268 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2269 #define VMX_SEG_ATTRIB_P __BIT(7)
2270 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2271 #define VMX_SEG_ATTRIB_L __BIT(13)
2272 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2273 #define VMX_SEG_ATTRIB_G __BIT(15)
2274 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2275
2276 static void
2277 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2278 {
2279 uint64_t attrib;
2280
2281 attrib =
2282 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2283 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2284 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2285 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2286 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2287 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2288 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2289 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2290 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2291
2292 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2293 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2294 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2295 }
2296 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2297 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2298 }
2299
2300 static void
2301 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2302 {
2303 uint64_t selector = 0, attrib = 0, base, limit;
2304
2305 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2306 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2307 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2308 }
2309 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2310 base = vmx_vmread(vmx_guest_segs[idx].base);
2311
2312 segs[idx].selector = selector;
2313 segs[idx].limit = limit;
2314 segs[idx].base = base;
2315 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2316 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2317 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2318 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2319 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2320 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2321 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2322 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2323 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2324 segs[idx].attrib.p = 0;
2325 }
2326 }
2327
2328 static inline bool
2329 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2330 {
2331 uint64_t cr0, cr3, cr4, efer;
2332
2333 if (flags & NVMM_X64_STATE_CRS) {
2334 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2335 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2336 return true;
2337 }
2338 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2339 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2340 return true;
2341 }
2342 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2343 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2344 return true;
2345 }
2346 }
2347
2348 if (flags & NVMM_X64_STATE_MSRS) {
2349 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2350 if ((efer ^
2351 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2352 return true;
2353 }
2354 }
2355
2356 return false;
2357 }
2358
2359 static void
2360 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2361 {
2362 struct nvmm_comm_page *comm = vcpu->comm;
2363 const struct nvmm_x64_state *state = &comm->state;
2364 struct vmx_cpudata *cpudata = vcpu->cpudata;
2365 struct fxsave *fpustate;
2366 uint64_t ctls1, intstate;
2367 uint64_t flags;
2368
2369 flags = comm->state_wanted;
2370
2371 vmx_vmcs_enter(vcpu);
2372
2373 if (vmx_state_tlb_flush(state, flags)) {
2374 cpudata->gtlb_want_flush = true;
2375 }
2376
2377 if (flags & NVMM_X64_STATE_SEGS) {
2378 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2379 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2380 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2381 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2382 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2383 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2384 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2385 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2386 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2387 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2388 }
2389
2390 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2391 if (flags & NVMM_X64_STATE_GPRS) {
2392 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2393
2394 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2395 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2396 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2397 }
2398
2399 if (flags & NVMM_X64_STATE_CRS) {
2400 /*
2401 * CR0_NE and CR4_VMXE are mandatory.
2402 */
2403 vmx_vmwrite(VMCS_GUEST_CR0,
2404 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2405 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2406 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2407 vmx_vmwrite(VMCS_GUEST_CR4,
2408 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2409 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2410
2411 if (vmx_xcr0_mask != 0) {
2412 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2413 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2414 cpudata->gxcr0 &= vmx_xcr0_mask;
2415 cpudata->gxcr0 |= XCR0_X87;
2416 }
2417 }
2418
2419 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2420 if (flags & NVMM_X64_STATE_DRS) {
2421 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2422
2423 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2424 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2425 }
2426
2427 if (flags & NVMM_X64_STATE_MSRS) {
2428 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2429 state->msrs[NVMM_X64_MSR_STAR];
2430 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2431 state->msrs[NVMM_X64_MSR_LSTAR];
2432 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2433 state->msrs[NVMM_X64_MSR_CSTAR];
2434 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2435 state->msrs[NVMM_X64_MSR_SFMASK];
2436 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2437 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2438
2439 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2440 state->msrs[NVMM_X64_MSR_EFER]);
2441 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2442 state->msrs[NVMM_X64_MSR_PAT]);
2443 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2444 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2445 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2446 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2447 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2448 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2449
2450 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2451 cpudata->gtsc_want_update = true;
2452
2453 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2454 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2455 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2456 ctls1 |= ENTRY_CTLS_LONG_MODE;
2457 } else {
2458 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2459 }
2460 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2461 }
2462
2463 if (flags & NVMM_X64_STATE_INTR) {
2464 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2465 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2466 if (state->intr.int_shadow) {
2467 intstate |= INT_STATE_MOVSS;
2468 }
2469 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2470
2471 if (state->intr.int_window_exiting) {
2472 vmx_event_waitexit_enable(vcpu, false);
2473 } else {
2474 vmx_event_waitexit_disable(vcpu, false);
2475 }
2476
2477 if (state->intr.nmi_window_exiting) {
2478 vmx_event_waitexit_enable(vcpu, true);
2479 } else {
2480 vmx_event_waitexit_disable(vcpu, true);
2481 }
2482 }
2483
2484 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2485 if (flags & NVMM_X64_STATE_FPU) {
2486 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2487 sizeof(state->fpu));
2488
2489 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2490 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2491 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2492
2493 if (vmx_xcr0_mask != 0) {
2494 /* Reset XSTATE_BV, to force a reload. */
2495 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2496 }
2497 }
2498
2499 vmx_vmcs_leave(vcpu);
2500
2501 comm->state_wanted = 0;
2502 comm->state_cached |= flags;
2503 }
2504
2505 static void
2506 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2507 {
2508 struct nvmm_comm_page *comm = vcpu->comm;
2509 struct nvmm_x64_state *state = &comm->state;
2510 struct vmx_cpudata *cpudata = vcpu->cpudata;
2511 uint64_t intstate, flags;
2512
2513 flags = comm->state_wanted;
2514
2515 vmx_vmcs_enter(vcpu);
2516
2517 if (flags & NVMM_X64_STATE_SEGS) {
2518 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2519 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2520 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2521 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2522 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2523 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2524 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2525 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2526 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2527 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2528 }
2529
2530 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2531 if (flags & NVMM_X64_STATE_GPRS) {
2532 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2533
2534 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2535 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2536 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2537 }
2538
2539 if (flags & NVMM_X64_STATE_CRS) {
2540 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2541 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2542 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2543 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2544 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2545 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2546
2547 /* Hide VMXE. */
2548 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2549 }
2550
2551 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2552 if (flags & NVMM_X64_STATE_DRS) {
2553 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2554
2555 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2556 }
2557
2558 if (flags & NVMM_X64_STATE_MSRS) {
2559 state->msrs[NVMM_X64_MSR_STAR] =
2560 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2561 state->msrs[NVMM_X64_MSR_LSTAR] =
2562 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2563 state->msrs[NVMM_X64_MSR_CSTAR] =
2564 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2565 state->msrs[NVMM_X64_MSR_SFMASK] =
2566 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2567 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2568 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2569 state->msrs[NVMM_X64_MSR_EFER] =
2570 vmx_vmread(VMCS_GUEST_IA32_EFER);
2571 state->msrs[NVMM_X64_MSR_PAT] =
2572 vmx_vmread(VMCS_GUEST_IA32_PAT);
2573 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2574 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2575 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2576 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2577 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2578 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2579 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2580 }
2581
2582 if (flags & NVMM_X64_STATE_INTR) {
2583 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2584 state->intr.int_shadow =
2585 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2586 state->intr.int_window_exiting = cpudata->int_window_exit;
2587 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2588 state->intr.evt_pending = cpudata->evt_pending;
2589 }
2590
2591 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2592 if (flags & NVMM_X64_STATE_FPU) {
2593 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2594 sizeof(state->fpu));
2595 }
2596
2597 vmx_vmcs_leave(vcpu);
2598
2599 comm->state_wanted = 0;
2600 comm->state_cached |= flags;
2601 }
2602
2603 static void
2604 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2605 {
2606 vcpu->comm->state_wanted = flags;
2607 vmx_vcpu_getstate(vcpu);
2608 }
2609
2610 static void
2611 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2612 {
2613 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2614 vcpu->comm->state_commit = 0;
2615 vmx_vcpu_setstate(vcpu);
2616 }
2617
2618 /* -------------------------------------------------------------------------- */
2619
2620 static void
2621 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2622 {
2623 struct vmx_cpudata *cpudata = vcpu->cpudata;
2624 size_t i, oct, bit;
2625
2626 mutex_enter(&vmx_asidlock);
2627
2628 for (i = 0; i < vmx_maxasid; i++) {
2629 oct = i / 8;
2630 bit = i % 8;
2631
2632 if (vmx_asidmap[oct] & __BIT(bit)) {
2633 continue;
2634 }
2635
2636 cpudata->asid = i;
2637
2638 vmx_asidmap[oct] |= __BIT(bit);
2639 vmx_vmwrite(VMCS_VPID, i);
2640 mutex_exit(&vmx_asidlock);
2641 return;
2642 }
2643
2644 mutex_exit(&vmx_asidlock);
2645
2646 panic("%s: impossible", __func__);
2647 }
2648
2649 static void
2650 vmx_asid_free(struct nvmm_cpu *vcpu)
2651 {
2652 size_t oct, bit;
2653 uint64_t asid;
2654
2655 asid = vmx_vmread(VMCS_VPID);
2656
2657 oct = asid / 8;
2658 bit = asid % 8;
2659
2660 mutex_enter(&vmx_asidlock);
2661 vmx_asidmap[oct] &= ~__BIT(bit);
2662 mutex_exit(&vmx_asidlock);
2663 }
2664
2665 static void
2666 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2667 {
2668 struct vmx_cpudata *cpudata = vcpu->cpudata;
2669 struct vmcs *vmcs = cpudata->vmcs;
2670 struct msr_entry *gmsr = cpudata->gmsr;
2671 extern uint8_t vmx_resume_rip;
2672 uint64_t rev, eptp;
2673
2674 rev = vmx_get_revision();
2675
2676 memset(vmcs, 0, VMCS_SIZE);
2677 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2678 vmcs->abort = 0;
2679
2680 vmx_vmcs_enter(vcpu);
2681
2682 /* No link pointer. */
2683 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2684
2685 /* Install the CTLSs. */
2686 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2687 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2688 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2689 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2690 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2691
2692 /* Allow direct access to certain MSRs. */
2693 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2694 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2695 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2696 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2697 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2698 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2699 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2700 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2701 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2702 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2703 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2704 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2705 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2706 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2707 true, false);
2708 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2709
2710 /*
2711 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2712 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2713 */
2714 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2715 gmsr[VMX_MSRLIST_STAR].val = 0;
2716 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2717 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2718 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2719 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2720 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2721 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2722 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2723 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2724 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2725 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2726 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2727 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2728 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2729 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2730
2731 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2732 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2733 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2734
2735 /* Force CR4_VMXE to zero. */
2736 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2737
2738 /* Set the Host state for resuming. */
2739 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2740 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2741 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2742 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2743 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2744 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2745 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2746 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2747 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2748 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2749 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2750 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2751 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2752 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2753
2754 /* Generate ASID. */
2755 vmx_asid_alloc(vcpu);
2756
2757 /* Enable Extended Paging, 4-Level. */
2758 eptp =
2759 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2760 __SHIFTIN(4-1, EPTP_WALKLEN) |
2761 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2762 mach->vm->vm_map.pmap->pm_pdirpa[0];
2763 vmx_vmwrite(VMCS_EPTP, eptp);
2764
2765 /* Init IA32_MISC_ENABLE. */
2766 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2767 cpudata->gmsr_misc_enable &=
2768 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2769 cpudata->gmsr_misc_enable |=
2770 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2771
2772 /* Init XSAVE header. */
2773 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2774 cpudata->gfpu.xsh_xcomp_bv = 0;
2775
2776 /* These MSRs are static. */
2777 cpudata->star = rdmsr(MSR_STAR);
2778 cpudata->lstar = rdmsr(MSR_LSTAR);
2779 cpudata->cstar = rdmsr(MSR_CSTAR);
2780 cpudata->sfmask = rdmsr(MSR_SFMASK);
2781
2782 /* Install the RESET state. */
2783 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2784 sizeof(nvmm_x86_reset_state));
2785 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2786 vcpu->comm->state_cached = 0;
2787 vmx_vcpu_setstate(vcpu);
2788
2789 vmx_vmcs_leave(vcpu);
2790 }
2791
2792 static int
2793 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2794 {
2795 struct vmx_cpudata *cpudata;
2796 int error;
2797
2798 /* Allocate the VMX cpudata. */
2799 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2800 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2801 UVM_KMF_WIRED|UVM_KMF_ZERO);
2802 vcpu->cpudata = cpudata;
2803
2804 /* VMCS */
2805 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2806 VMCS_NPAGES);
2807 if (error)
2808 goto error;
2809
2810 /* MSR Bitmap */
2811 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2812 MSRBM_NPAGES);
2813 if (error)
2814 goto error;
2815
2816 /* Guest MSR List */
2817 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2818 if (error)
2819 goto error;
2820
2821 kcpuset_create(&cpudata->htlb_want_flush, true);
2822
2823 /* Init the VCPU info. */
2824 vmx_vcpu_init(mach, vcpu);
2825
2826 return 0;
2827
2828 error:
2829 if (cpudata->vmcs_pa) {
2830 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2831 VMCS_NPAGES);
2832 }
2833 if (cpudata->msrbm_pa) {
2834 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2835 MSRBM_NPAGES);
2836 }
2837 if (cpudata->gmsr_pa) {
2838 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2839 }
2840
2841 kmem_free(cpudata, sizeof(*cpudata));
2842 return error;
2843 }
2844
2845 static void
2846 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2847 {
2848 struct vmx_cpudata *cpudata = vcpu->cpudata;
2849
2850 vmx_vmcs_enter(vcpu);
2851 vmx_asid_free(vcpu);
2852 vmx_vmcs_destroy(vcpu);
2853
2854 kcpuset_destroy(cpudata->htlb_want_flush);
2855
2856 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2857 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2858 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2859 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2860 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2861 }
2862
2863 /* -------------------------------------------------------------------------- */
2864
2865 static int
2866 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2867 {
2868 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2869 size_t i;
2870
2871 if (__predict_false(cpuid->mask && cpuid->exit)) {
2872 return EINVAL;
2873 }
2874 if (__predict_false(cpuid->mask &&
2875 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2876 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2877 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2878 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2879 return EINVAL;
2880 }
2881
2882 /* If unset, delete, to restore the default behavior. */
2883 if (!cpuid->mask && !cpuid->exit) {
2884 for (i = 0; i < VMX_NCPUIDS; i++) {
2885 if (!cpudata->cpuidpresent[i]) {
2886 continue;
2887 }
2888 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2889 cpudata->cpuidpresent[i] = false;
2890 }
2891 }
2892 return 0;
2893 }
2894
2895 /* If already here, replace. */
2896 for (i = 0; i < VMX_NCPUIDS; i++) {
2897 if (!cpudata->cpuidpresent[i]) {
2898 continue;
2899 }
2900 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2901 memcpy(&cpudata->cpuid[i], cpuid,
2902 sizeof(struct nvmm_vcpu_conf_cpuid));
2903 return 0;
2904 }
2905 }
2906
2907 /* Not here, insert. */
2908 for (i = 0; i < VMX_NCPUIDS; i++) {
2909 if (!cpudata->cpuidpresent[i]) {
2910 cpudata->cpuidpresent[i] = true;
2911 memcpy(&cpudata->cpuid[i], cpuid,
2912 sizeof(struct nvmm_vcpu_conf_cpuid));
2913 return 0;
2914 }
2915 }
2916
2917 return ENOBUFS;
2918 }
2919
2920 static int
2921 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2922 {
2923 struct nvmm_vcpu_conf_tpr *tpr = data;
2924
2925 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2926 return 0;
2927 }
2928
2929 static int
2930 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2931 {
2932 struct vmx_cpudata *cpudata = vcpu->cpudata;
2933
2934 switch (op) {
2935 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2936 return vmx_vcpu_configure_cpuid(cpudata, data);
2937 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2938 return vmx_vcpu_configure_tpr(cpudata, data);
2939 default:
2940 return EINVAL;
2941 }
2942 }
2943
2944 /* -------------------------------------------------------------------------- */
2945
2946 static void
2947 vmx_tlb_flush(struct pmap *pm)
2948 {
2949 struct nvmm_machine *mach = pm->pm_data;
2950 struct vmx_machdata *machdata = mach->machdata;
2951
2952 atomic_inc_64(&machdata->mach_htlb_gen);
2953
2954 /* Generates IPIs, which cause #VMEXITs. */
2955 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2956 }
2957
2958 static void
2959 vmx_machine_create(struct nvmm_machine *mach)
2960 {
2961 struct pmap *pmap = mach->vm->vm_map.pmap;
2962 struct vmx_machdata *machdata;
2963
2964 /* Convert to EPT. */
2965 pmap_ept_transform(pmap);
2966
2967 /* Fill in pmap info. */
2968 pmap->pm_data = (void *)mach;
2969 pmap->pm_tlb_flush = vmx_tlb_flush;
2970
2971 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2972 mach->machdata = machdata;
2973
2974 /* Start with an hTLB flush everywhere. */
2975 machdata->mach_htlb_gen = 1;
2976 }
2977
2978 static void
2979 vmx_machine_destroy(struct nvmm_machine *mach)
2980 {
2981 struct vmx_machdata *machdata = mach->machdata;
2982
2983 kmem_free(machdata, sizeof(struct vmx_machdata));
2984 }
2985
2986 static int
2987 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2988 {
2989 panic("%s: impossible", __func__);
2990 }
2991
2992 /* -------------------------------------------------------------------------- */
2993
2994 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
2995 ((msrval & __BIT(32 + bitoff)) != 0)
2996 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
2997 ((msrval & __BIT(bitoff)) == 0)
2998
2999 static int
3000 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3001 {
3002 uint64_t basic, val, true_val;
3003 bool has_true;
3004 size_t i;
3005
3006 basic = rdmsr(MSR_IA32_VMX_BASIC);
3007 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3008
3009 val = rdmsr(msr_ctls);
3010 if (has_true) {
3011 true_val = rdmsr(msr_true_ctls);
3012 } else {
3013 true_val = val;
3014 }
3015
3016 for (i = 0; i < 32; i++) {
3017 if (!(set_one & __BIT(i))) {
3018 continue;
3019 }
3020 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3021 return -1;
3022 }
3023 }
3024
3025 return 0;
3026 }
3027
3028 static int
3029 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3030 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3031 {
3032 uint64_t basic, val, true_val;
3033 bool one_allowed, zero_allowed, has_true;
3034 size_t i;
3035
3036 basic = rdmsr(MSR_IA32_VMX_BASIC);
3037 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3038
3039 val = rdmsr(msr_ctls);
3040 if (has_true) {
3041 true_val = rdmsr(msr_true_ctls);
3042 } else {
3043 true_val = val;
3044 }
3045
3046 for (i = 0; i < 32; i++) {
3047 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3048 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3049
3050 if (zero_allowed && !one_allowed) {
3051 if (set_one & __BIT(i))
3052 return -1;
3053 *res &= ~__BIT(i);
3054 } else if (one_allowed && !zero_allowed) {
3055 if (set_zero & __BIT(i))
3056 return -1;
3057 *res |= __BIT(i);
3058 } else {
3059 if (set_zero & __BIT(i)) {
3060 *res &= ~__BIT(i);
3061 } else if (set_one & __BIT(i)) {
3062 *res |= __BIT(i);
3063 } else if (!has_true) {
3064 *res &= ~__BIT(i);
3065 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3066 *res &= ~__BIT(i);
3067 } else if (CTLS_ONE_ALLOWED(val, i)) {
3068 *res |= __BIT(i);
3069 } else {
3070 return -1;
3071 }
3072 }
3073 }
3074
3075 return 0;
3076 }
3077
3078 static bool
3079 vmx_ident(void)
3080 {
3081 uint64_t msr;
3082 int ret;
3083
3084 if (!(cpu_feature[1] & CPUID2_VMX)) {
3085 return false;
3086 }
3087
3088 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3089 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3090 printf("NVMM: VMX disabled in BIOS\n");
3091 return false;
3092 }
3093 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3094 printf("NVMM: VMX disabled in BIOS\n");
3095 return false;
3096 }
3097
3098 msr = rdmsr(MSR_IA32_VMX_BASIC);
3099 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3100 printf("NVMM: I/O reporting not supported\n");
3101 return false;
3102 }
3103 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3104 printf("NVMM: WB memory not supported\n");
3105 return false;
3106 }
3107
3108 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3109 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3110 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3111 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3112 if (ret == -1) {
3113 printf("NVMM: CR0 requirements not satisfied\n");
3114 return false;
3115 }
3116
3117 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3118 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3119 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3120 if (ret == -1) {
3121 printf("NVMM: CR4 requirements not satisfied\n");
3122 return false;
3123 }
3124
3125 /* Init the CTLSs right now, and check for errors. */
3126 ret = vmx_init_ctls(
3127 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3128 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3129 &vmx_pinbased_ctls);
3130 if (ret == -1) {
3131 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3132 return false;
3133 }
3134 ret = vmx_init_ctls(
3135 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3136 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3137 &vmx_procbased_ctls);
3138 if (ret == -1) {
3139 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3140 return false;
3141 }
3142 ret = vmx_init_ctls(
3143 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3144 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3145 &vmx_procbased_ctls2);
3146 if (ret == -1) {
3147 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3148 return false;
3149 }
3150 ret = vmx_check_ctls(
3151 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3152 PROC_CTLS2_INVPCID_ENABLE);
3153 if (ret != -1) {
3154 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3155 }
3156 ret = vmx_init_ctls(
3157 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3158 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3159 &vmx_entry_ctls);
3160 if (ret == -1) {
3161 printf("NVMM: entry-ctls requirements not satisfied\n");
3162 return false;
3163 }
3164 ret = vmx_init_ctls(
3165 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3166 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3167 &vmx_exit_ctls);
3168 if (ret == -1) {
3169 printf("NVMM: exit-ctls requirements not satisfied\n");
3170 return false;
3171 }
3172
3173 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3174 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3175 printf("NVMM: 4-level page tree not supported\n");
3176 return false;
3177 }
3178 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3179 printf("NVMM: INVEPT not supported\n");
3180 return false;
3181 }
3182 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3183 printf("NVMM: INVVPID not supported\n");
3184 return false;
3185 }
3186 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3187 pmap_ept_has_ad = true;
3188 } else {
3189 pmap_ept_has_ad = false;
3190 }
3191 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3192 printf("NVMM: EPT UC/WB memory types not supported\n");
3193 return false;
3194 }
3195
3196 return true;
3197 }
3198
3199 static void
3200 vmx_init_asid(uint32_t maxasid)
3201 {
3202 size_t allocsz;
3203
3204 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3205
3206 vmx_maxasid = maxasid;
3207 allocsz = roundup(maxasid, 8) / 8;
3208 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3209
3210 /* ASID 0 is reserved for the host. */
3211 vmx_asidmap[0] |= __BIT(0);
3212 }
3213
3214 static void
3215 vmx_change_cpu(void *arg1, void *arg2)
3216 {
3217 struct cpu_info *ci = curcpu();
3218 bool enable = arg1 != NULL;
3219 uint64_t cr4;
3220
3221 if (!enable) {
3222 vmx_vmxoff();
3223 }
3224
3225 cr4 = rcr4();
3226 if (enable) {
3227 cr4 |= CR4_VMXE;
3228 } else {
3229 cr4 &= ~CR4_VMXE;
3230 }
3231 lcr4(cr4);
3232
3233 if (enable) {
3234 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3235 }
3236 }
3237
3238 static void
3239 vmx_init_l1tf(void)
3240 {
3241 u_int descs[4];
3242 uint64_t msr;
3243
3244 if (cpuid_level < 7) {
3245 return;
3246 }
3247
3248 x86_cpuid(7, descs);
3249
3250 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3251 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3252 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3253 /* No mitigation needed. */
3254 return;
3255 }
3256 }
3257
3258 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3259 /* Enable hardware mitigation. */
3260 vmx_msrlist_entry_nmsr += 1;
3261 }
3262 }
3263
3264 static void
3265 vmx_init(void)
3266 {
3267 CPU_INFO_ITERATOR cii;
3268 struct cpu_info *ci;
3269 uint64_t xc, msr;
3270 struct vmxon *vmxon;
3271 uint32_t revision;
3272 paddr_t pa;
3273 vaddr_t va;
3274 int error;
3275
3276 /* Init the ASID bitmap (VPID). */
3277 vmx_init_asid(VPID_MAX);
3278
3279 /* Init the XCR0 mask. */
3280 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3281
3282 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3283 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3284 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3285 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3286 } else {
3287 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3288 }
3289 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3290 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3291 } else {
3292 vmx_ept_flush_op = VMX_INVEPT_ALL;
3293 }
3294 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3295 vmx_eptp_type = EPTP_TYPE_WB;
3296 } else {
3297 vmx_eptp_type = EPTP_TYPE_UC;
3298 }
3299
3300 /* Init the L1TF mitigation. */
3301 vmx_init_l1tf();
3302
3303 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3304 revision = vmx_get_revision();
3305
3306 for (CPU_INFO_FOREACH(cii, ci)) {
3307 error = vmx_memalloc(&pa, &va, 1);
3308 if (error) {
3309 panic("%s: out of memory", __func__);
3310 }
3311 vmxoncpu[cpu_index(ci)].pa = pa;
3312 vmxoncpu[cpu_index(ci)].va = va;
3313
3314 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3315 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3316 }
3317
3318 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3319 xc_wait(xc);
3320 }
3321
3322 static void
3323 vmx_fini_asid(void)
3324 {
3325 size_t allocsz;
3326
3327 allocsz = roundup(vmx_maxasid, 8) / 8;
3328 kmem_free(vmx_asidmap, allocsz);
3329
3330 mutex_destroy(&vmx_asidlock);
3331 }
3332
3333 static void
3334 vmx_fini(void)
3335 {
3336 uint64_t xc;
3337 size_t i;
3338
3339 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3340 xc_wait(xc);
3341
3342 for (i = 0; i < MAXCPUS; i++) {
3343 if (vmxoncpu[i].pa != 0)
3344 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3345 }
3346
3347 vmx_fini_asid();
3348 }
3349
3350 static void
3351 vmx_capability(struct nvmm_capability *cap)
3352 {
3353 cap->arch.mach_conf_support = 0;
3354 cap->arch.vcpu_conf_support =
3355 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3356 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3357 cap->arch.xcr0_mask = vmx_xcr0_mask;
3358 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3359 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3360 }
3361
3362 const struct nvmm_impl nvmm_x86_vmx = {
3363 .ident = vmx_ident,
3364 .init = vmx_init,
3365 .fini = vmx_fini,
3366 .capability = vmx_capability,
3367 .mach_conf_max = NVMM_X86_MACH_NCONF,
3368 .mach_conf_sizes = NULL,
3369 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3370 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3371 .state_size = sizeof(struct nvmm_x64_state),
3372 .machine_create = vmx_machine_create,
3373 .machine_destroy = vmx_machine_destroy,
3374 .machine_configure = vmx_machine_configure,
3375 .vcpu_create = vmx_vcpu_create,
3376 .vcpu_destroy = vmx_vcpu_destroy,
3377 .vcpu_configure = vmx_vcpu_configure,
3378 .vcpu_setstate = vmx_vcpu_setstate,
3379 .vcpu_getstate = vmx_vcpu_getstate,
3380 .vcpu_inject = vmx_vcpu_inject,
3381 .vcpu_run = vmx_vcpu_run
3382 };
3383