Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.66
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.66 2020/08/05 10:20:50 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.66 2020/08/05 10:20:50 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 #include <sys/bitops.h>
     43 
     44 #include <uvm/uvm.h>
     45 #include <uvm/uvm_page.h>
     46 
     47 #include <x86/cputypes.h>
     48 #include <x86/specialreg.h>
     49 #include <x86/pmap.h>
     50 #include <x86/dbregs.h>
     51 #include <x86/cpu_counter.h>
     52 #include <machine/cpuvar.h>
     53 
     54 #include <dev/nvmm/nvmm.h>
     55 #include <dev/nvmm/nvmm_internal.h>
     56 #include <dev/nvmm/x86/nvmm_x86.h>
     57 
     58 int _vmx_vmxon(paddr_t *pa);
     59 int _vmx_vmxoff(void);
     60 int vmx_vmlaunch(uint64_t *gprs);
     61 int vmx_vmresume(uint64_t *gprs);
     62 
     63 #define vmx_vmxon(a) \
     64 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     65 		panic("%s: VMXON failed", __func__); \
     66 	}
     67 #define vmx_vmxoff() \
     68 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     69 		panic("%s: VMXOFF failed", __func__); \
     70 	}
     71 
     72 struct ept_desc {
     73 	uint64_t eptp;
     74 	uint64_t mbz;
     75 } __packed;
     76 
     77 struct vpid_desc {
     78 	uint64_t vpid;
     79 	uint64_t addr;
     80 } __packed;
     81 
     82 static inline void
     83 vmx_invept(uint64_t op, struct ept_desc *desc)
     84 {
     85 	asm volatile (
     86 		"invept		%[desc],%[op];"
     87 		"jz		vmx_insn_failvalid;"
     88 		"jc		vmx_insn_failinvalid;"
     89 		:
     90 		: [desc] "m" (*desc), [op] "r" (op)
     91 		: "memory", "cc"
     92 	);
     93 }
     94 
     95 static inline void
     96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
     97 {
     98 	asm volatile (
     99 		"invvpid	%[desc],%[op];"
    100 		"jz		vmx_insn_failvalid;"
    101 		"jc		vmx_insn_failinvalid;"
    102 		:
    103 		: [desc] "m" (*desc), [op] "r" (op)
    104 		: "memory", "cc"
    105 	);
    106 }
    107 
    108 static inline uint64_t
    109 vmx_vmread(uint64_t field)
    110 {
    111 	uint64_t value;
    112 
    113 	asm volatile (
    114 		"vmread		%[field],%[value];"
    115 		"jz		vmx_insn_failvalid;"
    116 		"jc		vmx_insn_failinvalid;"
    117 		: [value] "=r" (value)
    118 		: [field] "r" (field)
    119 		: "cc"
    120 	);
    121 
    122 	return value;
    123 }
    124 
    125 static inline void
    126 vmx_vmwrite(uint64_t field, uint64_t value)
    127 {
    128 	asm volatile (
    129 		"vmwrite	%[value],%[field];"
    130 		"jz		vmx_insn_failvalid;"
    131 		"jc		vmx_insn_failinvalid;"
    132 		:
    133 		: [field] "r" (field), [value] "r" (value)
    134 		: "cc"
    135 	);
    136 }
    137 
    138 #ifdef DIAGNOSTIC
    139 static inline paddr_t
    140 vmx_vmptrst(void)
    141 {
    142 	paddr_t pa;
    143 
    144 	asm volatile (
    145 		"vmptrst	%[pa];"
    146 		:
    147 		: [pa] "m" (*(paddr_t *)&pa)
    148 		: "memory"
    149 	);
    150 
    151 	return pa;
    152 }
    153 #endif
    154 
    155 static inline void
    156 vmx_vmptrld(paddr_t *pa)
    157 {
    158 	asm volatile (
    159 		"vmptrld	%[pa];"
    160 		"jz		vmx_insn_failvalid;"
    161 		"jc		vmx_insn_failinvalid;"
    162 		:
    163 		: [pa] "m" (*pa)
    164 		: "memory", "cc"
    165 	);
    166 }
    167 
    168 static inline void
    169 vmx_vmclear(paddr_t *pa)
    170 {
    171 	asm volatile (
    172 		"vmclear	%[pa];"
    173 		"jz		vmx_insn_failvalid;"
    174 		"jc		vmx_insn_failinvalid;"
    175 		:
    176 		: [pa] "m" (*pa)
    177 		: "memory", "cc"
    178 	);
    179 }
    180 
    181 static inline void
    182 vmx_cli(void)
    183 {
    184 	asm volatile ("cli" ::: "memory");
    185 }
    186 
    187 static inline void
    188 vmx_sti(void)
    189 {
    190 	asm volatile ("sti" ::: "memory");
    191 }
    192 
    193 #define MSR_IA32_FEATURE_CONTROL	0x003A
    194 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    195 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    196 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    197 
    198 #define MSR_IA32_VMX_BASIC		0x0480
    199 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    200 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    201 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    202 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    203 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    204 #define			MEM_TYPE_UC		0
    205 #define			MEM_TYPE_WB		6
    206 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    207 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    208 
    209 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    210 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    211 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    212 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    213 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    214 
    215 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    216 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    217 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    218 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    219 
    220 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    221 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    222 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    223 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    224 
    225 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    226 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    227 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    228 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    229 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    230 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    231 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    232 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    233 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    234 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    235 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    236 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    237 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    238 
    239 /* -------------------------------------------------------------------------- */
    240 
    241 /* 16-bit control fields */
    242 #define VMCS_VPID				0x00000000
    243 #define VMCS_PIR_VECTOR				0x00000002
    244 #define VMCS_EPTP_INDEX				0x00000004
    245 /* 16-bit guest-state fields */
    246 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    247 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    248 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    249 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    250 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    251 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    252 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    253 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    254 #define VMCS_GUEST_INTR_STATUS			0x00000810
    255 #define VMCS_PML_INDEX				0x00000812
    256 /* 16-bit host-state fields */
    257 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    258 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    259 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    260 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    261 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    262 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    263 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    264 /* 64-bit control fields */
    265 #define VMCS_IO_BITMAP_A			0x00002000
    266 #define VMCS_IO_BITMAP_B			0x00002002
    267 #define VMCS_MSR_BITMAP				0x00002004
    268 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    269 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    270 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    271 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    272 #define VMCS_PML_ADDRESS			0x0000200E
    273 #define VMCS_TSC_OFFSET				0x00002010
    274 #define VMCS_VIRTUAL_APIC			0x00002012
    275 #define VMCS_APIC_ACCESS			0x00002014
    276 #define VMCS_PIR_DESC				0x00002016
    277 #define VMCS_VM_CONTROL				0x00002018
    278 #define VMCS_EPTP				0x0000201A
    279 #define		EPTP_TYPE			__BITS(2,0)
    280 #define			EPTP_TYPE_UC		0
    281 #define			EPTP_TYPE_WB		6
    282 #define		EPTP_WALKLEN			__BITS(5,3)
    283 #define		EPTP_FLAGS_AD			__BIT(6)
    284 #define		EPTP_PHYSADDR			__BITS(63,12)
    285 #define VMCS_EOI_EXIT0				0x0000201C
    286 #define VMCS_EOI_EXIT1				0x0000201E
    287 #define VMCS_EOI_EXIT2				0x00002020
    288 #define VMCS_EOI_EXIT3				0x00002022
    289 #define VMCS_EPTP_LIST				0x00002024
    290 #define VMCS_VMREAD_BITMAP			0x00002026
    291 #define VMCS_VMWRITE_BITMAP			0x00002028
    292 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    293 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    294 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    295 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
    296 #define VMCS_TSC_MULTIPLIER			0x00002032
    297 /* 64-bit read-only fields */
    298 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    299 /* 64-bit guest-state fields */
    300 #define VMCS_LINK_POINTER			0x00002800
    301 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    302 #define VMCS_GUEST_IA32_PAT			0x00002804
    303 #define VMCS_GUEST_IA32_EFER			0x00002806
    304 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    305 #define VMCS_GUEST_PDPTE0			0x0000280A
    306 #define VMCS_GUEST_PDPTE1			0x0000280C
    307 #define VMCS_GUEST_PDPTE2			0x0000280E
    308 #define VMCS_GUEST_PDPTE3			0x00002810
    309 #define VMCS_GUEST_BNDCFGS			0x00002812
    310 /* 64-bit host-state fields */
    311 #define VMCS_HOST_IA32_PAT			0x00002C00
    312 #define VMCS_HOST_IA32_EFER			0x00002C02
    313 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    314 /* 32-bit control fields */
    315 #define VMCS_PINBASED_CTLS			0x00004000
    316 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    317 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    318 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    319 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    320 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
    321 #define VMCS_PROCBASED_CTLS			0x00004002
    322 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    323 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    324 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    325 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    326 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    327 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    328 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    329 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    330 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    331 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    332 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    333 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    334 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    335 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    336 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    337 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    338 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    339 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    340 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    341 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    342 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    343 #define VMCS_EXCEPTION_BITMAP			0x00004004
    344 #define VMCS_PF_ERROR_MASK			0x00004006
    345 #define VMCS_PF_ERROR_MATCH			0x00004008
    346 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    347 #define VMCS_EXIT_CTLS				0x0000400C
    348 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    349 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    350 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    351 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    352 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    353 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    354 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    355 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    356 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    357 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    358 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    359 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    360 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    361 #define VMCS_ENTRY_CTLS				0x00004012
    362 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    363 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    364 #define		ENTRY_CTLS_SMM			__BIT(10)
    365 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    366 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    367 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    368 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    369 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    370 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    371 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    372 #define VMCS_ENTRY_INTR_INFO			0x00004016
    373 #define		INTR_INFO_VECTOR		__BITS(7,0)
    374 #define		INTR_INFO_TYPE			__BITS(10,8)
    375 #define			INTR_TYPE_EXT_INT	0
    376 #define			INTR_TYPE_NMI		2
    377 #define			INTR_TYPE_HW_EXC	3
    378 #define			INTR_TYPE_SW_INT	4
    379 #define			INTR_TYPE_PRIV_SW_EXC	5
    380 #define			INTR_TYPE_SW_EXC	6
    381 #define			INTR_TYPE_OTHER		7
    382 #define		INTR_INFO_ERROR			__BIT(11)
    383 #define		INTR_INFO_VALID			__BIT(31)
    384 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    385 #define VMCS_ENTRY_INSTRUCTION_LENGTH		0x0000401A
    386 #define VMCS_TPR_THRESHOLD			0x0000401C
    387 #define VMCS_PROCBASED_CTLS2			0x0000401E
    388 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    389 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    390 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    391 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    392 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    393 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    394 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    395 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    396 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    397 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    398 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    399 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    400 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    401 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    402 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    403 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    404 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    405 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    406 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    407 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    408 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    409 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    410 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
    411 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    412 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
    413 #define VMCS_PLE_GAP				0x00004020
    414 #define VMCS_PLE_WINDOW				0x00004022
    415 /* 32-bit read-only data fields */
    416 #define VMCS_INSTRUCTION_ERROR			0x00004400
    417 #define VMCS_EXIT_REASON			0x00004402
    418 #define VMCS_EXIT_INTR_INFO			0x00004404
    419 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    420 #define VMCS_IDT_VECTORING_INFO			0x00004408
    421 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    422 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    423 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    424 /* 32-bit guest-state fields */
    425 #define VMCS_GUEST_ES_LIMIT			0x00004800
    426 #define VMCS_GUEST_CS_LIMIT			0x00004802
    427 #define VMCS_GUEST_SS_LIMIT			0x00004804
    428 #define VMCS_GUEST_DS_LIMIT			0x00004806
    429 #define VMCS_GUEST_FS_LIMIT			0x00004808
    430 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    431 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    432 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    433 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    434 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    435 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    436 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    437 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    438 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    439 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    440 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    441 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    442 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    443 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    444 #define		INT_STATE_STI			__BIT(0)
    445 #define		INT_STATE_MOVSS			__BIT(1)
    446 #define		INT_STATE_SMI			__BIT(2)
    447 #define		INT_STATE_NMI			__BIT(3)
    448 #define		INT_STATE_ENCLAVE		__BIT(4)
    449 #define VMCS_GUEST_ACTIVITY			0x00004826
    450 #define VMCS_GUEST_SMBASE			0x00004828
    451 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    452 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    453 /* 32-bit host state fields */
    454 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    455 /* Natural-Width control fields */
    456 #define VMCS_CR0_MASK				0x00006000
    457 #define VMCS_CR4_MASK				0x00006002
    458 #define VMCS_CR0_SHADOW				0x00006004
    459 #define VMCS_CR4_SHADOW				0x00006006
    460 #define VMCS_CR3_TARGET0			0x00006008
    461 #define VMCS_CR3_TARGET1			0x0000600A
    462 #define VMCS_CR3_TARGET2			0x0000600C
    463 #define VMCS_CR3_TARGET3			0x0000600E
    464 /* Natural-Width read-only fields */
    465 #define VMCS_EXIT_QUALIFICATION			0x00006400
    466 #define VMCS_IO_RCX				0x00006402
    467 #define VMCS_IO_RSI				0x00006404
    468 #define VMCS_IO_RDI				0x00006406
    469 #define VMCS_IO_RIP				0x00006408
    470 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    471 /* Natural-Width guest-state fields */
    472 #define VMCS_GUEST_CR0				0x00006800
    473 #define VMCS_GUEST_CR3				0x00006802
    474 #define VMCS_GUEST_CR4				0x00006804
    475 #define VMCS_GUEST_ES_BASE			0x00006806
    476 #define VMCS_GUEST_CS_BASE			0x00006808
    477 #define VMCS_GUEST_SS_BASE			0x0000680A
    478 #define VMCS_GUEST_DS_BASE			0x0000680C
    479 #define VMCS_GUEST_FS_BASE			0x0000680E
    480 #define VMCS_GUEST_GS_BASE			0x00006810
    481 #define VMCS_GUEST_LDTR_BASE			0x00006812
    482 #define VMCS_GUEST_TR_BASE			0x00006814
    483 #define VMCS_GUEST_GDTR_BASE			0x00006816
    484 #define VMCS_GUEST_IDTR_BASE			0x00006818
    485 #define VMCS_GUEST_DR7				0x0000681A
    486 #define VMCS_GUEST_RSP				0x0000681C
    487 #define VMCS_GUEST_RIP				0x0000681E
    488 #define VMCS_GUEST_RFLAGS			0x00006820
    489 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    490 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    491 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    492 /* Natural-Width host-state fields */
    493 #define VMCS_HOST_CR0				0x00006C00
    494 #define VMCS_HOST_CR3				0x00006C02
    495 #define VMCS_HOST_CR4				0x00006C04
    496 #define VMCS_HOST_FS_BASE			0x00006C06
    497 #define VMCS_HOST_GS_BASE			0x00006C08
    498 #define VMCS_HOST_TR_BASE			0x00006C0A
    499 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    500 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    501 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    502 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    503 #define VMCS_HOST_RSP				0x00006C14
    504 #define VMCS_HOST_RIP				0x00006C16
    505 
    506 /* VMX basic exit reasons. */
    507 #define VMCS_EXITCODE_EXC_NMI			0
    508 #define VMCS_EXITCODE_EXT_INT			1
    509 #define VMCS_EXITCODE_SHUTDOWN			2
    510 #define VMCS_EXITCODE_INIT			3
    511 #define VMCS_EXITCODE_SIPI			4
    512 #define VMCS_EXITCODE_SMI			5
    513 #define VMCS_EXITCODE_OTHER_SMI			6
    514 #define VMCS_EXITCODE_INT_WINDOW		7
    515 #define VMCS_EXITCODE_NMI_WINDOW		8
    516 #define VMCS_EXITCODE_TASK_SWITCH		9
    517 #define VMCS_EXITCODE_CPUID			10
    518 #define VMCS_EXITCODE_GETSEC			11
    519 #define VMCS_EXITCODE_HLT			12
    520 #define VMCS_EXITCODE_INVD			13
    521 #define VMCS_EXITCODE_INVLPG			14
    522 #define VMCS_EXITCODE_RDPMC			15
    523 #define VMCS_EXITCODE_RDTSC			16
    524 #define VMCS_EXITCODE_RSM			17
    525 #define VMCS_EXITCODE_VMCALL			18
    526 #define VMCS_EXITCODE_VMCLEAR			19
    527 #define VMCS_EXITCODE_VMLAUNCH			20
    528 #define VMCS_EXITCODE_VMPTRLD			21
    529 #define VMCS_EXITCODE_VMPTRST			22
    530 #define VMCS_EXITCODE_VMREAD			23
    531 #define VMCS_EXITCODE_VMRESUME			24
    532 #define VMCS_EXITCODE_VMWRITE			25
    533 #define VMCS_EXITCODE_VMXOFF			26
    534 #define VMCS_EXITCODE_VMXON			27
    535 #define VMCS_EXITCODE_CR			28
    536 #define VMCS_EXITCODE_DR			29
    537 #define VMCS_EXITCODE_IO			30
    538 #define VMCS_EXITCODE_RDMSR			31
    539 #define VMCS_EXITCODE_WRMSR			32
    540 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    541 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    542 #define VMCS_EXITCODE_MWAIT			36
    543 #define VMCS_EXITCODE_TRAP_FLAG			37
    544 #define VMCS_EXITCODE_MONITOR			39
    545 #define VMCS_EXITCODE_PAUSE			40
    546 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    547 #define VMCS_EXITCODE_TPR_BELOW			43
    548 #define VMCS_EXITCODE_APIC_ACCESS		44
    549 #define VMCS_EXITCODE_VEOI			45
    550 #define VMCS_EXITCODE_GDTR_IDTR			46
    551 #define VMCS_EXITCODE_LDTR_TR			47
    552 #define VMCS_EXITCODE_EPT_VIOLATION		48
    553 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    554 #define VMCS_EXITCODE_INVEPT			50
    555 #define VMCS_EXITCODE_RDTSCP			51
    556 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    557 #define VMCS_EXITCODE_INVVPID			53
    558 #define VMCS_EXITCODE_WBINVD			54
    559 #define VMCS_EXITCODE_XSETBV			55
    560 #define VMCS_EXITCODE_APIC_WRITE		56
    561 #define VMCS_EXITCODE_RDRAND			57
    562 #define VMCS_EXITCODE_INVPCID			58
    563 #define VMCS_EXITCODE_VMFUNC			59
    564 #define VMCS_EXITCODE_ENCLS			60
    565 #define VMCS_EXITCODE_RDSEED			61
    566 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    567 #define VMCS_EXITCODE_XSAVES			63
    568 #define VMCS_EXITCODE_XRSTORS			64
    569 
    570 /* -------------------------------------------------------------------------- */
    571 
    572 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    573 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
    574 
    575 #define VMX_MSRLIST_STAR		0
    576 #define VMX_MSRLIST_LSTAR		1
    577 #define VMX_MSRLIST_CSTAR		2
    578 #define VMX_MSRLIST_SFMASK		3
    579 #define VMX_MSRLIST_KERNELGSBASE	4
    580 #define VMX_MSRLIST_EXIT_NMSR		5
    581 #define VMX_MSRLIST_L1DFLUSH		5
    582 
    583 /* On entry, we may do +1 to include L1DFLUSH. */
    584 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    585 
    586 struct vmxon {
    587 	uint32_t ident;
    588 #define VMXON_IDENT_REVISION	__BITS(30,0)
    589 
    590 	uint8_t data[PAGE_SIZE - 4];
    591 } __packed;
    592 
    593 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    594 
    595 struct vmxoncpu {
    596 	vaddr_t va;
    597 	paddr_t pa;
    598 };
    599 
    600 static struct vmxoncpu vmxoncpu[MAXCPUS];
    601 
    602 struct vmcs {
    603 	uint32_t ident;
    604 #define VMCS_IDENT_REVISION	__BITS(30,0)
    605 #define VMCS_IDENT_SHADOW	__BIT(31)
    606 
    607 	uint32_t abort;
    608 	uint8_t data[PAGE_SIZE - 8];
    609 } __packed;
    610 
    611 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    612 
    613 struct msr_entry {
    614 	uint32_t msr;
    615 	uint32_t rsvd;
    616 	uint64_t val;
    617 } __packed;
    618 
    619 #define VPID_MAX	0xFFFF
    620 
    621 /* Make sure we never run out of VPIDs. */
    622 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    623 
    624 static uint64_t vmx_tlb_flush_op __read_mostly;
    625 static uint64_t vmx_ept_flush_op __read_mostly;
    626 static uint64_t vmx_eptp_type __read_mostly;
    627 
    628 static uint64_t vmx_pinbased_ctls __read_mostly;
    629 static uint64_t vmx_procbased_ctls __read_mostly;
    630 static uint64_t vmx_procbased_ctls2 __read_mostly;
    631 static uint64_t vmx_entry_ctls __read_mostly;
    632 static uint64_t vmx_exit_ctls __read_mostly;
    633 
    634 static uint64_t vmx_cr0_fixed0 __read_mostly;
    635 static uint64_t vmx_cr0_fixed1 __read_mostly;
    636 static uint64_t vmx_cr4_fixed0 __read_mostly;
    637 static uint64_t vmx_cr4_fixed1 __read_mostly;
    638 
    639 extern bool pmap_ept_has_ad;
    640 
    641 #define VMX_PINBASED_CTLS_ONE	\
    642 	(PIN_CTLS_INT_EXITING| \
    643 	 PIN_CTLS_NMI_EXITING| \
    644 	 PIN_CTLS_VIRTUAL_NMIS)
    645 
    646 #define VMX_PINBASED_CTLS_ZERO	0
    647 
    648 #define VMX_PROCBASED_CTLS_ONE	\
    649 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    650 	 PROC_CTLS_HLT_EXITING| \
    651 	 PROC_CTLS_MWAIT_EXITING | \
    652 	 PROC_CTLS_RDPMC_EXITING | \
    653 	 PROC_CTLS_RCR8_EXITING | \
    654 	 PROC_CTLS_LCR8_EXITING | \
    655 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    656 	 PROC_CTLS_USE_MSR_BITMAPS | \
    657 	 PROC_CTLS_MONITOR_EXITING | \
    658 	 PROC_CTLS_ACTIVATE_CTLS2)
    659 
    660 #define VMX_PROCBASED_CTLS_ZERO	\
    661 	(PROC_CTLS_RCR3_EXITING| \
    662 	 PROC_CTLS_LCR3_EXITING)
    663 
    664 #define VMX_PROCBASED_CTLS2_ONE	\
    665 	(PROC_CTLS2_ENABLE_EPT| \
    666 	 PROC_CTLS2_ENABLE_VPID| \
    667 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    668 
    669 #define VMX_PROCBASED_CTLS2_ZERO	0
    670 
    671 #define VMX_ENTRY_CTLS_ONE	\
    672 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    673 	 ENTRY_CTLS_LOAD_EFER| \
    674 	 ENTRY_CTLS_LOAD_PAT)
    675 
    676 #define VMX_ENTRY_CTLS_ZERO	\
    677 	(ENTRY_CTLS_SMM| \
    678 	 ENTRY_CTLS_DISABLE_DUAL)
    679 
    680 #define VMX_EXIT_CTLS_ONE	\
    681 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    682 	 EXIT_CTLS_HOST_LONG_MODE| \
    683 	 EXIT_CTLS_SAVE_PAT| \
    684 	 EXIT_CTLS_LOAD_PAT| \
    685 	 EXIT_CTLS_SAVE_EFER| \
    686 	 EXIT_CTLS_LOAD_EFER)
    687 
    688 #define VMX_EXIT_CTLS_ZERO	0
    689 
    690 static uint8_t *vmx_asidmap __read_mostly;
    691 static uint32_t vmx_maxasid __read_mostly;
    692 static kmutex_t vmx_asidlock __cacheline_aligned;
    693 
    694 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    695 static uint64_t vmx_xcr0_mask __read_mostly;
    696 
    697 #define VMX_NCPUIDS	32
    698 
    699 #define VMCS_NPAGES	1
    700 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    701 
    702 #define MSRBM_NPAGES	1
    703 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    704 
    705 #define EFER_TLB_FLUSH \
    706 	(EFER_NXE|EFER_LMA|EFER_LME)
    707 #define CR0_TLB_FLUSH \
    708 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    709 #define CR4_TLB_FLUSH \
    710 	(CR4_PGE|CR4_PAE|CR4_PSE)
    711 
    712 /* -------------------------------------------------------------------------- */
    713 
    714 struct vmx_machdata {
    715 	volatile uint64_t mach_htlb_gen;
    716 };
    717 
    718 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
    719 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
    720 	    sizeof(struct nvmm_vcpu_conf_cpuid),
    721 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
    722 	    sizeof(struct nvmm_vcpu_conf_tpr)
    723 };
    724 
    725 struct vmx_cpudata {
    726 	/* General */
    727 	uint64_t asid;
    728 	bool gtlb_want_flush;
    729 	bool gtsc_want_update;
    730 	uint64_t vcpu_htlb_gen;
    731 	kcpuset_t *htlb_want_flush;
    732 
    733 	/* VMCS */
    734 	struct vmcs *vmcs;
    735 	paddr_t vmcs_pa;
    736 	size_t vmcs_refcnt;
    737 	struct cpu_info *vmcs_ci;
    738 	bool vmcs_launched;
    739 
    740 	/* MSR bitmap */
    741 	uint8_t *msrbm;
    742 	paddr_t msrbm_pa;
    743 
    744 	/* Host state */
    745 	uint64_t hxcr0;
    746 	uint64_t star;
    747 	uint64_t lstar;
    748 	uint64_t cstar;
    749 	uint64_t sfmask;
    750 	uint64_t kernelgsbase;
    751 
    752 	/* Intr state */
    753 	bool int_window_exit;
    754 	bool nmi_window_exit;
    755 	bool evt_pending;
    756 
    757 	/* Guest state */
    758 	struct msr_entry *gmsr;
    759 	paddr_t gmsr_pa;
    760 	uint64_t gmsr_misc_enable;
    761 	uint64_t gcr2;
    762 	uint64_t gcr8;
    763 	uint64_t gxcr0;
    764 	uint64_t gprs[NVMM_X64_NGPR];
    765 	uint64_t drs[NVMM_X64_NDR];
    766 	uint64_t gtsc;
    767 	struct xsave_header gfpu __aligned(64);
    768 
    769 	/* VCPU configuration. */
    770 	bool cpuidpresent[VMX_NCPUIDS];
    771 	struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
    772 	struct nvmm_vcpu_conf_tpr tpr;
    773 };
    774 
    775 static const struct {
    776 	uint64_t selector;
    777 	uint64_t attrib;
    778 	uint64_t limit;
    779 	uint64_t base;
    780 } vmx_guest_segs[NVMM_X64_NSEG] = {
    781 	[NVMM_X64_SEG_ES] = {
    782 		VMCS_GUEST_ES_SELECTOR,
    783 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    784 		VMCS_GUEST_ES_LIMIT,
    785 		VMCS_GUEST_ES_BASE
    786 	},
    787 	[NVMM_X64_SEG_CS] = {
    788 		VMCS_GUEST_CS_SELECTOR,
    789 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    790 		VMCS_GUEST_CS_LIMIT,
    791 		VMCS_GUEST_CS_BASE
    792 	},
    793 	[NVMM_X64_SEG_SS] = {
    794 		VMCS_GUEST_SS_SELECTOR,
    795 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    796 		VMCS_GUEST_SS_LIMIT,
    797 		VMCS_GUEST_SS_BASE
    798 	},
    799 	[NVMM_X64_SEG_DS] = {
    800 		VMCS_GUEST_DS_SELECTOR,
    801 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    802 		VMCS_GUEST_DS_LIMIT,
    803 		VMCS_GUEST_DS_BASE
    804 	},
    805 	[NVMM_X64_SEG_FS] = {
    806 		VMCS_GUEST_FS_SELECTOR,
    807 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    808 		VMCS_GUEST_FS_LIMIT,
    809 		VMCS_GUEST_FS_BASE
    810 	},
    811 	[NVMM_X64_SEG_GS] = {
    812 		VMCS_GUEST_GS_SELECTOR,
    813 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    814 		VMCS_GUEST_GS_LIMIT,
    815 		VMCS_GUEST_GS_BASE
    816 	},
    817 	[NVMM_X64_SEG_GDT] = {
    818 		0, /* doesn't exist */
    819 		0, /* doesn't exist */
    820 		VMCS_GUEST_GDTR_LIMIT,
    821 		VMCS_GUEST_GDTR_BASE
    822 	},
    823 	[NVMM_X64_SEG_IDT] = {
    824 		0, /* doesn't exist */
    825 		0, /* doesn't exist */
    826 		VMCS_GUEST_IDTR_LIMIT,
    827 		VMCS_GUEST_IDTR_BASE
    828 	},
    829 	[NVMM_X64_SEG_LDT] = {
    830 		VMCS_GUEST_LDTR_SELECTOR,
    831 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    832 		VMCS_GUEST_LDTR_LIMIT,
    833 		VMCS_GUEST_LDTR_BASE
    834 	},
    835 	[NVMM_X64_SEG_TR] = {
    836 		VMCS_GUEST_TR_SELECTOR,
    837 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    838 		VMCS_GUEST_TR_LIMIT,
    839 		VMCS_GUEST_TR_BASE
    840 	}
    841 };
    842 
    843 /* -------------------------------------------------------------------------- */
    844 
    845 static uint64_t
    846 vmx_get_revision(void)
    847 {
    848 	uint64_t msr;
    849 
    850 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    851 	msr &= IA32_VMX_BASIC_IDENT;
    852 
    853 	return msr;
    854 }
    855 
    856 static void
    857 vmx_vmclear_ipi(void *arg1, void *arg2)
    858 {
    859 	paddr_t vmcs_pa = (paddr_t)arg1;
    860 	vmx_vmclear(&vmcs_pa);
    861 }
    862 
    863 static void
    864 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    865 {
    866 	uint64_t xc;
    867 	int bound;
    868 
    869 	KASSERT(kpreempt_disabled());
    870 
    871 	bound = curlwp_bind();
    872 	kpreempt_enable();
    873 
    874 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    875 	xc_wait(xc);
    876 
    877 	kpreempt_disable();
    878 	curlwp_bindx(bound);
    879 }
    880 
    881 static void
    882 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    883 {
    884 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    885 	struct cpu_info *vmcs_ci;
    886 
    887 	cpudata->vmcs_refcnt++;
    888 	if (cpudata->vmcs_refcnt > 1) {
    889 		KASSERT(kpreempt_disabled());
    890 		KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    891 		return;
    892 	}
    893 
    894 	vmcs_ci = cpudata->vmcs_ci;
    895 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    896 
    897 	kpreempt_disable();
    898 
    899 	if (vmcs_ci == NULL) {
    900 		/* This VMCS is loaded for the first time. */
    901 		vmx_vmclear(&cpudata->vmcs_pa);
    902 		cpudata->vmcs_launched = false;
    903 	} else if (vmcs_ci != curcpu()) {
    904 		/* This VMCS is active on a remote CPU. */
    905 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    906 		cpudata->vmcs_launched = false;
    907 	} else {
    908 		/* This VMCS is active on curcpu, nothing to do. */
    909 	}
    910 
    911 	vmx_vmptrld(&cpudata->vmcs_pa);
    912 }
    913 
    914 static void
    915 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    916 {
    917 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    918 
    919 	KASSERT(kpreempt_disabled());
    920 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    921 	KASSERT(cpudata->vmcs_refcnt > 0);
    922 	cpudata->vmcs_refcnt--;
    923 
    924 	if (cpudata->vmcs_refcnt > 0) {
    925 		return;
    926 	}
    927 
    928 	cpudata->vmcs_ci = curcpu();
    929 	kpreempt_enable();
    930 }
    931 
    932 static void
    933 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    934 {
    935 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    936 
    937 	KASSERT(kpreempt_disabled());
    938 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    939 	KASSERT(cpudata->vmcs_refcnt == 1);
    940 	cpudata->vmcs_refcnt--;
    941 
    942 	vmx_vmclear(&cpudata->vmcs_pa);
    943 	kpreempt_enable();
    944 }
    945 
    946 /* -------------------------------------------------------------------------- */
    947 
    948 static void
    949 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    950 {
    951 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    952 	uint64_t ctls1;
    953 
    954 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    955 
    956 	if (nmi) {
    957 		// XXX INT_STATE_NMI?
    958 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    959 		cpudata->nmi_window_exit = true;
    960 	} else {
    961 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    962 		cpudata->int_window_exit = true;
    963 	}
    964 
    965 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    966 }
    967 
    968 static void
    969 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    970 {
    971 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    972 	uint64_t ctls1;
    973 
    974 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    975 
    976 	if (nmi) {
    977 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    978 		cpudata->nmi_window_exit = false;
    979 	} else {
    980 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    981 		cpudata->int_window_exit = false;
    982 	}
    983 
    984 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    985 }
    986 
    987 static inline int
    988 vmx_event_has_error(uint8_t vector)
    989 {
    990 	switch (vector) {
    991 	case 8:		/* #DF */
    992 	case 10:	/* #TS */
    993 	case 11:	/* #NP */
    994 	case 12:	/* #SS */
    995 	case 13:	/* #GP */
    996 	case 14:	/* #PF */
    997 	case 17:	/* #AC */
    998 	case 30:	/* #SX */
    999 		return 1;
   1000 	default:
   1001 		return 0;
   1002 	}
   1003 }
   1004 
   1005 static int
   1006 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
   1007 {
   1008 	struct nvmm_comm_page *comm = vcpu->comm;
   1009 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1010 	int type = 0, err = 0, ret = EINVAL;
   1011 	u_int evtype;
   1012 	uint8_t vector;
   1013 	uint64_t info, error;
   1014 
   1015 	evtype = comm->event.type;
   1016 	vector = comm->event.vector;
   1017 	error = comm->event.u.excp.error;
   1018 	__insn_barrier();
   1019 
   1020 	vmx_vmcs_enter(vcpu);
   1021 
   1022 	switch (evtype) {
   1023 	case NVMM_VCPU_EVENT_EXCP:
   1024 		if (vector == 2 || vector >= 32)
   1025 			goto out;
   1026 		if (vector == 3 || vector == 0)
   1027 			goto out;
   1028 		type = INTR_TYPE_HW_EXC;
   1029 		err = vmx_event_has_error(vector);
   1030 		break;
   1031 	case NVMM_VCPU_EVENT_INTR:
   1032 		type = INTR_TYPE_EXT_INT;
   1033 		if (vector == 2) {
   1034 			type = INTR_TYPE_NMI;
   1035 			vmx_event_waitexit_enable(vcpu, true);
   1036 		}
   1037 		err = 0;
   1038 		break;
   1039 	default:
   1040 		goto out;
   1041 	}
   1042 
   1043 	info =
   1044 	    __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
   1045 	    __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
   1046 	    __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
   1047 	    __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
   1048 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   1049 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
   1050 
   1051 	cpudata->evt_pending = true;
   1052 	ret = 0;
   1053 
   1054 out:
   1055 	vmx_vmcs_leave(vcpu);
   1056 	return ret;
   1057 }
   1058 
   1059 static void
   1060 vmx_inject_ud(struct nvmm_cpu *vcpu)
   1061 {
   1062 	struct nvmm_comm_page *comm = vcpu->comm;
   1063 	int ret __diagused;
   1064 
   1065 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1066 	comm->event.vector = 6;
   1067 	comm->event.u.excp.error = 0;
   1068 
   1069 	ret = vmx_vcpu_inject(vcpu);
   1070 	KASSERT(ret == 0);
   1071 }
   1072 
   1073 static void
   1074 vmx_inject_gp(struct nvmm_cpu *vcpu)
   1075 {
   1076 	struct nvmm_comm_page *comm = vcpu->comm;
   1077 	int ret __diagused;
   1078 
   1079 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1080 	comm->event.vector = 13;
   1081 	comm->event.u.excp.error = 0;
   1082 
   1083 	ret = vmx_vcpu_inject(vcpu);
   1084 	KASSERT(ret == 0);
   1085 }
   1086 
   1087 static inline int
   1088 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
   1089 {
   1090 	if (__predict_true(!vcpu->comm->event_commit)) {
   1091 		return 0;
   1092 	}
   1093 	vcpu->comm->event_commit = false;
   1094 	return vmx_vcpu_inject(vcpu);
   1095 }
   1096 
   1097 static inline void
   1098 vmx_inkernel_advance(void)
   1099 {
   1100 	uint64_t rip, inslen, intstate;
   1101 
   1102 	/*
   1103 	 * Maybe we should also apply single-stepping and debug exceptions.
   1104 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1105 	 * debugger.
   1106 	 */
   1107 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1108 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1109 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1110 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   1111 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1112 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1113 }
   1114 
   1115 static void
   1116 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
   1117 {
   1118 	exit->u.inv.hwcode = code;
   1119 	exit->reason = NVMM_VCPU_EXIT_INVALID;
   1120 }
   1121 
   1122 static void
   1123 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1124     struct nvmm_vcpu_exit *exit)
   1125 {
   1126 	uint64_t qual;
   1127 
   1128 	qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
   1129 
   1130 	if ((qual & INTR_INFO_VALID) == 0) {
   1131 		goto error;
   1132 	}
   1133 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1134 		goto error;
   1135 	}
   1136 
   1137 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1138 	return;
   1139 
   1140 error:
   1141 	vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
   1142 }
   1143 
   1144 #define VMX_CPUID_MAX_BASIC		0x16
   1145 #define VMX_CPUID_MAX_HYPERVISOR	0x40000000
   1146 #define VMX_CPUID_MAX_EXTENDED		0x80000008
   1147 static uint32_t vmx_cpuid_max_basic __read_mostly;
   1148 
   1149 static void
   1150 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
   1151 {
   1152 	u_int descs[4];
   1153 
   1154 	x86_cpuid2(eax, ecx, descs);
   1155 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1156 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1157 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1158 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1159 }
   1160 
   1161 static void
   1162 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1163     uint64_t eax, uint64_t ecx)
   1164 {
   1165 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1166 	unsigned int ncpus;
   1167 	uint64_t cr4;
   1168 
   1169 	if (eax < 0x40000000) {
   1170 		if (__predict_false(eax > vmx_cpuid_max_basic)) {
   1171 			eax = vmx_cpuid_max_basic;
   1172 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1173 		}
   1174 	} else if (eax < 0x80000000) {
   1175 		if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
   1176 			eax = vmx_cpuid_max_basic;
   1177 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1178 		}
   1179 	}
   1180 
   1181 	switch (eax) {
   1182 	case 0x00000000:
   1183 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
   1184 		break;
   1185 	case 0x00000001:
   1186 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1187 
   1188 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1189 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1190 		    CPUID_LOCAL_APIC_ID);
   1191 
   1192 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1193 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1194 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1195 			cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
   1196 		}
   1197 
   1198 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1199 
   1200 		/* CPUID2_OSXSAVE depends on CR4. */
   1201 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   1202 		if (!(cr4 & CR4_OSXSAVE)) {
   1203 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1204 		}
   1205 		break;
   1206 	case 0x00000002:
   1207 		break;
   1208 	case 0x00000003:
   1209 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1210 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1211 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1212 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1213 		break;
   1214 	case 0x00000004: /* Deterministic Cache Parameters */
   1215 		break; /* TODO? */
   1216 	case 0x00000005: /* MONITOR/MWAIT */
   1217 	case 0x00000006: /* Thermal and Power Management */
   1218 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1219 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1220 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1221 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1222 		break;
   1223 	case 0x00000007: /* Structured Extended Feature Flags Enumeration */
   1224 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1225 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1226 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1227 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1228 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1229 			cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
   1230 		}
   1231 		break;
   1232 	case 0x00000008: /* Empty */
   1233 	case 0x00000009: /* Direct Cache Access Information */
   1234 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1235 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1236 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1237 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1238 		break;
   1239 	case 0x0000000A: /* Architectural Performance Monitoring */
   1240 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1241 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1242 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1243 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1244 		break;
   1245 	case 0x0000000B: /* Extended Topology Enumeration */
   1246 		switch (ecx) {
   1247 		case 0: /* Threads */
   1248 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1249 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1250 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1251 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1252 			    __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
   1253 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1254 			break;
   1255 		case 1: /* Cores */
   1256 			ncpus = atomic_load_relaxed(&mach->ncpus);
   1257 			cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
   1258 			cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
   1259 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1260 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1261 			    __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
   1262 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1263 			break;
   1264 		default:
   1265 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1266 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1267 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
   1268 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1269 			break;
   1270 		}
   1271 		break;
   1272 	case 0x0000000C: /* Empty */
   1273 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1274 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1275 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1276 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1277 		break;
   1278 	case 0x0000000D: /* Processor Extended State Enumeration */
   1279 		if (vmx_xcr0_mask == 0) {
   1280 			break;
   1281 		}
   1282 		switch (ecx) {
   1283 		case 0:
   1284 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1285 			if (cpudata->gxcr0 & XCR0_SSE) {
   1286 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1287 			} else {
   1288 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1289 			}
   1290 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1291 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
   1292 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1293 			break;
   1294 		case 1:
   1295 			cpudata->gprs[NVMM_X64_GPR_RAX] &=
   1296 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
   1297 			     CPUID_PES1_XGETBV);
   1298 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1299 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1300 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1301 			break;
   1302 		default:
   1303 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1304 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1305 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1306 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1307 			break;
   1308 		}
   1309 		break;
   1310 	case 0x0000000E: /* Empty */
   1311 	case 0x0000000F: /* Intel RDT Monitoring Enumeration */
   1312 	case 0x00000010: /* Intel RDT Allocation Enumeration */
   1313 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1314 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1315 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1316 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1317 		break;
   1318 	case 0x00000011: /* Empty */
   1319 	case 0x00000012: /* Intel SGX Capability Enumeration */
   1320 	case 0x00000013: /* Empty */
   1321 	case 0x00000014: /* Intel Processor Trace Enumeration */
   1322 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1323 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1324 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1325 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1326 		break;
   1327 	case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
   1328 	case 0x00000016: /* Processor Frequency Information */
   1329 		break;
   1330 
   1331 	case 0x40000000: /* Hypervisor Information */
   1332 		cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
   1333 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1334 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1335 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1336 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1337 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1338 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1339 		break;
   1340 
   1341 	case 0x80000001:
   1342 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1343 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1344 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1345 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1346 		break;
   1347 	case 0x80000002: /* Processor Brand String */
   1348 	case 0x80000003: /* Processor Brand String */
   1349 	case 0x80000004: /* Processor Brand String */
   1350 	case 0x80000005: /* Reserved Zero */
   1351 	case 0x80000006: /* Cache Information */
   1352 	case 0x80000007: /* TSC Information */
   1353 	case 0x80000008: /* Address Sizes */
   1354 		break;
   1355 
   1356 	default:
   1357 		break;
   1358 	}
   1359 }
   1360 
   1361 static void
   1362 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
   1363 {
   1364 	uint64_t inslen, rip;
   1365 
   1366 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1367 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1368 	exit->u.insn.npc = rip + inslen;
   1369 	exit->reason = reason;
   1370 }
   1371 
   1372 static void
   1373 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1374     struct nvmm_vcpu_exit *exit)
   1375 {
   1376 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1377 	struct nvmm_vcpu_conf_cpuid *cpuid;
   1378 	uint64_t eax, ecx;
   1379 	size_t i;
   1380 
   1381 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1382 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1383 	vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1384 	vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
   1385 
   1386 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1387 		if (!cpudata->cpuidpresent[i]) {
   1388 			continue;
   1389 		}
   1390 		cpuid = &cpudata->cpuid[i];
   1391 		if (cpuid->leaf != eax) {
   1392 			continue;
   1393 		}
   1394 
   1395 		if (cpuid->exit) {
   1396 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
   1397 			return;
   1398 		}
   1399 		KASSERT(cpuid->mask);
   1400 
   1401 		/* del */
   1402 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
   1403 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
   1404 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
   1405 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
   1406 
   1407 		/* set */
   1408 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
   1409 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
   1410 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
   1411 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
   1412 
   1413 		break;
   1414 	}
   1415 
   1416 	vmx_inkernel_advance();
   1417 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1418 }
   1419 
   1420 static void
   1421 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1422     struct nvmm_vcpu_exit *exit)
   1423 {
   1424 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1425 	uint64_t rflags;
   1426 
   1427 	if (cpudata->int_window_exit) {
   1428 		rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1429 		if (rflags & PSL_I) {
   1430 			vmx_event_waitexit_disable(vcpu, false);
   1431 		}
   1432 	}
   1433 
   1434 	vmx_inkernel_advance();
   1435 	exit->reason = NVMM_VCPU_EXIT_HALTED;
   1436 }
   1437 
   1438 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1439 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1440 #define		CR_TYPE_WRITE	0
   1441 #define		CR_TYPE_READ	1
   1442 #define		CR_TYPE_CLTS	2
   1443 #define		CR_TYPE_LMSW	3
   1444 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1445 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1446 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1447 
   1448 static inline int
   1449 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1450 {
   1451 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1452 	if ((crval & fixed0) != fixed0) {
   1453 		return -1;
   1454 	}
   1455 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1456 	if (crval & ~fixed1) {
   1457 		return -1;
   1458 	}
   1459 	return 0;
   1460 }
   1461 
   1462 static int
   1463 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1464     uint64_t qual)
   1465 {
   1466 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1467 	uint64_t type, gpr, cr0;
   1468 	uint64_t efer, ctls1;
   1469 
   1470 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1471 	if (type != CR_TYPE_WRITE) {
   1472 		return -1;
   1473 	}
   1474 
   1475 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1476 	KASSERT(gpr < 16);
   1477 
   1478 	if (gpr == NVMM_X64_GPR_RSP) {
   1479 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1480 	} else {
   1481 		gpr = cpudata->gprs[gpr];
   1482 	}
   1483 
   1484 	cr0 = gpr | CR0_NE | CR0_ET;
   1485 	cr0 &= ~(CR0_NW|CR0_CD);
   1486 
   1487 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1488 		return -1;
   1489 	}
   1490 
   1491 	/*
   1492 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1493 	 * from CR3.
   1494 	 */
   1495 
   1496 	if (cr0 & CR0_PG) {
   1497 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   1498 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   1499 		if (efer & EFER_LME) {
   1500 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1501 			efer |= EFER_LMA;
   1502 		} else {
   1503 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1504 			efer &= ~EFER_LMA;
   1505 		}
   1506 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1507 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1508 	}
   1509 
   1510 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1511 	vmx_inkernel_advance();
   1512 	return 0;
   1513 }
   1514 
   1515 static int
   1516 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1517     uint64_t qual)
   1518 {
   1519 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1520 	uint64_t type, gpr, cr4;
   1521 
   1522 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1523 	if (type != CR_TYPE_WRITE) {
   1524 		return -1;
   1525 	}
   1526 
   1527 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1528 	KASSERT(gpr < 16);
   1529 
   1530 	if (gpr == NVMM_X64_GPR_RSP) {
   1531 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1532 	} else {
   1533 		gpr = cpudata->gprs[gpr];
   1534 	}
   1535 
   1536 	cr4 = gpr | CR4_VMXE;
   1537 
   1538 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1539 		return -1;
   1540 	}
   1541 
   1542 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1543 	vmx_inkernel_advance();
   1544 	return 0;
   1545 }
   1546 
   1547 static int
   1548 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1549     uint64_t qual, struct nvmm_vcpu_exit *exit)
   1550 {
   1551 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1552 	uint64_t type, gpr;
   1553 	bool write;
   1554 
   1555 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1556 	if (type == CR_TYPE_WRITE) {
   1557 		write = true;
   1558 	} else if (type == CR_TYPE_READ) {
   1559 		write = false;
   1560 	} else {
   1561 		return -1;
   1562 	}
   1563 
   1564 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1565 	KASSERT(gpr < 16);
   1566 
   1567 	if (write) {
   1568 		if (gpr == NVMM_X64_GPR_RSP) {
   1569 			cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
   1570 		} else {
   1571 			cpudata->gcr8 = cpudata->gprs[gpr];
   1572 		}
   1573 		if (cpudata->tpr.exit_changed) {
   1574 			exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
   1575 		}
   1576 	} else {
   1577 		if (gpr == NVMM_X64_GPR_RSP) {
   1578 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1579 		} else {
   1580 			cpudata->gprs[gpr] = cpudata->gcr8;
   1581 		}
   1582 	}
   1583 
   1584 	vmx_inkernel_advance();
   1585 	return 0;
   1586 }
   1587 
   1588 static void
   1589 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1590     struct nvmm_vcpu_exit *exit)
   1591 {
   1592 	uint64_t qual;
   1593 	int ret;
   1594 
   1595 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1596 
   1597 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1598 
   1599 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1600 	case 0:
   1601 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1602 		break;
   1603 	case 4:
   1604 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1605 		break;
   1606 	case 8:
   1607 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
   1608 		break;
   1609 	default:
   1610 		ret = -1;
   1611 		break;
   1612 	}
   1613 
   1614 	if (ret == -1) {
   1615 		vmx_inject_gp(vcpu);
   1616 	}
   1617 }
   1618 
   1619 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1620 #define		IO_SIZE_8	0
   1621 #define		IO_SIZE_16	1
   1622 #define		IO_SIZE_32	3
   1623 #define VMX_QUAL_IO_IN		__BIT(3)
   1624 #define VMX_QUAL_IO_STR		__BIT(4)
   1625 #define VMX_QUAL_IO_REP		__BIT(5)
   1626 #define VMX_QUAL_IO_DX		__BIT(6)
   1627 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1628 
   1629 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1630 #define		IO_ADRSIZE_16	0
   1631 #define		IO_ADRSIZE_32	1
   1632 #define		IO_ADRSIZE_64	2
   1633 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1634 
   1635 static void
   1636 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1637     struct nvmm_vcpu_exit *exit)
   1638 {
   1639 	uint64_t qual, info, inslen, rip;
   1640 
   1641 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1642 	info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
   1643 
   1644 	exit->reason = NVMM_VCPU_EXIT_IO;
   1645 
   1646 	exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
   1647 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1648 
   1649 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1650 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1651 
   1652 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1653 		exit->u.io.address_size = 8;
   1654 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1655 		exit->u.io.address_size = 4;
   1656 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1657 		exit->u.io.address_size = 2;
   1658 	}
   1659 
   1660 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1661 		exit->u.io.operand_size = 4;
   1662 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1663 		exit->u.io.operand_size = 2;
   1664 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1665 		exit->u.io.operand_size = 1;
   1666 	}
   1667 
   1668 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1669 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1670 
   1671 	if (exit->u.io.in && exit->u.io.str) {
   1672 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1673 	}
   1674 
   1675 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1676 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1677 	exit->u.io.npc = rip + inslen;
   1678 
   1679 	vmx_vcpu_state_provide(vcpu,
   1680 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1681 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1682 }
   1683 
   1684 static const uint64_t msr_ignore_list[] = {
   1685 	MSR_BIOS_SIGN,
   1686 	MSR_IA32_PLATFORM_ID
   1687 };
   1688 
   1689 static bool
   1690 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1691     struct nvmm_vcpu_exit *exit)
   1692 {
   1693 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1694 	uint64_t val;
   1695 	size_t i;
   1696 
   1697 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
   1698 		if (exit->u.rdmsr.msr == MSR_CR_PAT) {
   1699 			val = vmx_vmread(VMCS_GUEST_IA32_PAT);
   1700 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1701 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1702 			goto handled;
   1703 		}
   1704 		if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
   1705 			val = cpudata->gmsr_misc_enable;
   1706 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1707 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1708 			goto handled;
   1709 		}
   1710 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1711 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
   1712 				continue;
   1713 			val = 0;
   1714 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1715 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1716 			goto handled;
   1717 		}
   1718 	} else {
   1719 		if (exit->u.wrmsr.msr == MSR_TSC) {
   1720 			cpudata->gtsc = exit->u.wrmsr.val;
   1721 			cpudata->gtsc_want_update = true;
   1722 			goto handled;
   1723 		}
   1724 		if (exit->u.wrmsr.msr == MSR_CR_PAT) {
   1725 			val = exit->u.wrmsr.val;
   1726 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
   1727 				goto error;
   1728 			}
   1729 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
   1730 			goto handled;
   1731 		}
   1732 		if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
   1733 			/* Don't care. */
   1734 			goto handled;
   1735 		}
   1736 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1737 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
   1738 				continue;
   1739 			goto handled;
   1740 		}
   1741 	}
   1742 
   1743 	return false;
   1744 
   1745 handled:
   1746 	vmx_inkernel_advance();
   1747 	return true;
   1748 
   1749 error:
   1750 	vmx_inject_gp(vcpu);
   1751 	return true;
   1752 }
   1753 
   1754 static void
   1755 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1756     struct nvmm_vcpu_exit *exit)
   1757 {
   1758 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1759 	uint64_t inslen, rip;
   1760 
   1761 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
   1762 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1763 
   1764 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1765 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1766 		return;
   1767 	}
   1768 
   1769 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1770 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1771 	exit->u.rdmsr.npc = rip + inslen;
   1772 
   1773 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1774 }
   1775 
   1776 static void
   1777 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1778     struct nvmm_vcpu_exit *exit)
   1779 {
   1780 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1781 	uint64_t rdx, rax, inslen, rip;
   1782 
   1783 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1784 	rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1785 
   1786 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
   1787 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1788 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1789 
   1790 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1791 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1792 		return;
   1793 	}
   1794 
   1795 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1796 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1797 	exit->u.wrmsr.npc = rip + inslen;
   1798 
   1799 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1800 }
   1801 
   1802 static void
   1803 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1804     struct nvmm_vcpu_exit *exit)
   1805 {
   1806 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1807 	uint64_t val;
   1808 
   1809 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1810 
   1811 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1812 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1813 
   1814 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1815 		goto error;
   1816 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1817 		goto error;
   1818 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1819 		goto error;
   1820 	}
   1821 
   1822 	cpudata->gxcr0 = val;
   1823 	if (vmx_xcr0_mask != 0) {
   1824 		wrxcr(0, cpudata->gxcr0);
   1825 	}
   1826 
   1827 	vmx_inkernel_advance();
   1828 	return;
   1829 
   1830 error:
   1831 	vmx_inject_gp(vcpu);
   1832 }
   1833 
   1834 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1835 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1836 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1837 
   1838 static void
   1839 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1840     struct nvmm_vcpu_exit *exit)
   1841 {
   1842 	uint64_t perm;
   1843 	gpaddr_t gpa;
   1844 
   1845 	gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
   1846 
   1847 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
   1848 	perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1849 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1850 		exit->u.mem.prot = PROT_WRITE;
   1851 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1852 		exit->u.mem.prot = PROT_EXEC;
   1853 	else
   1854 		exit->u.mem.prot = PROT_READ;
   1855 	exit->u.mem.gpa = gpa;
   1856 	exit->u.mem.inst_len = 0;
   1857 
   1858 	vmx_vcpu_state_provide(vcpu,
   1859 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1860 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1861 }
   1862 
   1863 /* -------------------------------------------------------------------------- */
   1864 
   1865 static void
   1866 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1867 {
   1868 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1869 
   1870 	fpu_kern_enter();
   1871 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1872 
   1873 	if (vmx_xcr0_mask != 0) {
   1874 		cpudata->hxcr0 = rdxcr(0);
   1875 		wrxcr(0, cpudata->gxcr0);
   1876 	}
   1877 }
   1878 
   1879 static void
   1880 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1881 {
   1882 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1883 
   1884 	if (vmx_xcr0_mask != 0) {
   1885 		cpudata->gxcr0 = rdxcr(0);
   1886 		wrxcr(0, cpudata->hxcr0);
   1887 	}
   1888 
   1889 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1890 	fpu_kern_leave();
   1891 }
   1892 
   1893 static void
   1894 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1895 {
   1896 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1897 
   1898 	x86_dbregs_save(curlwp);
   1899 
   1900 	ldr7(0);
   1901 
   1902 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1903 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1904 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1905 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1906 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1907 }
   1908 
   1909 static void
   1910 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1911 {
   1912 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1913 
   1914 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1915 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1916 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1917 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1918 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1919 
   1920 	x86_dbregs_restore(curlwp);
   1921 }
   1922 
   1923 static void
   1924 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1925 {
   1926 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1927 
   1928 	/* This gets restored automatically by the CPU. */
   1929 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
   1930 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1931 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1932 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1933 
   1934 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1935 }
   1936 
   1937 static void
   1938 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1939 {
   1940 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1941 
   1942 	wrmsr(MSR_STAR, cpudata->star);
   1943 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1944 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1945 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1946 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1947 }
   1948 
   1949 /* -------------------------------------------------------------------------- */
   1950 
   1951 #define VMX_INVVPID_ADDRESS		0
   1952 #define VMX_INVVPID_CONTEXT		1
   1953 #define VMX_INVVPID_ALL			2
   1954 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1955 
   1956 #define VMX_INVEPT_CONTEXT		1
   1957 #define VMX_INVEPT_ALL			2
   1958 
   1959 static inline void
   1960 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1961 {
   1962 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1963 
   1964 	if (vcpu->hcpu_last != hcpu) {
   1965 		cpudata->gtlb_want_flush = true;
   1966 	}
   1967 }
   1968 
   1969 static inline void
   1970 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1971 {
   1972 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1973 	struct ept_desc ept_desc;
   1974 
   1975 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1976 		return;
   1977 	}
   1978 
   1979 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1980 	ept_desc.mbz = 0;
   1981 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1982 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1983 }
   1984 
   1985 static inline uint64_t
   1986 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1987 {
   1988 	struct ept_desc ept_desc;
   1989 	uint64_t machgen;
   1990 
   1991 	machgen = machdata->mach_htlb_gen;
   1992 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1993 		return machgen;
   1994 	}
   1995 
   1996 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1997 
   1998 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1999 	ept_desc.mbz = 0;
   2000 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   2001 
   2002 	return machgen;
   2003 }
   2004 
   2005 static inline void
   2006 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   2007 {
   2008 	cpudata->vcpu_htlb_gen = machgen;
   2009 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   2010 }
   2011 
   2012 static inline void
   2013 vmx_exit_evt(struct vmx_cpudata *cpudata)
   2014 {
   2015 	uint64_t info, err, inslen;
   2016 
   2017 	cpudata->evt_pending = false;
   2018 
   2019 	info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
   2020 	if (__predict_true((info & INTR_INFO_VALID) == 0)) {
   2021 		return;
   2022 	}
   2023 	err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
   2024 
   2025 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   2026 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
   2027 
   2028 	switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
   2029 	case INTR_TYPE_SW_INT:
   2030 	case INTR_TYPE_PRIV_SW_EXC:
   2031 	case INTR_TYPE_SW_EXC:
   2032 		inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   2033 		vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
   2034 	}
   2035 
   2036 	cpudata->evt_pending = true;
   2037 }
   2038 
   2039 static int
   2040 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   2041     struct nvmm_vcpu_exit *exit)
   2042 {
   2043 	struct nvmm_comm_page *comm = vcpu->comm;
   2044 	struct vmx_machdata *machdata = mach->machdata;
   2045 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2046 	struct vpid_desc vpid_desc;
   2047 	struct cpu_info *ci;
   2048 	uint64_t exitcode;
   2049 	uint64_t intstate;
   2050 	uint64_t machgen;
   2051 	int hcpu, ret;
   2052 	bool launched;
   2053 
   2054 	vmx_vmcs_enter(vcpu);
   2055 
   2056 	if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
   2057 		vmx_vmcs_leave(vcpu);
   2058 		return EINVAL;
   2059 	}
   2060 	vmx_vcpu_state_commit(vcpu);
   2061 	comm->state_cached = 0;
   2062 
   2063 	ci = curcpu();
   2064 	hcpu = cpu_number();
   2065 	launched = cpudata->vmcs_launched;
   2066 
   2067 	vmx_gtlb_catchup(vcpu, hcpu);
   2068 	vmx_htlb_catchup(vcpu, hcpu);
   2069 
   2070 	if (vcpu->hcpu_last != hcpu) {
   2071 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   2072 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   2073 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   2074 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   2075 		cpudata->gtsc_want_update = true;
   2076 		vcpu->hcpu_last = hcpu;
   2077 	}
   2078 
   2079 	vmx_vcpu_guest_dbregs_enter(vcpu);
   2080 	vmx_vcpu_guest_misc_enter(vcpu);
   2081 	vmx_vcpu_guest_fpu_enter(vcpu);
   2082 
   2083 	while (1) {
   2084 		if (cpudata->gtlb_want_flush) {
   2085 			vpid_desc.vpid = cpudata->asid;
   2086 			vpid_desc.addr = 0;
   2087 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   2088 			cpudata->gtlb_want_flush = false;
   2089 		}
   2090 
   2091 		if (__predict_false(cpudata->gtsc_want_update)) {
   2092 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   2093 			cpudata->gtsc_want_update = false;
   2094 		}
   2095 
   2096 		vmx_cli();
   2097 		machgen = vmx_htlb_flush(machdata, cpudata);
   2098 		lcr2(cpudata->gcr2);
   2099 		if (launched) {
   2100 			ret = vmx_vmresume(cpudata->gprs);
   2101 		} else {
   2102 			ret = vmx_vmlaunch(cpudata->gprs);
   2103 		}
   2104 		cpudata->gcr2 = rcr2();
   2105 		vmx_htlb_flush_ack(cpudata, machgen);
   2106 		vmx_sti();
   2107 
   2108 		if (__predict_false(ret != 0)) {
   2109 			vmx_exit_invalid(exit, -1);
   2110 			break;
   2111 		}
   2112 		vmx_exit_evt(cpudata);
   2113 
   2114 		launched = true;
   2115 
   2116 		exitcode = vmx_vmread(VMCS_EXIT_REASON);
   2117 		exitcode &= __BITS(15,0);
   2118 
   2119 		switch (exitcode) {
   2120 		case VMCS_EXITCODE_EXC_NMI:
   2121 			vmx_exit_exc_nmi(mach, vcpu, exit);
   2122 			break;
   2123 		case VMCS_EXITCODE_EXT_INT:
   2124 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2125 			break;
   2126 		case VMCS_EXITCODE_CPUID:
   2127 			vmx_exit_cpuid(mach, vcpu, exit);
   2128 			break;
   2129 		case VMCS_EXITCODE_HLT:
   2130 			vmx_exit_hlt(mach, vcpu, exit);
   2131 			break;
   2132 		case VMCS_EXITCODE_CR:
   2133 			vmx_exit_cr(mach, vcpu, exit);
   2134 			break;
   2135 		case VMCS_EXITCODE_IO:
   2136 			vmx_exit_io(mach, vcpu, exit);
   2137 			break;
   2138 		case VMCS_EXITCODE_RDMSR:
   2139 			vmx_exit_rdmsr(mach, vcpu, exit);
   2140 			break;
   2141 		case VMCS_EXITCODE_WRMSR:
   2142 			vmx_exit_wrmsr(mach, vcpu, exit);
   2143 			break;
   2144 		case VMCS_EXITCODE_SHUTDOWN:
   2145 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
   2146 			break;
   2147 		case VMCS_EXITCODE_MONITOR:
   2148 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
   2149 			break;
   2150 		case VMCS_EXITCODE_MWAIT:
   2151 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
   2152 			break;
   2153 		case VMCS_EXITCODE_XSETBV:
   2154 			vmx_exit_xsetbv(mach, vcpu, exit);
   2155 			break;
   2156 		case VMCS_EXITCODE_RDPMC:
   2157 		case VMCS_EXITCODE_RDTSCP:
   2158 		case VMCS_EXITCODE_INVVPID:
   2159 		case VMCS_EXITCODE_INVEPT:
   2160 		case VMCS_EXITCODE_VMCALL:
   2161 		case VMCS_EXITCODE_VMCLEAR:
   2162 		case VMCS_EXITCODE_VMLAUNCH:
   2163 		case VMCS_EXITCODE_VMPTRLD:
   2164 		case VMCS_EXITCODE_VMPTRST:
   2165 		case VMCS_EXITCODE_VMREAD:
   2166 		case VMCS_EXITCODE_VMRESUME:
   2167 		case VMCS_EXITCODE_VMWRITE:
   2168 		case VMCS_EXITCODE_VMXOFF:
   2169 		case VMCS_EXITCODE_VMXON:
   2170 			vmx_inject_ud(vcpu);
   2171 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2172 			break;
   2173 		case VMCS_EXITCODE_EPT_VIOLATION:
   2174 			vmx_exit_epf(mach, vcpu, exit);
   2175 			break;
   2176 		case VMCS_EXITCODE_INT_WINDOW:
   2177 			vmx_event_waitexit_disable(vcpu, false);
   2178 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
   2179 			break;
   2180 		case VMCS_EXITCODE_NMI_WINDOW:
   2181 			vmx_event_waitexit_disable(vcpu, true);
   2182 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
   2183 			break;
   2184 		default:
   2185 			vmx_exit_invalid(exit, exitcode);
   2186 			break;
   2187 		}
   2188 
   2189 		/* If no reason to return to userland, keep rolling. */
   2190 		if (nvmm_return_needed()) {
   2191 			break;
   2192 		}
   2193 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
   2194 			break;
   2195 		}
   2196 	}
   2197 
   2198 	cpudata->vmcs_launched = launched;
   2199 
   2200 	cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
   2201 
   2202 	vmx_vcpu_guest_fpu_leave(vcpu);
   2203 	vmx_vcpu_guest_misc_leave(vcpu);
   2204 	vmx_vcpu_guest_dbregs_leave(vcpu);
   2205 
   2206 	exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   2207 	exit->exitstate.cr8 = cpudata->gcr8;
   2208 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2209 	exit->exitstate.int_shadow =
   2210 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2211 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
   2212 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
   2213 	exit->exitstate.evt_pending = cpudata->evt_pending;
   2214 
   2215 	vmx_vmcs_leave(vcpu);
   2216 
   2217 	return 0;
   2218 }
   2219 
   2220 /* -------------------------------------------------------------------------- */
   2221 
   2222 static int
   2223 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   2224 {
   2225 	struct pglist pglist;
   2226 	paddr_t _pa;
   2227 	vaddr_t _va;
   2228 	size_t i;
   2229 	int ret;
   2230 
   2231 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   2232 	    &pglist, 1, 0);
   2233 	if (ret != 0)
   2234 		return ENOMEM;
   2235 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
   2236 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   2237 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   2238 	if (_va == 0)
   2239 		goto error;
   2240 
   2241 	for (i = 0; i < npages; i++) {
   2242 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   2243 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   2244 	}
   2245 	pmap_update(pmap_kernel());
   2246 
   2247 	memset((void *)_va, 0, npages * PAGE_SIZE);
   2248 
   2249 	*pa = _pa;
   2250 	*va = _va;
   2251 	return 0;
   2252 
   2253 error:
   2254 	for (i = 0; i < npages; i++) {
   2255 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   2256 	}
   2257 	return ENOMEM;
   2258 }
   2259 
   2260 static void
   2261 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   2262 {
   2263 	size_t i;
   2264 
   2265 	pmap_kremove(va, npages * PAGE_SIZE);
   2266 	pmap_update(pmap_kernel());
   2267 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   2268 	for (i = 0; i < npages; i++) {
   2269 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   2270 	}
   2271 }
   2272 
   2273 /* -------------------------------------------------------------------------- */
   2274 
   2275 static void
   2276 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2277 {
   2278 	uint64_t byte;
   2279 	uint8_t bitoff;
   2280 
   2281 	if (msr < 0x00002000) {
   2282 		/* Range 1 */
   2283 		byte = ((msr - 0x00000000) / 8) + 0;
   2284 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2285 		/* Range 2 */
   2286 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2287 	} else {
   2288 		panic("%s: wrong range", __func__);
   2289 	}
   2290 
   2291 	bitoff = (msr & 0x7);
   2292 
   2293 	if (read) {
   2294 		bitmap[byte] &= ~__BIT(bitoff);
   2295 	}
   2296 	if (write) {
   2297 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2298 	}
   2299 }
   2300 
   2301 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2302 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2303 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2304 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2305 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2306 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2307 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2308 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2309 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2310 
   2311 static void
   2312 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2313 {
   2314 	uint64_t attrib;
   2315 
   2316 	attrib =
   2317 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2318 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2319 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2320 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2321 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2322 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2323 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2324 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2325 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2326 
   2327 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2328 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2329 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2330 	}
   2331 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2332 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2333 }
   2334 
   2335 static void
   2336 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2337 {
   2338 	uint64_t selector = 0, attrib = 0, base, limit;
   2339 
   2340 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2341 		selector = vmx_vmread(vmx_guest_segs[idx].selector);
   2342 		attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
   2343 	}
   2344 	limit = vmx_vmread(vmx_guest_segs[idx].limit);
   2345 	base = vmx_vmread(vmx_guest_segs[idx].base);
   2346 
   2347 	segs[idx].selector = selector;
   2348 	segs[idx].limit = limit;
   2349 	segs[idx].base = base;
   2350 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2351 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2352 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2353 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2354 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2355 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2356 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2357 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2358 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2359 		segs[idx].attrib.p = 0;
   2360 	}
   2361 }
   2362 
   2363 static inline bool
   2364 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2365 {
   2366 	uint64_t cr0, cr3, cr4, efer;
   2367 
   2368 	if (flags & NVMM_X64_STATE_CRS) {
   2369 		cr0 = vmx_vmread(VMCS_GUEST_CR0);
   2370 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2371 			return true;
   2372 		}
   2373 		cr3 = vmx_vmread(VMCS_GUEST_CR3);
   2374 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2375 			return true;
   2376 		}
   2377 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   2378 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2379 			return true;
   2380 		}
   2381 	}
   2382 
   2383 	if (flags & NVMM_X64_STATE_MSRS) {
   2384 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   2385 		if ((efer ^
   2386 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2387 			return true;
   2388 		}
   2389 	}
   2390 
   2391 	return false;
   2392 }
   2393 
   2394 static void
   2395 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
   2396 {
   2397 	struct nvmm_comm_page *comm = vcpu->comm;
   2398 	const struct nvmm_x64_state *state = &comm->state;
   2399 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2400 	struct fxsave *fpustate;
   2401 	uint64_t ctls1, intstate;
   2402 	uint64_t flags;
   2403 
   2404 	flags = comm->state_wanted;
   2405 
   2406 	vmx_vmcs_enter(vcpu);
   2407 
   2408 	if (vmx_state_tlb_flush(state, flags)) {
   2409 		cpudata->gtlb_want_flush = true;
   2410 	}
   2411 
   2412 	if (flags & NVMM_X64_STATE_SEGS) {
   2413 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2414 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2415 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2416 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2417 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2418 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2419 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2420 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2421 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2422 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2423 	}
   2424 
   2425 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2426 	if (flags & NVMM_X64_STATE_GPRS) {
   2427 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2428 
   2429 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2430 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2431 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2432 	}
   2433 
   2434 	if (flags & NVMM_X64_STATE_CRS) {
   2435 		/*
   2436 		 * CR0_NE and CR4_VMXE are mandatory.
   2437 		 */
   2438 		vmx_vmwrite(VMCS_GUEST_CR0,
   2439 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2440 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2441 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2442 		vmx_vmwrite(VMCS_GUEST_CR4,
   2443 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2444 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2445 
   2446 		if (vmx_xcr0_mask != 0) {
   2447 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2448 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2449 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2450 			cpudata->gxcr0 |= XCR0_X87;
   2451 		}
   2452 	}
   2453 
   2454 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2455 	if (flags & NVMM_X64_STATE_DRS) {
   2456 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2457 
   2458 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2459 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2460 	}
   2461 
   2462 	if (flags & NVMM_X64_STATE_MSRS) {
   2463 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2464 		    state->msrs[NVMM_X64_MSR_STAR];
   2465 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2466 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2467 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2468 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2469 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2470 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2471 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2472 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2473 
   2474 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2475 		    state->msrs[NVMM_X64_MSR_EFER]);
   2476 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2477 		    state->msrs[NVMM_X64_MSR_PAT]);
   2478 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2479 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2480 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2481 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2482 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2483 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2484 
   2485 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2486 		cpudata->gtsc_want_update = true;
   2487 
   2488 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2489 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   2490 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2491 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2492 		} else {
   2493 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2494 		}
   2495 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2496 	}
   2497 
   2498 	if (flags & NVMM_X64_STATE_INTR) {
   2499 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2500 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2501 		if (state->intr.int_shadow) {
   2502 			intstate |= INT_STATE_MOVSS;
   2503 		}
   2504 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2505 
   2506 		if (state->intr.int_window_exiting) {
   2507 			vmx_event_waitexit_enable(vcpu, false);
   2508 		} else {
   2509 			vmx_event_waitexit_disable(vcpu, false);
   2510 		}
   2511 
   2512 		if (state->intr.nmi_window_exiting) {
   2513 			vmx_event_waitexit_enable(vcpu, true);
   2514 		} else {
   2515 			vmx_event_waitexit_disable(vcpu, true);
   2516 		}
   2517 	}
   2518 
   2519 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2520 	if (flags & NVMM_X64_STATE_FPU) {
   2521 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2522 		    sizeof(state->fpu));
   2523 
   2524 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2525 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2526 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2527 
   2528 		if (vmx_xcr0_mask != 0) {
   2529 			/* Reset XSTATE_BV, to force a reload. */
   2530 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2531 		}
   2532 	}
   2533 
   2534 	vmx_vmcs_leave(vcpu);
   2535 
   2536 	comm->state_wanted = 0;
   2537 	comm->state_cached |= flags;
   2538 }
   2539 
   2540 static void
   2541 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
   2542 {
   2543 	struct nvmm_comm_page *comm = vcpu->comm;
   2544 	struct nvmm_x64_state *state = &comm->state;
   2545 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2546 	uint64_t intstate, flags;
   2547 
   2548 	flags = comm->state_wanted;
   2549 
   2550 	vmx_vmcs_enter(vcpu);
   2551 
   2552 	if (flags & NVMM_X64_STATE_SEGS) {
   2553 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2554 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2555 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2556 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2557 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2558 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2559 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2560 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2561 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2562 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2563 	}
   2564 
   2565 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2566 	if (flags & NVMM_X64_STATE_GPRS) {
   2567 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2568 
   2569 		state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
   2570 		state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
   2571 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
   2572 	}
   2573 
   2574 	if (flags & NVMM_X64_STATE_CRS) {
   2575 		state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
   2576 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2577 		state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
   2578 		state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
   2579 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2580 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2581 
   2582 		/* Hide VMXE. */
   2583 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2584 	}
   2585 
   2586 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2587 	if (flags & NVMM_X64_STATE_DRS) {
   2588 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2589 
   2590 		state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
   2591 	}
   2592 
   2593 	if (flags & NVMM_X64_STATE_MSRS) {
   2594 		state->msrs[NVMM_X64_MSR_STAR] =
   2595 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2596 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2597 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2598 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2599 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2600 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2601 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2602 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2603 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2604 		state->msrs[NVMM_X64_MSR_EFER] =
   2605 		    vmx_vmread(VMCS_GUEST_IA32_EFER);
   2606 		state->msrs[NVMM_X64_MSR_PAT] =
   2607 		    vmx_vmread(VMCS_GUEST_IA32_PAT);
   2608 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   2609 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
   2610 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   2611 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
   2612 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   2613 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
   2614 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2615 	}
   2616 
   2617 	if (flags & NVMM_X64_STATE_INTR) {
   2618 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2619 		state->intr.int_shadow =
   2620 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2621 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2622 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2623 		state->intr.evt_pending = cpudata->evt_pending;
   2624 	}
   2625 
   2626 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2627 	if (flags & NVMM_X64_STATE_FPU) {
   2628 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2629 		    sizeof(state->fpu));
   2630 	}
   2631 
   2632 	vmx_vmcs_leave(vcpu);
   2633 
   2634 	comm->state_wanted = 0;
   2635 	comm->state_cached |= flags;
   2636 }
   2637 
   2638 static void
   2639 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   2640 {
   2641 	vcpu->comm->state_wanted = flags;
   2642 	vmx_vcpu_getstate(vcpu);
   2643 }
   2644 
   2645 static void
   2646 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
   2647 {
   2648 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   2649 	vcpu->comm->state_commit = 0;
   2650 	vmx_vcpu_setstate(vcpu);
   2651 }
   2652 
   2653 /* -------------------------------------------------------------------------- */
   2654 
   2655 static void
   2656 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2657 {
   2658 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2659 	size_t i, oct, bit;
   2660 
   2661 	mutex_enter(&vmx_asidlock);
   2662 
   2663 	for (i = 0; i < vmx_maxasid; i++) {
   2664 		oct = i / 8;
   2665 		bit = i % 8;
   2666 
   2667 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2668 			continue;
   2669 		}
   2670 
   2671 		cpudata->asid = i;
   2672 
   2673 		vmx_asidmap[oct] |= __BIT(bit);
   2674 		vmx_vmwrite(VMCS_VPID, i);
   2675 		mutex_exit(&vmx_asidlock);
   2676 		return;
   2677 	}
   2678 
   2679 	mutex_exit(&vmx_asidlock);
   2680 
   2681 	panic("%s: impossible", __func__);
   2682 }
   2683 
   2684 static void
   2685 vmx_asid_free(struct nvmm_cpu *vcpu)
   2686 {
   2687 	size_t oct, bit;
   2688 	uint64_t asid;
   2689 
   2690 	asid = vmx_vmread(VMCS_VPID);
   2691 
   2692 	oct = asid / 8;
   2693 	bit = asid % 8;
   2694 
   2695 	mutex_enter(&vmx_asidlock);
   2696 	vmx_asidmap[oct] &= ~__BIT(bit);
   2697 	mutex_exit(&vmx_asidlock);
   2698 }
   2699 
   2700 static void
   2701 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2702 {
   2703 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2704 	struct vmcs *vmcs = cpudata->vmcs;
   2705 	struct msr_entry *gmsr = cpudata->gmsr;
   2706 	extern uint8_t vmx_resume_rip;
   2707 	uint64_t rev, eptp;
   2708 
   2709 	rev = vmx_get_revision();
   2710 
   2711 	memset(vmcs, 0, VMCS_SIZE);
   2712 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2713 	vmcs->abort = 0;
   2714 
   2715 	vmx_vmcs_enter(vcpu);
   2716 
   2717 	/* No link pointer. */
   2718 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2719 
   2720 	/* Install the CTLSs. */
   2721 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2722 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2723 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2724 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2725 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2726 
   2727 	/* Allow direct access to certain MSRs. */
   2728 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2729 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2730 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2731 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2732 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2733 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2734 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2735 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2736 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2737 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2738 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2739 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2740 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2741 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2742 	    true, false);
   2743 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2744 
   2745 	/*
   2746 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2747 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2748 	 */
   2749 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2750 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2751 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2752 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2753 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2754 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2755 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2756 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2757 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2758 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2759 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2760 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2761 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2762 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2763 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2764 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2765 
   2766 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2767 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2768 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2769 
   2770 	/* Force CR4_VMXE to zero. */
   2771 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2772 
   2773 	/* Set the Host state for resuming. */
   2774 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2775 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2776 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2777 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2778 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2779 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2780 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2781 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2782 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2783 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2784 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2785 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2786 	vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
   2787 
   2788 	/* Generate ASID. */
   2789 	vmx_asid_alloc(vcpu);
   2790 
   2791 	/* Enable Extended Paging, 4-Level. */
   2792 	eptp =
   2793 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2794 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2795 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2796 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2797 	vmx_vmwrite(VMCS_EPTP, eptp);
   2798 
   2799 	/* Init IA32_MISC_ENABLE. */
   2800 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2801 	cpudata->gmsr_misc_enable &=
   2802 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2803 	cpudata->gmsr_misc_enable |=
   2804 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2805 
   2806 	/* Init XSAVE header. */
   2807 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2808 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2809 
   2810 	/* These MSRs are static. */
   2811 	cpudata->star = rdmsr(MSR_STAR);
   2812 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2813 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2814 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2815 
   2816 	/* Install the RESET state. */
   2817 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   2818 	    sizeof(nvmm_x86_reset_state));
   2819 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   2820 	vcpu->comm->state_cached = 0;
   2821 	vmx_vcpu_setstate(vcpu);
   2822 
   2823 	vmx_vmcs_leave(vcpu);
   2824 }
   2825 
   2826 static int
   2827 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2828 {
   2829 	struct vmx_cpudata *cpudata;
   2830 	int error;
   2831 
   2832 	/* Allocate the VMX cpudata. */
   2833 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2834 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2835 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2836 	vcpu->cpudata = cpudata;
   2837 
   2838 	/* VMCS */
   2839 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2840 	    VMCS_NPAGES);
   2841 	if (error)
   2842 		goto error;
   2843 
   2844 	/* MSR Bitmap */
   2845 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2846 	    MSRBM_NPAGES);
   2847 	if (error)
   2848 		goto error;
   2849 
   2850 	/* Guest MSR List */
   2851 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2852 	if (error)
   2853 		goto error;
   2854 
   2855 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2856 
   2857 	/* Init the VCPU info. */
   2858 	vmx_vcpu_init(mach, vcpu);
   2859 
   2860 	return 0;
   2861 
   2862 error:
   2863 	if (cpudata->vmcs_pa) {
   2864 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2865 		    VMCS_NPAGES);
   2866 	}
   2867 	if (cpudata->msrbm_pa) {
   2868 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2869 		    MSRBM_NPAGES);
   2870 	}
   2871 	if (cpudata->gmsr_pa) {
   2872 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2873 	}
   2874 
   2875 	kmem_free(cpudata, sizeof(*cpudata));
   2876 	return error;
   2877 }
   2878 
   2879 static void
   2880 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2881 {
   2882 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2883 
   2884 	vmx_vmcs_enter(vcpu);
   2885 	vmx_asid_free(vcpu);
   2886 	vmx_vmcs_destroy(vcpu);
   2887 
   2888 	kcpuset_destroy(cpudata->htlb_want_flush);
   2889 
   2890 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2891 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2892 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2893 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2894 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2895 }
   2896 
   2897 /* -------------------------------------------------------------------------- */
   2898 
   2899 static int
   2900 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
   2901 {
   2902 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
   2903 	size_t i;
   2904 
   2905 	if (__predict_false(cpuid->mask && cpuid->exit)) {
   2906 		return EINVAL;
   2907 	}
   2908 	if (__predict_false(cpuid->mask &&
   2909 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
   2910 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
   2911 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
   2912 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
   2913 		return EINVAL;
   2914 	}
   2915 
   2916 	/* If unset, delete, to restore the default behavior. */
   2917 	if (!cpuid->mask && !cpuid->exit) {
   2918 		for (i = 0; i < VMX_NCPUIDS; i++) {
   2919 			if (!cpudata->cpuidpresent[i]) {
   2920 				continue;
   2921 			}
   2922 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2923 				cpudata->cpuidpresent[i] = false;
   2924 			}
   2925 		}
   2926 		return 0;
   2927 	}
   2928 
   2929 	/* If already here, replace. */
   2930 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2931 		if (!cpudata->cpuidpresent[i]) {
   2932 			continue;
   2933 		}
   2934 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2935 			memcpy(&cpudata->cpuid[i], cpuid,
   2936 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2937 			return 0;
   2938 		}
   2939 	}
   2940 
   2941 	/* Not here, insert. */
   2942 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2943 		if (!cpudata->cpuidpresent[i]) {
   2944 			cpudata->cpuidpresent[i] = true;
   2945 			memcpy(&cpudata->cpuid[i], cpuid,
   2946 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2947 			return 0;
   2948 		}
   2949 	}
   2950 
   2951 	return ENOBUFS;
   2952 }
   2953 
   2954 static int
   2955 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
   2956 {
   2957 	struct nvmm_vcpu_conf_tpr *tpr = data;
   2958 
   2959 	memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
   2960 	return 0;
   2961 }
   2962 
   2963 static int
   2964 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
   2965 {
   2966 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2967 
   2968 	switch (op) {
   2969 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
   2970 		return vmx_vcpu_configure_cpuid(cpudata, data);
   2971 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
   2972 		return vmx_vcpu_configure_tpr(cpudata, data);
   2973 	default:
   2974 		return EINVAL;
   2975 	}
   2976 }
   2977 
   2978 /* -------------------------------------------------------------------------- */
   2979 
   2980 static void
   2981 vmx_tlb_flush(struct pmap *pm)
   2982 {
   2983 	struct nvmm_machine *mach = pm->pm_data;
   2984 	struct vmx_machdata *machdata = mach->machdata;
   2985 
   2986 	atomic_inc_64(&machdata->mach_htlb_gen);
   2987 
   2988 	/* Generates IPIs, which cause #VMEXITs. */
   2989 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   2990 }
   2991 
   2992 static void
   2993 vmx_machine_create(struct nvmm_machine *mach)
   2994 {
   2995 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2996 	struct vmx_machdata *machdata;
   2997 
   2998 	/* Convert to EPT. */
   2999 	pmap_ept_transform(pmap);
   3000 
   3001 	/* Fill in pmap info. */
   3002 	pmap->pm_data = (void *)mach;
   3003 	pmap->pm_tlb_flush = vmx_tlb_flush;
   3004 
   3005 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   3006 	mach->machdata = machdata;
   3007 
   3008 	/* Start with an hTLB flush everywhere. */
   3009 	machdata->mach_htlb_gen = 1;
   3010 }
   3011 
   3012 static void
   3013 vmx_machine_destroy(struct nvmm_machine *mach)
   3014 {
   3015 	struct vmx_machdata *machdata = mach->machdata;
   3016 
   3017 	kmem_free(machdata, sizeof(struct vmx_machdata));
   3018 }
   3019 
   3020 static int
   3021 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   3022 {
   3023 	panic("%s: impossible", __func__);
   3024 }
   3025 
   3026 /* -------------------------------------------------------------------------- */
   3027 
   3028 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
   3029 	((msrval & __BIT(32 + bitoff)) != 0)
   3030 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
   3031 	((msrval & __BIT(bitoff)) == 0)
   3032 
   3033 static int
   3034 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
   3035 {
   3036 	uint64_t basic, val, true_val;
   3037 	bool has_true;
   3038 	size_t i;
   3039 
   3040 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3041 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3042 
   3043 	val = rdmsr(msr_ctls);
   3044 	if (has_true) {
   3045 		true_val = rdmsr(msr_true_ctls);
   3046 	} else {
   3047 		true_val = val;
   3048 	}
   3049 
   3050 	for (i = 0; i < 32; i++) {
   3051 		if (!(set_one & __BIT(i))) {
   3052 			continue;
   3053 		}
   3054 		if (!CTLS_ONE_ALLOWED(true_val, i)) {
   3055 			return -1;
   3056 		}
   3057 	}
   3058 
   3059 	return 0;
   3060 }
   3061 
   3062 static int
   3063 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   3064     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   3065 {
   3066 	uint64_t basic, val, true_val;
   3067 	bool one_allowed, zero_allowed, has_true;
   3068 	size_t i;
   3069 
   3070 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3071 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3072 
   3073 	val = rdmsr(msr_ctls);
   3074 	if (has_true) {
   3075 		true_val = rdmsr(msr_true_ctls);
   3076 	} else {
   3077 		true_val = val;
   3078 	}
   3079 
   3080 	for (i = 0; i < 32; i++) {
   3081 		one_allowed = CTLS_ONE_ALLOWED(true_val, i);
   3082 		zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
   3083 
   3084 		if (zero_allowed && !one_allowed) {
   3085 			if (set_one & __BIT(i))
   3086 				return -1;
   3087 			*res &= ~__BIT(i);
   3088 		} else if (one_allowed && !zero_allowed) {
   3089 			if (set_zero & __BIT(i))
   3090 				return -1;
   3091 			*res |= __BIT(i);
   3092 		} else {
   3093 			if (set_zero & __BIT(i)) {
   3094 				*res &= ~__BIT(i);
   3095 			} else if (set_one & __BIT(i)) {
   3096 				*res |= __BIT(i);
   3097 			} else if (!has_true) {
   3098 				*res &= ~__BIT(i);
   3099 			} else if (CTLS_ZERO_ALLOWED(val, i)) {
   3100 				*res &= ~__BIT(i);
   3101 			} else if (CTLS_ONE_ALLOWED(val, i)) {
   3102 				*res |= __BIT(i);
   3103 			} else {
   3104 				return -1;
   3105 			}
   3106 		}
   3107 	}
   3108 
   3109 	return 0;
   3110 }
   3111 
   3112 static bool
   3113 vmx_ident(void)
   3114 {
   3115 	uint64_t msr;
   3116 	int ret;
   3117 
   3118 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   3119 		return false;
   3120 	}
   3121 
   3122 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   3123 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   3124 		printf("NVMM: VMX disabled in BIOS\n");
   3125 		return false;
   3126 	}
   3127 	if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
   3128 		printf("NVMM: VMX disabled in BIOS\n");
   3129 		return false;
   3130 	}
   3131 
   3132 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   3133 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   3134 		printf("NVMM: I/O reporting not supported\n");
   3135 		return false;
   3136 	}
   3137 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   3138 		printf("NVMM: WB memory not supported\n");
   3139 		return false;
   3140 	}
   3141 
   3142 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   3143 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   3144 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   3145 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   3146 	if (ret == -1) {
   3147 		printf("NVMM: CR0 requirements not satisfied\n");
   3148 		return false;
   3149 	}
   3150 
   3151 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   3152 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   3153 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   3154 	if (ret == -1) {
   3155 		printf("NVMM: CR4 requirements not satisfied\n");
   3156 		return false;
   3157 	}
   3158 
   3159 	/* Init the CTLSs right now, and check for errors. */
   3160 	ret = vmx_init_ctls(
   3161 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   3162 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   3163 	    &vmx_pinbased_ctls);
   3164 	if (ret == -1) {
   3165 		printf("NVMM: pin-based-ctls requirements not satisfied\n");
   3166 		return false;
   3167 	}
   3168 	ret = vmx_init_ctls(
   3169 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   3170 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   3171 	    &vmx_procbased_ctls);
   3172 	if (ret == -1) {
   3173 		printf("NVMM: proc-based-ctls requirements not satisfied\n");
   3174 		return false;
   3175 	}
   3176 	ret = vmx_init_ctls(
   3177 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3178 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   3179 	    &vmx_procbased_ctls2);
   3180 	if (ret == -1) {
   3181 		printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
   3182 		return false;
   3183 	}
   3184 	ret = vmx_check_ctls(
   3185 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3186 	    PROC_CTLS2_INVPCID_ENABLE);
   3187 	if (ret != -1) {
   3188 		vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
   3189 	}
   3190 	ret = vmx_init_ctls(
   3191 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   3192 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   3193 	    &vmx_entry_ctls);
   3194 	if (ret == -1) {
   3195 		printf("NVMM: entry-ctls requirements not satisfied\n");
   3196 		return false;
   3197 	}
   3198 	ret = vmx_init_ctls(
   3199 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   3200 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   3201 	    &vmx_exit_ctls);
   3202 	if (ret == -1) {
   3203 		printf("NVMM: exit-ctls requirements not satisfied\n");
   3204 		return false;
   3205 	}
   3206 
   3207 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3208 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   3209 		printf("NVMM: 4-level page tree not supported\n");
   3210 		return false;
   3211 	}
   3212 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   3213 		printf("NVMM: INVEPT not supported\n");
   3214 		return false;
   3215 	}
   3216 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   3217 		printf("NVMM: INVVPID not supported\n");
   3218 		return false;
   3219 	}
   3220 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   3221 		pmap_ept_has_ad = true;
   3222 	} else {
   3223 		pmap_ept_has_ad = false;
   3224 	}
   3225 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   3226 		printf("NVMM: EPT UC/WB memory types not supported\n");
   3227 		return false;
   3228 	}
   3229 
   3230 	return true;
   3231 }
   3232 
   3233 static void
   3234 vmx_init_asid(uint32_t maxasid)
   3235 {
   3236 	size_t allocsz;
   3237 
   3238 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   3239 
   3240 	vmx_maxasid = maxasid;
   3241 	allocsz = roundup(maxasid, 8) / 8;
   3242 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   3243 
   3244 	/* ASID 0 is reserved for the host. */
   3245 	vmx_asidmap[0] |= __BIT(0);
   3246 }
   3247 
   3248 static void
   3249 vmx_change_cpu(void *arg1, void *arg2)
   3250 {
   3251 	struct cpu_info *ci = curcpu();
   3252 	bool enable = arg1 != NULL;
   3253 	uint64_t cr4;
   3254 
   3255 	if (!enable) {
   3256 		vmx_vmxoff();
   3257 	}
   3258 
   3259 	cr4 = rcr4();
   3260 	if (enable) {
   3261 		cr4 |= CR4_VMXE;
   3262 	} else {
   3263 		cr4 &= ~CR4_VMXE;
   3264 	}
   3265 	lcr4(cr4);
   3266 
   3267 	if (enable) {
   3268 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   3269 	}
   3270 }
   3271 
   3272 static void
   3273 vmx_init_l1tf(void)
   3274 {
   3275 	u_int descs[4];
   3276 	uint64_t msr;
   3277 
   3278 	if (cpuid_level < 7) {
   3279 		return;
   3280 	}
   3281 
   3282 	x86_cpuid(7, descs);
   3283 
   3284 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   3285 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   3286 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   3287 			/* No mitigation needed. */
   3288 			return;
   3289 		}
   3290 	}
   3291 
   3292 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   3293 		/* Enable hardware mitigation. */
   3294 		vmx_msrlist_entry_nmsr += 1;
   3295 	}
   3296 }
   3297 
   3298 static void
   3299 vmx_init(void)
   3300 {
   3301 	CPU_INFO_ITERATOR cii;
   3302 	struct cpu_info *ci;
   3303 	uint64_t xc, msr;
   3304 	struct vmxon *vmxon;
   3305 	uint32_t revision;
   3306 	paddr_t pa;
   3307 	vaddr_t va;
   3308 	int error;
   3309 
   3310 	/* Init the ASID bitmap (VPID). */
   3311 	vmx_init_asid(VPID_MAX);
   3312 
   3313 	/* Init the XCR0 mask. */
   3314 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   3315 
   3316 	/* Init the max CPUID leaves. */
   3317 	vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
   3318 
   3319 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   3320 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3321 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   3322 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   3323 	} else {
   3324 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   3325 	}
   3326 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   3327 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   3328 	} else {
   3329 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   3330 	}
   3331 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   3332 		vmx_eptp_type = EPTP_TYPE_WB;
   3333 	} else {
   3334 		vmx_eptp_type = EPTP_TYPE_UC;
   3335 	}
   3336 
   3337 	/* Init the L1TF mitigation. */
   3338 	vmx_init_l1tf();
   3339 
   3340 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   3341 	revision = vmx_get_revision();
   3342 
   3343 	for (CPU_INFO_FOREACH(cii, ci)) {
   3344 		error = vmx_memalloc(&pa, &va, 1);
   3345 		if (error) {
   3346 			panic("%s: out of memory", __func__);
   3347 		}
   3348 		vmxoncpu[cpu_index(ci)].pa = pa;
   3349 		vmxoncpu[cpu_index(ci)].va = va;
   3350 
   3351 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   3352 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   3353 	}
   3354 
   3355 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   3356 	xc_wait(xc);
   3357 }
   3358 
   3359 static void
   3360 vmx_fini_asid(void)
   3361 {
   3362 	size_t allocsz;
   3363 
   3364 	allocsz = roundup(vmx_maxasid, 8) / 8;
   3365 	kmem_free(vmx_asidmap, allocsz);
   3366 
   3367 	mutex_destroy(&vmx_asidlock);
   3368 }
   3369 
   3370 static void
   3371 vmx_fini(void)
   3372 {
   3373 	uint64_t xc;
   3374 	size_t i;
   3375 
   3376 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   3377 	xc_wait(xc);
   3378 
   3379 	for (i = 0; i < MAXCPUS; i++) {
   3380 		if (vmxoncpu[i].pa != 0)
   3381 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   3382 	}
   3383 
   3384 	vmx_fini_asid();
   3385 }
   3386 
   3387 static void
   3388 vmx_capability(struct nvmm_capability *cap)
   3389 {
   3390 	cap->arch.mach_conf_support = 0;
   3391 	cap->arch.vcpu_conf_support =
   3392 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID |
   3393 	    NVMM_CAP_ARCH_VCPU_CONF_TPR;
   3394 	cap->arch.xcr0_mask = vmx_xcr0_mask;
   3395 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   3396 	cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
   3397 }
   3398 
   3399 const struct nvmm_impl nvmm_x86_vmx = {
   3400 	.name = "x86-vmx",
   3401 	.ident = vmx_ident,
   3402 	.init = vmx_init,
   3403 	.fini = vmx_fini,
   3404 	.capability = vmx_capability,
   3405 	.mach_conf_max = NVMM_X86_MACH_NCONF,
   3406 	.mach_conf_sizes = NULL,
   3407 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
   3408 	.vcpu_conf_sizes = vmx_vcpu_conf_sizes,
   3409 	.state_size = sizeof(struct nvmm_x64_state),
   3410 	.machine_create = vmx_machine_create,
   3411 	.machine_destroy = vmx_machine_destroy,
   3412 	.machine_configure = vmx_machine_configure,
   3413 	.vcpu_create = vmx_vcpu_create,
   3414 	.vcpu_destroy = vmx_vcpu_destroy,
   3415 	.vcpu_configure = vmx_vcpu_configure,
   3416 	.vcpu_setstate = vmx_vcpu_setstate,
   3417 	.vcpu_getstate = vmx_vcpu_getstate,
   3418 	.vcpu_inject = vmx_vcpu_inject,
   3419 	.vcpu_run = vmx_vcpu_run
   3420 };
   3421