Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.57
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.57 2020/05/10 06:24:16 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.57 2020/05/10 06:24:16 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 #include <sys/bitops.h>
     43 
     44 #include <uvm/uvm.h>
     45 #include <uvm/uvm_page.h>
     46 
     47 #include <x86/cputypes.h>
     48 #include <x86/specialreg.h>
     49 #include <x86/pmap.h>
     50 #include <x86/dbregs.h>
     51 #include <x86/cpu_counter.h>
     52 #include <machine/cpuvar.h>
     53 
     54 #include <dev/nvmm/nvmm.h>
     55 #include <dev/nvmm/nvmm_internal.h>
     56 #include <dev/nvmm/x86/nvmm_x86.h>
     57 
     58 int _vmx_vmxon(paddr_t *pa);
     59 int _vmx_vmxoff(void);
     60 int vmx_vmlaunch(uint64_t *gprs);
     61 int vmx_vmresume(uint64_t *gprs);
     62 
     63 #define vmx_vmxon(a) \
     64 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     65 		panic("%s: VMXON failed", __func__); \
     66 	}
     67 #define vmx_vmxoff() \
     68 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     69 		panic("%s: VMXOFF failed", __func__); \
     70 	}
     71 
     72 struct ept_desc {
     73 	uint64_t eptp;
     74 	uint64_t mbz;
     75 } __packed;
     76 
     77 struct vpid_desc {
     78 	uint64_t vpid;
     79 	uint64_t addr;
     80 } __packed;
     81 
     82 static inline void
     83 vmx_invept(uint64_t op, struct ept_desc *desc)
     84 {
     85 	asm volatile (
     86 		"invept		%[desc],%[op];"
     87 		"jz		vmx_insn_failvalid;"
     88 		"jc		vmx_insn_failinvalid;"
     89 		:
     90 		: [desc] "m" (*desc), [op] "r" (op)
     91 		: "memory", "cc"
     92 	);
     93 }
     94 
     95 static inline void
     96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
     97 {
     98 	asm volatile (
     99 		"invvpid	%[desc],%[op];"
    100 		"jz		vmx_insn_failvalid;"
    101 		"jc		vmx_insn_failinvalid;"
    102 		:
    103 		: [desc] "m" (*desc), [op] "r" (op)
    104 		: "memory", "cc"
    105 	);
    106 }
    107 
    108 static inline uint64_t
    109 vmx_vmread(uint64_t field)
    110 {
    111 	uint64_t value;
    112 
    113 	asm volatile (
    114 		"vmread		%[field],%[value];"
    115 		"jz		vmx_insn_failvalid;"
    116 		"jc		vmx_insn_failinvalid;"
    117 		: [value] "=r" (value)
    118 		: [field] "r" (field)
    119 		: "cc"
    120 	);
    121 
    122 	return value;
    123 }
    124 
    125 static inline void
    126 vmx_vmwrite(uint64_t field, uint64_t value)
    127 {
    128 	asm volatile (
    129 		"vmwrite	%[value],%[field];"
    130 		"jz		vmx_insn_failvalid;"
    131 		"jc		vmx_insn_failinvalid;"
    132 		:
    133 		: [field] "r" (field), [value] "r" (value)
    134 		: "cc"
    135 	);
    136 }
    137 
    138 #ifdef DIAGNOSTIC
    139 static inline paddr_t
    140 vmx_vmptrst(void)
    141 {
    142 	paddr_t pa;
    143 
    144 	asm volatile (
    145 		"vmptrst	%[pa];"
    146 		:
    147 		: [pa] "m" (*(paddr_t *)&pa)
    148 		: "memory"
    149 	);
    150 
    151 	return pa;
    152 }
    153 #endif
    154 
    155 static inline void
    156 vmx_vmptrld(paddr_t *pa)
    157 {
    158 	asm volatile (
    159 		"vmptrld	%[pa];"
    160 		"jz		vmx_insn_failvalid;"
    161 		"jc		vmx_insn_failinvalid;"
    162 		:
    163 		: [pa] "m" (*pa)
    164 		: "memory", "cc"
    165 	);
    166 }
    167 
    168 static inline void
    169 vmx_vmclear(paddr_t *pa)
    170 {
    171 	asm volatile (
    172 		"vmclear	%[pa];"
    173 		"jz		vmx_insn_failvalid;"
    174 		"jc		vmx_insn_failinvalid;"
    175 		:
    176 		: [pa] "m" (*pa)
    177 		: "memory", "cc"
    178 	);
    179 }
    180 
    181 #define MSR_IA32_FEATURE_CONTROL	0x003A
    182 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    183 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    184 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    185 
    186 #define MSR_IA32_VMX_BASIC		0x0480
    187 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    188 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    189 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    190 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    191 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    192 #define			MEM_TYPE_UC		0
    193 #define			MEM_TYPE_WB		6
    194 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    195 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    196 
    197 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    198 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    199 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    200 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    201 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    202 
    203 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    204 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    205 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    206 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    207 
    208 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    209 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    210 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    211 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    212 
    213 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    214 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    215 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    216 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    217 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    218 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    219 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    220 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    221 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    222 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    223 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    224 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    225 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    226 
    227 /* -------------------------------------------------------------------------- */
    228 
    229 /* 16-bit control fields */
    230 #define VMCS_VPID				0x00000000
    231 #define VMCS_PIR_VECTOR				0x00000002
    232 #define VMCS_EPTP_INDEX				0x00000004
    233 /* 16-bit guest-state fields */
    234 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    235 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    236 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    237 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    238 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    239 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    240 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    241 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    242 #define VMCS_GUEST_INTR_STATUS			0x00000810
    243 #define VMCS_PML_INDEX				0x00000812
    244 /* 16-bit host-state fields */
    245 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    246 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    247 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    248 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    249 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    250 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    251 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    252 /* 64-bit control fields */
    253 #define VMCS_IO_BITMAP_A			0x00002000
    254 #define VMCS_IO_BITMAP_B			0x00002002
    255 #define VMCS_MSR_BITMAP				0x00002004
    256 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    257 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    258 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    259 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    260 #define VMCS_PML_ADDRESS			0x0000200E
    261 #define VMCS_TSC_OFFSET				0x00002010
    262 #define VMCS_VIRTUAL_APIC			0x00002012
    263 #define VMCS_APIC_ACCESS			0x00002014
    264 #define VMCS_PIR_DESC				0x00002016
    265 #define VMCS_VM_CONTROL				0x00002018
    266 #define VMCS_EPTP				0x0000201A
    267 #define		EPTP_TYPE			__BITS(2,0)
    268 #define			EPTP_TYPE_UC		0
    269 #define			EPTP_TYPE_WB		6
    270 #define		EPTP_WALKLEN			__BITS(5,3)
    271 #define		EPTP_FLAGS_AD			__BIT(6)
    272 #define		EPTP_PHYSADDR			__BITS(63,12)
    273 #define VMCS_EOI_EXIT0				0x0000201C
    274 #define VMCS_EOI_EXIT1				0x0000201E
    275 #define VMCS_EOI_EXIT2				0x00002020
    276 #define VMCS_EOI_EXIT3				0x00002022
    277 #define VMCS_EPTP_LIST				0x00002024
    278 #define VMCS_VMREAD_BITMAP			0x00002026
    279 #define VMCS_VMWRITE_BITMAP			0x00002028
    280 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    281 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    282 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    283 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
    284 #define VMCS_TSC_MULTIPLIER			0x00002032
    285 /* 64-bit read-only fields */
    286 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    287 /* 64-bit guest-state fields */
    288 #define VMCS_LINK_POINTER			0x00002800
    289 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    290 #define VMCS_GUEST_IA32_PAT			0x00002804
    291 #define VMCS_GUEST_IA32_EFER			0x00002806
    292 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    293 #define VMCS_GUEST_PDPTE0			0x0000280A
    294 #define VMCS_GUEST_PDPTE1			0x0000280C
    295 #define VMCS_GUEST_PDPTE2			0x0000280E
    296 #define VMCS_GUEST_PDPTE3			0x00002810
    297 #define VMCS_GUEST_BNDCFGS			0x00002812
    298 /* 64-bit host-state fields */
    299 #define VMCS_HOST_IA32_PAT			0x00002C00
    300 #define VMCS_HOST_IA32_EFER			0x00002C02
    301 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    302 /* 32-bit control fields */
    303 #define VMCS_PINBASED_CTLS			0x00004000
    304 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    305 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    306 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    307 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    308 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
    309 #define VMCS_PROCBASED_CTLS			0x00004002
    310 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    311 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    312 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    313 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    314 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    315 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    316 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    317 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    318 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    319 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    320 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    321 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    322 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    323 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    324 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    325 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    326 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    327 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    328 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    329 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    330 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    331 #define VMCS_EXCEPTION_BITMAP			0x00004004
    332 #define VMCS_PF_ERROR_MASK			0x00004006
    333 #define VMCS_PF_ERROR_MATCH			0x00004008
    334 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    335 #define VMCS_EXIT_CTLS				0x0000400C
    336 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    337 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    338 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    339 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    340 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    341 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    342 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    343 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    344 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    345 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    346 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    347 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    348 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    349 #define VMCS_ENTRY_CTLS				0x00004012
    350 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    351 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    352 #define		ENTRY_CTLS_SMM			__BIT(10)
    353 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    354 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    355 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    356 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    357 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    358 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    359 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    360 #define VMCS_ENTRY_INTR_INFO			0x00004016
    361 #define		INTR_INFO_VECTOR		__BITS(7,0)
    362 #define		INTR_INFO_TYPE			__BITS(10,8)
    363 #define			INTR_TYPE_EXT_INT	0
    364 #define			INTR_TYPE_NMI		2
    365 #define			INTR_TYPE_HW_EXC	3
    366 #define			INTR_TYPE_SW_INT	4
    367 #define			INTR_TYPE_PRIV_SW_EXC	5
    368 #define			INTR_TYPE_SW_EXC	6
    369 #define			INTR_TYPE_OTHER		7
    370 #define		INTR_INFO_ERROR			__BIT(11)
    371 #define		INTR_INFO_VALID			__BIT(31)
    372 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    373 #define VMCS_ENTRY_INSTRUCTION_LENGTH		0x0000401A
    374 #define VMCS_TPR_THRESHOLD			0x0000401C
    375 #define VMCS_PROCBASED_CTLS2			0x0000401E
    376 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    377 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    378 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    379 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    380 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    381 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    382 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    383 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    384 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    385 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    386 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    387 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    388 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    389 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    390 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    391 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    392 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    393 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    394 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    395 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    396 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    397 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    398 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
    399 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    400 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
    401 #define VMCS_PLE_GAP				0x00004020
    402 #define VMCS_PLE_WINDOW				0x00004022
    403 /* 32-bit read-only data fields */
    404 #define VMCS_INSTRUCTION_ERROR			0x00004400
    405 #define VMCS_EXIT_REASON			0x00004402
    406 #define VMCS_EXIT_INTR_INFO			0x00004404
    407 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    408 #define VMCS_IDT_VECTORING_INFO			0x00004408
    409 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    410 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    411 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    412 /* 32-bit guest-state fields */
    413 #define VMCS_GUEST_ES_LIMIT			0x00004800
    414 #define VMCS_GUEST_CS_LIMIT			0x00004802
    415 #define VMCS_GUEST_SS_LIMIT			0x00004804
    416 #define VMCS_GUEST_DS_LIMIT			0x00004806
    417 #define VMCS_GUEST_FS_LIMIT			0x00004808
    418 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    419 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    420 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    421 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    422 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    423 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    424 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    425 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    426 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    427 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    428 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    429 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    430 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    431 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    432 #define		INT_STATE_STI			__BIT(0)
    433 #define		INT_STATE_MOVSS			__BIT(1)
    434 #define		INT_STATE_SMI			__BIT(2)
    435 #define		INT_STATE_NMI			__BIT(3)
    436 #define		INT_STATE_ENCLAVE		__BIT(4)
    437 #define VMCS_GUEST_ACTIVITY			0x00004826
    438 #define VMCS_GUEST_SMBASE			0x00004828
    439 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    440 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    441 /* 32-bit host state fields */
    442 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    443 /* Natural-Width control fields */
    444 #define VMCS_CR0_MASK				0x00006000
    445 #define VMCS_CR4_MASK				0x00006002
    446 #define VMCS_CR0_SHADOW				0x00006004
    447 #define VMCS_CR4_SHADOW				0x00006006
    448 #define VMCS_CR3_TARGET0			0x00006008
    449 #define VMCS_CR3_TARGET1			0x0000600A
    450 #define VMCS_CR3_TARGET2			0x0000600C
    451 #define VMCS_CR3_TARGET3			0x0000600E
    452 /* Natural-Width read-only fields */
    453 #define VMCS_EXIT_QUALIFICATION			0x00006400
    454 #define VMCS_IO_RCX				0x00006402
    455 #define VMCS_IO_RSI				0x00006404
    456 #define VMCS_IO_RDI				0x00006406
    457 #define VMCS_IO_RIP				0x00006408
    458 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    459 /* Natural-Width guest-state fields */
    460 #define VMCS_GUEST_CR0				0x00006800
    461 #define VMCS_GUEST_CR3				0x00006802
    462 #define VMCS_GUEST_CR4				0x00006804
    463 #define VMCS_GUEST_ES_BASE			0x00006806
    464 #define VMCS_GUEST_CS_BASE			0x00006808
    465 #define VMCS_GUEST_SS_BASE			0x0000680A
    466 #define VMCS_GUEST_DS_BASE			0x0000680C
    467 #define VMCS_GUEST_FS_BASE			0x0000680E
    468 #define VMCS_GUEST_GS_BASE			0x00006810
    469 #define VMCS_GUEST_LDTR_BASE			0x00006812
    470 #define VMCS_GUEST_TR_BASE			0x00006814
    471 #define VMCS_GUEST_GDTR_BASE			0x00006816
    472 #define VMCS_GUEST_IDTR_BASE			0x00006818
    473 #define VMCS_GUEST_DR7				0x0000681A
    474 #define VMCS_GUEST_RSP				0x0000681C
    475 #define VMCS_GUEST_RIP				0x0000681E
    476 #define VMCS_GUEST_RFLAGS			0x00006820
    477 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    478 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    479 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    480 /* Natural-Width host-state fields */
    481 #define VMCS_HOST_CR0				0x00006C00
    482 #define VMCS_HOST_CR3				0x00006C02
    483 #define VMCS_HOST_CR4				0x00006C04
    484 #define VMCS_HOST_FS_BASE			0x00006C06
    485 #define VMCS_HOST_GS_BASE			0x00006C08
    486 #define VMCS_HOST_TR_BASE			0x00006C0A
    487 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    488 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    489 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    490 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    491 #define VMCS_HOST_RSP				0x00006C14
    492 #define VMCS_HOST_RIP				0x00006c16
    493 
    494 /* VMX basic exit reasons. */
    495 #define VMCS_EXITCODE_EXC_NMI			0
    496 #define VMCS_EXITCODE_EXT_INT			1
    497 #define VMCS_EXITCODE_SHUTDOWN			2
    498 #define VMCS_EXITCODE_INIT			3
    499 #define VMCS_EXITCODE_SIPI			4
    500 #define VMCS_EXITCODE_SMI			5
    501 #define VMCS_EXITCODE_OTHER_SMI			6
    502 #define VMCS_EXITCODE_INT_WINDOW		7
    503 #define VMCS_EXITCODE_NMI_WINDOW		8
    504 #define VMCS_EXITCODE_TASK_SWITCH		9
    505 #define VMCS_EXITCODE_CPUID			10
    506 #define VMCS_EXITCODE_GETSEC			11
    507 #define VMCS_EXITCODE_HLT			12
    508 #define VMCS_EXITCODE_INVD			13
    509 #define VMCS_EXITCODE_INVLPG			14
    510 #define VMCS_EXITCODE_RDPMC			15
    511 #define VMCS_EXITCODE_RDTSC			16
    512 #define VMCS_EXITCODE_RSM			17
    513 #define VMCS_EXITCODE_VMCALL			18
    514 #define VMCS_EXITCODE_VMCLEAR			19
    515 #define VMCS_EXITCODE_VMLAUNCH			20
    516 #define VMCS_EXITCODE_VMPTRLD			21
    517 #define VMCS_EXITCODE_VMPTRST			22
    518 #define VMCS_EXITCODE_VMREAD			23
    519 #define VMCS_EXITCODE_VMRESUME			24
    520 #define VMCS_EXITCODE_VMWRITE			25
    521 #define VMCS_EXITCODE_VMXOFF			26
    522 #define VMCS_EXITCODE_VMXON			27
    523 #define VMCS_EXITCODE_CR			28
    524 #define VMCS_EXITCODE_DR			29
    525 #define VMCS_EXITCODE_IO			30
    526 #define VMCS_EXITCODE_RDMSR			31
    527 #define VMCS_EXITCODE_WRMSR			32
    528 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    529 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    530 #define VMCS_EXITCODE_MWAIT			36
    531 #define VMCS_EXITCODE_TRAP_FLAG			37
    532 #define VMCS_EXITCODE_MONITOR			39
    533 #define VMCS_EXITCODE_PAUSE			40
    534 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    535 #define VMCS_EXITCODE_TPR_BELOW			43
    536 #define VMCS_EXITCODE_APIC_ACCESS		44
    537 #define VMCS_EXITCODE_VEOI			45
    538 #define VMCS_EXITCODE_GDTR_IDTR			46
    539 #define VMCS_EXITCODE_LDTR_TR			47
    540 #define VMCS_EXITCODE_EPT_VIOLATION		48
    541 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    542 #define VMCS_EXITCODE_INVEPT			50
    543 #define VMCS_EXITCODE_RDTSCP			51
    544 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    545 #define VMCS_EXITCODE_INVVPID			53
    546 #define VMCS_EXITCODE_WBINVD			54
    547 #define VMCS_EXITCODE_XSETBV			55
    548 #define VMCS_EXITCODE_APIC_WRITE		56
    549 #define VMCS_EXITCODE_RDRAND			57
    550 #define VMCS_EXITCODE_INVPCID			58
    551 #define VMCS_EXITCODE_VMFUNC			59
    552 #define VMCS_EXITCODE_ENCLS			60
    553 #define VMCS_EXITCODE_RDSEED			61
    554 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    555 #define VMCS_EXITCODE_XSAVES			63
    556 #define VMCS_EXITCODE_XRSTORS			64
    557 
    558 /* -------------------------------------------------------------------------- */
    559 
    560 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    561 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
    562 
    563 #define VMX_MSRLIST_STAR		0
    564 #define VMX_MSRLIST_LSTAR		1
    565 #define VMX_MSRLIST_CSTAR		2
    566 #define VMX_MSRLIST_SFMASK		3
    567 #define VMX_MSRLIST_KERNELGSBASE	4
    568 #define VMX_MSRLIST_EXIT_NMSR		5
    569 #define VMX_MSRLIST_L1DFLUSH		5
    570 
    571 /* On entry, we may do +1 to include L1DFLUSH. */
    572 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    573 
    574 struct vmxon {
    575 	uint32_t ident;
    576 #define VMXON_IDENT_REVISION	__BITS(30,0)
    577 
    578 	uint8_t data[PAGE_SIZE - 4];
    579 } __packed;
    580 
    581 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    582 
    583 struct vmxoncpu {
    584 	vaddr_t va;
    585 	paddr_t pa;
    586 };
    587 
    588 static struct vmxoncpu vmxoncpu[MAXCPUS];
    589 
    590 struct vmcs {
    591 	uint32_t ident;
    592 #define VMCS_IDENT_REVISION	__BITS(30,0)
    593 #define VMCS_IDENT_SHADOW	__BIT(31)
    594 
    595 	uint32_t abort;
    596 	uint8_t data[PAGE_SIZE - 8];
    597 } __packed;
    598 
    599 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    600 
    601 struct msr_entry {
    602 	uint32_t msr;
    603 	uint32_t rsvd;
    604 	uint64_t val;
    605 } __packed;
    606 
    607 #define VPID_MAX	0xFFFF
    608 
    609 /* Make sure we never run out of VPIDs. */
    610 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    611 
    612 static uint64_t vmx_tlb_flush_op __read_mostly;
    613 static uint64_t vmx_ept_flush_op __read_mostly;
    614 static uint64_t vmx_eptp_type __read_mostly;
    615 
    616 static uint64_t vmx_pinbased_ctls __read_mostly;
    617 static uint64_t vmx_procbased_ctls __read_mostly;
    618 static uint64_t vmx_procbased_ctls2 __read_mostly;
    619 static uint64_t vmx_entry_ctls __read_mostly;
    620 static uint64_t vmx_exit_ctls __read_mostly;
    621 
    622 static uint64_t vmx_cr0_fixed0 __read_mostly;
    623 static uint64_t vmx_cr0_fixed1 __read_mostly;
    624 static uint64_t vmx_cr4_fixed0 __read_mostly;
    625 static uint64_t vmx_cr4_fixed1 __read_mostly;
    626 
    627 extern bool pmap_ept_has_ad;
    628 
    629 #define VMX_PINBASED_CTLS_ONE	\
    630 	(PIN_CTLS_INT_EXITING| \
    631 	 PIN_CTLS_NMI_EXITING| \
    632 	 PIN_CTLS_VIRTUAL_NMIS)
    633 
    634 #define VMX_PINBASED_CTLS_ZERO	0
    635 
    636 #define VMX_PROCBASED_CTLS_ONE	\
    637 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    638 	 PROC_CTLS_HLT_EXITING| \
    639 	 PROC_CTLS_MWAIT_EXITING | \
    640 	 PROC_CTLS_RDPMC_EXITING | \
    641 	 PROC_CTLS_RCR8_EXITING | \
    642 	 PROC_CTLS_LCR8_EXITING | \
    643 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    644 	 PROC_CTLS_USE_MSR_BITMAPS | \
    645 	 PROC_CTLS_MONITOR_EXITING | \
    646 	 PROC_CTLS_ACTIVATE_CTLS2)
    647 
    648 #define VMX_PROCBASED_CTLS_ZERO	\
    649 	(PROC_CTLS_RCR3_EXITING| \
    650 	 PROC_CTLS_LCR3_EXITING)
    651 
    652 #define VMX_PROCBASED_CTLS2_ONE	\
    653 	(PROC_CTLS2_ENABLE_EPT| \
    654 	 PROC_CTLS2_ENABLE_VPID| \
    655 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    656 
    657 #define VMX_PROCBASED_CTLS2_ZERO	0
    658 
    659 #define VMX_ENTRY_CTLS_ONE	\
    660 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    661 	 ENTRY_CTLS_LOAD_EFER| \
    662 	 ENTRY_CTLS_LOAD_PAT)
    663 
    664 #define VMX_ENTRY_CTLS_ZERO	\
    665 	(ENTRY_CTLS_SMM| \
    666 	 ENTRY_CTLS_DISABLE_DUAL)
    667 
    668 #define VMX_EXIT_CTLS_ONE	\
    669 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    670 	 EXIT_CTLS_HOST_LONG_MODE| \
    671 	 EXIT_CTLS_SAVE_PAT| \
    672 	 EXIT_CTLS_LOAD_PAT| \
    673 	 EXIT_CTLS_SAVE_EFER| \
    674 	 EXIT_CTLS_LOAD_EFER)
    675 
    676 #define VMX_EXIT_CTLS_ZERO	0
    677 
    678 static uint8_t *vmx_asidmap __read_mostly;
    679 static uint32_t vmx_maxasid __read_mostly;
    680 static kmutex_t vmx_asidlock __cacheline_aligned;
    681 
    682 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    683 static uint64_t vmx_xcr0_mask __read_mostly;
    684 
    685 #define VMX_NCPUIDS	32
    686 
    687 #define VMCS_NPAGES	1
    688 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    689 
    690 #define MSRBM_NPAGES	1
    691 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    692 
    693 #define EFER_TLB_FLUSH \
    694 	(EFER_NXE|EFER_LMA|EFER_LME)
    695 #define CR0_TLB_FLUSH \
    696 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    697 #define CR4_TLB_FLUSH \
    698 	(CR4_PGE|CR4_PAE|CR4_PSE)
    699 
    700 /* -------------------------------------------------------------------------- */
    701 
    702 struct vmx_machdata {
    703 	volatile uint64_t mach_htlb_gen;
    704 };
    705 
    706 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
    707 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
    708 	    sizeof(struct nvmm_vcpu_conf_cpuid),
    709 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
    710 	    sizeof(struct nvmm_vcpu_conf_tpr)
    711 };
    712 
    713 struct vmx_cpudata {
    714 	/* General */
    715 	uint64_t asid;
    716 	bool gtlb_want_flush;
    717 	bool gtsc_want_update;
    718 	uint64_t vcpu_htlb_gen;
    719 	kcpuset_t *htlb_want_flush;
    720 
    721 	/* VMCS */
    722 	struct vmcs *vmcs;
    723 	paddr_t vmcs_pa;
    724 	size_t vmcs_refcnt;
    725 	struct cpu_info *vmcs_ci;
    726 	bool vmcs_launched;
    727 
    728 	/* MSR bitmap */
    729 	uint8_t *msrbm;
    730 	paddr_t msrbm_pa;
    731 
    732 	/* Host state */
    733 	uint64_t hxcr0;
    734 	uint64_t star;
    735 	uint64_t lstar;
    736 	uint64_t cstar;
    737 	uint64_t sfmask;
    738 	uint64_t kernelgsbase;
    739 
    740 	/* Intr state */
    741 	bool int_window_exit;
    742 	bool nmi_window_exit;
    743 	bool evt_pending;
    744 
    745 	/* Guest state */
    746 	struct msr_entry *gmsr;
    747 	paddr_t gmsr_pa;
    748 	uint64_t gmsr_misc_enable;
    749 	uint64_t gcr2;
    750 	uint64_t gcr8;
    751 	uint64_t gxcr0;
    752 	uint64_t gprs[NVMM_X64_NGPR];
    753 	uint64_t drs[NVMM_X64_NDR];
    754 	uint64_t gtsc;
    755 	struct xsave_header gfpu __aligned(64);
    756 
    757 	/* VCPU configuration. */
    758 	bool cpuidpresent[VMX_NCPUIDS];
    759 	struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
    760 	struct nvmm_vcpu_conf_tpr tpr;
    761 };
    762 
    763 static const struct {
    764 	uint64_t selector;
    765 	uint64_t attrib;
    766 	uint64_t limit;
    767 	uint64_t base;
    768 } vmx_guest_segs[NVMM_X64_NSEG] = {
    769 	[NVMM_X64_SEG_ES] = {
    770 		VMCS_GUEST_ES_SELECTOR,
    771 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    772 		VMCS_GUEST_ES_LIMIT,
    773 		VMCS_GUEST_ES_BASE
    774 	},
    775 	[NVMM_X64_SEG_CS] = {
    776 		VMCS_GUEST_CS_SELECTOR,
    777 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    778 		VMCS_GUEST_CS_LIMIT,
    779 		VMCS_GUEST_CS_BASE
    780 	},
    781 	[NVMM_X64_SEG_SS] = {
    782 		VMCS_GUEST_SS_SELECTOR,
    783 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    784 		VMCS_GUEST_SS_LIMIT,
    785 		VMCS_GUEST_SS_BASE
    786 	},
    787 	[NVMM_X64_SEG_DS] = {
    788 		VMCS_GUEST_DS_SELECTOR,
    789 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    790 		VMCS_GUEST_DS_LIMIT,
    791 		VMCS_GUEST_DS_BASE
    792 	},
    793 	[NVMM_X64_SEG_FS] = {
    794 		VMCS_GUEST_FS_SELECTOR,
    795 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    796 		VMCS_GUEST_FS_LIMIT,
    797 		VMCS_GUEST_FS_BASE
    798 	},
    799 	[NVMM_X64_SEG_GS] = {
    800 		VMCS_GUEST_GS_SELECTOR,
    801 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    802 		VMCS_GUEST_GS_LIMIT,
    803 		VMCS_GUEST_GS_BASE
    804 	},
    805 	[NVMM_X64_SEG_GDT] = {
    806 		0, /* doesn't exist */
    807 		0, /* doesn't exist */
    808 		VMCS_GUEST_GDTR_LIMIT,
    809 		VMCS_GUEST_GDTR_BASE
    810 	},
    811 	[NVMM_X64_SEG_IDT] = {
    812 		0, /* doesn't exist */
    813 		0, /* doesn't exist */
    814 		VMCS_GUEST_IDTR_LIMIT,
    815 		VMCS_GUEST_IDTR_BASE
    816 	},
    817 	[NVMM_X64_SEG_LDT] = {
    818 		VMCS_GUEST_LDTR_SELECTOR,
    819 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    820 		VMCS_GUEST_LDTR_LIMIT,
    821 		VMCS_GUEST_LDTR_BASE
    822 	},
    823 	[NVMM_X64_SEG_TR] = {
    824 		VMCS_GUEST_TR_SELECTOR,
    825 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    826 		VMCS_GUEST_TR_LIMIT,
    827 		VMCS_GUEST_TR_BASE
    828 	}
    829 };
    830 
    831 /* -------------------------------------------------------------------------- */
    832 
    833 static uint64_t
    834 vmx_get_revision(void)
    835 {
    836 	uint64_t msr;
    837 
    838 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    839 	msr &= IA32_VMX_BASIC_IDENT;
    840 
    841 	return msr;
    842 }
    843 
    844 static void
    845 vmx_vmclear_ipi(void *arg1, void *arg2)
    846 {
    847 	paddr_t vmcs_pa = (paddr_t)arg1;
    848 	vmx_vmclear(&vmcs_pa);
    849 }
    850 
    851 static void
    852 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    853 {
    854 	uint64_t xc;
    855 	int bound;
    856 
    857 	KASSERT(kpreempt_disabled());
    858 
    859 	bound = curlwp_bind();
    860 	kpreempt_enable();
    861 
    862 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    863 	xc_wait(xc);
    864 
    865 	kpreempt_disable();
    866 	curlwp_bindx(bound);
    867 }
    868 
    869 static void
    870 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    871 {
    872 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    873 	struct cpu_info *vmcs_ci;
    874 	paddr_t oldpa __diagused;
    875 
    876 	cpudata->vmcs_refcnt++;
    877 	if (cpudata->vmcs_refcnt > 1) {
    878 #ifdef DIAGNOSTIC
    879 		KASSERT(kpreempt_disabled());
    880 		oldpa = vmx_vmptrst();
    881 		KASSERT(oldpa == cpudata->vmcs_pa);
    882 #endif
    883 		return;
    884 	}
    885 
    886 	vmcs_ci = cpudata->vmcs_ci;
    887 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    888 
    889 	kpreempt_disable();
    890 
    891 	if (vmcs_ci == NULL) {
    892 		/* This VMCS is loaded for the first time. */
    893 		vmx_vmclear(&cpudata->vmcs_pa);
    894 		cpudata->vmcs_launched = false;
    895 	} else if (vmcs_ci != curcpu()) {
    896 		/* This VMCS is active on a remote CPU. */
    897 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    898 		cpudata->vmcs_launched = false;
    899 	} else {
    900 		/* This VMCS is active on curcpu, nothing to do. */
    901 	}
    902 
    903 	vmx_vmptrld(&cpudata->vmcs_pa);
    904 }
    905 
    906 static void
    907 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    908 {
    909 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    910 
    911 	KASSERT(kpreempt_disabled());
    912 #ifdef DIAGNOSTIC
    913 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    914 #endif
    915 	KASSERT(cpudata->vmcs_refcnt > 0);
    916 	cpudata->vmcs_refcnt--;
    917 
    918 	if (cpudata->vmcs_refcnt > 0) {
    919 		return;
    920 	}
    921 
    922 	cpudata->vmcs_ci = curcpu();
    923 	kpreempt_enable();
    924 }
    925 
    926 static void
    927 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    928 {
    929 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    930 
    931 	KASSERT(kpreempt_disabled());
    932 #ifdef DIAGNOSTIC
    933 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    934 #endif
    935 	KASSERT(cpudata->vmcs_refcnt == 1);
    936 	cpudata->vmcs_refcnt--;
    937 
    938 	vmx_vmclear(&cpudata->vmcs_pa);
    939 	kpreempt_enable();
    940 }
    941 
    942 /* -------------------------------------------------------------------------- */
    943 
    944 static void
    945 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    946 {
    947 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    948 	uint64_t ctls1;
    949 
    950 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    951 
    952 	if (nmi) {
    953 		// XXX INT_STATE_NMI?
    954 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    955 		cpudata->nmi_window_exit = true;
    956 	} else {
    957 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    958 		cpudata->int_window_exit = true;
    959 	}
    960 
    961 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    962 }
    963 
    964 static void
    965 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    966 {
    967 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    968 	uint64_t ctls1;
    969 
    970 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    971 
    972 	if (nmi) {
    973 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    974 		cpudata->nmi_window_exit = false;
    975 	} else {
    976 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    977 		cpudata->int_window_exit = false;
    978 	}
    979 
    980 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    981 }
    982 
    983 static inline int
    984 vmx_event_has_error(uint8_t vector)
    985 {
    986 	switch (vector) {
    987 	case 8:		/* #DF */
    988 	case 10:	/* #TS */
    989 	case 11:	/* #NP */
    990 	case 12:	/* #SS */
    991 	case 13:	/* #GP */
    992 	case 14:	/* #PF */
    993 	case 17:	/* #AC */
    994 	case 30:	/* #SX */
    995 		return 1;
    996 	default:
    997 		return 0;
    998 	}
    999 }
   1000 
   1001 static int
   1002 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
   1003 {
   1004 	struct nvmm_comm_page *comm = vcpu->comm;
   1005 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1006 	int type = 0, err = 0, ret = EINVAL;
   1007 	u_int evtype;
   1008 	uint8_t vector;
   1009 	uint64_t info, error;
   1010 
   1011 	evtype = comm->event.type;
   1012 	vector = comm->event.vector;
   1013 	error = comm->event.u.excp.error;
   1014 	__insn_barrier();
   1015 
   1016 	vmx_vmcs_enter(vcpu);
   1017 
   1018 	switch (evtype) {
   1019 	case NVMM_VCPU_EVENT_EXCP:
   1020 		if (vector == 2 || vector >= 32)
   1021 			goto out;
   1022 		if (vector == 3 || vector == 0)
   1023 			goto out;
   1024 		type = INTR_TYPE_HW_EXC;
   1025 		err = vmx_event_has_error(vector);
   1026 		break;
   1027 	case NVMM_VCPU_EVENT_INTR:
   1028 		type = INTR_TYPE_EXT_INT;
   1029 		if (vector == 2) {
   1030 			type = INTR_TYPE_NMI;
   1031 			vmx_event_waitexit_enable(vcpu, true);
   1032 		}
   1033 		err = 0;
   1034 		break;
   1035 	default:
   1036 		goto out;
   1037 	}
   1038 
   1039 	info =
   1040 	    __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
   1041 	    __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
   1042 	    __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
   1043 	    __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
   1044 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   1045 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
   1046 
   1047 	cpudata->evt_pending = true;
   1048 	ret = 0;
   1049 
   1050 out:
   1051 	vmx_vmcs_leave(vcpu);
   1052 	return ret;
   1053 }
   1054 
   1055 static void
   1056 vmx_inject_ud(struct nvmm_cpu *vcpu)
   1057 {
   1058 	struct nvmm_comm_page *comm = vcpu->comm;
   1059 	int ret __diagused;
   1060 
   1061 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1062 	comm->event.vector = 6;
   1063 	comm->event.u.excp.error = 0;
   1064 
   1065 	ret = vmx_vcpu_inject(vcpu);
   1066 	KASSERT(ret == 0);
   1067 }
   1068 
   1069 static void
   1070 vmx_inject_gp(struct nvmm_cpu *vcpu)
   1071 {
   1072 	struct nvmm_comm_page *comm = vcpu->comm;
   1073 	int ret __diagused;
   1074 
   1075 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1076 	comm->event.vector = 13;
   1077 	comm->event.u.excp.error = 0;
   1078 
   1079 	ret = vmx_vcpu_inject(vcpu);
   1080 	KASSERT(ret == 0);
   1081 }
   1082 
   1083 static inline int
   1084 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
   1085 {
   1086 	if (__predict_true(!vcpu->comm->event_commit)) {
   1087 		return 0;
   1088 	}
   1089 	vcpu->comm->event_commit = false;
   1090 	return vmx_vcpu_inject(vcpu);
   1091 }
   1092 
   1093 static inline void
   1094 vmx_inkernel_advance(void)
   1095 {
   1096 	uint64_t rip, inslen, intstate;
   1097 
   1098 	/*
   1099 	 * Maybe we should also apply single-stepping and debug exceptions.
   1100 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1101 	 * debugger.
   1102 	 */
   1103 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1104 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1105 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1106 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   1107 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1108 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1109 }
   1110 
   1111 static void
   1112 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
   1113 {
   1114 	exit->u.inv.hwcode = code;
   1115 	exit->reason = NVMM_VCPU_EXIT_INVALID;
   1116 }
   1117 
   1118 static void
   1119 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1120     struct nvmm_vcpu_exit *exit)
   1121 {
   1122 	uint64_t qual;
   1123 
   1124 	qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
   1125 
   1126 	if ((qual & INTR_INFO_VALID) == 0) {
   1127 		goto error;
   1128 	}
   1129 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1130 		goto error;
   1131 	}
   1132 
   1133 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1134 	return;
   1135 
   1136 error:
   1137 	vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
   1138 }
   1139 
   1140 #define VMX_CPUID_MAX_HYPERVISOR	0x40000000
   1141 
   1142 static void
   1143 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1144     uint64_t eax, uint64_t ecx)
   1145 {
   1146 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1147 	unsigned int ncpus;
   1148 	uint64_t cr4;
   1149 
   1150 	switch (eax) {
   1151 	case 0x00000001:
   1152 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1153 
   1154 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1155 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1156 		    CPUID_LOCAL_APIC_ID);
   1157 
   1158 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1159 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1160 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1161 			cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
   1162 		}
   1163 
   1164 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1165 
   1166 		/* CPUID2_OSXSAVE depends on CR4. */
   1167 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   1168 		if (!(cr4 & CR4_OSXSAVE)) {
   1169 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1170 		}
   1171 		break;
   1172 	case 0x00000002:
   1173 		break;
   1174 	case 0x00000003:
   1175 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1176 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1177 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1178 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1179 		break;
   1180 	case 0x00000004: /* Deterministic Cache Parameters */
   1181 		break; /* TODO? */
   1182 	case 0x00000005: /* MONITOR/MWAIT */
   1183 	case 0x00000006: /* Thermal and Power Management */
   1184 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1185 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1186 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1187 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1188 		break;
   1189 	case 0x00000007: /* Structured Extended Feature Flags Enumeration */
   1190 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1191 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1192 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1193 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1194 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1195 			cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
   1196 		}
   1197 		break;
   1198 	case 0x00000008: /* Empty */
   1199 	case 0x00000009: /* Direct Cache Access Information */
   1200 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1201 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1202 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1203 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1204 		break;
   1205 	case 0x0000000A: /* Architectural Performance Monitoring */
   1206 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1207 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1208 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1209 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1210 		break;
   1211 	case 0x0000000B: /* Extended Topology Enumeration */
   1212 		switch (ecx) {
   1213 		case 0: /* Threads */
   1214 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1215 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1216 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1217 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1218 			    __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
   1219 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1220 			break;
   1221 		case 1: /* Cores */
   1222 			ncpus = atomic_load_relaxed(&mach->ncpus);
   1223 			cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
   1224 			cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
   1225 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1226 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1227 			    __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
   1228 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1229 			break;
   1230 		default:
   1231 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1232 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1233 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
   1234 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1235 			break;
   1236 		}
   1237 		break;
   1238 	case 0x0000000C: /* Empty */
   1239 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1240 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1241 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1242 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1243 		break;
   1244 	case 0x0000000D: /* Processor Extended State Enumeration */
   1245 		if (vmx_xcr0_mask == 0) {
   1246 			break;
   1247 		}
   1248 		switch (ecx) {
   1249 		case 0:
   1250 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1251 			if (cpudata->gxcr0 & XCR0_SSE) {
   1252 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1253 			} else {
   1254 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1255 			}
   1256 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1257 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
   1258 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1259 			break;
   1260 		case 1:
   1261 			cpudata->gprs[NVMM_X64_GPR_RAX] &=
   1262 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
   1263 			     CPUID_PES1_XGETBV);
   1264 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1265 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1266 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1267 			break;
   1268 		default:
   1269 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1270 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1271 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1272 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1273 			break;
   1274 		}
   1275 		break;
   1276 	case 0x0000000E: /* Empty */
   1277 	case 0x0000000F: /* Intel RDT Monitoring Enumeration */
   1278 	case 0x00000010: /* Intel RDT Allocation Enumeration */
   1279 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1280 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1281 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1282 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1283 		break;
   1284 	case 0x00000011: /* Empty */
   1285 	case 0x00000012: /* Intel SGX Capability Enumeration */
   1286 	case 0x00000013: /* Empty */
   1287 	case 0x00000014: /* Intel Processor Trace Enumeration */
   1288 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1289 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1290 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1291 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1292 		break;
   1293 	case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
   1294 	case 0x00000016: /* Processor Frequency Information */
   1295 		break;
   1296 
   1297 	case 0x40000000: /* Hypervisor Information */
   1298 		cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
   1299 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1300 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1301 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1302 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1303 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1304 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1305 		break;
   1306 
   1307 	case 0x80000001:
   1308 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1309 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1310 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1311 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1312 		break;
   1313 	default:
   1314 		break;
   1315 	}
   1316 }
   1317 
   1318 static void
   1319 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
   1320 {
   1321 	uint64_t inslen, rip;
   1322 
   1323 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1324 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1325 	exit->u.insn.npc = rip + inslen;
   1326 	exit->reason = reason;
   1327 }
   1328 
   1329 static void
   1330 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1331     struct nvmm_vcpu_exit *exit)
   1332 {
   1333 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1334 	struct nvmm_vcpu_conf_cpuid *cpuid;
   1335 	uint64_t eax, ecx;
   1336 	u_int descs[4];
   1337 	size_t i;
   1338 
   1339 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1340 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1341 	x86_cpuid2(eax, ecx, descs);
   1342 
   1343 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1344 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1345 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1346 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1347 
   1348 	vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
   1349 
   1350 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1351 		if (!cpudata->cpuidpresent[i]) {
   1352 			continue;
   1353 		}
   1354 		cpuid = &cpudata->cpuid[i];
   1355 		if (cpuid->leaf != eax) {
   1356 			continue;
   1357 		}
   1358 
   1359 		if (cpuid->exit) {
   1360 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
   1361 			return;
   1362 		}
   1363 		KASSERT(cpuid->mask);
   1364 
   1365 		/* del */
   1366 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
   1367 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
   1368 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
   1369 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
   1370 
   1371 		/* set */
   1372 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
   1373 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
   1374 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
   1375 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
   1376 
   1377 		break;
   1378 	}
   1379 
   1380 	vmx_inkernel_advance();
   1381 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1382 }
   1383 
   1384 static void
   1385 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1386     struct nvmm_vcpu_exit *exit)
   1387 {
   1388 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1389 	uint64_t rflags;
   1390 
   1391 	if (cpudata->int_window_exit) {
   1392 		rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1393 		if (rflags & PSL_I) {
   1394 			vmx_event_waitexit_disable(vcpu, false);
   1395 		}
   1396 	}
   1397 
   1398 	vmx_inkernel_advance();
   1399 	exit->reason = NVMM_VCPU_EXIT_HALTED;
   1400 }
   1401 
   1402 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1403 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1404 #define		CR_TYPE_WRITE	0
   1405 #define		CR_TYPE_READ	1
   1406 #define		CR_TYPE_CLTS	2
   1407 #define		CR_TYPE_LMSW	3
   1408 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1409 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1410 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1411 
   1412 static inline int
   1413 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1414 {
   1415 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1416 	if ((crval & fixed0) != fixed0) {
   1417 		return -1;
   1418 	}
   1419 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1420 	if (crval & ~fixed1) {
   1421 		return -1;
   1422 	}
   1423 	return 0;
   1424 }
   1425 
   1426 static int
   1427 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1428     uint64_t qual)
   1429 {
   1430 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1431 	uint64_t type, gpr, cr0;
   1432 	uint64_t efer, ctls1;
   1433 
   1434 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1435 	if (type != CR_TYPE_WRITE) {
   1436 		return -1;
   1437 	}
   1438 
   1439 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1440 	KASSERT(gpr < 16);
   1441 
   1442 	if (gpr == NVMM_X64_GPR_RSP) {
   1443 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1444 	} else {
   1445 		gpr = cpudata->gprs[gpr];
   1446 	}
   1447 
   1448 	cr0 = gpr | CR0_NE | CR0_ET;
   1449 	cr0 &= ~(CR0_NW|CR0_CD);
   1450 
   1451 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1452 		return -1;
   1453 	}
   1454 
   1455 	/*
   1456 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1457 	 * from CR3.
   1458 	 */
   1459 
   1460 	if (cr0 & CR0_PG) {
   1461 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   1462 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   1463 		if (efer & EFER_LME) {
   1464 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1465 			efer |= EFER_LMA;
   1466 		} else {
   1467 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1468 			efer &= ~EFER_LMA;
   1469 		}
   1470 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1471 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1472 	}
   1473 
   1474 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1475 	vmx_inkernel_advance();
   1476 	return 0;
   1477 }
   1478 
   1479 static int
   1480 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1481     uint64_t qual)
   1482 {
   1483 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1484 	uint64_t type, gpr, cr4;
   1485 
   1486 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1487 	if (type != CR_TYPE_WRITE) {
   1488 		return -1;
   1489 	}
   1490 
   1491 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1492 	KASSERT(gpr < 16);
   1493 
   1494 	if (gpr == NVMM_X64_GPR_RSP) {
   1495 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1496 	} else {
   1497 		gpr = cpudata->gprs[gpr];
   1498 	}
   1499 
   1500 	cr4 = gpr | CR4_VMXE;
   1501 
   1502 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1503 		return -1;
   1504 	}
   1505 
   1506 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1507 	vmx_inkernel_advance();
   1508 	return 0;
   1509 }
   1510 
   1511 static int
   1512 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1513     uint64_t qual, struct nvmm_vcpu_exit *exit)
   1514 {
   1515 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1516 	uint64_t type, gpr;
   1517 	bool write;
   1518 
   1519 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1520 	if (type == CR_TYPE_WRITE) {
   1521 		write = true;
   1522 	} else if (type == CR_TYPE_READ) {
   1523 		write = false;
   1524 	} else {
   1525 		return -1;
   1526 	}
   1527 
   1528 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1529 	KASSERT(gpr < 16);
   1530 
   1531 	if (write) {
   1532 		if (gpr == NVMM_X64_GPR_RSP) {
   1533 			cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
   1534 		} else {
   1535 			cpudata->gcr8 = cpudata->gprs[gpr];
   1536 		}
   1537 		if (cpudata->tpr.exit_changed) {
   1538 			exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
   1539 		}
   1540 	} else {
   1541 		if (gpr == NVMM_X64_GPR_RSP) {
   1542 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1543 		} else {
   1544 			cpudata->gprs[gpr] = cpudata->gcr8;
   1545 		}
   1546 	}
   1547 
   1548 	vmx_inkernel_advance();
   1549 	return 0;
   1550 }
   1551 
   1552 static void
   1553 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1554     struct nvmm_vcpu_exit *exit)
   1555 {
   1556 	uint64_t qual;
   1557 	int ret;
   1558 
   1559 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1560 
   1561 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1562 
   1563 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1564 	case 0:
   1565 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1566 		break;
   1567 	case 4:
   1568 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1569 		break;
   1570 	case 8:
   1571 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
   1572 		break;
   1573 	default:
   1574 		ret = -1;
   1575 		break;
   1576 	}
   1577 
   1578 	if (ret == -1) {
   1579 		vmx_inject_gp(vcpu);
   1580 	}
   1581 }
   1582 
   1583 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1584 #define		IO_SIZE_8	0
   1585 #define		IO_SIZE_16	1
   1586 #define		IO_SIZE_32	3
   1587 #define VMX_QUAL_IO_IN		__BIT(3)
   1588 #define VMX_QUAL_IO_STR		__BIT(4)
   1589 #define VMX_QUAL_IO_REP		__BIT(5)
   1590 #define VMX_QUAL_IO_DX		__BIT(6)
   1591 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1592 
   1593 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1594 #define		IO_ADRSIZE_16	0
   1595 #define		IO_ADRSIZE_32	1
   1596 #define		IO_ADRSIZE_64	2
   1597 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1598 
   1599 static void
   1600 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1601     struct nvmm_vcpu_exit *exit)
   1602 {
   1603 	uint64_t qual, info, inslen, rip;
   1604 
   1605 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1606 	info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
   1607 
   1608 	exit->reason = NVMM_VCPU_EXIT_IO;
   1609 
   1610 	exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
   1611 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1612 
   1613 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1614 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1615 
   1616 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1617 		exit->u.io.address_size = 8;
   1618 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1619 		exit->u.io.address_size = 4;
   1620 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1621 		exit->u.io.address_size = 2;
   1622 	}
   1623 
   1624 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1625 		exit->u.io.operand_size = 4;
   1626 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1627 		exit->u.io.operand_size = 2;
   1628 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1629 		exit->u.io.operand_size = 1;
   1630 	}
   1631 
   1632 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1633 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1634 
   1635 	if (exit->u.io.in && exit->u.io.str) {
   1636 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1637 	}
   1638 
   1639 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1640 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1641 	exit->u.io.npc = rip + inslen;
   1642 
   1643 	vmx_vcpu_state_provide(vcpu,
   1644 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1645 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1646 }
   1647 
   1648 static const uint64_t msr_ignore_list[] = {
   1649 	MSR_BIOS_SIGN,
   1650 	MSR_IA32_PLATFORM_ID
   1651 };
   1652 
   1653 static bool
   1654 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1655     struct nvmm_vcpu_exit *exit)
   1656 {
   1657 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1658 	uint64_t val;
   1659 	size_t i;
   1660 
   1661 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
   1662 		if (exit->u.rdmsr.msr == MSR_CR_PAT) {
   1663 			val = vmx_vmread(VMCS_GUEST_IA32_PAT);
   1664 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1665 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1666 			goto handled;
   1667 		}
   1668 		if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
   1669 			val = cpudata->gmsr_misc_enable;
   1670 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1671 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1672 			goto handled;
   1673 		}
   1674 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1675 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
   1676 				continue;
   1677 			val = 0;
   1678 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1679 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1680 			goto handled;
   1681 		}
   1682 	} else {
   1683 		if (exit->u.wrmsr.msr == MSR_TSC) {
   1684 			cpudata->gtsc = exit->u.wrmsr.val;
   1685 			cpudata->gtsc_want_update = true;
   1686 			goto handled;
   1687 		}
   1688 		if (exit->u.wrmsr.msr == MSR_CR_PAT) {
   1689 			val = exit->u.wrmsr.val;
   1690 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
   1691 				goto error;
   1692 			}
   1693 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
   1694 			goto handled;
   1695 		}
   1696 		if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
   1697 			/* Don't care. */
   1698 			goto handled;
   1699 		}
   1700 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1701 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
   1702 				continue;
   1703 			goto handled;
   1704 		}
   1705 	}
   1706 
   1707 	return false;
   1708 
   1709 handled:
   1710 	vmx_inkernel_advance();
   1711 	return true;
   1712 
   1713 error:
   1714 	vmx_inject_gp(vcpu);
   1715 	return true;
   1716 }
   1717 
   1718 static void
   1719 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1720     struct nvmm_vcpu_exit *exit)
   1721 {
   1722 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1723 	uint64_t inslen, rip;
   1724 
   1725 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
   1726 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1727 
   1728 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1729 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1730 		return;
   1731 	}
   1732 
   1733 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1734 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1735 	exit->u.rdmsr.npc = rip + inslen;
   1736 
   1737 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1738 }
   1739 
   1740 static void
   1741 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1742     struct nvmm_vcpu_exit *exit)
   1743 {
   1744 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1745 	uint64_t rdx, rax, inslen, rip;
   1746 
   1747 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1748 	rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1749 
   1750 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
   1751 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1752 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1753 
   1754 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1755 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1756 		return;
   1757 	}
   1758 
   1759 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1760 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1761 	exit->u.wrmsr.npc = rip + inslen;
   1762 
   1763 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1764 }
   1765 
   1766 static void
   1767 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1768     struct nvmm_vcpu_exit *exit)
   1769 {
   1770 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1771 	uint64_t val;
   1772 
   1773 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1774 
   1775 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1776 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1777 
   1778 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1779 		goto error;
   1780 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1781 		goto error;
   1782 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1783 		goto error;
   1784 	}
   1785 
   1786 	cpudata->gxcr0 = val;
   1787 	if (vmx_xcr0_mask != 0) {
   1788 		wrxcr(0, cpudata->gxcr0);
   1789 	}
   1790 
   1791 	vmx_inkernel_advance();
   1792 	return;
   1793 
   1794 error:
   1795 	vmx_inject_gp(vcpu);
   1796 }
   1797 
   1798 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1799 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1800 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1801 
   1802 static void
   1803 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1804     struct nvmm_vcpu_exit *exit)
   1805 {
   1806 	uint64_t perm;
   1807 	gpaddr_t gpa;
   1808 
   1809 	gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
   1810 
   1811 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
   1812 	perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1813 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1814 		exit->u.mem.prot = PROT_WRITE;
   1815 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1816 		exit->u.mem.prot = PROT_EXEC;
   1817 	else
   1818 		exit->u.mem.prot = PROT_READ;
   1819 	exit->u.mem.gpa = gpa;
   1820 	exit->u.mem.inst_len = 0;
   1821 
   1822 	vmx_vcpu_state_provide(vcpu,
   1823 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1824 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1825 }
   1826 
   1827 /* -------------------------------------------------------------------------- */
   1828 
   1829 static void
   1830 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1831 {
   1832 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1833 
   1834 	fpu_save();
   1835 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1836 
   1837 	if (vmx_xcr0_mask != 0) {
   1838 		cpudata->hxcr0 = rdxcr(0);
   1839 		wrxcr(0, cpudata->gxcr0);
   1840 	}
   1841 }
   1842 
   1843 static void
   1844 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1845 {
   1846 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1847 
   1848 	if (vmx_xcr0_mask != 0) {
   1849 		cpudata->gxcr0 = rdxcr(0);
   1850 		wrxcr(0, cpudata->hxcr0);
   1851 	}
   1852 
   1853 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1854 }
   1855 
   1856 static void
   1857 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1858 {
   1859 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1860 
   1861 	x86_dbregs_save(curlwp);
   1862 
   1863 	ldr7(0);
   1864 
   1865 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1866 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1867 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1868 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1869 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1870 }
   1871 
   1872 static void
   1873 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1874 {
   1875 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1876 
   1877 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1878 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1879 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1880 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1881 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1882 
   1883 	x86_dbregs_restore(curlwp);
   1884 }
   1885 
   1886 static void
   1887 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1888 {
   1889 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1890 
   1891 	/* This gets restored automatically by the CPU. */
   1892 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1893 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1894 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1895 
   1896 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1897 }
   1898 
   1899 static void
   1900 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1901 {
   1902 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1903 
   1904 	wrmsr(MSR_STAR, cpudata->star);
   1905 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1906 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1907 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1908 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1909 }
   1910 
   1911 /* -------------------------------------------------------------------------- */
   1912 
   1913 #define VMX_INVVPID_ADDRESS		0
   1914 #define VMX_INVVPID_CONTEXT		1
   1915 #define VMX_INVVPID_ALL			2
   1916 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1917 
   1918 #define VMX_INVEPT_CONTEXT		1
   1919 #define VMX_INVEPT_ALL			2
   1920 
   1921 static inline void
   1922 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1923 {
   1924 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1925 
   1926 	if (vcpu->hcpu_last != hcpu) {
   1927 		cpudata->gtlb_want_flush = true;
   1928 	}
   1929 }
   1930 
   1931 static inline void
   1932 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1933 {
   1934 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1935 	struct ept_desc ept_desc;
   1936 
   1937 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1938 		return;
   1939 	}
   1940 
   1941 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1942 	ept_desc.mbz = 0;
   1943 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1944 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1945 }
   1946 
   1947 static inline uint64_t
   1948 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1949 {
   1950 	struct ept_desc ept_desc;
   1951 	uint64_t machgen;
   1952 
   1953 	machgen = machdata->mach_htlb_gen;
   1954 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1955 		return machgen;
   1956 	}
   1957 
   1958 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1959 
   1960 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1961 	ept_desc.mbz = 0;
   1962 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1963 
   1964 	return machgen;
   1965 }
   1966 
   1967 static inline void
   1968 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   1969 {
   1970 	cpudata->vcpu_htlb_gen = machgen;
   1971 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   1972 }
   1973 
   1974 static inline void
   1975 vmx_exit_evt(struct vmx_cpudata *cpudata)
   1976 {
   1977 	uint64_t info, err, inslen;
   1978 
   1979 	cpudata->evt_pending = false;
   1980 
   1981 	info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
   1982 	if (__predict_true((info & INTR_INFO_VALID) == 0)) {
   1983 		return;
   1984 	}
   1985 	err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
   1986 
   1987 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   1988 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
   1989 
   1990 	switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
   1991 	case INTR_TYPE_SW_INT:
   1992 	case INTR_TYPE_PRIV_SW_EXC:
   1993 	case INTR_TYPE_SW_EXC:
   1994 		inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1995 		vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
   1996 	}
   1997 
   1998 	cpudata->evt_pending = true;
   1999 }
   2000 
   2001 static int
   2002 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   2003     struct nvmm_vcpu_exit *exit)
   2004 {
   2005 	struct nvmm_comm_page *comm = vcpu->comm;
   2006 	struct vmx_machdata *machdata = mach->machdata;
   2007 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2008 	struct vpid_desc vpid_desc;
   2009 	struct cpu_info *ci;
   2010 	uint64_t exitcode;
   2011 	uint64_t intstate;
   2012 	uint64_t machgen;
   2013 	int hcpu, s, ret;
   2014 	bool launched;
   2015 
   2016 	vmx_vmcs_enter(vcpu);
   2017 
   2018 	if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
   2019 		vmx_vmcs_leave(vcpu);
   2020 		return EINVAL;
   2021 	}
   2022 	vmx_vcpu_state_commit(vcpu);
   2023 	comm->state_cached = 0;
   2024 
   2025 	ci = curcpu();
   2026 	hcpu = cpu_number();
   2027 	launched = cpudata->vmcs_launched;
   2028 
   2029 	vmx_gtlb_catchup(vcpu, hcpu);
   2030 	vmx_htlb_catchup(vcpu, hcpu);
   2031 
   2032 	if (vcpu->hcpu_last != hcpu) {
   2033 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   2034 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   2035 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   2036 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   2037 		cpudata->gtsc_want_update = true;
   2038 		vcpu->hcpu_last = hcpu;
   2039 	}
   2040 
   2041 	vmx_vcpu_guest_dbregs_enter(vcpu);
   2042 	vmx_vcpu_guest_misc_enter(vcpu);
   2043 	vmx_vcpu_guest_fpu_enter(vcpu);
   2044 
   2045 	while (1) {
   2046 		if (cpudata->gtlb_want_flush) {
   2047 			vpid_desc.vpid = cpudata->asid;
   2048 			vpid_desc.addr = 0;
   2049 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   2050 			cpudata->gtlb_want_flush = false;
   2051 		}
   2052 
   2053 		if (__predict_false(cpudata->gtsc_want_update)) {
   2054 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   2055 			cpudata->gtsc_want_update = false;
   2056 		}
   2057 
   2058 		s = splhigh();
   2059 		machgen = vmx_htlb_flush(machdata, cpudata);
   2060 		lcr2(cpudata->gcr2);
   2061 		if (launched) {
   2062 			ret = vmx_vmresume(cpudata->gprs);
   2063 		} else {
   2064 			ret = vmx_vmlaunch(cpudata->gprs);
   2065 		}
   2066 		cpudata->gcr2 = rcr2();
   2067 		vmx_htlb_flush_ack(cpudata, machgen);
   2068 		splx(s);
   2069 
   2070 		if (__predict_false(ret != 0)) {
   2071 			vmx_exit_invalid(exit, -1);
   2072 			break;
   2073 		}
   2074 		vmx_exit_evt(cpudata);
   2075 
   2076 		launched = true;
   2077 
   2078 		exitcode = vmx_vmread(VMCS_EXIT_REASON);
   2079 		exitcode &= __BITS(15,0);
   2080 
   2081 		switch (exitcode) {
   2082 		case VMCS_EXITCODE_EXC_NMI:
   2083 			vmx_exit_exc_nmi(mach, vcpu, exit);
   2084 			break;
   2085 		case VMCS_EXITCODE_EXT_INT:
   2086 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2087 			break;
   2088 		case VMCS_EXITCODE_CPUID:
   2089 			vmx_exit_cpuid(mach, vcpu, exit);
   2090 			break;
   2091 		case VMCS_EXITCODE_HLT:
   2092 			vmx_exit_hlt(mach, vcpu, exit);
   2093 			break;
   2094 		case VMCS_EXITCODE_CR:
   2095 			vmx_exit_cr(mach, vcpu, exit);
   2096 			break;
   2097 		case VMCS_EXITCODE_IO:
   2098 			vmx_exit_io(mach, vcpu, exit);
   2099 			break;
   2100 		case VMCS_EXITCODE_RDMSR:
   2101 			vmx_exit_rdmsr(mach, vcpu, exit);
   2102 			break;
   2103 		case VMCS_EXITCODE_WRMSR:
   2104 			vmx_exit_wrmsr(mach, vcpu, exit);
   2105 			break;
   2106 		case VMCS_EXITCODE_SHUTDOWN:
   2107 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
   2108 			break;
   2109 		case VMCS_EXITCODE_MONITOR:
   2110 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
   2111 			break;
   2112 		case VMCS_EXITCODE_MWAIT:
   2113 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
   2114 			break;
   2115 		case VMCS_EXITCODE_XSETBV:
   2116 			vmx_exit_xsetbv(mach, vcpu, exit);
   2117 			break;
   2118 		case VMCS_EXITCODE_RDPMC:
   2119 		case VMCS_EXITCODE_RDTSCP:
   2120 		case VMCS_EXITCODE_INVVPID:
   2121 		case VMCS_EXITCODE_INVEPT:
   2122 		case VMCS_EXITCODE_VMCALL:
   2123 		case VMCS_EXITCODE_VMCLEAR:
   2124 		case VMCS_EXITCODE_VMLAUNCH:
   2125 		case VMCS_EXITCODE_VMPTRLD:
   2126 		case VMCS_EXITCODE_VMPTRST:
   2127 		case VMCS_EXITCODE_VMREAD:
   2128 		case VMCS_EXITCODE_VMRESUME:
   2129 		case VMCS_EXITCODE_VMWRITE:
   2130 		case VMCS_EXITCODE_VMXOFF:
   2131 		case VMCS_EXITCODE_VMXON:
   2132 			vmx_inject_ud(vcpu);
   2133 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2134 			break;
   2135 		case VMCS_EXITCODE_EPT_VIOLATION:
   2136 			vmx_exit_epf(mach, vcpu, exit);
   2137 			break;
   2138 		case VMCS_EXITCODE_INT_WINDOW:
   2139 			vmx_event_waitexit_disable(vcpu, false);
   2140 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
   2141 			break;
   2142 		case VMCS_EXITCODE_NMI_WINDOW:
   2143 			vmx_event_waitexit_disable(vcpu, true);
   2144 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
   2145 			break;
   2146 		default:
   2147 			vmx_exit_invalid(exit, exitcode);
   2148 			break;
   2149 		}
   2150 
   2151 		/* If no reason to return to userland, keep rolling. */
   2152 		if (preempt_needed()) {
   2153 			break;
   2154 		}
   2155 		if (curlwp->l_flag & LW_USERRET) {
   2156 			break;
   2157 		}
   2158 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
   2159 			break;
   2160 		}
   2161 	}
   2162 
   2163 	cpudata->vmcs_launched = launched;
   2164 
   2165 	cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
   2166 
   2167 	vmx_vcpu_guest_fpu_leave(vcpu);
   2168 	vmx_vcpu_guest_misc_leave(vcpu);
   2169 	vmx_vcpu_guest_dbregs_leave(vcpu);
   2170 
   2171 	exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   2172 	exit->exitstate.cr8 = cpudata->gcr8;
   2173 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2174 	exit->exitstate.int_shadow =
   2175 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2176 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
   2177 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
   2178 	exit->exitstate.evt_pending = cpudata->evt_pending;
   2179 
   2180 	vmx_vmcs_leave(vcpu);
   2181 
   2182 	return 0;
   2183 }
   2184 
   2185 /* -------------------------------------------------------------------------- */
   2186 
   2187 static int
   2188 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   2189 {
   2190 	struct pglist pglist;
   2191 	paddr_t _pa;
   2192 	vaddr_t _va;
   2193 	size_t i;
   2194 	int ret;
   2195 
   2196 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   2197 	    &pglist, 1, 0);
   2198 	if (ret != 0)
   2199 		return ENOMEM;
   2200 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
   2201 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   2202 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   2203 	if (_va == 0)
   2204 		goto error;
   2205 
   2206 	for (i = 0; i < npages; i++) {
   2207 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   2208 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   2209 	}
   2210 	pmap_update(pmap_kernel());
   2211 
   2212 	memset((void *)_va, 0, npages * PAGE_SIZE);
   2213 
   2214 	*pa = _pa;
   2215 	*va = _va;
   2216 	return 0;
   2217 
   2218 error:
   2219 	for (i = 0; i < npages; i++) {
   2220 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   2221 	}
   2222 	return ENOMEM;
   2223 }
   2224 
   2225 static void
   2226 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   2227 {
   2228 	size_t i;
   2229 
   2230 	pmap_kremove(va, npages * PAGE_SIZE);
   2231 	pmap_update(pmap_kernel());
   2232 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   2233 	for (i = 0; i < npages; i++) {
   2234 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   2235 	}
   2236 }
   2237 
   2238 /* -------------------------------------------------------------------------- */
   2239 
   2240 static void
   2241 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2242 {
   2243 	uint64_t byte;
   2244 	uint8_t bitoff;
   2245 
   2246 	if (msr < 0x00002000) {
   2247 		/* Range 1 */
   2248 		byte = ((msr - 0x00000000) / 8) + 0;
   2249 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2250 		/* Range 2 */
   2251 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2252 	} else {
   2253 		panic("%s: wrong range", __func__);
   2254 	}
   2255 
   2256 	bitoff = (msr & 0x7);
   2257 
   2258 	if (read) {
   2259 		bitmap[byte] &= ~__BIT(bitoff);
   2260 	}
   2261 	if (write) {
   2262 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2263 	}
   2264 }
   2265 
   2266 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2267 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2268 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2269 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2270 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2271 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2272 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2273 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2274 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2275 
   2276 static void
   2277 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2278 {
   2279 	uint64_t attrib;
   2280 
   2281 	attrib =
   2282 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2283 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2284 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2285 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2286 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2287 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2288 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2289 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2290 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2291 
   2292 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2293 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2294 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2295 	}
   2296 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2297 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2298 }
   2299 
   2300 static void
   2301 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2302 {
   2303 	uint64_t selector = 0, attrib = 0, base, limit;
   2304 
   2305 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2306 		selector = vmx_vmread(vmx_guest_segs[idx].selector);
   2307 		attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
   2308 	}
   2309 	limit = vmx_vmread(vmx_guest_segs[idx].limit);
   2310 	base = vmx_vmread(vmx_guest_segs[idx].base);
   2311 
   2312 	segs[idx].selector = selector;
   2313 	segs[idx].limit = limit;
   2314 	segs[idx].base = base;
   2315 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2316 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2317 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2318 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2319 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2320 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2321 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2322 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2323 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2324 		segs[idx].attrib.p = 0;
   2325 	}
   2326 }
   2327 
   2328 static inline bool
   2329 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2330 {
   2331 	uint64_t cr0, cr3, cr4, efer;
   2332 
   2333 	if (flags & NVMM_X64_STATE_CRS) {
   2334 		cr0 = vmx_vmread(VMCS_GUEST_CR0);
   2335 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2336 			return true;
   2337 		}
   2338 		cr3 = vmx_vmread(VMCS_GUEST_CR3);
   2339 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2340 			return true;
   2341 		}
   2342 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   2343 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2344 			return true;
   2345 		}
   2346 	}
   2347 
   2348 	if (flags & NVMM_X64_STATE_MSRS) {
   2349 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   2350 		if ((efer ^
   2351 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2352 			return true;
   2353 		}
   2354 	}
   2355 
   2356 	return false;
   2357 }
   2358 
   2359 static void
   2360 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
   2361 {
   2362 	struct nvmm_comm_page *comm = vcpu->comm;
   2363 	const struct nvmm_x64_state *state = &comm->state;
   2364 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2365 	struct fxsave *fpustate;
   2366 	uint64_t ctls1, intstate;
   2367 	uint64_t flags;
   2368 
   2369 	flags = comm->state_wanted;
   2370 
   2371 	vmx_vmcs_enter(vcpu);
   2372 
   2373 	if (vmx_state_tlb_flush(state, flags)) {
   2374 		cpudata->gtlb_want_flush = true;
   2375 	}
   2376 
   2377 	if (flags & NVMM_X64_STATE_SEGS) {
   2378 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2379 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2380 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2381 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2382 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2383 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2384 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2385 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2386 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2387 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2388 	}
   2389 
   2390 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2391 	if (flags & NVMM_X64_STATE_GPRS) {
   2392 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2393 
   2394 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2395 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2396 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2397 	}
   2398 
   2399 	if (flags & NVMM_X64_STATE_CRS) {
   2400 		/*
   2401 		 * CR0_NE and CR4_VMXE are mandatory.
   2402 		 */
   2403 		vmx_vmwrite(VMCS_GUEST_CR0,
   2404 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2405 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2406 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2407 		vmx_vmwrite(VMCS_GUEST_CR4,
   2408 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2409 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2410 
   2411 		if (vmx_xcr0_mask != 0) {
   2412 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2413 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2414 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2415 			cpudata->gxcr0 |= XCR0_X87;
   2416 		}
   2417 	}
   2418 
   2419 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2420 	if (flags & NVMM_X64_STATE_DRS) {
   2421 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2422 
   2423 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2424 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2425 	}
   2426 
   2427 	if (flags & NVMM_X64_STATE_MSRS) {
   2428 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2429 		    state->msrs[NVMM_X64_MSR_STAR];
   2430 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2431 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2432 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2433 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2434 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2435 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2436 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2437 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2438 
   2439 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2440 		    state->msrs[NVMM_X64_MSR_EFER]);
   2441 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2442 		    state->msrs[NVMM_X64_MSR_PAT]);
   2443 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2444 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2445 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2446 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2447 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2448 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2449 
   2450 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2451 		cpudata->gtsc_want_update = true;
   2452 
   2453 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2454 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   2455 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2456 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2457 		} else {
   2458 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2459 		}
   2460 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2461 	}
   2462 
   2463 	if (flags & NVMM_X64_STATE_INTR) {
   2464 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2465 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2466 		if (state->intr.int_shadow) {
   2467 			intstate |= INT_STATE_MOVSS;
   2468 		}
   2469 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2470 
   2471 		if (state->intr.int_window_exiting) {
   2472 			vmx_event_waitexit_enable(vcpu, false);
   2473 		} else {
   2474 			vmx_event_waitexit_disable(vcpu, false);
   2475 		}
   2476 
   2477 		if (state->intr.nmi_window_exiting) {
   2478 			vmx_event_waitexit_enable(vcpu, true);
   2479 		} else {
   2480 			vmx_event_waitexit_disable(vcpu, true);
   2481 		}
   2482 	}
   2483 
   2484 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2485 	if (flags & NVMM_X64_STATE_FPU) {
   2486 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2487 		    sizeof(state->fpu));
   2488 
   2489 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2490 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2491 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2492 
   2493 		if (vmx_xcr0_mask != 0) {
   2494 			/* Reset XSTATE_BV, to force a reload. */
   2495 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2496 		}
   2497 	}
   2498 
   2499 	vmx_vmcs_leave(vcpu);
   2500 
   2501 	comm->state_wanted = 0;
   2502 	comm->state_cached |= flags;
   2503 }
   2504 
   2505 static void
   2506 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
   2507 {
   2508 	struct nvmm_comm_page *comm = vcpu->comm;
   2509 	struct nvmm_x64_state *state = &comm->state;
   2510 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2511 	uint64_t intstate, flags;
   2512 
   2513 	flags = comm->state_wanted;
   2514 
   2515 	vmx_vmcs_enter(vcpu);
   2516 
   2517 	if (flags & NVMM_X64_STATE_SEGS) {
   2518 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2519 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2520 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2521 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2522 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2523 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2524 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2525 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2526 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2527 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2528 	}
   2529 
   2530 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2531 	if (flags & NVMM_X64_STATE_GPRS) {
   2532 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2533 
   2534 		state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
   2535 		state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
   2536 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
   2537 	}
   2538 
   2539 	if (flags & NVMM_X64_STATE_CRS) {
   2540 		state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
   2541 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2542 		state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
   2543 		state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
   2544 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2545 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2546 
   2547 		/* Hide VMXE. */
   2548 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2549 	}
   2550 
   2551 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2552 	if (flags & NVMM_X64_STATE_DRS) {
   2553 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2554 
   2555 		state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
   2556 	}
   2557 
   2558 	if (flags & NVMM_X64_STATE_MSRS) {
   2559 		state->msrs[NVMM_X64_MSR_STAR] =
   2560 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2561 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2562 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2563 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2564 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2565 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2566 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2567 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2568 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2569 		state->msrs[NVMM_X64_MSR_EFER] =
   2570 		    vmx_vmread(VMCS_GUEST_IA32_EFER);
   2571 		state->msrs[NVMM_X64_MSR_PAT] =
   2572 		    vmx_vmread(VMCS_GUEST_IA32_PAT);
   2573 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   2574 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
   2575 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   2576 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
   2577 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   2578 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
   2579 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2580 	}
   2581 
   2582 	if (flags & NVMM_X64_STATE_INTR) {
   2583 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2584 		state->intr.int_shadow =
   2585 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2586 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2587 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2588 		state->intr.evt_pending = cpudata->evt_pending;
   2589 	}
   2590 
   2591 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2592 	if (flags & NVMM_X64_STATE_FPU) {
   2593 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2594 		    sizeof(state->fpu));
   2595 	}
   2596 
   2597 	vmx_vmcs_leave(vcpu);
   2598 
   2599 	comm->state_wanted = 0;
   2600 	comm->state_cached |= flags;
   2601 }
   2602 
   2603 static void
   2604 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   2605 {
   2606 	vcpu->comm->state_wanted = flags;
   2607 	vmx_vcpu_getstate(vcpu);
   2608 }
   2609 
   2610 static void
   2611 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
   2612 {
   2613 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   2614 	vcpu->comm->state_commit = 0;
   2615 	vmx_vcpu_setstate(vcpu);
   2616 }
   2617 
   2618 /* -------------------------------------------------------------------------- */
   2619 
   2620 static void
   2621 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2622 {
   2623 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2624 	size_t i, oct, bit;
   2625 
   2626 	mutex_enter(&vmx_asidlock);
   2627 
   2628 	for (i = 0; i < vmx_maxasid; i++) {
   2629 		oct = i / 8;
   2630 		bit = i % 8;
   2631 
   2632 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2633 			continue;
   2634 		}
   2635 
   2636 		cpudata->asid = i;
   2637 
   2638 		vmx_asidmap[oct] |= __BIT(bit);
   2639 		vmx_vmwrite(VMCS_VPID, i);
   2640 		mutex_exit(&vmx_asidlock);
   2641 		return;
   2642 	}
   2643 
   2644 	mutex_exit(&vmx_asidlock);
   2645 
   2646 	panic("%s: impossible", __func__);
   2647 }
   2648 
   2649 static void
   2650 vmx_asid_free(struct nvmm_cpu *vcpu)
   2651 {
   2652 	size_t oct, bit;
   2653 	uint64_t asid;
   2654 
   2655 	asid = vmx_vmread(VMCS_VPID);
   2656 
   2657 	oct = asid / 8;
   2658 	bit = asid % 8;
   2659 
   2660 	mutex_enter(&vmx_asidlock);
   2661 	vmx_asidmap[oct] &= ~__BIT(bit);
   2662 	mutex_exit(&vmx_asidlock);
   2663 }
   2664 
   2665 static void
   2666 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2667 {
   2668 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2669 	struct vmcs *vmcs = cpudata->vmcs;
   2670 	struct msr_entry *gmsr = cpudata->gmsr;
   2671 	extern uint8_t vmx_resume_rip;
   2672 	uint64_t rev, eptp;
   2673 
   2674 	rev = vmx_get_revision();
   2675 
   2676 	memset(vmcs, 0, VMCS_SIZE);
   2677 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2678 	vmcs->abort = 0;
   2679 
   2680 	vmx_vmcs_enter(vcpu);
   2681 
   2682 	/* No link pointer. */
   2683 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2684 
   2685 	/* Install the CTLSs. */
   2686 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2687 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2688 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2689 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2690 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2691 
   2692 	/* Allow direct access to certain MSRs. */
   2693 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2694 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2695 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2696 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2697 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2698 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2699 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2700 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2701 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2702 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2703 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2704 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2705 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2706 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2707 	    true, false);
   2708 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2709 
   2710 	/*
   2711 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2712 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2713 	 */
   2714 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2715 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2716 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2717 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2718 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2719 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2720 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2721 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2722 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2723 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2724 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2725 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2726 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2727 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2728 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2729 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2730 
   2731 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2732 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2733 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2734 
   2735 	/* Force CR4_VMXE to zero. */
   2736 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2737 
   2738 	/* Set the Host state for resuming. */
   2739 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2740 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2741 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2742 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2743 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2744 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2745 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2746 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2747 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2748 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2749 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   2750 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2751 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2752 	vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
   2753 
   2754 	/* Generate ASID. */
   2755 	vmx_asid_alloc(vcpu);
   2756 
   2757 	/* Enable Extended Paging, 4-Level. */
   2758 	eptp =
   2759 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2760 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2761 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2762 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2763 	vmx_vmwrite(VMCS_EPTP, eptp);
   2764 
   2765 	/* Init IA32_MISC_ENABLE. */
   2766 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2767 	cpudata->gmsr_misc_enable &=
   2768 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2769 	cpudata->gmsr_misc_enable |=
   2770 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2771 
   2772 	/* Init XSAVE header. */
   2773 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2774 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2775 
   2776 	/* These MSRs are static. */
   2777 	cpudata->star = rdmsr(MSR_STAR);
   2778 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2779 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2780 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2781 
   2782 	/* Install the RESET state. */
   2783 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   2784 	    sizeof(nvmm_x86_reset_state));
   2785 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   2786 	vcpu->comm->state_cached = 0;
   2787 	vmx_vcpu_setstate(vcpu);
   2788 
   2789 	vmx_vmcs_leave(vcpu);
   2790 }
   2791 
   2792 static int
   2793 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2794 {
   2795 	struct vmx_cpudata *cpudata;
   2796 	int error;
   2797 
   2798 	/* Allocate the VMX cpudata. */
   2799 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2800 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2801 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2802 	vcpu->cpudata = cpudata;
   2803 
   2804 	/* VMCS */
   2805 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2806 	    VMCS_NPAGES);
   2807 	if (error)
   2808 		goto error;
   2809 
   2810 	/* MSR Bitmap */
   2811 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2812 	    MSRBM_NPAGES);
   2813 	if (error)
   2814 		goto error;
   2815 
   2816 	/* Guest MSR List */
   2817 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2818 	if (error)
   2819 		goto error;
   2820 
   2821 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2822 
   2823 	/* Init the VCPU info. */
   2824 	vmx_vcpu_init(mach, vcpu);
   2825 
   2826 	return 0;
   2827 
   2828 error:
   2829 	if (cpudata->vmcs_pa) {
   2830 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2831 		    VMCS_NPAGES);
   2832 	}
   2833 	if (cpudata->msrbm_pa) {
   2834 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2835 		    MSRBM_NPAGES);
   2836 	}
   2837 	if (cpudata->gmsr_pa) {
   2838 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2839 	}
   2840 
   2841 	kmem_free(cpudata, sizeof(*cpudata));
   2842 	return error;
   2843 }
   2844 
   2845 static void
   2846 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2847 {
   2848 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2849 
   2850 	vmx_vmcs_enter(vcpu);
   2851 	vmx_asid_free(vcpu);
   2852 	vmx_vmcs_destroy(vcpu);
   2853 
   2854 	kcpuset_destroy(cpudata->htlb_want_flush);
   2855 
   2856 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2857 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2858 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2859 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2860 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2861 }
   2862 
   2863 /* -------------------------------------------------------------------------- */
   2864 
   2865 static int
   2866 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
   2867 {
   2868 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
   2869 	size_t i;
   2870 
   2871 	if (__predict_false(cpuid->mask && cpuid->exit)) {
   2872 		return EINVAL;
   2873 	}
   2874 	if (__predict_false(cpuid->mask &&
   2875 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
   2876 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
   2877 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
   2878 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
   2879 		return EINVAL;
   2880 	}
   2881 
   2882 	/* If unset, delete, to restore the default behavior. */
   2883 	if (!cpuid->mask && !cpuid->exit) {
   2884 		for (i = 0; i < VMX_NCPUIDS; i++) {
   2885 			if (!cpudata->cpuidpresent[i]) {
   2886 				continue;
   2887 			}
   2888 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2889 				cpudata->cpuidpresent[i] = false;
   2890 			}
   2891 		}
   2892 		return 0;
   2893 	}
   2894 
   2895 	/* If already here, replace. */
   2896 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2897 		if (!cpudata->cpuidpresent[i]) {
   2898 			continue;
   2899 		}
   2900 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2901 			memcpy(&cpudata->cpuid[i], cpuid,
   2902 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2903 			return 0;
   2904 		}
   2905 	}
   2906 
   2907 	/* Not here, insert. */
   2908 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2909 		if (!cpudata->cpuidpresent[i]) {
   2910 			cpudata->cpuidpresent[i] = true;
   2911 			memcpy(&cpudata->cpuid[i], cpuid,
   2912 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2913 			return 0;
   2914 		}
   2915 	}
   2916 
   2917 	return ENOBUFS;
   2918 }
   2919 
   2920 static int
   2921 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
   2922 {
   2923 	struct nvmm_vcpu_conf_tpr *tpr = data;
   2924 
   2925 	memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
   2926 	return 0;
   2927 }
   2928 
   2929 static int
   2930 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
   2931 {
   2932 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2933 
   2934 	switch (op) {
   2935 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
   2936 		return vmx_vcpu_configure_cpuid(cpudata, data);
   2937 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
   2938 		return vmx_vcpu_configure_tpr(cpudata, data);
   2939 	default:
   2940 		return EINVAL;
   2941 	}
   2942 }
   2943 
   2944 /* -------------------------------------------------------------------------- */
   2945 
   2946 static void
   2947 vmx_tlb_flush(struct pmap *pm)
   2948 {
   2949 	struct nvmm_machine *mach = pm->pm_data;
   2950 	struct vmx_machdata *machdata = mach->machdata;
   2951 
   2952 	atomic_inc_64(&machdata->mach_htlb_gen);
   2953 
   2954 	/* Generates IPIs, which cause #VMEXITs. */
   2955 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   2956 }
   2957 
   2958 static void
   2959 vmx_machine_create(struct nvmm_machine *mach)
   2960 {
   2961 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2962 	struct vmx_machdata *machdata;
   2963 
   2964 	/* Convert to EPT. */
   2965 	pmap_ept_transform(pmap);
   2966 
   2967 	/* Fill in pmap info. */
   2968 	pmap->pm_data = (void *)mach;
   2969 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2970 
   2971 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2972 	mach->machdata = machdata;
   2973 
   2974 	/* Start with an hTLB flush everywhere. */
   2975 	machdata->mach_htlb_gen = 1;
   2976 }
   2977 
   2978 static void
   2979 vmx_machine_destroy(struct nvmm_machine *mach)
   2980 {
   2981 	struct vmx_machdata *machdata = mach->machdata;
   2982 
   2983 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2984 }
   2985 
   2986 static int
   2987 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2988 {
   2989 	panic("%s: impossible", __func__);
   2990 }
   2991 
   2992 /* -------------------------------------------------------------------------- */
   2993 
   2994 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
   2995 	((msrval & __BIT(32 + bitoff)) != 0)
   2996 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
   2997 	((msrval & __BIT(bitoff)) == 0)
   2998 
   2999 static int
   3000 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
   3001 {
   3002 	uint64_t basic, val, true_val;
   3003 	bool has_true;
   3004 	size_t i;
   3005 
   3006 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3007 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3008 
   3009 	val = rdmsr(msr_ctls);
   3010 	if (has_true) {
   3011 		true_val = rdmsr(msr_true_ctls);
   3012 	} else {
   3013 		true_val = val;
   3014 	}
   3015 
   3016 	for (i = 0; i < 32; i++) {
   3017 		if (!(set_one & __BIT(i))) {
   3018 			continue;
   3019 		}
   3020 		if (!CTLS_ONE_ALLOWED(true_val, i)) {
   3021 			return -1;
   3022 		}
   3023 	}
   3024 
   3025 	return 0;
   3026 }
   3027 
   3028 static int
   3029 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   3030     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   3031 {
   3032 	uint64_t basic, val, true_val;
   3033 	bool one_allowed, zero_allowed, has_true;
   3034 	size_t i;
   3035 
   3036 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3037 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3038 
   3039 	val = rdmsr(msr_ctls);
   3040 	if (has_true) {
   3041 		true_val = rdmsr(msr_true_ctls);
   3042 	} else {
   3043 		true_val = val;
   3044 	}
   3045 
   3046 	for (i = 0; i < 32; i++) {
   3047 		one_allowed = CTLS_ONE_ALLOWED(true_val, i);
   3048 		zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
   3049 
   3050 		if (zero_allowed && !one_allowed) {
   3051 			if (set_one & __BIT(i))
   3052 				return -1;
   3053 			*res &= ~__BIT(i);
   3054 		} else if (one_allowed && !zero_allowed) {
   3055 			if (set_zero & __BIT(i))
   3056 				return -1;
   3057 			*res |= __BIT(i);
   3058 		} else {
   3059 			if (set_zero & __BIT(i)) {
   3060 				*res &= ~__BIT(i);
   3061 			} else if (set_one & __BIT(i)) {
   3062 				*res |= __BIT(i);
   3063 			} else if (!has_true) {
   3064 				*res &= ~__BIT(i);
   3065 			} else if (CTLS_ZERO_ALLOWED(val, i)) {
   3066 				*res &= ~__BIT(i);
   3067 			} else if (CTLS_ONE_ALLOWED(val, i)) {
   3068 				*res |= __BIT(i);
   3069 			} else {
   3070 				return -1;
   3071 			}
   3072 		}
   3073 	}
   3074 
   3075 	return 0;
   3076 }
   3077 
   3078 static bool
   3079 vmx_ident(void)
   3080 {
   3081 	uint64_t msr;
   3082 	int ret;
   3083 
   3084 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   3085 		return false;
   3086 	}
   3087 
   3088 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   3089 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   3090 		printf("NVMM: VMX disabled in BIOS\n");
   3091 		return false;
   3092 	}
   3093 	if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
   3094 		printf("NVMM: VMX disabled in BIOS\n");
   3095 		return false;
   3096 	}
   3097 
   3098 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   3099 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   3100 		printf("NVMM: I/O reporting not supported\n");
   3101 		return false;
   3102 	}
   3103 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   3104 		printf("NVMM: WB memory not supported\n");
   3105 		return false;
   3106 	}
   3107 
   3108 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   3109 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   3110 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   3111 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   3112 	if (ret == -1) {
   3113 		printf("NVMM: CR0 requirements not satisfied\n");
   3114 		return false;
   3115 	}
   3116 
   3117 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   3118 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   3119 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   3120 	if (ret == -1) {
   3121 		printf("NVMM: CR4 requirements not satisfied\n");
   3122 		return false;
   3123 	}
   3124 
   3125 	/* Init the CTLSs right now, and check for errors. */
   3126 	ret = vmx_init_ctls(
   3127 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   3128 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   3129 	    &vmx_pinbased_ctls);
   3130 	if (ret == -1) {
   3131 		printf("NVMM: pin-based-ctls requirements not satisfied\n");
   3132 		return false;
   3133 	}
   3134 	ret = vmx_init_ctls(
   3135 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   3136 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   3137 	    &vmx_procbased_ctls);
   3138 	if (ret == -1) {
   3139 		printf("NVMM: proc-based-ctls requirements not satisfied\n");
   3140 		return false;
   3141 	}
   3142 	ret = vmx_init_ctls(
   3143 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3144 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   3145 	    &vmx_procbased_ctls2);
   3146 	if (ret == -1) {
   3147 		printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
   3148 		return false;
   3149 	}
   3150 	ret = vmx_check_ctls(
   3151 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3152 	    PROC_CTLS2_INVPCID_ENABLE);
   3153 	if (ret != -1) {
   3154 		vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
   3155 	}
   3156 	ret = vmx_init_ctls(
   3157 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   3158 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   3159 	    &vmx_entry_ctls);
   3160 	if (ret == -1) {
   3161 		printf("NVMM: entry-ctls requirements not satisfied\n");
   3162 		return false;
   3163 	}
   3164 	ret = vmx_init_ctls(
   3165 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   3166 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   3167 	    &vmx_exit_ctls);
   3168 	if (ret == -1) {
   3169 		printf("NVMM: exit-ctls requirements not satisfied\n");
   3170 		return false;
   3171 	}
   3172 
   3173 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3174 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   3175 		printf("NVMM: 4-level page tree not supported\n");
   3176 		return false;
   3177 	}
   3178 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   3179 		printf("NVMM: INVEPT not supported\n");
   3180 		return false;
   3181 	}
   3182 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   3183 		printf("NVMM: INVVPID not supported\n");
   3184 		return false;
   3185 	}
   3186 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   3187 		pmap_ept_has_ad = true;
   3188 	} else {
   3189 		pmap_ept_has_ad = false;
   3190 	}
   3191 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   3192 		printf("NVMM: EPT UC/WB memory types not supported\n");
   3193 		return false;
   3194 	}
   3195 
   3196 	return true;
   3197 }
   3198 
   3199 static void
   3200 vmx_init_asid(uint32_t maxasid)
   3201 {
   3202 	size_t allocsz;
   3203 
   3204 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   3205 
   3206 	vmx_maxasid = maxasid;
   3207 	allocsz = roundup(maxasid, 8) / 8;
   3208 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   3209 
   3210 	/* ASID 0 is reserved for the host. */
   3211 	vmx_asidmap[0] |= __BIT(0);
   3212 }
   3213 
   3214 static void
   3215 vmx_change_cpu(void *arg1, void *arg2)
   3216 {
   3217 	struct cpu_info *ci = curcpu();
   3218 	bool enable = arg1 != NULL;
   3219 	uint64_t cr4;
   3220 
   3221 	if (!enable) {
   3222 		vmx_vmxoff();
   3223 	}
   3224 
   3225 	cr4 = rcr4();
   3226 	if (enable) {
   3227 		cr4 |= CR4_VMXE;
   3228 	} else {
   3229 		cr4 &= ~CR4_VMXE;
   3230 	}
   3231 	lcr4(cr4);
   3232 
   3233 	if (enable) {
   3234 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   3235 	}
   3236 }
   3237 
   3238 static void
   3239 vmx_init_l1tf(void)
   3240 {
   3241 	u_int descs[4];
   3242 	uint64_t msr;
   3243 
   3244 	if (cpuid_level < 7) {
   3245 		return;
   3246 	}
   3247 
   3248 	x86_cpuid(7, descs);
   3249 
   3250 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   3251 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   3252 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   3253 			/* No mitigation needed. */
   3254 			return;
   3255 		}
   3256 	}
   3257 
   3258 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   3259 		/* Enable hardware mitigation. */
   3260 		vmx_msrlist_entry_nmsr += 1;
   3261 	}
   3262 }
   3263 
   3264 static void
   3265 vmx_init(void)
   3266 {
   3267 	CPU_INFO_ITERATOR cii;
   3268 	struct cpu_info *ci;
   3269 	uint64_t xc, msr;
   3270 	struct vmxon *vmxon;
   3271 	uint32_t revision;
   3272 	paddr_t pa;
   3273 	vaddr_t va;
   3274 	int error;
   3275 
   3276 	/* Init the ASID bitmap (VPID). */
   3277 	vmx_init_asid(VPID_MAX);
   3278 
   3279 	/* Init the XCR0 mask. */
   3280 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   3281 
   3282 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   3283 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3284 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   3285 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   3286 	} else {
   3287 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   3288 	}
   3289 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   3290 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   3291 	} else {
   3292 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   3293 	}
   3294 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   3295 		vmx_eptp_type = EPTP_TYPE_WB;
   3296 	} else {
   3297 		vmx_eptp_type = EPTP_TYPE_UC;
   3298 	}
   3299 
   3300 	/* Init the L1TF mitigation. */
   3301 	vmx_init_l1tf();
   3302 
   3303 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   3304 	revision = vmx_get_revision();
   3305 
   3306 	for (CPU_INFO_FOREACH(cii, ci)) {
   3307 		error = vmx_memalloc(&pa, &va, 1);
   3308 		if (error) {
   3309 			panic("%s: out of memory", __func__);
   3310 		}
   3311 		vmxoncpu[cpu_index(ci)].pa = pa;
   3312 		vmxoncpu[cpu_index(ci)].va = va;
   3313 
   3314 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   3315 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   3316 	}
   3317 
   3318 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   3319 	xc_wait(xc);
   3320 }
   3321 
   3322 static void
   3323 vmx_fini_asid(void)
   3324 {
   3325 	size_t allocsz;
   3326 
   3327 	allocsz = roundup(vmx_maxasid, 8) / 8;
   3328 	kmem_free(vmx_asidmap, allocsz);
   3329 
   3330 	mutex_destroy(&vmx_asidlock);
   3331 }
   3332 
   3333 static void
   3334 vmx_fini(void)
   3335 {
   3336 	uint64_t xc;
   3337 	size_t i;
   3338 
   3339 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   3340 	xc_wait(xc);
   3341 
   3342 	for (i = 0; i < MAXCPUS; i++) {
   3343 		if (vmxoncpu[i].pa != 0)
   3344 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   3345 	}
   3346 
   3347 	vmx_fini_asid();
   3348 }
   3349 
   3350 static void
   3351 vmx_capability(struct nvmm_capability *cap)
   3352 {
   3353 	cap->arch.mach_conf_support = 0;
   3354 	cap->arch.vcpu_conf_support =
   3355 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID |
   3356 	    NVMM_CAP_ARCH_VCPU_CONF_TPR;
   3357 	cap->arch.xcr0_mask = vmx_xcr0_mask;
   3358 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   3359 	cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
   3360 }
   3361 
   3362 const struct nvmm_impl nvmm_x86_vmx = {
   3363 	.ident = vmx_ident,
   3364 	.init = vmx_init,
   3365 	.fini = vmx_fini,
   3366 	.capability = vmx_capability,
   3367 	.mach_conf_max = NVMM_X86_MACH_NCONF,
   3368 	.mach_conf_sizes = NULL,
   3369 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
   3370 	.vcpu_conf_sizes = vmx_vcpu_conf_sizes,
   3371 	.state_size = sizeof(struct nvmm_x64_state),
   3372 	.machine_create = vmx_machine_create,
   3373 	.machine_destroy = vmx_machine_destroy,
   3374 	.machine_configure = vmx_machine_configure,
   3375 	.vcpu_create = vmx_vcpu_create,
   3376 	.vcpu_destroy = vmx_vcpu_destroy,
   3377 	.vcpu_configure = vmx_vcpu_configure,
   3378 	.vcpu_setstate = vmx_vcpu_setstate,
   3379 	.vcpu_getstate = vmx_vcpu_getstate,
   3380 	.vcpu_inject = vmx_vcpu_inject,
   3381 	.vcpu_run = vmx_vcpu_run
   3382 };
   3383