nvmm_x86_vmx.c revision 1.66 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.66 2020/08/05 10:20:50 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.66 2020/08/05 10:20:50 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42 #include <sys/bitops.h>
43
44 #include <uvm/uvm.h>
45 #include <uvm/uvm_page.h>
46
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/pmap.h>
50 #include <x86/dbregs.h>
51 #include <x86/cpu_counter.h>
52 #include <machine/cpuvar.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 #ifdef DIAGNOSTIC
139 static inline paddr_t
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153 #endif
154
155 static inline void
156 vmx_vmptrld(paddr_t *pa)
157 {
158 asm volatile (
159 "vmptrld %[pa];"
160 "jz vmx_insn_failvalid;"
161 "jc vmx_insn_failinvalid;"
162 :
163 : [pa] "m" (*pa)
164 : "memory", "cc"
165 );
166 }
167
168 static inline void
169 vmx_vmclear(paddr_t *pa)
170 {
171 asm volatile (
172 "vmclear %[pa];"
173 "jz vmx_insn_failvalid;"
174 "jc vmx_insn_failinvalid;"
175 :
176 : [pa] "m" (*pa)
177 : "memory", "cc"
178 );
179 }
180
181 static inline void
182 vmx_cli(void)
183 {
184 asm volatile ("cli" ::: "memory");
185 }
186
187 static inline void
188 vmx_sti(void)
189 {
190 asm volatile ("sti" ::: "memory");
191 }
192
193 #define MSR_IA32_FEATURE_CONTROL 0x003A
194 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
195 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
196 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
197
198 #define MSR_IA32_VMX_BASIC 0x0480
199 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
200 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
201 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
202 #define IA32_VMX_BASIC_DUAL __BIT(49)
203 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
204 #define MEM_TYPE_UC 0
205 #define MEM_TYPE_WB 6
206 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
207 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
208
209 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
210 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
211 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
212 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
213 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
214
215 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
216 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
217 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
218 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
219
220 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
221 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
222 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
223 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
224
225 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
226 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
227 #define IA32_VMX_EPT_VPID_UC __BIT(8)
228 #define IA32_VMX_EPT_VPID_WB __BIT(14)
229 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
230 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
231 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
232 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
233 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
234 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
235 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
236 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
237 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
238
239 /* -------------------------------------------------------------------------- */
240
241 /* 16-bit control fields */
242 #define VMCS_VPID 0x00000000
243 #define VMCS_PIR_VECTOR 0x00000002
244 #define VMCS_EPTP_INDEX 0x00000004
245 /* 16-bit guest-state fields */
246 #define VMCS_GUEST_ES_SELECTOR 0x00000800
247 #define VMCS_GUEST_CS_SELECTOR 0x00000802
248 #define VMCS_GUEST_SS_SELECTOR 0x00000804
249 #define VMCS_GUEST_DS_SELECTOR 0x00000806
250 #define VMCS_GUEST_FS_SELECTOR 0x00000808
251 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
252 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
253 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
254 #define VMCS_GUEST_INTR_STATUS 0x00000810
255 #define VMCS_PML_INDEX 0x00000812
256 /* 16-bit host-state fields */
257 #define VMCS_HOST_ES_SELECTOR 0x00000C00
258 #define VMCS_HOST_CS_SELECTOR 0x00000C02
259 #define VMCS_HOST_SS_SELECTOR 0x00000C04
260 #define VMCS_HOST_DS_SELECTOR 0x00000C06
261 #define VMCS_HOST_FS_SELECTOR 0x00000C08
262 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
263 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
264 /* 64-bit control fields */
265 #define VMCS_IO_BITMAP_A 0x00002000
266 #define VMCS_IO_BITMAP_B 0x00002002
267 #define VMCS_MSR_BITMAP 0x00002004
268 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
269 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
270 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
271 #define VMCS_EXECUTIVE_VMCS 0x0000200C
272 #define VMCS_PML_ADDRESS 0x0000200E
273 #define VMCS_TSC_OFFSET 0x00002010
274 #define VMCS_VIRTUAL_APIC 0x00002012
275 #define VMCS_APIC_ACCESS 0x00002014
276 #define VMCS_PIR_DESC 0x00002016
277 #define VMCS_VM_CONTROL 0x00002018
278 #define VMCS_EPTP 0x0000201A
279 #define EPTP_TYPE __BITS(2,0)
280 #define EPTP_TYPE_UC 0
281 #define EPTP_TYPE_WB 6
282 #define EPTP_WALKLEN __BITS(5,3)
283 #define EPTP_FLAGS_AD __BIT(6)
284 #define EPTP_PHYSADDR __BITS(63,12)
285 #define VMCS_EOI_EXIT0 0x0000201C
286 #define VMCS_EOI_EXIT1 0x0000201E
287 #define VMCS_EOI_EXIT2 0x00002020
288 #define VMCS_EOI_EXIT3 0x00002022
289 #define VMCS_EPTP_LIST 0x00002024
290 #define VMCS_VMREAD_BITMAP 0x00002026
291 #define VMCS_VMWRITE_BITMAP 0x00002028
292 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
293 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
294 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
295 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
296 #define VMCS_TSC_MULTIPLIER 0x00002032
297 /* 64-bit read-only fields */
298 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
299 /* 64-bit guest-state fields */
300 #define VMCS_LINK_POINTER 0x00002800
301 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
302 #define VMCS_GUEST_IA32_PAT 0x00002804
303 #define VMCS_GUEST_IA32_EFER 0x00002806
304 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
305 #define VMCS_GUEST_PDPTE0 0x0000280A
306 #define VMCS_GUEST_PDPTE1 0x0000280C
307 #define VMCS_GUEST_PDPTE2 0x0000280E
308 #define VMCS_GUEST_PDPTE3 0x00002810
309 #define VMCS_GUEST_BNDCFGS 0x00002812
310 /* 64-bit host-state fields */
311 #define VMCS_HOST_IA32_PAT 0x00002C00
312 #define VMCS_HOST_IA32_EFER 0x00002C02
313 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
314 /* 32-bit control fields */
315 #define VMCS_PINBASED_CTLS 0x00004000
316 #define PIN_CTLS_INT_EXITING __BIT(0)
317 #define PIN_CTLS_NMI_EXITING __BIT(3)
318 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
319 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
320 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
321 #define VMCS_PROCBASED_CTLS 0x00004002
322 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
323 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
324 #define PROC_CTLS_HLT_EXITING __BIT(7)
325 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
326 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
327 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
328 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
329 #define PROC_CTLS_RCR3_EXITING __BIT(15)
330 #define PROC_CTLS_LCR3_EXITING __BIT(16)
331 #define PROC_CTLS_RCR8_EXITING __BIT(19)
332 #define PROC_CTLS_LCR8_EXITING __BIT(20)
333 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
334 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
335 #define PROC_CTLS_DR_EXITING __BIT(23)
336 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
337 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
338 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
339 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
340 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
341 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
342 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
343 #define VMCS_EXCEPTION_BITMAP 0x00004004
344 #define VMCS_PF_ERROR_MASK 0x00004006
345 #define VMCS_PF_ERROR_MATCH 0x00004008
346 #define VMCS_CR3_TARGET_COUNT 0x0000400A
347 #define VMCS_EXIT_CTLS 0x0000400C
348 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
349 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
350 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
351 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
352 #define EXIT_CTLS_SAVE_PAT __BIT(18)
353 #define EXIT_CTLS_LOAD_PAT __BIT(19)
354 #define EXIT_CTLS_SAVE_EFER __BIT(20)
355 #define EXIT_CTLS_LOAD_EFER __BIT(21)
356 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
357 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
358 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
359 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
360 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
361 #define VMCS_ENTRY_CTLS 0x00004012
362 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
363 #define ENTRY_CTLS_LONG_MODE __BIT(9)
364 #define ENTRY_CTLS_SMM __BIT(10)
365 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
366 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
367 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
368 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
369 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
370 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
371 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
372 #define VMCS_ENTRY_INTR_INFO 0x00004016
373 #define INTR_INFO_VECTOR __BITS(7,0)
374 #define INTR_INFO_TYPE __BITS(10,8)
375 #define INTR_TYPE_EXT_INT 0
376 #define INTR_TYPE_NMI 2
377 #define INTR_TYPE_HW_EXC 3
378 #define INTR_TYPE_SW_INT 4
379 #define INTR_TYPE_PRIV_SW_EXC 5
380 #define INTR_TYPE_SW_EXC 6
381 #define INTR_TYPE_OTHER 7
382 #define INTR_INFO_ERROR __BIT(11)
383 #define INTR_INFO_VALID __BIT(31)
384 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
385 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
386 #define VMCS_TPR_THRESHOLD 0x0000401C
387 #define VMCS_PROCBASED_CTLS2 0x0000401E
388 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
389 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
390 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
391 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
392 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
393 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
394 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
395 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
396 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
397 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
398 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
399 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
400 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
401 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
402 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
403 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
404 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
405 #define PROC_CTLS2_PML_ENABLE __BIT(17)
406 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
407 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
408 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
409 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
410 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
411 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
412 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
413 #define VMCS_PLE_GAP 0x00004020
414 #define VMCS_PLE_WINDOW 0x00004022
415 /* 32-bit read-only data fields */
416 #define VMCS_INSTRUCTION_ERROR 0x00004400
417 #define VMCS_EXIT_REASON 0x00004402
418 #define VMCS_EXIT_INTR_INFO 0x00004404
419 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
420 #define VMCS_IDT_VECTORING_INFO 0x00004408
421 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
422 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
423 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
424 /* 32-bit guest-state fields */
425 #define VMCS_GUEST_ES_LIMIT 0x00004800
426 #define VMCS_GUEST_CS_LIMIT 0x00004802
427 #define VMCS_GUEST_SS_LIMIT 0x00004804
428 #define VMCS_GUEST_DS_LIMIT 0x00004806
429 #define VMCS_GUEST_FS_LIMIT 0x00004808
430 #define VMCS_GUEST_GS_LIMIT 0x0000480A
431 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
432 #define VMCS_GUEST_TR_LIMIT 0x0000480E
433 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
434 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
435 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
436 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
437 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
438 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
439 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
440 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
441 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
442 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
443 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
444 #define INT_STATE_STI __BIT(0)
445 #define INT_STATE_MOVSS __BIT(1)
446 #define INT_STATE_SMI __BIT(2)
447 #define INT_STATE_NMI __BIT(3)
448 #define INT_STATE_ENCLAVE __BIT(4)
449 #define VMCS_GUEST_ACTIVITY 0x00004826
450 #define VMCS_GUEST_SMBASE 0x00004828
451 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
452 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
453 /* 32-bit host state fields */
454 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
455 /* Natural-Width control fields */
456 #define VMCS_CR0_MASK 0x00006000
457 #define VMCS_CR4_MASK 0x00006002
458 #define VMCS_CR0_SHADOW 0x00006004
459 #define VMCS_CR4_SHADOW 0x00006006
460 #define VMCS_CR3_TARGET0 0x00006008
461 #define VMCS_CR3_TARGET1 0x0000600A
462 #define VMCS_CR3_TARGET2 0x0000600C
463 #define VMCS_CR3_TARGET3 0x0000600E
464 /* Natural-Width read-only fields */
465 #define VMCS_EXIT_QUALIFICATION 0x00006400
466 #define VMCS_IO_RCX 0x00006402
467 #define VMCS_IO_RSI 0x00006404
468 #define VMCS_IO_RDI 0x00006406
469 #define VMCS_IO_RIP 0x00006408
470 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
471 /* Natural-Width guest-state fields */
472 #define VMCS_GUEST_CR0 0x00006800
473 #define VMCS_GUEST_CR3 0x00006802
474 #define VMCS_GUEST_CR4 0x00006804
475 #define VMCS_GUEST_ES_BASE 0x00006806
476 #define VMCS_GUEST_CS_BASE 0x00006808
477 #define VMCS_GUEST_SS_BASE 0x0000680A
478 #define VMCS_GUEST_DS_BASE 0x0000680C
479 #define VMCS_GUEST_FS_BASE 0x0000680E
480 #define VMCS_GUEST_GS_BASE 0x00006810
481 #define VMCS_GUEST_LDTR_BASE 0x00006812
482 #define VMCS_GUEST_TR_BASE 0x00006814
483 #define VMCS_GUEST_GDTR_BASE 0x00006816
484 #define VMCS_GUEST_IDTR_BASE 0x00006818
485 #define VMCS_GUEST_DR7 0x0000681A
486 #define VMCS_GUEST_RSP 0x0000681C
487 #define VMCS_GUEST_RIP 0x0000681E
488 #define VMCS_GUEST_RFLAGS 0x00006820
489 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
490 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
491 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
492 /* Natural-Width host-state fields */
493 #define VMCS_HOST_CR0 0x00006C00
494 #define VMCS_HOST_CR3 0x00006C02
495 #define VMCS_HOST_CR4 0x00006C04
496 #define VMCS_HOST_FS_BASE 0x00006C06
497 #define VMCS_HOST_GS_BASE 0x00006C08
498 #define VMCS_HOST_TR_BASE 0x00006C0A
499 #define VMCS_HOST_GDTR_BASE 0x00006C0C
500 #define VMCS_HOST_IDTR_BASE 0x00006C0E
501 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
502 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
503 #define VMCS_HOST_RSP 0x00006C14
504 #define VMCS_HOST_RIP 0x00006C16
505
506 /* VMX basic exit reasons. */
507 #define VMCS_EXITCODE_EXC_NMI 0
508 #define VMCS_EXITCODE_EXT_INT 1
509 #define VMCS_EXITCODE_SHUTDOWN 2
510 #define VMCS_EXITCODE_INIT 3
511 #define VMCS_EXITCODE_SIPI 4
512 #define VMCS_EXITCODE_SMI 5
513 #define VMCS_EXITCODE_OTHER_SMI 6
514 #define VMCS_EXITCODE_INT_WINDOW 7
515 #define VMCS_EXITCODE_NMI_WINDOW 8
516 #define VMCS_EXITCODE_TASK_SWITCH 9
517 #define VMCS_EXITCODE_CPUID 10
518 #define VMCS_EXITCODE_GETSEC 11
519 #define VMCS_EXITCODE_HLT 12
520 #define VMCS_EXITCODE_INVD 13
521 #define VMCS_EXITCODE_INVLPG 14
522 #define VMCS_EXITCODE_RDPMC 15
523 #define VMCS_EXITCODE_RDTSC 16
524 #define VMCS_EXITCODE_RSM 17
525 #define VMCS_EXITCODE_VMCALL 18
526 #define VMCS_EXITCODE_VMCLEAR 19
527 #define VMCS_EXITCODE_VMLAUNCH 20
528 #define VMCS_EXITCODE_VMPTRLD 21
529 #define VMCS_EXITCODE_VMPTRST 22
530 #define VMCS_EXITCODE_VMREAD 23
531 #define VMCS_EXITCODE_VMRESUME 24
532 #define VMCS_EXITCODE_VMWRITE 25
533 #define VMCS_EXITCODE_VMXOFF 26
534 #define VMCS_EXITCODE_VMXON 27
535 #define VMCS_EXITCODE_CR 28
536 #define VMCS_EXITCODE_DR 29
537 #define VMCS_EXITCODE_IO 30
538 #define VMCS_EXITCODE_RDMSR 31
539 #define VMCS_EXITCODE_WRMSR 32
540 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
541 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
542 #define VMCS_EXITCODE_MWAIT 36
543 #define VMCS_EXITCODE_TRAP_FLAG 37
544 #define VMCS_EXITCODE_MONITOR 39
545 #define VMCS_EXITCODE_PAUSE 40
546 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
547 #define VMCS_EXITCODE_TPR_BELOW 43
548 #define VMCS_EXITCODE_APIC_ACCESS 44
549 #define VMCS_EXITCODE_VEOI 45
550 #define VMCS_EXITCODE_GDTR_IDTR 46
551 #define VMCS_EXITCODE_LDTR_TR 47
552 #define VMCS_EXITCODE_EPT_VIOLATION 48
553 #define VMCS_EXITCODE_EPT_MISCONFIG 49
554 #define VMCS_EXITCODE_INVEPT 50
555 #define VMCS_EXITCODE_RDTSCP 51
556 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
557 #define VMCS_EXITCODE_INVVPID 53
558 #define VMCS_EXITCODE_WBINVD 54
559 #define VMCS_EXITCODE_XSETBV 55
560 #define VMCS_EXITCODE_APIC_WRITE 56
561 #define VMCS_EXITCODE_RDRAND 57
562 #define VMCS_EXITCODE_INVPCID 58
563 #define VMCS_EXITCODE_VMFUNC 59
564 #define VMCS_EXITCODE_ENCLS 60
565 #define VMCS_EXITCODE_RDSEED 61
566 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
567 #define VMCS_EXITCODE_XSAVES 63
568 #define VMCS_EXITCODE_XRSTORS 64
569
570 /* -------------------------------------------------------------------------- */
571
572 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
573 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
574
575 #define VMX_MSRLIST_STAR 0
576 #define VMX_MSRLIST_LSTAR 1
577 #define VMX_MSRLIST_CSTAR 2
578 #define VMX_MSRLIST_SFMASK 3
579 #define VMX_MSRLIST_KERNELGSBASE 4
580 #define VMX_MSRLIST_EXIT_NMSR 5
581 #define VMX_MSRLIST_L1DFLUSH 5
582
583 /* On entry, we may do +1 to include L1DFLUSH. */
584 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
585
586 struct vmxon {
587 uint32_t ident;
588 #define VMXON_IDENT_REVISION __BITS(30,0)
589
590 uint8_t data[PAGE_SIZE - 4];
591 } __packed;
592
593 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
594
595 struct vmxoncpu {
596 vaddr_t va;
597 paddr_t pa;
598 };
599
600 static struct vmxoncpu vmxoncpu[MAXCPUS];
601
602 struct vmcs {
603 uint32_t ident;
604 #define VMCS_IDENT_REVISION __BITS(30,0)
605 #define VMCS_IDENT_SHADOW __BIT(31)
606
607 uint32_t abort;
608 uint8_t data[PAGE_SIZE - 8];
609 } __packed;
610
611 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
612
613 struct msr_entry {
614 uint32_t msr;
615 uint32_t rsvd;
616 uint64_t val;
617 } __packed;
618
619 #define VPID_MAX 0xFFFF
620
621 /* Make sure we never run out of VPIDs. */
622 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
623
624 static uint64_t vmx_tlb_flush_op __read_mostly;
625 static uint64_t vmx_ept_flush_op __read_mostly;
626 static uint64_t vmx_eptp_type __read_mostly;
627
628 static uint64_t vmx_pinbased_ctls __read_mostly;
629 static uint64_t vmx_procbased_ctls __read_mostly;
630 static uint64_t vmx_procbased_ctls2 __read_mostly;
631 static uint64_t vmx_entry_ctls __read_mostly;
632 static uint64_t vmx_exit_ctls __read_mostly;
633
634 static uint64_t vmx_cr0_fixed0 __read_mostly;
635 static uint64_t vmx_cr0_fixed1 __read_mostly;
636 static uint64_t vmx_cr4_fixed0 __read_mostly;
637 static uint64_t vmx_cr4_fixed1 __read_mostly;
638
639 extern bool pmap_ept_has_ad;
640
641 #define VMX_PINBASED_CTLS_ONE \
642 (PIN_CTLS_INT_EXITING| \
643 PIN_CTLS_NMI_EXITING| \
644 PIN_CTLS_VIRTUAL_NMIS)
645
646 #define VMX_PINBASED_CTLS_ZERO 0
647
648 #define VMX_PROCBASED_CTLS_ONE \
649 (PROC_CTLS_USE_TSC_OFFSETTING| \
650 PROC_CTLS_HLT_EXITING| \
651 PROC_CTLS_MWAIT_EXITING | \
652 PROC_CTLS_RDPMC_EXITING | \
653 PROC_CTLS_RCR8_EXITING | \
654 PROC_CTLS_LCR8_EXITING | \
655 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
656 PROC_CTLS_USE_MSR_BITMAPS | \
657 PROC_CTLS_MONITOR_EXITING | \
658 PROC_CTLS_ACTIVATE_CTLS2)
659
660 #define VMX_PROCBASED_CTLS_ZERO \
661 (PROC_CTLS_RCR3_EXITING| \
662 PROC_CTLS_LCR3_EXITING)
663
664 #define VMX_PROCBASED_CTLS2_ONE \
665 (PROC_CTLS2_ENABLE_EPT| \
666 PROC_CTLS2_ENABLE_VPID| \
667 PROC_CTLS2_UNRESTRICTED_GUEST)
668
669 #define VMX_PROCBASED_CTLS2_ZERO 0
670
671 #define VMX_ENTRY_CTLS_ONE \
672 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
673 ENTRY_CTLS_LOAD_EFER| \
674 ENTRY_CTLS_LOAD_PAT)
675
676 #define VMX_ENTRY_CTLS_ZERO \
677 (ENTRY_CTLS_SMM| \
678 ENTRY_CTLS_DISABLE_DUAL)
679
680 #define VMX_EXIT_CTLS_ONE \
681 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
682 EXIT_CTLS_HOST_LONG_MODE| \
683 EXIT_CTLS_SAVE_PAT| \
684 EXIT_CTLS_LOAD_PAT| \
685 EXIT_CTLS_SAVE_EFER| \
686 EXIT_CTLS_LOAD_EFER)
687
688 #define VMX_EXIT_CTLS_ZERO 0
689
690 static uint8_t *vmx_asidmap __read_mostly;
691 static uint32_t vmx_maxasid __read_mostly;
692 static kmutex_t vmx_asidlock __cacheline_aligned;
693
694 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
695 static uint64_t vmx_xcr0_mask __read_mostly;
696
697 #define VMX_NCPUIDS 32
698
699 #define VMCS_NPAGES 1
700 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
701
702 #define MSRBM_NPAGES 1
703 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
704
705 #define EFER_TLB_FLUSH \
706 (EFER_NXE|EFER_LMA|EFER_LME)
707 #define CR0_TLB_FLUSH \
708 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
709 #define CR4_TLB_FLUSH \
710 (CR4_PGE|CR4_PAE|CR4_PSE)
711
712 /* -------------------------------------------------------------------------- */
713
714 struct vmx_machdata {
715 volatile uint64_t mach_htlb_gen;
716 };
717
718 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
719 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
720 sizeof(struct nvmm_vcpu_conf_cpuid),
721 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
722 sizeof(struct nvmm_vcpu_conf_tpr)
723 };
724
725 struct vmx_cpudata {
726 /* General */
727 uint64_t asid;
728 bool gtlb_want_flush;
729 bool gtsc_want_update;
730 uint64_t vcpu_htlb_gen;
731 kcpuset_t *htlb_want_flush;
732
733 /* VMCS */
734 struct vmcs *vmcs;
735 paddr_t vmcs_pa;
736 size_t vmcs_refcnt;
737 struct cpu_info *vmcs_ci;
738 bool vmcs_launched;
739
740 /* MSR bitmap */
741 uint8_t *msrbm;
742 paddr_t msrbm_pa;
743
744 /* Host state */
745 uint64_t hxcr0;
746 uint64_t star;
747 uint64_t lstar;
748 uint64_t cstar;
749 uint64_t sfmask;
750 uint64_t kernelgsbase;
751
752 /* Intr state */
753 bool int_window_exit;
754 bool nmi_window_exit;
755 bool evt_pending;
756
757 /* Guest state */
758 struct msr_entry *gmsr;
759 paddr_t gmsr_pa;
760 uint64_t gmsr_misc_enable;
761 uint64_t gcr2;
762 uint64_t gcr8;
763 uint64_t gxcr0;
764 uint64_t gprs[NVMM_X64_NGPR];
765 uint64_t drs[NVMM_X64_NDR];
766 uint64_t gtsc;
767 struct xsave_header gfpu __aligned(64);
768
769 /* VCPU configuration. */
770 bool cpuidpresent[VMX_NCPUIDS];
771 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
772 struct nvmm_vcpu_conf_tpr tpr;
773 };
774
775 static const struct {
776 uint64_t selector;
777 uint64_t attrib;
778 uint64_t limit;
779 uint64_t base;
780 } vmx_guest_segs[NVMM_X64_NSEG] = {
781 [NVMM_X64_SEG_ES] = {
782 VMCS_GUEST_ES_SELECTOR,
783 VMCS_GUEST_ES_ACCESS_RIGHTS,
784 VMCS_GUEST_ES_LIMIT,
785 VMCS_GUEST_ES_BASE
786 },
787 [NVMM_X64_SEG_CS] = {
788 VMCS_GUEST_CS_SELECTOR,
789 VMCS_GUEST_CS_ACCESS_RIGHTS,
790 VMCS_GUEST_CS_LIMIT,
791 VMCS_GUEST_CS_BASE
792 },
793 [NVMM_X64_SEG_SS] = {
794 VMCS_GUEST_SS_SELECTOR,
795 VMCS_GUEST_SS_ACCESS_RIGHTS,
796 VMCS_GUEST_SS_LIMIT,
797 VMCS_GUEST_SS_BASE
798 },
799 [NVMM_X64_SEG_DS] = {
800 VMCS_GUEST_DS_SELECTOR,
801 VMCS_GUEST_DS_ACCESS_RIGHTS,
802 VMCS_GUEST_DS_LIMIT,
803 VMCS_GUEST_DS_BASE
804 },
805 [NVMM_X64_SEG_FS] = {
806 VMCS_GUEST_FS_SELECTOR,
807 VMCS_GUEST_FS_ACCESS_RIGHTS,
808 VMCS_GUEST_FS_LIMIT,
809 VMCS_GUEST_FS_BASE
810 },
811 [NVMM_X64_SEG_GS] = {
812 VMCS_GUEST_GS_SELECTOR,
813 VMCS_GUEST_GS_ACCESS_RIGHTS,
814 VMCS_GUEST_GS_LIMIT,
815 VMCS_GUEST_GS_BASE
816 },
817 [NVMM_X64_SEG_GDT] = {
818 0, /* doesn't exist */
819 0, /* doesn't exist */
820 VMCS_GUEST_GDTR_LIMIT,
821 VMCS_GUEST_GDTR_BASE
822 },
823 [NVMM_X64_SEG_IDT] = {
824 0, /* doesn't exist */
825 0, /* doesn't exist */
826 VMCS_GUEST_IDTR_LIMIT,
827 VMCS_GUEST_IDTR_BASE
828 },
829 [NVMM_X64_SEG_LDT] = {
830 VMCS_GUEST_LDTR_SELECTOR,
831 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
832 VMCS_GUEST_LDTR_LIMIT,
833 VMCS_GUEST_LDTR_BASE
834 },
835 [NVMM_X64_SEG_TR] = {
836 VMCS_GUEST_TR_SELECTOR,
837 VMCS_GUEST_TR_ACCESS_RIGHTS,
838 VMCS_GUEST_TR_LIMIT,
839 VMCS_GUEST_TR_BASE
840 }
841 };
842
843 /* -------------------------------------------------------------------------- */
844
845 static uint64_t
846 vmx_get_revision(void)
847 {
848 uint64_t msr;
849
850 msr = rdmsr(MSR_IA32_VMX_BASIC);
851 msr &= IA32_VMX_BASIC_IDENT;
852
853 return msr;
854 }
855
856 static void
857 vmx_vmclear_ipi(void *arg1, void *arg2)
858 {
859 paddr_t vmcs_pa = (paddr_t)arg1;
860 vmx_vmclear(&vmcs_pa);
861 }
862
863 static void
864 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
865 {
866 uint64_t xc;
867 int bound;
868
869 KASSERT(kpreempt_disabled());
870
871 bound = curlwp_bind();
872 kpreempt_enable();
873
874 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
875 xc_wait(xc);
876
877 kpreempt_disable();
878 curlwp_bindx(bound);
879 }
880
881 static void
882 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
883 {
884 struct vmx_cpudata *cpudata = vcpu->cpudata;
885 struct cpu_info *vmcs_ci;
886
887 cpudata->vmcs_refcnt++;
888 if (cpudata->vmcs_refcnt > 1) {
889 KASSERT(kpreempt_disabled());
890 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
891 return;
892 }
893
894 vmcs_ci = cpudata->vmcs_ci;
895 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
896
897 kpreempt_disable();
898
899 if (vmcs_ci == NULL) {
900 /* This VMCS is loaded for the first time. */
901 vmx_vmclear(&cpudata->vmcs_pa);
902 cpudata->vmcs_launched = false;
903 } else if (vmcs_ci != curcpu()) {
904 /* This VMCS is active on a remote CPU. */
905 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
906 cpudata->vmcs_launched = false;
907 } else {
908 /* This VMCS is active on curcpu, nothing to do. */
909 }
910
911 vmx_vmptrld(&cpudata->vmcs_pa);
912 }
913
914 static void
915 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
916 {
917 struct vmx_cpudata *cpudata = vcpu->cpudata;
918
919 KASSERT(kpreempt_disabled());
920 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
921 KASSERT(cpudata->vmcs_refcnt > 0);
922 cpudata->vmcs_refcnt--;
923
924 if (cpudata->vmcs_refcnt > 0) {
925 return;
926 }
927
928 cpudata->vmcs_ci = curcpu();
929 kpreempt_enable();
930 }
931
932 static void
933 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
934 {
935 struct vmx_cpudata *cpudata = vcpu->cpudata;
936
937 KASSERT(kpreempt_disabled());
938 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
939 KASSERT(cpudata->vmcs_refcnt == 1);
940 cpudata->vmcs_refcnt--;
941
942 vmx_vmclear(&cpudata->vmcs_pa);
943 kpreempt_enable();
944 }
945
946 /* -------------------------------------------------------------------------- */
947
948 static void
949 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
950 {
951 struct vmx_cpudata *cpudata = vcpu->cpudata;
952 uint64_t ctls1;
953
954 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
955
956 if (nmi) {
957 // XXX INT_STATE_NMI?
958 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
959 cpudata->nmi_window_exit = true;
960 } else {
961 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
962 cpudata->int_window_exit = true;
963 }
964
965 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
966 }
967
968 static void
969 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
970 {
971 struct vmx_cpudata *cpudata = vcpu->cpudata;
972 uint64_t ctls1;
973
974 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
975
976 if (nmi) {
977 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
978 cpudata->nmi_window_exit = false;
979 } else {
980 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
981 cpudata->int_window_exit = false;
982 }
983
984 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
985 }
986
987 static inline int
988 vmx_event_has_error(uint8_t vector)
989 {
990 switch (vector) {
991 case 8: /* #DF */
992 case 10: /* #TS */
993 case 11: /* #NP */
994 case 12: /* #SS */
995 case 13: /* #GP */
996 case 14: /* #PF */
997 case 17: /* #AC */
998 case 30: /* #SX */
999 return 1;
1000 default:
1001 return 0;
1002 }
1003 }
1004
1005 static int
1006 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1007 {
1008 struct nvmm_comm_page *comm = vcpu->comm;
1009 struct vmx_cpudata *cpudata = vcpu->cpudata;
1010 int type = 0, err = 0, ret = EINVAL;
1011 u_int evtype;
1012 uint8_t vector;
1013 uint64_t info, error;
1014
1015 evtype = comm->event.type;
1016 vector = comm->event.vector;
1017 error = comm->event.u.excp.error;
1018 __insn_barrier();
1019
1020 vmx_vmcs_enter(vcpu);
1021
1022 switch (evtype) {
1023 case NVMM_VCPU_EVENT_EXCP:
1024 if (vector == 2 || vector >= 32)
1025 goto out;
1026 if (vector == 3 || vector == 0)
1027 goto out;
1028 type = INTR_TYPE_HW_EXC;
1029 err = vmx_event_has_error(vector);
1030 break;
1031 case NVMM_VCPU_EVENT_INTR:
1032 type = INTR_TYPE_EXT_INT;
1033 if (vector == 2) {
1034 type = INTR_TYPE_NMI;
1035 vmx_event_waitexit_enable(vcpu, true);
1036 }
1037 err = 0;
1038 break;
1039 default:
1040 goto out;
1041 }
1042
1043 info =
1044 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1045 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1046 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1047 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1048 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1049 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1050
1051 cpudata->evt_pending = true;
1052 ret = 0;
1053
1054 out:
1055 vmx_vmcs_leave(vcpu);
1056 return ret;
1057 }
1058
1059 static void
1060 vmx_inject_ud(struct nvmm_cpu *vcpu)
1061 {
1062 struct nvmm_comm_page *comm = vcpu->comm;
1063 int ret __diagused;
1064
1065 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1066 comm->event.vector = 6;
1067 comm->event.u.excp.error = 0;
1068
1069 ret = vmx_vcpu_inject(vcpu);
1070 KASSERT(ret == 0);
1071 }
1072
1073 static void
1074 vmx_inject_gp(struct nvmm_cpu *vcpu)
1075 {
1076 struct nvmm_comm_page *comm = vcpu->comm;
1077 int ret __diagused;
1078
1079 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1080 comm->event.vector = 13;
1081 comm->event.u.excp.error = 0;
1082
1083 ret = vmx_vcpu_inject(vcpu);
1084 KASSERT(ret == 0);
1085 }
1086
1087 static inline int
1088 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1089 {
1090 if (__predict_true(!vcpu->comm->event_commit)) {
1091 return 0;
1092 }
1093 vcpu->comm->event_commit = false;
1094 return vmx_vcpu_inject(vcpu);
1095 }
1096
1097 static inline void
1098 vmx_inkernel_advance(void)
1099 {
1100 uint64_t rip, inslen, intstate;
1101
1102 /*
1103 * Maybe we should also apply single-stepping and debug exceptions.
1104 * Matters for guest-ring3, because it can execute 'cpuid' under a
1105 * debugger.
1106 */
1107 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1108 rip = vmx_vmread(VMCS_GUEST_RIP);
1109 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1110 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1111 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1112 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1113 }
1114
1115 static void
1116 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1117 {
1118 exit->u.inv.hwcode = code;
1119 exit->reason = NVMM_VCPU_EXIT_INVALID;
1120 }
1121
1122 static void
1123 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1124 struct nvmm_vcpu_exit *exit)
1125 {
1126 uint64_t qual;
1127
1128 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1129
1130 if ((qual & INTR_INFO_VALID) == 0) {
1131 goto error;
1132 }
1133 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1134 goto error;
1135 }
1136
1137 exit->reason = NVMM_VCPU_EXIT_NONE;
1138 return;
1139
1140 error:
1141 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1142 }
1143
1144 #define VMX_CPUID_MAX_BASIC 0x16
1145 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1146 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1147 static uint32_t vmx_cpuid_max_basic __read_mostly;
1148
1149 static void
1150 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1151 {
1152 u_int descs[4];
1153
1154 x86_cpuid2(eax, ecx, descs);
1155 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1156 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1157 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1158 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1159 }
1160
1161 static void
1162 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1163 uint64_t eax, uint64_t ecx)
1164 {
1165 struct vmx_cpudata *cpudata = vcpu->cpudata;
1166 unsigned int ncpus;
1167 uint64_t cr4;
1168
1169 if (eax < 0x40000000) {
1170 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1171 eax = vmx_cpuid_max_basic;
1172 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1173 }
1174 } else if (eax < 0x80000000) {
1175 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1176 eax = vmx_cpuid_max_basic;
1177 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1178 }
1179 }
1180
1181 switch (eax) {
1182 case 0x00000000:
1183 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1184 break;
1185 case 0x00000001:
1186 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1187
1188 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1189 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1190 CPUID_LOCAL_APIC_ID);
1191
1192 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1193 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1194 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1195 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1196 }
1197
1198 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1199
1200 /* CPUID2_OSXSAVE depends on CR4. */
1201 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1202 if (!(cr4 & CR4_OSXSAVE)) {
1203 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1204 }
1205 break;
1206 case 0x00000002:
1207 break;
1208 case 0x00000003:
1209 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1210 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1211 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1212 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1213 break;
1214 case 0x00000004: /* Deterministic Cache Parameters */
1215 break; /* TODO? */
1216 case 0x00000005: /* MONITOR/MWAIT */
1217 case 0x00000006: /* Thermal and Power Management */
1218 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1219 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1220 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1221 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1222 break;
1223 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1224 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1225 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1226 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1227 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1228 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1229 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1230 }
1231 break;
1232 case 0x00000008: /* Empty */
1233 case 0x00000009: /* Direct Cache Access Information */
1234 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1235 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1236 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1237 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1238 break;
1239 case 0x0000000A: /* Architectural Performance Monitoring */
1240 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1241 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1242 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1243 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1244 break;
1245 case 0x0000000B: /* Extended Topology Enumeration */
1246 switch (ecx) {
1247 case 0: /* Threads */
1248 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1249 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1250 cpudata->gprs[NVMM_X64_GPR_RCX] =
1251 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1252 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1253 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1254 break;
1255 case 1: /* Cores */
1256 ncpus = atomic_load_relaxed(&mach->ncpus);
1257 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1258 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1259 cpudata->gprs[NVMM_X64_GPR_RCX] =
1260 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1261 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1262 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1263 break;
1264 default:
1265 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1266 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1267 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1268 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1269 break;
1270 }
1271 break;
1272 case 0x0000000C: /* Empty */
1273 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1274 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1275 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1276 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1277 break;
1278 case 0x0000000D: /* Processor Extended State Enumeration */
1279 if (vmx_xcr0_mask == 0) {
1280 break;
1281 }
1282 switch (ecx) {
1283 case 0:
1284 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1285 if (cpudata->gxcr0 & XCR0_SSE) {
1286 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1287 } else {
1288 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1289 }
1290 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1291 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1292 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1293 break;
1294 case 1:
1295 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1296 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1297 CPUID_PES1_XGETBV);
1298 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1299 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1300 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1301 break;
1302 default:
1303 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1304 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1305 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1306 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1307 break;
1308 }
1309 break;
1310 case 0x0000000E: /* Empty */
1311 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1312 case 0x00000010: /* Intel RDT Allocation Enumeration */
1313 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1314 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1315 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1316 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1317 break;
1318 case 0x00000011: /* Empty */
1319 case 0x00000012: /* Intel SGX Capability Enumeration */
1320 case 0x00000013: /* Empty */
1321 case 0x00000014: /* Intel Processor Trace Enumeration */
1322 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1323 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1324 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1325 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1326 break;
1327 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1328 case 0x00000016: /* Processor Frequency Information */
1329 break;
1330
1331 case 0x40000000: /* Hypervisor Information */
1332 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1333 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1334 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1335 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1336 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1337 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1338 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1339 break;
1340
1341 case 0x80000001:
1342 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1343 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1344 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1345 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1346 break;
1347 case 0x80000002: /* Processor Brand String */
1348 case 0x80000003: /* Processor Brand String */
1349 case 0x80000004: /* Processor Brand String */
1350 case 0x80000005: /* Reserved Zero */
1351 case 0x80000006: /* Cache Information */
1352 case 0x80000007: /* TSC Information */
1353 case 0x80000008: /* Address Sizes */
1354 break;
1355
1356 default:
1357 break;
1358 }
1359 }
1360
1361 static void
1362 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1363 {
1364 uint64_t inslen, rip;
1365
1366 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1367 rip = vmx_vmread(VMCS_GUEST_RIP);
1368 exit->u.insn.npc = rip + inslen;
1369 exit->reason = reason;
1370 }
1371
1372 static void
1373 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1374 struct nvmm_vcpu_exit *exit)
1375 {
1376 struct vmx_cpudata *cpudata = vcpu->cpudata;
1377 struct nvmm_vcpu_conf_cpuid *cpuid;
1378 uint64_t eax, ecx;
1379 size_t i;
1380
1381 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1382 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1383 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1384 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1385
1386 for (i = 0; i < VMX_NCPUIDS; i++) {
1387 if (!cpudata->cpuidpresent[i]) {
1388 continue;
1389 }
1390 cpuid = &cpudata->cpuid[i];
1391 if (cpuid->leaf != eax) {
1392 continue;
1393 }
1394
1395 if (cpuid->exit) {
1396 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1397 return;
1398 }
1399 KASSERT(cpuid->mask);
1400
1401 /* del */
1402 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1403 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1404 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1405 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1406
1407 /* set */
1408 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1409 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1410 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1411 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1412
1413 break;
1414 }
1415
1416 vmx_inkernel_advance();
1417 exit->reason = NVMM_VCPU_EXIT_NONE;
1418 }
1419
1420 static void
1421 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1422 struct nvmm_vcpu_exit *exit)
1423 {
1424 struct vmx_cpudata *cpudata = vcpu->cpudata;
1425 uint64_t rflags;
1426
1427 if (cpudata->int_window_exit) {
1428 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1429 if (rflags & PSL_I) {
1430 vmx_event_waitexit_disable(vcpu, false);
1431 }
1432 }
1433
1434 vmx_inkernel_advance();
1435 exit->reason = NVMM_VCPU_EXIT_HALTED;
1436 }
1437
1438 #define VMX_QUAL_CR_NUM __BITS(3,0)
1439 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1440 #define CR_TYPE_WRITE 0
1441 #define CR_TYPE_READ 1
1442 #define CR_TYPE_CLTS 2
1443 #define CR_TYPE_LMSW 3
1444 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1445 #define VMX_QUAL_CR_GPR __BITS(11,8)
1446 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1447
1448 static inline int
1449 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1450 {
1451 /* Bits set to 1 in fixed0 are fixed to 1. */
1452 if ((crval & fixed0) != fixed0) {
1453 return -1;
1454 }
1455 /* Bits set to 0 in fixed1 are fixed to 0. */
1456 if (crval & ~fixed1) {
1457 return -1;
1458 }
1459 return 0;
1460 }
1461
1462 static int
1463 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1464 uint64_t qual)
1465 {
1466 struct vmx_cpudata *cpudata = vcpu->cpudata;
1467 uint64_t type, gpr, cr0;
1468 uint64_t efer, ctls1;
1469
1470 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1471 if (type != CR_TYPE_WRITE) {
1472 return -1;
1473 }
1474
1475 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1476 KASSERT(gpr < 16);
1477
1478 if (gpr == NVMM_X64_GPR_RSP) {
1479 gpr = vmx_vmread(VMCS_GUEST_RSP);
1480 } else {
1481 gpr = cpudata->gprs[gpr];
1482 }
1483
1484 cr0 = gpr | CR0_NE | CR0_ET;
1485 cr0 &= ~(CR0_NW|CR0_CD);
1486
1487 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1488 return -1;
1489 }
1490
1491 /*
1492 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1493 * from CR3.
1494 */
1495
1496 if (cr0 & CR0_PG) {
1497 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1498 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1499 if (efer & EFER_LME) {
1500 ctls1 |= ENTRY_CTLS_LONG_MODE;
1501 efer |= EFER_LMA;
1502 } else {
1503 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1504 efer &= ~EFER_LMA;
1505 }
1506 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1507 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1508 }
1509
1510 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1511 vmx_inkernel_advance();
1512 return 0;
1513 }
1514
1515 static int
1516 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1517 uint64_t qual)
1518 {
1519 struct vmx_cpudata *cpudata = vcpu->cpudata;
1520 uint64_t type, gpr, cr4;
1521
1522 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1523 if (type != CR_TYPE_WRITE) {
1524 return -1;
1525 }
1526
1527 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1528 KASSERT(gpr < 16);
1529
1530 if (gpr == NVMM_X64_GPR_RSP) {
1531 gpr = vmx_vmread(VMCS_GUEST_RSP);
1532 } else {
1533 gpr = cpudata->gprs[gpr];
1534 }
1535
1536 cr4 = gpr | CR4_VMXE;
1537
1538 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1539 return -1;
1540 }
1541
1542 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1543 vmx_inkernel_advance();
1544 return 0;
1545 }
1546
1547 static int
1548 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1549 uint64_t qual, struct nvmm_vcpu_exit *exit)
1550 {
1551 struct vmx_cpudata *cpudata = vcpu->cpudata;
1552 uint64_t type, gpr;
1553 bool write;
1554
1555 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1556 if (type == CR_TYPE_WRITE) {
1557 write = true;
1558 } else if (type == CR_TYPE_READ) {
1559 write = false;
1560 } else {
1561 return -1;
1562 }
1563
1564 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1565 KASSERT(gpr < 16);
1566
1567 if (write) {
1568 if (gpr == NVMM_X64_GPR_RSP) {
1569 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1570 } else {
1571 cpudata->gcr8 = cpudata->gprs[gpr];
1572 }
1573 if (cpudata->tpr.exit_changed) {
1574 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1575 }
1576 } else {
1577 if (gpr == NVMM_X64_GPR_RSP) {
1578 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1579 } else {
1580 cpudata->gprs[gpr] = cpudata->gcr8;
1581 }
1582 }
1583
1584 vmx_inkernel_advance();
1585 return 0;
1586 }
1587
1588 static void
1589 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1590 struct nvmm_vcpu_exit *exit)
1591 {
1592 uint64_t qual;
1593 int ret;
1594
1595 exit->reason = NVMM_VCPU_EXIT_NONE;
1596
1597 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1598
1599 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1600 case 0:
1601 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1602 break;
1603 case 4:
1604 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1605 break;
1606 case 8:
1607 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1608 break;
1609 default:
1610 ret = -1;
1611 break;
1612 }
1613
1614 if (ret == -1) {
1615 vmx_inject_gp(vcpu);
1616 }
1617 }
1618
1619 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1620 #define IO_SIZE_8 0
1621 #define IO_SIZE_16 1
1622 #define IO_SIZE_32 3
1623 #define VMX_QUAL_IO_IN __BIT(3)
1624 #define VMX_QUAL_IO_STR __BIT(4)
1625 #define VMX_QUAL_IO_REP __BIT(5)
1626 #define VMX_QUAL_IO_DX __BIT(6)
1627 #define VMX_QUAL_IO_PORT __BITS(31,16)
1628
1629 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1630 #define IO_ADRSIZE_16 0
1631 #define IO_ADRSIZE_32 1
1632 #define IO_ADRSIZE_64 2
1633 #define VMX_INFO_IO_SEG __BITS(17,15)
1634
1635 static void
1636 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1637 struct nvmm_vcpu_exit *exit)
1638 {
1639 uint64_t qual, info, inslen, rip;
1640
1641 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1642 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1643
1644 exit->reason = NVMM_VCPU_EXIT_IO;
1645
1646 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1647 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1648
1649 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1650 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1651
1652 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1653 exit->u.io.address_size = 8;
1654 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1655 exit->u.io.address_size = 4;
1656 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1657 exit->u.io.address_size = 2;
1658 }
1659
1660 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1661 exit->u.io.operand_size = 4;
1662 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1663 exit->u.io.operand_size = 2;
1664 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1665 exit->u.io.operand_size = 1;
1666 }
1667
1668 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1669 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1670
1671 if (exit->u.io.in && exit->u.io.str) {
1672 exit->u.io.seg = NVMM_X64_SEG_ES;
1673 }
1674
1675 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1676 rip = vmx_vmread(VMCS_GUEST_RIP);
1677 exit->u.io.npc = rip + inslen;
1678
1679 vmx_vcpu_state_provide(vcpu,
1680 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1681 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1682 }
1683
1684 static const uint64_t msr_ignore_list[] = {
1685 MSR_BIOS_SIGN,
1686 MSR_IA32_PLATFORM_ID
1687 };
1688
1689 static bool
1690 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1691 struct nvmm_vcpu_exit *exit)
1692 {
1693 struct vmx_cpudata *cpudata = vcpu->cpudata;
1694 uint64_t val;
1695 size_t i;
1696
1697 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1698 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1699 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1700 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1701 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1702 goto handled;
1703 }
1704 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1705 val = cpudata->gmsr_misc_enable;
1706 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1707 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1708 goto handled;
1709 }
1710 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1711 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1712 continue;
1713 val = 0;
1714 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1715 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1716 goto handled;
1717 }
1718 } else {
1719 if (exit->u.wrmsr.msr == MSR_TSC) {
1720 cpudata->gtsc = exit->u.wrmsr.val;
1721 cpudata->gtsc_want_update = true;
1722 goto handled;
1723 }
1724 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1725 val = exit->u.wrmsr.val;
1726 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1727 goto error;
1728 }
1729 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1730 goto handled;
1731 }
1732 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1733 /* Don't care. */
1734 goto handled;
1735 }
1736 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1737 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1738 continue;
1739 goto handled;
1740 }
1741 }
1742
1743 return false;
1744
1745 handled:
1746 vmx_inkernel_advance();
1747 return true;
1748
1749 error:
1750 vmx_inject_gp(vcpu);
1751 return true;
1752 }
1753
1754 static void
1755 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1756 struct nvmm_vcpu_exit *exit)
1757 {
1758 struct vmx_cpudata *cpudata = vcpu->cpudata;
1759 uint64_t inslen, rip;
1760
1761 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1762 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1763
1764 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1765 exit->reason = NVMM_VCPU_EXIT_NONE;
1766 return;
1767 }
1768
1769 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1770 rip = vmx_vmread(VMCS_GUEST_RIP);
1771 exit->u.rdmsr.npc = rip + inslen;
1772
1773 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1774 }
1775
1776 static void
1777 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1778 struct nvmm_vcpu_exit *exit)
1779 {
1780 struct vmx_cpudata *cpudata = vcpu->cpudata;
1781 uint64_t rdx, rax, inslen, rip;
1782
1783 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1784 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1785
1786 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1787 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1788 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1789
1790 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1791 exit->reason = NVMM_VCPU_EXIT_NONE;
1792 return;
1793 }
1794
1795 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1796 rip = vmx_vmread(VMCS_GUEST_RIP);
1797 exit->u.wrmsr.npc = rip + inslen;
1798
1799 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1800 }
1801
1802 static void
1803 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1804 struct nvmm_vcpu_exit *exit)
1805 {
1806 struct vmx_cpudata *cpudata = vcpu->cpudata;
1807 uint64_t val;
1808
1809 exit->reason = NVMM_VCPU_EXIT_NONE;
1810
1811 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1812 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1813
1814 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1815 goto error;
1816 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1817 goto error;
1818 } else if (__predict_false((val & XCR0_X87) == 0)) {
1819 goto error;
1820 }
1821
1822 cpudata->gxcr0 = val;
1823 if (vmx_xcr0_mask != 0) {
1824 wrxcr(0, cpudata->gxcr0);
1825 }
1826
1827 vmx_inkernel_advance();
1828 return;
1829
1830 error:
1831 vmx_inject_gp(vcpu);
1832 }
1833
1834 #define VMX_EPT_VIOLATION_READ __BIT(0)
1835 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1836 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1837
1838 static void
1839 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1840 struct nvmm_vcpu_exit *exit)
1841 {
1842 uint64_t perm;
1843 gpaddr_t gpa;
1844
1845 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1846
1847 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1848 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1849 if (perm & VMX_EPT_VIOLATION_WRITE)
1850 exit->u.mem.prot = PROT_WRITE;
1851 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1852 exit->u.mem.prot = PROT_EXEC;
1853 else
1854 exit->u.mem.prot = PROT_READ;
1855 exit->u.mem.gpa = gpa;
1856 exit->u.mem.inst_len = 0;
1857
1858 vmx_vcpu_state_provide(vcpu,
1859 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1860 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1861 }
1862
1863 /* -------------------------------------------------------------------------- */
1864
1865 static void
1866 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1867 {
1868 struct vmx_cpudata *cpudata = vcpu->cpudata;
1869
1870 fpu_kern_enter();
1871 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1872
1873 if (vmx_xcr0_mask != 0) {
1874 cpudata->hxcr0 = rdxcr(0);
1875 wrxcr(0, cpudata->gxcr0);
1876 }
1877 }
1878
1879 static void
1880 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1881 {
1882 struct vmx_cpudata *cpudata = vcpu->cpudata;
1883
1884 if (vmx_xcr0_mask != 0) {
1885 cpudata->gxcr0 = rdxcr(0);
1886 wrxcr(0, cpudata->hxcr0);
1887 }
1888
1889 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1890 fpu_kern_leave();
1891 }
1892
1893 static void
1894 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1895 {
1896 struct vmx_cpudata *cpudata = vcpu->cpudata;
1897
1898 x86_dbregs_save(curlwp);
1899
1900 ldr7(0);
1901
1902 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1903 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1904 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1905 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1906 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1907 }
1908
1909 static void
1910 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1911 {
1912 struct vmx_cpudata *cpudata = vcpu->cpudata;
1913
1914 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1915 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1916 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1917 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1918 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1919
1920 x86_dbregs_restore(curlwp);
1921 }
1922
1923 static void
1924 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1925 {
1926 struct vmx_cpudata *cpudata = vcpu->cpudata;
1927
1928 /* This gets restored automatically by the CPU. */
1929 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
1930 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1931 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1932 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1933
1934 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1935 }
1936
1937 static void
1938 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1939 {
1940 struct vmx_cpudata *cpudata = vcpu->cpudata;
1941
1942 wrmsr(MSR_STAR, cpudata->star);
1943 wrmsr(MSR_LSTAR, cpudata->lstar);
1944 wrmsr(MSR_CSTAR, cpudata->cstar);
1945 wrmsr(MSR_SFMASK, cpudata->sfmask);
1946 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1947 }
1948
1949 /* -------------------------------------------------------------------------- */
1950
1951 #define VMX_INVVPID_ADDRESS 0
1952 #define VMX_INVVPID_CONTEXT 1
1953 #define VMX_INVVPID_ALL 2
1954 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1955
1956 #define VMX_INVEPT_CONTEXT 1
1957 #define VMX_INVEPT_ALL 2
1958
1959 static inline void
1960 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1961 {
1962 struct vmx_cpudata *cpudata = vcpu->cpudata;
1963
1964 if (vcpu->hcpu_last != hcpu) {
1965 cpudata->gtlb_want_flush = true;
1966 }
1967 }
1968
1969 static inline void
1970 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1971 {
1972 struct vmx_cpudata *cpudata = vcpu->cpudata;
1973 struct ept_desc ept_desc;
1974
1975 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1976 return;
1977 }
1978
1979 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1980 ept_desc.mbz = 0;
1981 vmx_invept(vmx_ept_flush_op, &ept_desc);
1982 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1983 }
1984
1985 static inline uint64_t
1986 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1987 {
1988 struct ept_desc ept_desc;
1989 uint64_t machgen;
1990
1991 machgen = machdata->mach_htlb_gen;
1992 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1993 return machgen;
1994 }
1995
1996 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1997
1998 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1999 ept_desc.mbz = 0;
2000 vmx_invept(vmx_ept_flush_op, &ept_desc);
2001
2002 return machgen;
2003 }
2004
2005 static inline void
2006 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2007 {
2008 cpudata->vcpu_htlb_gen = machgen;
2009 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2010 }
2011
2012 static inline void
2013 vmx_exit_evt(struct vmx_cpudata *cpudata)
2014 {
2015 uint64_t info, err, inslen;
2016
2017 cpudata->evt_pending = false;
2018
2019 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2020 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2021 return;
2022 }
2023 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2024
2025 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2026 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2027
2028 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2029 case INTR_TYPE_SW_INT:
2030 case INTR_TYPE_PRIV_SW_EXC:
2031 case INTR_TYPE_SW_EXC:
2032 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2033 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2034 }
2035
2036 cpudata->evt_pending = true;
2037 }
2038
2039 static int
2040 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2041 struct nvmm_vcpu_exit *exit)
2042 {
2043 struct nvmm_comm_page *comm = vcpu->comm;
2044 struct vmx_machdata *machdata = mach->machdata;
2045 struct vmx_cpudata *cpudata = vcpu->cpudata;
2046 struct vpid_desc vpid_desc;
2047 struct cpu_info *ci;
2048 uint64_t exitcode;
2049 uint64_t intstate;
2050 uint64_t machgen;
2051 int hcpu, ret;
2052 bool launched;
2053
2054 vmx_vmcs_enter(vcpu);
2055
2056 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2057 vmx_vmcs_leave(vcpu);
2058 return EINVAL;
2059 }
2060 vmx_vcpu_state_commit(vcpu);
2061 comm->state_cached = 0;
2062
2063 ci = curcpu();
2064 hcpu = cpu_number();
2065 launched = cpudata->vmcs_launched;
2066
2067 vmx_gtlb_catchup(vcpu, hcpu);
2068 vmx_htlb_catchup(vcpu, hcpu);
2069
2070 if (vcpu->hcpu_last != hcpu) {
2071 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2072 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2073 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2074 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2075 cpudata->gtsc_want_update = true;
2076 vcpu->hcpu_last = hcpu;
2077 }
2078
2079 vmx_vcpu_guest_dbregs_enter(vcpu);
2080 vmx_vcpu_guest_misc_enter(vcpu);
2081 vmx_vcpu_guest_fpu_enter(vcpu);
2082
2083 while (1) {
2084 if (cpudata->gtlb_want_flush) {
2085 vpid_desc.vpid = cpudata->asid;
2086 vpid_desc.addr = 0;
2087 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2088 cpudata->gtlb_want_flush = false;
2089 }
2090
2091 if (__predict_false(cpudata->gtsc_want_update)) {
2092 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2093 cpudata->gtsc_want_update = false;
2094 }
2095
2096 vmx_cli();
2097 machgen = vmx_htlb_flush(machdata, cpudata);
2098 lcr2(cpudata->gcr2);
2099 if (launched) {
2100 ret = vmx_vmresume(cpudata->gprs);
2101 } else {
2102 ret = vmx_vmlaunch(cpudata->gprs);
2103 }
2104 cpudata->gcr2 = rcr2();
2105 vmx_htlb_flush_ack(cpudata, machgen);
2106 vmx_sti();
2107
2108 if (__predict_false(ret != 0)) {
2109 vmx_exit_invalid(exit, -1);
2110 break;
2111 }
2112 vmx_exit_evt(cpudata);
2113
2114 launched = true;
2115
2116 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2117 exitcode &= __BITS(15,0);
2118
2119 switch (exitcode) {
2120 case VMCS_EXITCODE_EXC_NMI:
2121 vmx_exit_exc_nmi(mach, vcpu, exit);
2122 break;
2123 case VMCS_EXITCODE_EXT_INT:
2124 exit->reason = NVMM_VCPU_EXIT_NONE;
2125 break;
2126 case VMCS_EXITCODE_CPUID:
2127 vmx_exit_cpuid(mach, vcpu, exit);
2128 break;
2129 case VMCS_EXITCODE_HLT:
2130 vmx_exit_hlt(mach, vcpu, exit);
2131 break;
2132 case VMCS_EXITCODE_CR:
2133 vmx_exit_cr(mach, vcpu, exit);
2134 break;
2135 case VMCS_EXITCODE_IO:
2136 vmx_exit_io(mach, vcpu, exit);
2137 break;
2138 case VMCS_EXITCODE_RDMSR:
2139 vmx_exit_rdmsr(mach, vcpu, exit);
2140 break;
2141 case VMCS_EXITCODE_WRMSR:
2142 vmx_exit_wrmsr(mach, vcpu, exit);
2143 break;
2144 case VMCS_EXITCODE_SHUTDOWN:
2145 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2146 break;
2147 case VMCS_EXITCODE_MONITOR:
2148 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2149 break;
2150 case VMCS_EXITCODE_MWAIT:
2151 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2152 break;
2153 case VMCS_EXITCODE_XSETBV:
2154 vmx_exit_xsetbv(mach, vcpu, exit);
2155 break;
2156 case VMCS_EXITCODE_RDPMC:
2157 case VMCS_EXITCODE_RDTSCP:
2158 case VMCS_EXITCODE_INVVPID:
2159 case VMCS_EXITCODE_INVEPT:
2160 case VMCS_EXITCODE_VMCALL:
2161 case VMCS_EXITCODE_VMCLEAR:
2162 case VMCS_EXITCODE_VMLAUNCH:
2163 case VMCS_EXITCODE_VMPTRLD:
2164 case VMCS_EXITCODE_VMPTRST:
2165 case VMCS_EXITCODE_VMREAD:
2166 case VMCS_EXITCODE_VMRESUME:
2167 case VMCS_EXITCODE_VMWRITE:
2168 case VMCS_EXITCODE_VMXOFF:
2169 case VMCS_EXITCODE_VMXON:
2170 vmx_inject_ud(vcpu);
2171 exit->reason = NVMM_VCPU_EXIT_NONE;
2172 break;
2173 case VMCS_EXITCODE_EPT_VIOLATION:
2174 vmx_exit_epf(mach, vcpu, exit);
2175 break;
2176 case VMCS_EXITCODE_INT_WINDOW:
2177 vmx_event_waitexit_disable(vcpu, false);
2178 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2179 break;
2180 case VMCS_EXITCODE_NMI_WINDOW:
2181 vmx_event_waitexit_disable(vcpu, true);
2182 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2183 break;
2184 default:
2185 vmx_exit_invalid(exit, exitcode);
2186 break;
2187 }
2188
2189 /* If no reason to return to userland, keep rolling. */
2190 if (nvmm_return_needed()) {
2191 break;
2192 }
2193 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2194 break;
2195 }
2196 }
2197
2198 cpudata->vmcs_launched = launched;
2199
2200 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2201
2202 vmx_vcpu_guest_fpu_leave(vcpu);
2203 vmx_vcpu_guest_misc_leave(vcpu);
2204 vmx_vcpu_guest_dbregs_leave(vcpu);
2205
2206 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2207 exit->exitstate.cr8 = cpudata->gcr8;
2208 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2209 exit->exitstate.int_shadow =
2210 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2211 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2212 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2213 exit->exitstate.evt_pending = cpudata->evt_pending;
2214
2215 vmx_vmcs_leave(vcpu);
2216
2217 return 0;
2218 }
2219
2220 /* -------------------------------------------------------------------------- */
2221
2222 static int
2223 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2224 {
2225 struct pglist pglist;
2226 paddr_t _pa;
2227 vaddr_t _va;
2228 size_t i;
2229 int ret;
2230
2231 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2232 &pglist, 1, 0);
2233 if (ret != 0)
2234 return ENOMEM;
2235 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2236 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2237 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2238 if (_va == 0)
2239 goto error;
2240
2241 for (i = 0; i < npages; i++) {
2242 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2243 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2244 }
2245 pmap_update(pmap_kernel());
2246
2247 memset((void *)_va, 0, npages * PAGE_SIZE);
2248
2249 *pa = _pa;
2250 *va = _va;
2251 return 0;
2252
2253 error:
2254 for (i = 0; i < npages; i++) {
2255 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2256 }
2257 return ENOMEM;
2258 }
2259
2260 static void
2261 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2262 {
2263 size_t i;
2264
2265 pmap_kremove(va, npages * PAGE_SIZE);
2266 pmap_update(pmap_kernel());
2267 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2268 for (i = 0; i < npages; i++) {
2269 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2270 }
2271 }
2272
2273 /* -------------------------------------------------------------------------- */
2274
2275 static void
2276 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2277 {
2278 uint64_t byte;
2279 uint8_t bitoff;
2280
2281 if (msr < 0x00002000) {
2282 /* Range 1 */
2283 byte = ((msr - 0x00000000) / 8) + 0;
2284 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2285 /* Range 2 */
2286 byte = ((msr - 0xC0000000) / 8) + 1024;
2287 } else {
2288 panic("%s: wrong range", __func__);
2289 }
2290
2291 bitoff = (msr & 0x7);
2292
2293 if (read) {
2294 bitmap[byte] &= ~__BIT(bitoff);
2295 }
2296 if (write) {
2297 bitmap[2048 + byte] &= ~__BIT(bitoff);
2298 }
2299 }
2300
2301 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2302 #define VMX_SEG_ATTRIB_S __BIT(4)
2303 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2304 #define VMX_SEG_ATTRIB_P __BIT(7)
2305 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2306 #define VMX_SEG_ATTRIB_L __BIT(13)
2307 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2308 #define VMX_SEG_ATTRIB_G __BIT(15)
2309 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2310
2311 static void
2312 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2313 {
2314 uint64_t attrib;
2315
2316 attrib =
2317 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2318 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2319 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2320 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2321 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2322 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2323 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2324 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2325 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2326
2327 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2328 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2329 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2330 }
2331 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2332 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2333 }
2334
2335 static void
2336 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2337 {
2338 uint64_t selector = 0, attrib = 0, base, limit;
2339
2340 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2341 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2342 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2343 }
2344 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2345 base = vmx_vmread(vmx_guest_segs[idx].base);
2346
2347 segs[idx].selector = selector;
2348 segs[idx].limit = limit;
2349 segs[idx].base = base;
2350 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2351 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2352 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2353 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2354 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2355 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2356 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2357 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2358 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2359 segs[idx].attrib.p = 0;
2360 }
2361 }
2362
2363 static inline bool
2364 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2365 {
2366 uint64_t cr0, cr3, cr4, efer;
2367
2368 if (flags & NVMM_X64_STATE_CRS) {
2369 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2370 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2371 return true;
2372 }
2373 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2374 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2375 return true;
2376 }
2377 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2378 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2379 return true;
2380 }
2381 }
2382
2383 if (flags & NVMM_X64_STATE_MSRS) {
2384 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2385 if ((efer ^
2386 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2387 return true;
2388 }
2389 }
2390
2391 return false;
2392 }
2393
2394 static void
2395 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2396 {
2397 struct nvmm_comm_page *comm = vcpu->comm;
2398 const struct nvmm_x64_state *state = &comm->state;
2399 struct vmx_cpudata *cpudata = vcpu->cpudata;
2400 struct fxsave *fpustate;
2401 uint64_t ctls1, intstate;
2402 uint64_t flags;
2403
2404 flags = comm->state_wanted;
2405
2406 vmx_vmcs_enter(vcpu);
2407
2408 if (vmx_state_tlb_flush(state, flags)) {
2409 cpudata->gtlb_want_flush = true;
2410 }
2411
2412 if (flags & NVMM_X64_STATE_SEGS) {
2413 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2414 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2415 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2416 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2417 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2418 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2419 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2420 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2421 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2422 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2423 }
2424
2425 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2426 if (flags & NVMM_X64_STATE_GPRS) {
2427 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2428
2429 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2430 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2431 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2432 }
2433
2434 if (flags & NVMM_X64_STATE_CRS) {
2435 /*
2436 * CR0_NE and CR4_VMXE are mandatory.
2437 */
2438 vmx_vmwrite(VMCS_GUEST_CR0,
2439 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2440 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2441 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2442 vmx_vmwrite(VMCS_GUEST_CR4,
2443 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2444 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2445
2446 if (vmx_xcr0_mask != 0) {
2447 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2448 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2449 cpudata->gxcr0 &= vmx_xcr0_mask;
2450 cpudata->gxcr0 |= XCR0_X87;
2451 }
2452 }
2453
2454 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2455 if (flags & NVMM_X64_STATE_DRS) {
2456 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2457
2458 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2459 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2460 }
2461
2462 if (flags & NVMM_X64_STATE_MSRS) {
2463 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2464 state->msrs[NVMM_X64_MSR_STAR];
2465 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2466 state->msrs[NVMM_X64_MSR_LSTAR];
2467 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2468 state->msrs[NVMM_X64_MSR_CSTAR];
2469 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2470 state->msrs[NVMM_X64_MSR_SFMASK];
2471 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2472 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2473
2474 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2475 state->msrs[NVMM_X64_MSR_EFER]);
2476 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2477 state->msrs[NVMM_X64_MSR_PAT]);
2478 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2479 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2480 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2481 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2482 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2483 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2484
2485 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2486 cpudata->gtsc_want_update = true;
2487
2488 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2489 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2490 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2491 ctls1 |= ENTRY_CTLS_LONG_MODE;
2492 } else {
2493 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2494 }
2495 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2496 }
2497
2498 if (flags & NVMM_X64_STATE_INTR) {
2499 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2500 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2501 if (state->intr.int_shadow) {
2502 intstate |= INT_STATE_MOVSS;
2503 }
2504 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2505
2506 if (state->intr.int_window_exiting) {
2507 vmx_event_waitexit_enable(vcpu, false);
2508 } else {
2509 vmx_event_waitexit_disable(vcpu, false);
2510 }
2511
2512 if (state->intr.nmi_window_exiting) {
2513 vmx_event_waitexit_enable(vcpu, true);
2514 } else {
2515 vmx_event_waitexit_disable(vcpu, true);
2516 }
2517 }
2518
2519 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2520 if (flags & NVMM_X64_STATE_FPU) {
2521 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2522 sizeof(state->fpu));
2523
2524 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2525 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2526 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2527
2528 if (vmx_xcr0_mask != 0) {
2529 /* Reset XSTATE_BV, to force a reload. */
2530 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2531 }
2532 }
2533
2534 vmx_vmcs_leave(vcpu);
2535
2536 comm->state_wanted = 0;
2537 comm->state_cached |= flags;
2538 }
2539
2540 static void
2541 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2542 {
2543 struct nvmm_comm_page *comm = vcpu->comm;
2544 struct nvmm_x64_state *state = &comm->state;
2545 struct vmx_cpudata *cpudata = vcpu->cpudata;
2546 uint64_t intstate, flags;
2547
2548 flags = comm->state_wanted;
2549
2550 vmx_vmcs_enter(vcpu);
2551
2552 if (flags & NVMM_X64_STATE_SEGS) {
2553 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2554 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2555 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2556 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2557 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2558 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2559 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2560 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2561 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2562 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2563 }
2564
2565 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2566 if (flags & NVMM_X64_STATE_GPRS) {
2567 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2568
2569 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2570 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2571 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2572 }
2573
2574 if (flags & NVMM_X64_STATE_CRS) {
2575 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2576 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2577 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2578 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2579 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2580 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2581
2582 /* Hide VMXE. */
2583 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2584 }
2585
2586 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2587 if (flags & NVMM_X64_STATE_DRS) {
2588 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2589
2590 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2591 }
2592
2593 if (flags & NVMM_X64_STATE_MSRS) {
2594 state->msrs[NVMM_X64_MSR_STAR] =
2595 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2596 state->msrs[NVMM_X64_MSR_LSTAR] =
2597 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2598 state->msrs[NVMM_X64_MSR_CSTAR] =
2599 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2600 state->msrs[NVMM_X64_MSR_SFMASK] =
2601 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2602 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2603 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2604 state->msrs[NVMM_X64_MSR_EFER] =
2605 vmx_vmread(VMCS_GUEST_IA32_EFER);
2606 state->msrs[NVMM_X64_MSR_PAT] =
2607 vmx_vmread(VMCS_GUEST_IA32_PAT);
2608 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2609 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2610 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2611 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2612 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2613 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2614 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2615 }
2616
2617 if (flags & NVMM_X64_STATE_INTR) {
2618 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2619 state->intr.int_shadow =
2620 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2621 state->intr.int_window_exiting = cpudata->int_window_exit;
2622 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2623 state->intr.evt_pending = cpudata->evt_pending;
2624 }
2625
2626 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2627 if (flags & NVMM_X64_STATE_FPU) {
2628 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2629 sizeof(state->fpu));
2630 }
2631
2632 vmx_vmcs_leave(vcpu);
2633
2634 comm->state_wanted = 0;
2635 comm->state_cached |= flags;
2636 }
2637
2638 static void
2639 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2640 {
2641 vcpu->comm->state_wanted = flags;
2642 vmx_vcpu_getstate(vcpu);
2643 }
2644
2645 static void
2646 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2647 {
2648 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2649 vcpu->comm->state_commit = 0;
2650 vmx_vcpu_setstate(vcpu);
2651 }
2652
2653 /* -------------------------------------------------------------------------- */
2654
2655 static void
2656 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2657 {
2658 struct vmx_cpudata *cpudata = vcpu->cpudata;
2659 size_t i, oct, bit;
2660
2661 mutex_enter(&vmx_asidlock);
2662
2663 for (i = 0; i < vmx_maxasid; i++) {
2664 oct = i / 8;
2665 bit = i % 8;
2666
2667 if (vmx_asidmap[oct] & __BIT(bit)) {
2668 continue;
2669 }
2670
2671 cpudata->asid = i;
2672
2673 vmx_asidmap[oct] |= __BIT(bit);
2674 vmx_vmwrite(VMCS_VPID, i);
2675 mutex_exit(&vmx_asidlock);
2676 return;
2677 }
2678
2679 mutex_exit(&vmx_asidlock);
2680
2681 panic("%s: impossible", __func__);
2682 }
2683
2684 static void
2685 vmx_asid_free(struct nvmm_cpu *vcpu)
2686 {
2687 size_t oct, bit;
2688 uint64_t asid;
2689
2690 asid = vmx_vmread(VMCS_VPID);
2691
2692 oct = asid / 8;
2693 bit = asid % 8;
2694
2695 mutex_enter(&vmx_asidlock);
2696 vmx_asidmap[oct] &= ~__BIT(bit);
2697 mutex_exit(&vmx_asidlock);
2698 }
2699
2700 static void
2701 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2702 {
2703 struct vmx_cpudata *cpudata = vcpu->cpudata;
2704 struct vmcs *vmcs = cpudata->vmcs;
2705 struct msr_entry *gmsr = cpudata->gmsr;
2706 extern uint8_t vmx_resume_rip;
2707 uint64_t rev, eptp;
2708
2709 rev = vmx_get_revision();
2710
2711 memset(vmcs, 0, VMCS_SIZE);
2712 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2713 vmcs->abort = 0;
2714
2715 vmx_vmcs_enter(vcpu);
2716
2717 /* No link pointer. */
2718 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2719
2720 /* Install the CTLSs. */
2721 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2722 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2723 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2724 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2725 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2726
2727 /* Allow direct access to certain MSRs. */
2728 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2729 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2730 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2731 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2732 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2733 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2734 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2735 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2736 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2737 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2738 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2739 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2740 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2741 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2742 true, false);
2743 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2744
2745 /*
2746 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2747 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2748 */
2749 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2750 gmsr[VMX_MSRLIST_STAR].val = 0;
2751 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2752 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2753 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2754 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2755 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2756 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2757 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2758 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2759 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2760 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2761 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2762 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2763 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2764 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2765
2766 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2767 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2768 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2769
2770 /* Force CR4_VMXE to zero. */
2771 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2772
2773 /* Set the Host state for resuming. */
2774 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2775 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2776 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2777 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2778 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2779 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2780 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2781 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2782 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2783 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2784 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2785 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2786 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2787
2788 /* Generate ASID. */
2789 vmx_asid_alloc(vcpu);
2790
2791 /* Enable Extended Paging, 4-Level. */
2792 eptp =
2793 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2794 __SHIFTIN(4-1, EPTP_WALKLEN) |
2795 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2796 mach->vm->vm_map.pmap->pm_pdirpa[0];
2797 vmx_vmwrite(VMCS_EPTP, eptp);
2798
2799 /* Init IA32_MISC_ENABLE. */
2800 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2801 cpudata->gmsr_misc_enable &=
2802 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2803 cpudata->gmsr_misc_enable |=
2804 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2805
2806 /* Init XSAVE header. */
2807 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2808 cpudata->gfpu.xsh_xcomp_bv = 0;
2809
2810 /* These MSRs are static. */
2811 cpudata->star = rdmsr(MSR_STAR);
2812 cpudata->lstar = rdmsr(MSR_LSTAR);
2813 cpudata->cstar = rdmsr(MSR_CSTAR);
2814 cpudata->sfmask = rdmsr(MSR_SFMASK);
2815
2816 /* Install the RESET state. */
2817 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2818 sizeof(nvmm_x86_reset_state));
2819 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2820 vcpu->comm->state_cached = 0;
2821 vmx_vcpu_setstate(vcpu);
2822
2823 vmx_vmcs_leave(vcpu);
2824 }
2825
2826 static int
2827 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2828 {
2829 struct vmx_cpudata *cpudata;
2830 int error;
2831
2832 /* Allocate the VMX cpudata. */
2833 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2834 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2835 UVM_KMF_WIRED|UVM_KMF_ZERO);
2836 vcpu->cpudata = cpudata;
2837
2838 /* VMCS */
2839 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2840 VMCS_NPAGES);
2841 if (error)
2842 goto error;
2843
2844 /* MSR Bitmap */
2845 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2846 MSRBM_NPAGES);
2847 if (error)
2848 goto error;
2849
2850 /* Guest MSR List */
2851 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2852 if (error)
2853 goto error;
2854
2855 kcpuset_create(&cpudata->htlb_want_flush, true);
2856
2857 /* Init the VCPU info. */
2858 vmx_vcpu_init(mach, vcpu);
2859
2860 return 0;
2861
2862 error:
2863 if (cpudata->vmcs_pa) {
2864 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2865 VMCS_NPAGES);
2866 }
2867 if (cpudata->msrbm_pa) {
2868 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2869 MSRBM_NPAGES);
2870 }
2871 if (cpudata->gmsr_pa) {
2872 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2873 }
2874
2875 kmem_free(cpudata, sizeof(*cpudata));
2876 return error;
2877 }
2878
2879 static void
2880 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2881 {
2882 struct vmx_cpudata *cpudata = vcpu->cpudata;
2883
2884 vmx_vmcs_enter(vcpu);
2885 vmx_asid_free(vcpu);
2886 vmx_vmcs_destroy(vcpu);
2887
2888 kcpuset_destroy(cpudata->htlb_want_flush);
2889
2890 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2891 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2892 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2893 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2894 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2895 }
2896
2897 /* -------------------------------------------------------------------------- */
2898
2899 static int
2900 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
2901 {
2902 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2903 size_t i;
2904
2905 if (__predict_false(cpuid->mask && cpuid->exit)) {
2906 return EINVAL;
2907 }
2908 if (__predict_false(cpuid->mask &&
2909 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2910 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2911 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2912 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2913 return EINVAL;
2914 }
2915
2916 /* If unset, delete, to restore the default behavior. */
2917 if (!cpuid->mask && !cpuid->exit) {
2918 for (i = 0; i < VMX_NCPUIDS; i++) {
2919 if (!cpudata->cpuidpresent[i]) {
2920 continue;
2921 }
2922 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2923 cpudata->cpuidpresent[i] = false;
2924 }
2925 }
2926 return 0;
2927 }
2928
2929 /* If already here, replace. */
2930 for (i = 0; i < VMX_NCPUIDS; i++) {
2931 if (!cpudata->cpuidpresent[i]) {
2932 continue;
2933 }
2934 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2935 memcpy(&cpudata->cpuid[i], cpuid,
2936 sizeof(struct nvmm_vcpu_conf_cpuid));
2937 return 0;
2938 }
2939 }
2940
2941 /* Not here, insert. */
2942 for (i = 0; i < VMX_NCPUIDS; i++) {
2943 if (!cpudata->cpuidpresent[i]) {
2944 cpudata->cpuidpresent[i] = true;
2945 memcpy(&cpudata->cpuid[i], cpuid,
2946 sizeof(struct nvmm_vcpu_conf_cpuid));
2947 return 0;
2948 }
2949 }
2950
2951 return ENOBUFS;
2952 }
2953
2954 static int
2955 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
2956 {
2957 struct nvmm_vcpu_conf_tpr *tpr = data;
2958
2959 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
2960 return 0;
2961 }
2962
2963 static int
2964 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2965 {
2966 struct vmx_cpudata *cpudata = vcpu->cpudata;
2967
2968 switch (op) {
2969 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2970 return vmx_vcpu_configure_cpuid(cpudata, data);
2971 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
2972 return vmx_vcpu_configure_tpr(cpudata, data);
2973 default:
2974 return EINVAL;
2975 }
2976 }
2977
2978 /* -------------------------------------------------------------------------- */
2979
2980 static void
2981 vmx_tlb_flush(struct pmap *pm)
2982 {
2983 struct nvmm_machine *mach = pm->pm_data;
2984 struct vmx_machdata *machdata = mach->machdata;
2985
2986 atomic_inc_64(&machdata->mach_htlb_gen);
2987
2988 /* Generates IPIs, which cause #VMEXITs. */
2989 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2990 }
2991
2992 static void
2993 vmx_machine_create(struct nvmm_machine *mach)
2994 {
2995 struct pmap *pmap = mach->vm->vm_map.pmap;
2996 struct vmx_machdata *machdata;
2997
2998 /* Convert to EPT. */
2999 pmap_ept_transform(pmap);
3000
3001 /* Fill in pmap info. */
3002 pmap->pm_data = (void *)mach;
3003 pmap->pm_tlb_flush = vmx_tlb_flush;
3004
3005 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3006 mach->machdata = machdata;
3007
3008 /* Start with an hTLB flush everywhere. */
3009 machdata->mach_htlb_gen = 1;
3010 }
3011
3012 static void
3013 vmx_machine_destroy(struct nvmm_machine *mach)
3014 {
3015 struct vmx_machdata *machdata = mach->machdata;
3016
3017 kmem_free(machdata, sizeof(struct vmx_machdata));
3018 }
3019
3020 static int
3021 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3022 {
3023 panic("%s: impossible", __func__);
3024 }
3025
3026 /* -------------------------------------------------------------------------- */
3027
3028 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3029 ((msrval & __BIT(32 + bitoff)) != 0)
3030 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3031 ((msrval & __BIT(bitoff)) == 0)
3032
3033 static int
3034 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3035 {
3036 uint64_t basic, val, true_val;
3037 bool has_true;
3038 size_t i;
3039
3040 basic = rdmsr(MSR_IA32_VMX_BASIC);
3041 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3042
3043 val = rdmsr(msr_ctls);
3044 if (has_true) {
3045 true_val = rdmsr(msr_true_ctls);
3046 } else {
3047 true_val = val;
3048 }
3049
3050 for (i = 0; i < 32; i++) {
3051 if (!(set_one & __BIT(i))) {
3052 continue;
3053 }
3054 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3055 return -1;
3056 }
3057 }
3058
3059 return 0;
3060 }
3061
3062 static int
3063 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3064 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3065 {
3066 uint64_t basic, val, true_val;
3067 bool one_allowed, zero_allowed, has_true;
3068 size_t i;
3069
3070 basic = rdmsr(MSR_IA32_VMX_BASIC);
3071 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3072
3073 val = rdmsr(msr_ctls);
3074 if (has_true) {
3075 true_val = rdmsr(msr_true_ctls);
3076 } else {
3077 true_val = val;
3078 }
3079
3080 for (i = 0; i < 32; i++) {
3081 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3082 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3083
3084 if (zero_allowed && !one_allowed) {
3085 if (set_one & __BIT(i))
3086 return -1;
3087 *res &= ~__BIT(i);
3088 } else if (one_allowed && !zero_allowed) {
3089 if (set_zero & __BIT(i))
3090 return -1;
3091 *res |= __BIT(i);
3092 } else {
3093 if (set_zero & __BIT(i)) {
3094 *res &= ~__BIT(i);
3095 } else if (set_one & __BIT(i)) {
3096 *res |= __BIT(i);
3097 } else if (!has_true) {
3098 *res &= ~__BIT(i);
3099 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3100 *res &= ~__BIT(i);
3101 } else if (CTLS_ONE_ALLOWED(val, i)) {
3102 *res |= __BIT(i);
3103 } else {
3104 return -1;
3105 }
3106 }
3107 }
3108
3109 return 0;
3110 }
3111
3112 static bool
3113 vmx_ident(void)
3114 {
3115 uint64_t msr;
3116 int ret;
3117
3118 if (!(cpu_feature[1] & CPUID2_VMX)) {
3119 return false;
3120 }
3121
3122 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3123 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3124 printf("NVMM: VMX disabled in BIOS\n");
3125 return false;
3126 }
3127 if ((msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3128 printf("NVMM: VMX disabled in BIOS\n");
3129 return false;
3130 }
3131
3132 msr = rdmsr(MSR_IA32_VMX_BASIC);
3133 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3134 printf("NVMM: I/O reporting not supported\n");
3135 return false;
3136 }
3137 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3138 printf("NVMM: WB memory not supported\n");
3139 return false;
3140 }
3141
3142 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3143 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3144 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3145 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3146 if (ret == -1) {
3147 printf("NVMM: CR0 requirements not satisfied\n");
3148 return false;
3149 }
3150
3151 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3152 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3153 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3154 if (ret == -1) {
3155 printf("NVMM: CR4 requirements not satisfied\n");
3156 return false;
3157 }
3158
3159 /* Init the CTLSs right now, and check for errors. */
3160 ret = vmx_init_ctls(
3161 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3162 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3163 &vmx_pinbased_ctls);
3164 if (ret == -1) {
3165 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3166 return false;
3167 }
3168 ret = vmx_init_ctls(
3169 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3170 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3171 &vmx_procbased_ctls);
3172 if (ret == -1) {
3173 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3174 return false;
3175 }
3176 ret = vmx_init_ctls(
3177 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3178 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3179 &vmx_procbased_ctls2);
3180 if (ret == -1) {
3181 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3182 return false;
3183 }
3184 ret = vmx_check_ctls(
3185 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3186 PROC_CTLS2_INVPCID_ENABLE);
3187 if (ret != -1) {
3188 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3189 }
3190 ret = vmx_init_ctls(
3191 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3192 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3193 &vmx_entry_ctls);
3194 if (ret == -1) {
3195 printf("NVMM: entry-ctls requirements not satisfied\n");
3196 return false;
3197 }
3198 ret = vmx_init_ctls(
3199 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3200 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3201 &vmx_exit_ctls);
3202 if (ret == -1) {
3203 printf("NVMM: exit-ctls requirements not satisfied\n");
3204 return false;
3205 }
3206
3207 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3208 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3209 printf("NVMM: 4-level page tree not supported\n");
3210 return false;
3211 }
3212 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3213 printf("NVMM: INVEPT not supported\n");
3214 return false;
3215 }
3216 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3217 printf("NVMM: INVVPID not supported\n");
3218 return false;
3219 }
3220 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3221 pmap_ept_has_ad = true;
3222 } else {
3223 pmap_ept_has_ad = false;
3224 }
3225 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3226 printf("NVMM: EPT UC/WB memory types not supported\n");
3227 return false;
3228 }
3229
3230 return true;
3231 }
3232
3233 static void
3234 vmx_init_asid(uint32_t maxasid)
3235 {
3236 size_t allocsz;
3237
3238 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3239
3240 vmx_maxasid = maxasid;
3241 allocsz = roundup(maxasid, 8) / 8;
3242 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3243
3244 /* ASID 0 is reserved for the host. */
3245 vmx_asidmap[0] |= __BIT(0);
3246 }
3247
3248 static void
3249 vmx_change_cpu(void *arg1, void *arg2)
3250 {
3251 struct cpu_info *ci = curcpu();
3252 bool enable = arg1 != NULL;
3253 uint64_t cr4;
3254
3255 if (!enable) {
3256 vmx_vmxoff();
3257 }
3258
3259 cr4 = rcr4();
3260 if (enable) {
3261 cr4 |= CR4_VMXE;
3262 } else {
3263 cr4 &= ~CR4_VMXE;
3264 }
3265 lcr4(cr4);
3266
3267 if (enable) {
3268 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3269 }
3270 }
3271
3272 static void
3273 vmx_init_l1tf(void)
3274 {
3275 u_int descs[4];
3276 uint64_t msr;
3277
3278 if (cpuid_level < 7) {
3279 return;
3280 }
3281
3282 x86_cpuid(7, descs);
3283
3284 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3285 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3286 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3287 /* No mitigation needed. */
3288 return;
3289 }
3290 }
3291
3292 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3293 /* Enable hardware mitigation. */
3294 vmx_msrlist_entry_nmsr += 1;
3295 }
3296 }
3297
3298 static void
3299 vmx_init(void)
3300 {
3301 CPU_INFO_ITERATOR cii;
3302 struct cpu_info *ci;
3303 uint64_t xc, msr;
3304 struct vmxon *vmxon;
3305 uint32_t revision;
3306 paddr_t pa;
3307 vaddr_t va;
3308 int error;
3309
3310 /* Init the ASID bitmap (VPID). */
3311 vmx_init_asid(VPID_MAX);
3312
3313 /* Init the XCR0 mask. */
3314 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3315
3316 /* Init the max CPUID leaves. */
3317 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3318
3319 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3320 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3321 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3322 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3323 } else {
3324 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3325 }
3326 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3327 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3328 } else {
3329 vmx_ept_flush_op = VMX_INVEPT_ALL;
3330 }
3331 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3332 vmx_eptp_type = EPTP_TYPE_WB;
3333 } else {
3334 vmx_eptp_type = EPTP_TYPE_UC;
3335 }
3336
3337 /* Init the L1TF mitigation. */
3338 vmx_init_l1tf();
3339
3340 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3341 revision = vmx_get_revision();
3342
3343 for (CPU_INFO_FOREACH(cii, ci)) {
3344 error = vmx_memalloc(&pa, &va, 1);
3345 if (error) {
3346 panic("%s: out of memory", __func__);
3347 }
3348 vmxoncpu[cpu_index(ci)].pa = pa;
3349 vmxoncpu[cpu_index(ci)].va = va;
3350
3351 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3352 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3353 }
3354
3355 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3356 xc_wait(xc);
3357 }
3358
3359 static void
3360 vmx_fini_asid(void)
3361 {
3362 size_t allocsz;
3363
3364 allocsz = roundup(vmx_maxasid, 8) / 8;
3365 kmem_free(vmx_asidmap, allocsz);
3366
3367 mutex_destroy(&vmx_asidlock);
3368 }
3369
3370 static void
3371 vmx_fini(void)
3372 {
3373 uint64_t xc;
3374 size_t i;
3375
3376 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3377 xc_wait(xc);
3378
3379 for (i = 0; i < MAXCPUS; i++) {
3380 if (vmxoncpu[i].pa != 0)
3381 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3382 }
3383
3384 vmx_fini_asid();
3385 }
3386
3387 static void
3388 vmx_capability(struct nvmm_capability *cap)
3389 {
3390 cap->arch.mach_conf_support = 0;
3391 cap->arch.vcpu_conf_support =
3392 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3393 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3394 cap->arch.xcr0_mask = vmx_xcr0_mask;
3395 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3396 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3397 }
3398
3399 const struct nvmm_impl nvmm_x86_vmx = {
3400 .name = "x86-vmx",
3401 .ident = vmx_ident,
3402 .init = vmx_init,
3403 .fini = vmx_fini,
3404 .capability = vmx_capability,
3405 .mach_conf_max = NVMM_X86_MACH_NCONF,
3406 .mach_conf_sizes = NULL,
3407 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3408 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3409 .state_size = sizeof(struct nvmm_x64_state),
3410 .machine_create = vmx_machine_create,
3411 .machine_destroy = vmx_machine_destroy,
3412 .machine_configure = vmx_machine_configure,
3413 .vcpu_create = vmx_vcpu_create,
3414 .vcpu_destroy = vmx_vcpu_destroy,
3415 .vcpu_configure = vmx_vcpu_configure,
3416 .vcpu_setstate = vmx_vcpu_setstate,
3417 .vcpu_getstate = vmx_vcpu_getstate,
3418 .vcpu_inject = vmx_vcpu_inject,
3419 .vcpu_run = vmx_vcpu_run
3420 };
3421