nvmm_x86_vmx.c revision 1.77 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.77 2020/09/05 16:30:11 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.77 2020/09/05 16:30:11 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41 #include <sys/bitops.h>
42
43 #include <uvm/uvm_extern.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int vmx_vmlaunch(uint64_t *gprs);
59 int vmx_vmresume(uint64_t *gprs);
60
61 #define vmx_vmxon(a) \
62 if (__predict_false(_vmx_vmxon(a) != 0)) { \
63 panic("%s: VMXON failed", __func__); \
64 }
65 #define vmx_vmxoff() \
66 if (__predict_false(_vmx_vmxoff() != 0)) { \
67 panic("%s: VMXOFF failed", __func__); \
68 }
69
70 struct ept_desc {
71 uint64_t eptp;
72 uint64_t mbz;
73 } __packed;
74
75 struct vpid_desc {
76 uint64_t vpid;
77 uint64_t addr;
78 } __packed;
79
80 static inline void
81 vmx_invept(uint64_t op, struct ept_desc *desc)
82 {
83 asm volatile (
84 "invept %[desc],%[op];"
85 "jz vmx_insn_failvalid;"
86 "jc vmx_insn_failinvalid;"
87 :
88 : [desc] "m" (*desc), [op] "r" (op)
89 : "memory", "cc"
90 );
91 }
92
93 static inline void
94 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
95 {
96 asm volatile (
97 "invvpid %[desc],%[op];"
98 "jz vmx_insn_failvalid;"
99 "jc vmx_insn_failinvalid;"
100 :
101 : [desc] "m" (*desc), [op] "r" (op)
102 : "memory", "cc"
103 );
104 }
105
106 static inline uint64_t
107 vmx_vmread(uint64_t field)
108 {
109 uint64_t value;
110
111 asm volatile (
112 "vmread %[field],%[value];"
113 "jz vmx_insn_failvalid;"
114 "jc vmx_insn_failinvalid;"
115 : [value] "=r" (value)
116 : [field] "r" (field)
117 : "cc"
118 );
119
120 return value;
121 }
122
123 static inline void
124 vmx_vmwrite(uint64_t field, uint64_t value)
125 {
126 asm volatile (
127 "vmwrite %[value],%[field];"
128 "jz vmx_insn_failvalid;"
129 "jc vmx_insn_failinvalid;"
130 :
131 : [field] "r" (field), [value] "r" (value)
132 : "cc"
133 );
134 }
135
136 #ifdef DIAGNOSTIC
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151 #endif
152
153 static inline void
154 vmx_vmptrld(paddr_t *pa)
155 {
156 asm volatile (
157 "vmptrld %[pa];"
158 "jz vmx_insn_failvalid;"
159 "jc vmx_insn_failinvalid;"
160 :
161 : [pa] "m" (*pa)
162 : "memory", "cc"
163 );
164 }
165
166 static inline void
167 vmx_vmclear(paddr_t *pa)
168 {
169 asm volatile (
170 "vmclear %[pa];"
171 "jz vmx_insn_failvalid;"
172 "jc vmx_insn_failinvalid;"
173 :
174 : [pa] "m" (*pa)
175 : "memory", "cc"
176 );
177 }
178
179 static inline void
180 vmx_cli(void)
181 {
182 asm volatile ("cli" ::: "memory");
183 }
184
185 static inline void
186 vmx_sti(void)
187 {
188 asm volatile ("sti" ::: "memory");
189 }
190
191 #define MSR_IA32_FEATURE_CONTROL 0x003A
192 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
193 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
194 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
195
196 #define MSR_IA32_VMX_BASIC 0x0480
197 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
198 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
199 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
200 #define IA32_VMX_BASIC_DUAL __BIT(49)
201 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
202 #define MEM_TYPE_UC 0
203 #define MEM_TYPE_WB 6
204 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
205 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
206
207 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
208 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
209 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
210 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
211 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
212
213 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
214 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
215 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
216 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
217
218 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
219 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
220 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
221 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
222
223 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
224 #define IA32_VMX_EPT_VPID_XO __BIT(0)
225 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
226 #define IA32_VMX_EPT_VPID_UC __BIT(8)
227 #define IA32_VMX_EPT_VPID_WB __BIT(14)
228 #define IA32_VMX_EPT_VPID_2MB __BIT(16)
229 #define IA32_VMX_EPT_VPID_1GB __BIT(17)
230 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
231 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
232 #define IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO __BIT(22)
233 #define IA32_VMX_EPT_VPID_SHSTK __BIT(23)
234 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
235 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
236 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
237 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
238 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
239 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
240 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
241
242 /* -------------------------------------------------------------------------- */
243
244 /* 16-bit control fields */
245 #define VMCS_VPID 0x00000000
246 #define VMCS_PIR_VECTOR 0x00000002
247 #define VMCS_EPTP_INDEX 0x00000004
248 /* 16-bit guest-state fields */
249 #define VMCS_GUEST_ES_SELECTOR 0x00000800
250 #define VMCS_GUEST_CS_SELECTOR 0x00000802
251 #define VMCS_GUEST_SS_SELECTOR 0x00000804
252 #define VMCS_GUEST_DS_SELECTOR 0x00000806
253 #define VMCS_GUEST_FS_SELECTOR 0x00000808
254 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
255 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
256 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
257 #define VMCS_GUEST_INTR_STATUS 0x00000810
258 #define VMCS_PML_INDEX 0x00000812
259 /* 16-bit host-state fields */
260 #define VMCS_HOST_ES_SELECTOR 0x00000C00
261 #define VMCS_HOST_CS_SELECTOR 0x00000C02
262 #define VMCS_HOST_SS_SELECTOR 0x00000C04
263 #define VMCS_HOST_DS_SELECTOR 0x00000C06
264 #define VMCS_HOST_FS_SELECTOR 0x00000C08
265 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
266 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
267 /* 64-bit control fields */
268 #define VMCS_IO_BITMAP_A 0x00002000
269 #define VMCS_IO_BITMAP_B 0x00002002
270 #define VMCS_MSR_BITMAP 0x00002004
271 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
272 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
273 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
274 #define VMCS_EXECUTIVE_VMCS 0x0000200C
275 #define VMCS_PML_ADDRESS 0x0000200E
276 #define VMCS_TSC_OFFSET 0x00002010
277 #define VMCS_VIRTUAL_APIC 0x00002012
278 #define VMCS_APIC_ACCESS 0x00002014
279 #define VMCS_PIR_DESC 0x00002016
280 #define VMCS_VM_CONTROL 0x00002018
281 #define VMCS_EPTP 0x0000201A
282 #define EPTP_TYPE __BITS(2,0)
283 #define EPTP_TYPE_UC 0
284 #define EPTP_TYPE_WB 6
285 #define EPTP_WALKLEN __BITS(5,3)
286 #define EPTP_FLAGS_AD __BIT(6)
287 #define EPTP_SSS __BIT(7)
288 #define EPTP_PHYSADDR __BITS(63,12)
289 #define VMCS_EOI_EXIT0 0x0000201C
290 #define VMCS_EOI_EXIT1 0x0000201E
291 #define VMCS_EOI_EXIT2 0x00002020
292 #define VMCS_EOI_EXIT3 0x00002022
293 #define VMCS_EPTP_LIST 0x00002024
294 #define VMCS_VMREAD_BITMAP 0x00002026
295 #define VMCS_VMWRITE_BITMAP 0x00002028
296 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
297 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
298 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
299 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
300 #define VMCS_TSC_MULTIPLIER 0x00002032
301 #define VMCS_ENCLV_EXIT_BITMAP 0x00002036
302 /* 64-bit read-only fields */
303 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
304 /* 64-bit guest-state fields */
305 #define VMCS_LINK_POINTER 0x00002800
306 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
307 #define VMCS_GUEST_IA32_PAT 0x00002804
308 #define VMCS_GUEST_IA32_EFER 0x00002806
309 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
310 #define VMCS_GUEST_PDPTE0 0x0000280A
311 #define VMCS_GUEST_PDPTE1 0x0000280C
312 #define VMCS_GUEST_PDPTE2 0x0000280E
313 #define VMCS_GUEST_PDPTE3 0x00002810
314 #define VMCS_GUEST_BNDCFGS 0x00002812
315 #define VMCS_GUEST_RTIT_CTL 0x00002814
316 #define VMCS_GUEST_PKRS 0x00002818
317 /* 64-bit host-state fields */
318 #define VMCS_HOST_IA32_PAT 0x00002C00
319 #define VMCS_HOST_IA32_EFER 0x00002C02
320 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
321 #define VMCS_HOST_IA32_PKRS 0x00002C06
322 /* 32-bit control fields */
323 #define VMCS_PINBASED_CTLS 0x00004000
324 #define PIN_CTLS_INT_EXITING __BIT(0)
325 #define PIN_CTLS_NMI_EXITING __BIT(3)
326 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
327 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
328 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
329 #define VMCS_PROCBASED_CTLS 0x00004002
330 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
331 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
332 #define PROC_CTLS_HLT_EXITING __BIT(7)
333 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
334 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
335 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
336 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
337 #define PROC_CTLS_RCR3_EXITING __BIT(15)
338 #define PROC_CTLS_LCR3_EXITING __BIT(16)
339 #define PROC_CTLS_RCR8_EXITING __BIT(19)
340 #define PROC_CTLS_LCR8_EXITING __BIT(20)
341 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
342 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
343 #define PROC_CTLS_DR_EXITING __BIT(23)
344 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
345 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
346 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
347 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
348 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
349 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
350 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
351 #define VMCS_EXCEPTION_BITMAP 0x00004004
352 #define VMCS_PF_ERROR_MASK 0x00004006
353 #define VMCS_PF_ERROR_MATCH 0x00004008
354 #define VMCS_CR3_TARGET_COUNT 0x0000400A
355 #define VMCS_EXIT_CTLS 0x0000400C
356 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
357 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
358 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
359 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
360 #define EXIT_CTLS_SAVE_PAT __BIT(18)
361 #define EXIT_CTLS_LOAD_PAT __BIT(19)
362 #define EXIT_CTLS_SAVE_EFER __BIT(20)
363 #define EXIT_CTLS_LOAD_EFER __BIT(21)
364 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
365 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
366 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
367 #define EXIT_CTLS_CLEAR_RTIT_CTL __BIT(25)
368 #define EXIT_CTLS_LOAD_CET __BIT(28)
369 #define EXIT_CTLS_LOAD_PKRS __BIT(29)
370 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
371 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
372 #define VMCS_ENTRY_CTLS 0x00004012
373 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
374 #define ENTRY_CTLS_LONG_MODE __BIT(9)
375 #define ENTRY_CTLS_SMM __BIT(10)
376 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
377 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
378 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
379 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
380 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
381 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
382 #define ENTRY_CTLS_LOAD_RTIT_CTL __BIT(18)
383 #define ENTRY_CTLS_LOAD_CET __BIT(20)
384 #define ENTRY_CTLS_LOAD_PKRS __BIT(22)
385 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
386 #define VMCS_ENTRY_INTR_INFO 0x00004016
387 #define INTR_INFO_VECTOR __BITS(7,0)
388 #define INTR_INFO_TYPE __BITS(10,8)
389 #define INTR_TYPE_EXT_INT 0
390 #define INTR_TYPE_NMI 2
391 #define INTR_TYPE_HW_EXC 3
392 #define INTR_TYPE_SW_INT 4
393 #define INTR_TYPE_PRIV_SW_EXC 5
394 #define INTR_TYPE_SW_EXC 6
395 #define INTR_TYPE_OTHER 7
396 #define INTR_INFO_ERROR __BIT(11)
397 #define INTR_INFO_VALID __BIT(31)
398 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
399 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
400 #define VMCS_TPR_THRESHOLD 0x0000401C
401 #define VMCS_PROCBASED_CTLS2 0x0000401E
402 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
403 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
404 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
405 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
406 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
407 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
408 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
409 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
410 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
411 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
412 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
413 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
414 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
415 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
416 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
417 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
418 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
419 #define PROC_CTLS2_PML_ENABLE __BIT(17)
420 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
421 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
422 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
423 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
424 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
425 #define PROC_CTLS2_PT_USES_GPA __BIT(24)
426 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
427 #define PROC_CTLS2_WAIT_PAUSE_ENABLE __BIT(26)
428 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
429 #define VMCS_PLE_GAP 0x00004020
430 #define VMCS_PLE_WINDOW 0x00004022
431 /* 32-bit read-only data fields */
432 #define VMCS_INSTRUCTION_ERROR 0x00004400
433 #define VMCS_EXIT_REASON 0x00004402
434 #define VMCS_EXIT_INTR_INFO 0x00004404
435 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
436 #define VMCS_IDT_VECTORING_INFO 0x00004408
437 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
438 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
439 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
440 /* 32-bit guest-state fields */
441 #define VMCS_GUEST_ES_LIMIT 0x00004800
442 #define VMCS_GUEST_CS_LIMIT 0x00004802
443 #define VMCS_GUEST_SS_LIMIT 0x00004804
444 #define VMCS_GUEST_DS_LIMIT 0x00004806
445 #define VMCS_GUEST_FS_LIMIT 0x00004808
446 #define VMCS_GUEST_GS_LIMIT 0x0000480A
447 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
448 #define VMCS_GUEST_TR_LIMIT 0x0000480E
449 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
450 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
451 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
452 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
453 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
454 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
455 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
456 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
457 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
458 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
459 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
460 #define INT_STATE_STI __BIT(0)
461 #define INT_STATE_MOVSS __BIT(1)
462 #define INT_STATE_SMI __BIT(2)
463 #define INT_STATE_NMI __BIT(3)
464 #define INT_STATE_ENCLAVE __BIT(4)
465 #define VMCS_GUEST_ACTIVITY 0x00004826
466 #define VMCS_GUEST_SMBASE 0x00004828
467 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
468 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
469 /* 32-bit host state fields */
470 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
471 /* Natural-Width control fields */
472 #define VMCS_CR0_MASK 0x00006000
473 #define VMCS_CR4_MASK 0x00006002
474 #define VMCS_CR0_SHADOW 0x00006004
475 #define VMCS_CR4_SHADOW 0x00006006
476 #define VMCS_CR3_TARGET0 0x00006008
477 #define VMCS_CR3_TARGET1 0x0000600A
478 #define VMCS_CR3_TARGET2 0x0000600C
479 #define VMCS_CR3_TARGET3 0x0000600E
480 /* Natural-Width read-only fields */
481 #define VMCS_EXIT_QUALIFICATION 0x00006400
482 #define VMCS_IO_RCX 0x00006402
483 #define VMCS_IO_RSI 0x00006404
484 #define VMCS_IO_RDI 0x00006406
485 #define VMCS_IO_RIP 0x00006408
486 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
487 /* Natural-Width guest-state fields */
488 #define VMCS_GUEST_CR0 0x00006800
489 #define VMCS_GUEST_CR3 0x00006802
490 #define VMCS_GUEST_CR4 0x00006804
491 #define VMCS_GUEST_ES_BASE 0x00006806
492 #define VMCS_GUEST_CS_BASE 0x00006808
493 #define VMCS_GUEST_SS_BASE 0x0000680A
494 #define VMCS_GUEST_DS_BASE 0x0000680C
495 #define VMCS_GUEST_FS_BASE 0x0000680E
496 #define VMCS_GUEST_GS_BASE 0x00006810
497 #define VMCS_GUEST_LDTR_BASE 0x00006812
498 #define VMCS_GUEST_TR_BASE 0x00006814
499 #define VMCS_GUEST_GDTR_BASE 0x00006816
500 #define VMCS_GUEST_IDTR_BASE 0x00006818
501 #define VMCS_GUEST_DR7 0x0000681A
502 #define VMCS_GUEST_RSP 0x0000681C
503 #define VMCS_GUEST_RIP 0x0000681E
504 #define VMCS_GUEST_RFLAGS 0x00006820
505 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
506 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
507 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
508 #define VMCS_GUEST_IA32_S_CET 0x00006828
509 #define VMCS_GUEST_SSP 0x0000682A
510 #define VMCS_GUEST_IA32_INTR_SSP_TABLE 0x0000682C
511 /* Natural-Width host-state fields */
512 #define VMCS_HOST_CR0 0x00006C00
513 #define VMCS_HOST_CR3 0x00006C02
514 #define VMCS_HOST_CR4 0x00006C04
515 #define VMCS_HOST_FS_BASE 0x00006C06
516 #define VMCS_HOST_GS_BASE 0x00006C08
517 #define VMCS_HOST_TR_BASE 0x00006C0A
518 #define VMCS_HOST_GDTR_BASE 0x00006C0C
519 #define VMCS_HOST_IDTR_BASE 0x00006C0E
520 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
521 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
522 #define VMCS_HOST_RSP 0x00006C14
523 #define VMCS_HOST_RIP 0x00006C16
524 #define VMCS_HOST_IA32_S_CET 0x00006C18
525 #define VMCS_HOST_SSP 0x00006C1A
526 #define VMCS_HOST_IA32_INTR_SSP_TABLE 0x00006C1C
527
528 /* VMX basic exit reasons. */
529 #define VMCS_EXITCODE_EXC_NMI 0
530 #define VMCS_EXITCODE_EXT_INT 1
531 #define VMCS_EXITCODE_SHUTDOWN 2
532 #define VMCS_EXITCODE_INIT 3
533 #define VMCS_EXITCODE_SIPI 4
534 #define VMCS_EXITCODE_SMI 5
535 #define VMCS_EXITCODE_OTHER_SMI 6
536 #define VMCS_EXITCODE_INT_WINDOW 7
537 #define VMCS_EXITCODE_NMI_WINDOW 8
538 #define VMCS_EXITCODE_TASK_SWITCH 9
539 #define VMCS_EXITCODE_CPUID 10
540 #define VMCS_EXITCODE_GETSEC 11
541 #define VMCS_EXITCODE_HLT 12
542 #define VMCS_EXITCODE_INVD 13
543 #define VMCS_EXITCODE_INVLPG 14
544 #define VMCS_EXITCODE_RDPMC 15
545 #define VMCS_EXITCODE_RDTSC 16
546 #define VMCS_EXITCODE_RSM 17
547 #define VMCS_EXITCODE_VMCALL 18
548 #define VMCS_EXITCODE_VMCLEAR 19
549 #define VMCS_EXITCODE_VMLAUNCH 20
550 #define VMCS_EXITCODE_VMPTRLD 21
551 #define VMCS_EXITCODE_VMPTRST 22
552 #define VMCS_EXITCODE_VMREAD 23
553 #define VMCS_EXITCODE_VMRESUME 24
554 #define VMCS_EXITCODE_VMWRITE 25
555 #define VMCS_EXITCODE_VMXOFF 26
556 #define VMCS_EXITCODE_VMXON 27
557 #define VMCS_EXITCODE_CR 28
558 #define VMCS_EXITCODE_DR 29
559 #define VMCS_EXITCODE_IO 30
560 #define VMCS_EXITCODE_RDMSR 31
561 #define VMCS_EXITCODE_WRMSR 32
562 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
563 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
564 #define VMCS_EXITCODE_MWAIT 36
565 #define VMCS_EXITCODE_TRAP_FLAG 37
566 #define VMCS_EXITCODE_MONITOR 39
567 #define VMCS_EXITCODE_PAUSE 40
568 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
569 #define VMCS_EXITCODE_TPR_BELOW 43
570 #define VMCS_EXITCODE_APIC_ACCESS 44
571 #define VMCS_EXITCODE_VEOI 45
572 #define VMCS_EXITCODE_GDTR_IDTR 46
573 #define VMCS_EXITCODE_LDTR_TR 47
574 #define VMCS_EXITCODE_EPT_VIOLATION 48
575 #define VMCS_EXITCODE_EPT_MISCONFIG 49
576 #define VMCS_EXITCODE_INVEPT 50
577 #define VMCS_EXITCODE_RDTSCP 51
578 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
579 #define VMCS_EXITCODE_INVVPID 53
580 #define VMCS_EXITCODE_WBINVD 54
581 #define VMCS_EXITCODE_XSETBV 55
582 #define VMCS_EXITCODE_APIC_WRITE 56
583 #define VMCS_EXITCODE_RDRAND 57
584 #define VMCS_EXITCODE_INVPCID 58
585 #define VMCS_EXITCODE_VMFUNC 59
586 #define VMCS_EXITCODE_ENCLS 60
587 #define VMCS_EXITCODE_RDSEED 61
588 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
589 #define VMCS_EXITCODE_XSAVES 63
590 #define VMCS_EXITCODE_XRSTORS 64
591 #define VMCS_EXITCODE_SPP 66
592 #define VMCS_EXITCODE_UMWAIT 67
593 #define VMCS_EXITCODE_TPAUSE 68
594
595 /* -------------------------------------------------------------------------- */
596
597 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
598 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
599
600 #define VMX_MSRLIST_STAR 0
601 #define VMX_MSRLIST_LSTAR 1
602 #define VMX_MSRLIST_CSTAR 2
603 #define VMX_MSRLIST_SFMASK 3
604 #define VMX_MSRLIST_KERNELGSBASE 4
605 #define VMX_MSRLIST_EXIT_NMSR 5
606 #define VMX_MSRLIST_L1DFLUSH 5
607
608 /* On entry, we may do +1 to include L1DFLUSH. */
609 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
610
611 struct vmxon {
612 uint32_t ident;
613 #define VMXON_IDENT_REVISION __BITS(30,0)
614
615 uint8_t data[PAGE_SIZE - 4];
616 } __packed;
617
618 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
619
620 struct vmxoncpu {
621 vaddr_t va;
622 paddr_t pa;
623 };
624
625 static struct vmxoncpu vmxoncpu[MAXCPUS];
626
627 struct vmcs {
628 uint32_t ident;
629 #define VMCS_IDENT_REVISION __BITS(30,0)
630 #define VMCS_IDENT_SHADOW __BIT(31)
631
632 uint32_t abort;
633 uint8_t data[PAGE_SIZE - 8];
634 } __packed;
635
636 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
637
638 struct msr_entry {
639 uint32_t msr;
640 uint32_t rsvd;
641 uint64_t val;
642 } __packed;
643
644 #define VPID_MAX 0xFFFF
645
646 /* Make sure we never run out of VPIDs. */
647 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
648
649 static uint64_t vmx_tlb_flush_op __read_mostly;
650 static uint64_t vmx_ept_flush_op __read_mostly;
651 static uint64_t vmx_eptp_type __read_mostly;
652
653 static uint64_t vmx_pinbased_ctls __read_mostly;
654 static uint64_t vmx_procbased_ctls __read_mostly;
655 static uint64_t vmx_procbased_ctls2 __read_mostly;
656 static uint64_t vmx_entry_ctls __read_mostly;
657 static uint64_t vmx_exit_ctls __read_mostly;
658
659 static uint64_t vmx_cr0_fixed0 __read_mostly;
660 static uint64_t vmx_cr0_fixed1 __read_mostly;
661 static uint64_t vmx_cr4_fixed0 __read_mostly;
662 static uint64_t vmx_cr4_fixed1 __read_mostly;
663
664 extern bool pmap_ept_has_ad;
665
666 #define VMX_PINBASED_CTLS_ONE \
667 (PIN_CTLS_INT_EXITING| \
668 PIN_CTLS_NMI_EXITING| \
669 PIN_CTLS_VIRTUAL_NMIS)
670
671 #define VMX_PINBASED_CTLS_ZERO 0
672
673 #define VMX_PROCBASED_CTLS_ONE \
674 (PROC_CTLS_USE_TSC_OFFSETTING| \
675 PROC_CTLS_HLT_EXITING| \
676 PROC_CTLS_MWAIT_EXITING | \
677 PROC_CTLS_RDPMC_EXITING | \
678 PROC_CTLS_RCR8_EXITING | \
679 PROC_CTLS_LCR8_EXITING | \
680 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
681 PROC_CTLS_USE_MSR_BITMAPS | \
682 PROC_CTLS_MONITOR_EXITING | \
683 PROC_CTLS_ACTIVATE_CTLS2)
684
685 #define VMX_PROCBASED_CTLS_ZERO \
686 (PROC_CTLS_RCR3_EXITING| \
687 PROC_CTLS_LCR3_EXITING)
688
689 #define VMX_PROCBASED_CTLS2_ONE \
690 (PROC_CTLS2_ENABLE_EPT| \
691 PROC_CTLS2_ENABLE_VPID| \
692 PROC_CTLS2_UNRESTRICTED_GUEST)
693
694 #define VMX_PROCBASED_CTLS2_ZERO 0
695
696 #define VMX_ENTRY_CTLS_ONE \
697 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
698 ENTRY_CTLS_LOAD_EFER| \
699 ENTRY_CTLS_LOAD_PAT)
700
701 #define VMX_ENTRY_CTLS_ZERO \
702 (ENTRY_CTLS_SMM| \
703 ENTRY_CTLS_DISABLE_DUAL)
704
705 #define VMX_EXIT_CTLS_ONE \
706 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
707 EXIT_CTLS_HOST_LONG_MODE| \
708 EXIT_CTLS_SAVE_PAT| \
709 EXIT_CTLS_LOAD_PAT| \
710 EXIT_CTLS_SAVE_EFER| \
711 EXIT_CTLS_LOAD_EFER)
712
713 #define VMX_EXIT_CTLS_ZERO 0
714
715 static uint8_t *vmx_asidmap __read_mostly;
716 static uint32_t vmx_maxasid __read_mostly;
717 static kmutex_t vmx_asidlock __cacheline_aligned;
718
719 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
720 static uint64_t vmx_xcr0_mask __read_mostly;
721
722 #define VMX_NCPUIDS 32
723
724 #define VMCS_NPAGES 1
725 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
726
727 #define MSRBM_NPAGES 1
728 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
729
730 #define CR0_STATIC \
731 (CR0_NW|CR0_CD|CR0_ET)
732
733 #define CR4_VALID \
734 (CR4_VME | \
735 CR4_PVI | \
736 CR4_TSD | \
737 CR4_DE | \
738 CR4_PSE | \
739 CR4_PAE | \
740 CR4_MCE | \
741 CR4_PGE | \
742 CR4_PCE | \
743 CR4_OSFXSR | \
744 CR4_OSXMMEXCPT | \
745 CR4_UMIP | \
746 /* CR4_LA57 excluded */ \
747 /* CR4_VMXE excluded */ \
748 /* CR4_SMXE excluded */ \
749 CR4_FSGSBASE | \
750 CR4_PCIDE | \
751 CR4_OSXSAVE | \
752 CR4_SMEP | \
753 CR4_SMAP \
754 /* CR4_PKE excluded */ \
755 /* CR4_CET excluded */ \
756 /* CR4_PKS excluded */)
757 #define CR4_INVALID \
758 (0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
759
760 #define EFER_TLB_FLUSH \
761 (EFER_NXE|EFER_LMA|EFER_LME)
762 #define CR0_TLB_FLUSH \
763 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
764 #define CR4_TLB_FLUSH \
765 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
766
767 /* -------------------------------------------------------------------------- */
768
769 struct vmx_machdata {
770 volatile uint64_t mach_htlb_gen;
771 };
772
773 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
774 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
775 sizeof(struct nvmm_vcpu_conf_cpuid),
776 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
777 sizeof(struct nvmm_vcpu_conf_tpr)
778 };
779
780 struct vmx_cpudata {
781 /* General */
782 uint64_t asid;
783 bool gtlb_want_flush;
784 bool gtsc_want_update;
785 uint64_t vcpu_htlb_gen;
786 kcpuset_t *htlb_want_flush;
787
788 /* VMCS */
789 struct vmcs *vmcs;
790 paddr_t vmcs_pa;
791 size_t vmcs_refcnt;
792 struct cpu_info *vmcs_ci;
793 bool vmcs_launched;
794
795 /* MSR bitmap */
796 uint8_t *msrbm;
797 paddr_t msrbm_pa;
798
799 /* Host state */
800 uint64_t hxcr0;
801 uint64_t star;
802 uint64_t lstar;
803 uint64_t cstar;
804 uint64_t sfmask;
805 uint64_t kernelgsbase;
806
807 /* Intr state */
808 bool int_window_exit;
809 bool nmi_window_exit;
810 bool evt_pending;
811
812 /* Guest state */
813 struct msr_entry *gmsr;
814 paddr_t gmsr_pa;
815 uint64_t gmsr_misc_enable;
816 uint64_t gcr2;
817 uint64_t gcr8;
818 uint64_t gxcr0;
819 uint64_t gprs[NVMM_X64_NGPR];
820 uint64_t drs[NVMM_X64_NDR];
821 uint64_t gtsc;
822 struct xsave_header gfpu __aligned(64);
823
824 /* VCPU configuration. */
825 bool cpuidpresent[VMX_NCPUIDS];
826 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
827 struct nvmm_vcpu_conf_tpr tpr;
828 };
829
830 static const struct {
831 uint64_t selector;
832 uint64_t attrib;
833 uint64_t limit;
834 uint64_t base;
835 } vmx_guest_segs[NVMM_X64_NSEG] = {
836 [NVMM_X64_SEG_ES] = {
837 VMCS_GUEST_ES_SELECTOR,
838 VMCS_GUEST_ES_ACCESS_RIGHTS,
839 VMCS_GUEST_ES_LIMIT,
840 VMCS_GUEST_ES_BASE
841 },
842 [NVMM_X64_SEG_CS] = {
843 VMCS_GUEST_CS_SELECTOR,
844 VMCS_GUEST_CS_ACCESS_RIGHTS,
845 VMCS_GUEST_CS_LIMIT,
846 VMCS_GUEST_CS_BASE
847 },
848 [NVMM_X64_SEG_SS] = {
849 VMCS_GUEST_SS_SELECTOR,
850 VMCS_GUEST_SS_ACCESS_RIGHTS,
851 VMCS_GUEST_SS_LIMIT,
852 VMCS_GUEST_SS_BASE
853 },
854 [NVMM_X64_SEG_DS] = {
855 VMCS_GUEST_DS_SELECTOR,
856 VMCS_GUEST_DS_ACCESS_RIGHTS,
857 VMCS_GUEST_DS_LIMIT,
858 VMCS_GUEST_DS_BASE
859 },
860 [NVMM_X64_SEG_FS] = {
861 VMCS_GUEST_FS_SELECTOR,
862 VMCS_GUEST_FS_ACCESS_RIGHTS,
863 VMCS_GUEST_FS_LIMIT,
864 VMCS_GUEST_FS_BASE
865 },
866 [NVMM_X64_SEG_GS] = {
867 VMCS_GUEST_GS_SELECTOR,
868 VMCS_GUEST_GS_ACCESS_RIGHTS,
869 VMCS_GUEST_GS_LIMIT,
870 VMCS_GUEST_GS_BASE
871 },
872 [NVMM_X64_SEG_GDT] = {
873 0, /* doesn't exist */
874 0, /* doesn't exist */
875 VMCS_GUEST_GDTR_LIMIT,
876 VMCS_GUEST_GDTR_BASE
877 },
878 [NVMM_X64_SEG_IDT] = {
879 0, /* doesn't exist */
880 0, /* doesn't exist */
881 VMCS_GUEST_IDTR_LIMIT,
882 VMCS_GUEST_IDTR_BASE
883 },
884 [NVMM_X64_SEG_LDT] = {
885 VMCS_GUEST_LDTR_SELECTOR,
886 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
887 VMCS_GUEST_LDTR_LIMIT,
888 VMCS_GUEST_LDTR_BASE
889 },
890 [NVMM_X64_SEG_TR] = {
891 VMCS_GUEST_TR_SELECTOR,
892 VMCS_GUEST_TR_ACCESS_RIGHTS,
893 VMCS_GUEST_TR_LIMIT,
894 VMCS_GUEST_TR_BASE
895 }
896 };
897
898 /* -------------------------------------------------------------------------- */
899
900 static uint64_t
901 vmx_get_revision(void)
902 {
903 uint64_t msr;
904
905 msr = rdmsr(MSR_IA32_VMX_BASIC);
906 msr &= IA32_VMX_BASIC_IDENT;
907
908 return msr;
909 }
910
911 static void
912 vmx_vmclear_ipi(void *arg1, void *arg2)
913 {
914 paddr_t vmcs_pa = (paddr_t)arg1;
915 vmx_vmclear(&vmcs_pa);
916 }
917
918 static void
919 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
920 {
921 uint64_t xc;
922 int bound;
923
924 KASSERT(kpreempt_disabled());
925
926 bound = curlwp_bind();
927 kpreempt_enable();
928
929 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
930 xc_wait(xc);
931
932 kpreempt_disable();
933 curlwp_bindx(bound);
934 }
935
936 static void
937 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
938 {
939 struct vmx_cpudata *cpudata = vcpu->cpudata;
940 struct cpu_info *vmcs_ci;
941
942 cpudata->vmcs_refcnt++;
943 if (cpudata->vmcs_refcnt > 1) {
944 KASSERT(kpreempt_disabled());
945 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
946 return;
947 }
948
949 vmcs_ci = cpudata->vmcs_ci;
950 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
951
952 kpreempt_disable();
953
954 if (vmcs_ci == NULL) {
955 /* This VMCS is loaded for the first time. */
956 vmx_vmclear(&cpudata->vmcs_pa);
957 cpudata->vmcs_launched = false;
958 } else if (vmcs_ci != curcpu()) {
959 /* This VMCS is active on a remote CPU. */
960 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
961 cpudata->vmcs_launched = false;
962 } else {
963 /* This VMCS is active on curcpu, nothing to do. */
964 }
965
966 vmx_vmptrld(&cpudata->vmcs_pa);
967 }
968
969 static void
970 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
971 {
972 struct vmx_cpudata *cpudata = vcpu->cpudata;
973
974 KASSERT(kpreempt_disabled());
975 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
976 KASSERT(cpudata->vmcs_refcnt > 0);
977 cpudata->vmcs_refcnt--;
978
979 if (cpudata->vmcs_refcnt > 0) {
980 return;
981 }
982
983 cpudata->vmcs_ci = curcpu();
984 kpreempt_enable();
985 }
986
987 static void
988 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
989 {
990 struct vmx_cpudata *cpudata = vcpu->cpudata;
991
992 KASSERT(kpreempt_disabled());
993 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
994 KASSERT(cpudata->vmcs_refcnt == 1);
995 cpudata->vmcs_refcnt--;
996
997 vmx_vmclear(&cpudata->vmcs_pa);
998 kpreempt_enable();
999 }
1000
1001 /* -------------------------------------------------------------------------- */
1002
1003 static void
1004 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1005 {
1006 struct vmx_cpudata *cpudata = vcpu->cpudata;
1007 uint64_t ctls1;
1008
1009 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1010
1011 if (nmi) {
1012 // XXX INT_STATE_NMI?
1013 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1014 cpudata->nmi_window_exit = true;
1015 } else {
1016 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1017 cpudata->int_window_exit = true;
1018 }
1019
1020 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1021 }
1022
1023 static void
1024 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1025 {
1026 struct vmx_cpudata *cpudata = vcpu->cpudata;
1027 uint64_t ctls1;
1028
1029 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1030
1031 if (nmi) {
1032 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1033 cpudata->nmi_window_exit = false;
1034 } else {
1035 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1036 cpudata->int_window_exit = false;
1037 }
1038
1039 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1040 }
1041
1042 static inline bool
1043 vmx_excp_has_rf(uint8_t vector)
1044 {
1045 switch (vector) {
1046 case 1: /* #DB */
1047 case 4: /* #OF */
1048 case 8: /* #DF */
1049 case 18: /* #MC */
1050 return false;
1051 default:
1052 return true;
1053 }
1054 }
1055
1056 static inline int
1057 vmx_excp_has_error(uint8_t vector)
1058 {
1059 switch (vector) {
1060 case 8: /* #DF */
1061 case 10: /* #TS */
1062 case 11: /* #NP */
1063 case 12: /* #SS */
1064 case 13: /* #GP */
1065 case 14: /* #PF */
1066 case 17: /* #AC */
1067 case 30: /* #SX */
1068 return 1;
1069 default:
1070 return 0;
1071 }
1072 }
1073
1074 static int
1075 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1076 {
1077 struct nvmm_comm_page *comm = vcpu->comm;
1078 struct vmx_cpudata *cpudata = vcpu->cpudata;
1079 int type = 0, err = 0, ret = EINVAL;
1080 uint64_t rflags, info, error;
1081 u_int evtype;
1082 uint8_t vector;
1083
1084 evtype = comm->event.type;
1085 vector = comm->event.vector;
1086 error = comm->event.u.excp.error;
1087 __insn_barrier();
1088
1089 vmx_vmcs_enter(vcpu);
1090
1091 switch (evtype) {
1092 case NVMM_VCPU_EVENT_EXCP:
1093 if (vector == 2 || vector >= 32)
1094 goto out;
1095 if (vector == 3 || vector == 0)
1096 goto out;
1097 if (vmx_excp_has_rf(vector)) {
1098 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1099 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1100 }
1101 type = INTR_TYPE_HW_EXC;
1102 err = vmx_excp_has_error(vector);
1103 break;
1104 case NVMM_VCPU_EVENT_INTR:
1105 type = INTR_TYPE_EXT_INT;
1106 if (vector == 2) {
1107 type = INTR_TYPE_NMI;
1108 vmx_event_waitexit_enable(vcpu, true);
1109 }
1110 err = 0;
1111 break;
1112 default:
1113 goto out;
1114 }
1115
1116 info =
1117 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1118 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1119 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1120 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1121 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1122 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1123
1124 cpudata->evt_pending = true;
1125 ret = 0;
1126
1127 out:
1128 vmx_vmcs_leave(vcpu);
1129 return ret;
1130 }
1131
1132 static void
1133 vmx_inject_ud(struct nvmm_cpu *vcpu)
1134 {
1135 struct nvmm_comm_page *comm = vcpu->comm;
1136 int ret __diagused;
1137
1138 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1139 comm->event.vector = 6;
1140 comm->event.u.excp.error = 0;
1141
1142 ret = vmx_vcpu_inject(vcpu);
1143 KASSERT(ret == 0);
1144 }
1145
1146 static void
1147 vmx_inject_gp(struct nvmm_cpu *vcpu)
1148 {
1149 struct nvmm_comm_page *comm = vcpu->comm;
1150 int ret __diagused;
1151
1152 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1153 comm->event.vector = 13;
1154 comm->event.u.excp.error = 0;
1155
1156 ret = vmx_vcpu_inject(vcpu);
1157 KASSERT(ret == 0);
1158 }
1159
1160 static inline int
1161 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1162 {
1163 if (__predict_true(!vcpu->comm->event_commit)) {
1164 return 0;
1165 }
1166 vcpu->comm->event_commit = false;
1167 return vmx_vcpu_inject(vcpu);
1168 }
1169
1170 static inline void
1171 vmx_inkernel_advance(void)
1172 {
1173 uint64_t rip, inslen, intstate, rflags;
1174
1175 /*
1176 * Maybe we should also apply single-stepping and debug exceptions.
1177 * Matters for guest-ring3, because it can execute 'cpuid' under a
1178 * debugger.
1179 */
1180
1181 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1182 rip = vmx_vmread(VMCS_GUEST_RIP);
1183 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1184
1185 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1186 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1187
1188 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1189 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1190 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1191 }
1192
1193 static void
1194 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1195 {
1196 exit->u.inv.hwcode = code;
1197 exit->reason = NVMM_VCPU_EXIT_INVALID;
1198 }
1199
1200 static void
1201 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1202 struct nvmm_vcpu_exit *exit)
1203 {
1204 uint64_t qual;
1205
1206 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1207
1208 if ((qual & INTR_INFO_VALID) == 0) {
1209 goto error;
1210 }
1211 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1212 goto error;
1213 }
1214
1215 exit->reason = NVMM_VCPU_EXIT_NONE;
1216 return;
1217
1218 error:
1219 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1220 }
1221
1222 #define VMX_CPUID_MAX_BASIC 0x16
1223 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1224 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1225 static uint32_t vmx_cpuid_max_basic __read_mostly;
1226 static uint32_t vmx_cpuid_max_extended __read_mostly;
1227
1228 static void
1229 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1230 {
1231 u_int descs[4];
1232
1233 x86_cpuid2(eax, ecx, descs);
1234 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1235 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1236 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1237 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1238 }
1239
1240 static void
1241 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1242 uint64_t eax, uint64_t ecx)
1243 {
1244 struct vmx_cpudata *cpudata = vcpu->cpudata;
1245 unsigned int ncpus;
1246 uint64_t cr4;
1247
1248 if (eax < 0x40000000) {
1249 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1250 eax = vmx_cpuid_max_basic;
1251 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1252 }
1253 } else if (eax < 0x80000000) {
1254 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1255 eax = vmx_cpuid_max_basic;
1256 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1257 }
1258 } else {
1259 if (__predict_false(eax > vmx_cpuid_max_extended)) {
1260 eax = vmx_cpuid_max_basic;
1261 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1262 }
1263 }
1264
1265 switch (eax) {
1266 case 0x00000000:
1267 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1268 break;
1269 case 0x00000001:
1270 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1271
1272 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1273 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1274 CPUID_LOCAL_APIC_ID);
1275
1276 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1277 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1278 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1279 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1280 }
1281
1282 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1283
1284 /* CPUID2_OSXSAVE depends on CR4. */
1285 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1286 if (!(cr4 & CR4_OSXSAVE)) {
1287 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1288 }
1289 break;
1290 case 0x00000002:
1291 break;
1292 case 0x00000003:
1293 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1294 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1295 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1296 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1297 break;
1298 case 0x00000004: /* Deterministic Cache Parameters */
1299 break; /* TODO? */
1300 case 0x00000005: /* MONITOR/MWAIT */
1301 case 0x00000006: /* Thermal and Power Management */
1302 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1303 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1304 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1305 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1306 break;
1307 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1308 switch (ecx) {
1309 case 0:
1310 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1311 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1312 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1313 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1314 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1315 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1316 }
1317 break;
1318 default:
1319 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1320 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1321 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1322 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1323 break;
1324 }
1325 break;
1326 case 0x00000008: /* Empty */
1327 case 0x00000009: /* Direct Cache Access Information */
1328 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1329 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1330 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1331 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1332 break;
1333 case 0x0000000A: /* Architectural Performance Monitoring */
1334 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1335 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1336 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1337 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1338 break;
1339 case 0x0000000B: /* Extended Topology Enumeration */
1340 switch (ecx) {
1341 case 0: /* Threads */
1342 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1343 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1344 cpudata->gprs[NVMM_X64_GPR_RCX] =
1345 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1346 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1347 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1348 break;
1349 case 1: /* Cores */
1350 ncpus = atomic_load_relaxed(&mach->ncpus);
1351 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1352 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1353 cpudata->gprs[NVMM_X64_GPR_RCX] =
1354 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1355 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1356 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1357 break;
1358 default:
1359 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1360 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1361 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1362 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1363 break;
1364 }
1365 break;
1366 case 0x0000000C: /* Empty */
1367 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1368 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1369 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1370 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1371 break;
1372 case 0x0000000D: /* Processor Extended State Enumeration */
1373 if (vmx_xcr0_mask == 0) {
1374 break;
1375 }
1376 switch (ecx) {
1377 case 0:
1378 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1379 if (cpudata->gxcr0 & XCR0_SSE) {
1380 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1381 } else {
1382 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1383 }
1384 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1385 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1386 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1387 break;
1388 case 1:
1389 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1390 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1391 CPUID_PES1_XGETBV);
1392 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1393 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1394 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1395 break;
1396 default:
1397 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1398 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1399 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1400 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1401 break;
1402 }
1403 break;
1404 case 0x0000000E: /* Empty */
1405 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1406 case 0x00000010: /* Intel RDT Allocation Enumeration */
1407 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1408 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1409 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1410 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1411 break;
1412 case 0x00000011: /* Empty */
1413 case 0x00000012: /* Intel SGX Capability Enumeration */
1414 case 0x00000013: /* Empty */
1415 case 0x00000014: /* Intel Processor Trace Enumeration */
1416 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1417 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1418 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1419 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1420 break;
1421 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1422 case 0x00000016: /* Processor Frequency Information */
1423 break;
1424
1425 case 0x40000000: /* Hypervisor Information */
1426 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1427 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1428 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1429 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1430 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1431 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1432 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1433 break;
1434
1435 case 0x80000000:
1436 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1437 break;
1438 case 0x80000001:
1439 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1440 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1441 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1442 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1443 break;
1444 case 0x80000002: /* Processor Brand String */
1445 case 0x80000003: /* Processor Brand String */
1446 case 0x80000004: /* Processor Brand String */
1447 case 0x80000005: /* Reserved Zero */
1448 case 0x80000006: /* Cache Information */
1449 break;
1450 case 0x80000007: /* TSC Information */
1451 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1452 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1453 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1454 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1455 break;
1456 case 0x80000008: /* Address Sizes */
1457 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1458 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1459 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1460 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1461 break;
1462
1463 default:
1464 break;
1465 }
1466 }
1467
1468 static void
1469 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1470 {
1471 uint64_t inslen, rip;
1472
1473 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1474 rip = vmx_vmread(VMCS_GUEST_RIP);
1475 exit->u.insn.npc = rip + inslen;
1476 exit->reason = reason;
1477 }
1478
1479 static void
1480 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1481 struct nvmm_vcpu_exit *exit)
1482 {
1483 struct vmx_cpudata *cpudata = vcpu->cpudata;
1484 struct nvmm_vcpu_conf_cpuid *cpuid;
1485 uint64_t eax, ecx;
1486 size_t i;
1487
1488 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1489 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1490 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1491 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1492
1493 for (i = 0; i < VMX_NCPUIDS; i++) {
1494 if (!cpudata->cpuidpresent[i]) {
1495 continue;
1496 }
1497 cpuid = &cpudata->cpuid[i];
1498 if (cpuid->leaf != eax) {
1499 continue;
1500 }
1501
1502 if (cpuid->exit) {
1503 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1504 return;
1505 }
1506 KASSERT(cpuid->mask);
1507
1508 /* del */
1509 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1510 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1511 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1512 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1513
1514 /* set */
1515 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1516 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1517 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1518 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1519
1520 break;
1521 }
1522
1523 vmx_inkernel_advance();
1524 exit->reason = NVMM_VCPU_EXIT_NONE;
1525 }
1526
1527 static void
1528 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1529 struct nvmm_vcpu_exit *exit)
1530 {
1531 struct vmx_cpudata *cpudata = vcpu->cpudata;
1532 uint64_t rflags;
1533
1534 if (cpudata->int_window_exit) {
1535 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1536 if (rflags & PSL_I) {
1537 vmx_event_waitexit_disable(vcpu, false);
1538 }
1539 }
1540
1541 vmx_inkernel_advance();
1542 exit->reason = NVMM_VCPU_EXIT_HALTED;
1543 }
1544
1545 #define VMX_QUAL_CR_NUM __BITS(3,0)
1546 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1547 #define CR_TYPE_WRITE 0
1548 #define CR_TYPE_READ 1
1549 #define CR_TYPE_CLTS 2
1550 #define CR_TYPE_LMSW 3
1551 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1552 #define VMX_QUAL_CR_GPR __BITS(11,8)
1553 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1554
1555 static inline int
1556 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1557 {
1558 /* Bits set to 1 in fixed0 are fixed to 1. */
1559 if ((crval & fixed0) != fixed0) {
1560 return -1;
1561 }
1562 /* Bits set to 0 in fixed1 are fixed to 0. */
1563 if (crval & ~fixed1) {
1564 return -1;
1565 }
1566 return 0;
1567 }
1568
1569 static int
1570 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1571 uint64_t qual)
1572 {
1573 struct vmx_cpudata *cpudata = vcpu->cpudata;
1574 uint64_t type, gpr, oldcr0, cr0;
1575 uint64_t efer, ctls1;
1576
1577 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1578 if (type != CR_TYPE_WRITE) {
1579 return -1;
1580 }
1581
1582 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1583 KASSERT(gpr < 16);
1584
1585 if (gpr == NVMM_X64_GPR_RSP) {
1586 gpr = vmx_vmread(VMCS_GUEST_RSP);
1587 } else {
1588 gpr = cpudata->gprs[gpr];
1589 }
1590
1591 cr0 = gpr | CR0_NE | CR0_ET;
1592 cr0 &= ~(CR0_NW|CR0_CD);
1593
1594 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1595 return -1;
1596 }
1597
1598 /*
1599 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1600 * from CR3.
1601 */
1602
1603 if (cr0 & CR0_PG) {
1604 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1605 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1606 if (efer & EFER_LME) {
1607 ctls1 |= ENTRY_CTLS_LONG_MODE;
1608 efer |= EFER_LMA;
1609 } else {
1610 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1611 efer &= ~EFER_LMA;
1612 }
1613 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1614 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1615 }
1616
1617 oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC) |
1618 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC);
1619 if ((oldcr0 ^ gpr) & CR0_TLB_FLUSH) {
1620 cpudata->gtlb_want_flush = true;
1621 }
1622
1623 vmx_vmwrite(VMCS_CR0_SHADOW, gpr);
1624 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1625 vmx_inkernel_advance();
1626 return 0;
1627 }
1628
1629 static int
1630 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1631 uint64_t qual)
1632 {
1633 struct vmx_cpudata *cpudata = vcpu->cpudata;
1634 uint64_t type, gpr, oldcr4, cr4;
1635
1636 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1637 if (type != CR_TYPE_WRITE) {
1638 return -1;
1639 }
1640
1641 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1642 KASSERT(gpr < 16);
1643
1644 if (gpr == NVMM_X64_GPR_RSP) {
1645 gpr = vmx_vmread(VMCS_GUEST_RSP);
1646 } else {
1647 gpr = cpudata->gprs[gpr];
1648 }
1649
1650 if (gpr & CR4_INVALID) {
1651 return -1;
1652 }
1653 cr4 = gpr | CR4_VMXE;
1654 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1655 return -1;
1656 }
1657
1658 oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1659 if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1660 cpudata->gtlb_want_flush = true;
1661 }
1662
1663 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1664 vmx_inkernel_advance();
1665 return 0;
1666 }
1667
1668 static int
1669 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1670 uint64_t qual, struct nvmm_vcpu_exit *exit)
1671 {
1672 struct vmx_cpudata *cpudata = vcpu->cpudata;
1673 uint64_t type, gpr;
1674 bool write;
1675
1676 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1677 if (type == CR_TYPE_WRITE) {
1678 write = true;
1679 } else if (type == CR_TYPE_READ) {
1680 write = false;
1681 } else {
1682 return -1;
1683 }
1684
1685 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1686 KASSERT(gpr < 16);
1687
1688 if (write) {
1689 if (gpr == NVMM_X64_GPR_RSP) {
1690 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1691 } else {
1692 cpudata->gcr8 = cpudata->gprs[gpr];
1693 }
1694 if (cpudata->tpr.exit_changed) {
1695 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1696 }
1697 } else {
1698 if (gpr == NVMM_X64_GPR_RSP) {
1699 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1700 } else {
1701 cpudata->gprs[gpr] = cpudata->gcr8;
1702 }
1703 }
1704
1705 vmx_inkernel_advance();
1706 return 0;
1707 }
1708
1709 static void
1710 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1711 struct nvmm_vcpu_exit *exit)
1712 {
1713 uint64_t qual;
1714 int ret;
1715
1716 exit->reason = NVMM_VCPU_EXIT_NONE;
1717
1718 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1719
1720 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1721 case 0:
1722 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1723 break;
1724 case 4:
1725 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1726 break;
1727 case 8:
1728 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1729 break;
1730 default:
1731 ret = -1;
1732 break;
1733 }
1734
1735 if (ret == -1) {
1736 vmx_inject_gp(vcpu);
1737 }
1738 }
1739
1740 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1741 #define IO_SIZE_8 0
1742 #define IO_SIZE_16 1
1743 #define IO_SIZE_32 3
1744 #define VMX_QUAL_IO_IN __BIT(3)
1745 #define VMX_QUAL_IO_STR __BIT(4)
1746 #define VMX_QUAL_IO_REP __BIT(5)
1747 #define VMX_QUAL_IO_DX __BIT(6)
1748 #define VMX_QUAL_IO_PORT __BITS(31,16)
1749
1750 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1751 #define IO_ADRSIZE_16 0
1752 #define IO_ADRSIZE_32 1
1753 #define IO_ADRSIZE_64 2
1754 #define VMX_INFO_IO_SEG __BITS(17,15)
1755
1756 static void
1757 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1758 struct nvmm_vcpu_exit *exit)
1759 {
1760 uint64_t qual, info, inslen, rip;
1761
1762 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1763 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1764
1765 exit->reason = NVMM_VCPU_EXIT_IO;
1766
1767 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1768 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1769
1770 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1771 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1772
1773 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1774 exit->u.io.address_size = 8;
1775 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1776 exit->u.io.address_size = 4;
1777 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1778 exit->u.io.address_size = 2;
1779 }
1780
1781 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1782 exit->u.io.operand_size = 4;
1783 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1784 exit->u.io.operand_size = 2;
1785 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1786 exit->u.io.operand_size = 1;
1787 }
1788
1789 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1790 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1791
1792 if (exit->u.io.in && exit->u.io.str) {
1793 exit->u.io.seg = NVMM_X64_SEG_ES;
1794 }
1795
1796 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1797 rip = vmx_vmread(VMCS_GUEST_RIP);
1798 exit->u.io.npc = rip + inslen;
1799
1800 vmx_vcpu_state_provide(vcpu,
1801 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1802 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1803 }
1804
1805 static const uint64_t msr_ignore_list[] = {
1806 MSR_BIOS_SIGN,
1807 MSR_IA32_PLATFORM_ID
1808 };
1809
1810 static bool
1811 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1812 struct nvmm_vcpu_exit *exit)
1813 {
1814 struct vmx_cpudata *cpudata = vcpu->cpudata;
1815 uint64_t val;
1816 size_t i;
1817
1818 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1819 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1820 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1821 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1822 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1823 goto handled;
1824 }
1825 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1826 val = cpudata->gmsr_misc_enable;
1827 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1828 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1829 goto handled;
1830 }
1831 if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1832 u_int descs[4];
1833 if (cpuid_level < 7) {
1834 goto error;
1835 }
1836 x86_cpuid(7, descs);
1837 if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
1838 goto error;
1839 }
1840 val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1841 val &= (IA32_ARCH_RDCL_NO |
1842 IA32_ARCH_SSB_NO |
1843 IA32_ARCH_MDS_NO |
1844 IA32_ARCH_TAA_NO);
1845 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1846 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1847 goto handled;
1848 }
1849 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1850 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1851 continue;
1852 val = 0;
1853 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1854 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1855 goto handled;
1856 }
1857 } else {
1858 if (exit->u.wrmsr.msr == MSR_TSC) {
1859 cpudata->gtsc = exit->u.wrmsr.val;
1860 cpudata->gtsc_want_update = true;
1861 goto handled;
1862 }
1863 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1864 val = exit->u.wrmsr.val;
1865 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1866 goto error;
1867 }
1868 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1869 goto handled;
1870 }
1871 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1872 /* Don't care. */
1873 goto handled;
1874 }
1875 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1876 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1877 continue;
1878 goto handled;
1879 }
1880 }
1881
1882 return false;
1883
1884 handled:
1885 vmx_inkernel_advance();
1886 return true;
1887
1888 error:
1889 vmx_inject_gp(vcpu);
1890 return true;
1891 }
1892
1893 static void
1894 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1895 struct nvmm_vcpu_exit *exit)
1896 {
1897 struct vmx_cpudata *cpudata = vcpu->cpudata;
1898 uint64_t inslen, rip;
1899
1900 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1901 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1902
1903 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1904 exit->reason = NVMM_VCPU_EXIT_NONE;
1905 return;
1906 }
1907
1908 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1909 rip = vmx_vmread(VMCS_GUEST_RIP);
1910 exit->u.rdmsr.npc = rip + inslen;
1911
1912 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1913 }
1914
1915 static void
1916 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1917 struct nvmm_vcpu_exit *exit)
1918 {
1919 struct vmx_cpudata *cpudata = vcpu->cpudata;
1920 uint64_t rdx, rax, inslen, rip;
1921
1922 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1923 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1924
1925 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1926 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1927 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1928
1929 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1930 exit->reason = NVMM_VCPU_EXIT_NONE;
1931 return;
1932 }
1933
1934 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1935 rip = vmx_vmread(VMCS_GUEST_RIP);
1936 exit->u.wrmsr.npc = rip + inslen;
1937
1938 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1939 }
1940
1941 static void
1942 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1943 struct nvmm_vcpu_exit *exit)
1944 {
1945 struct vmx_cpudata *cpudata = vcpu->cpudata;
1946 uint64_t val;
1947
1948 exit->reason = NVMM_VCPU_EXIT_NONE;
1949
1950 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1951 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1952
1953 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1954 goto error;
1955 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1956 goto error;
1957 } else if (__predict_false((val & XCR0_X87) == 0)) {
1958 goto error;
1959 }
1960
1961 cpudata->gxcr0 = val;
1962 if (vmx_xcr0_mask != 0) {
1963 wrxcr(0, cpudata->gxcr0);
1964 }
1965
1966 vmx_inkernel_advance();
1967 return;
1968
1969 error:
1970 vmx_inject_gp(vcpu);
1971 }
1972
1973 #define VMX_EPT_VIOLATION_READ __BIT(0)
1974 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1975 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1976
1977 static void
1978 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1979 struct nvmm_vcpu_exit *exit)
1980 {
1981 uint64_t perm;
1982 gpaddr_t gpa;
1983
1984 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1985
1986 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1987 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1988 if (perm & VMX_EPT_VIOLATION_WRITE)
1989 exit->u.mem.prot = PROT_WRITE;
1990 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1991 exit->u.mem.prot = PROT_EXEC;
1992 else
1993 exit->u.mem.prot = PROT_READ;
1994 exit->u.mem.gpa = gpa;
1995 exit->u.mem.inst_len = 0;
1996
1997 vmx_vcpu_state_provide(vcpu,
1998 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1999 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2000 }
2001
2002 /* -------------------------------------------------------------------------- */
2003
2004 static void
2005 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2006 {
2007 struct vmx_cpudata *cpudata = vcpu->cpudata;
2008
2009 fpu_kern_enter();
2010 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
2011
2012 if (vmx_xcr0_mask != 0) {
2013 cpudata->hxcr0 = rdxcr(0);
2014 wrxcr(0, cpudata->gxcr0);
2015 }
2016 }
2017
2018 static void
2019 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2020 {
2021 struct vmx_cpudata *cpudata = vcpu->cpudata;
2022
2023 if (vmx_xcr0_mask != 0) {
2024 cpudata->gxcr0 = rdxcr(0);
2025 wrxcr(0, cpudata->hxcr0);
2026 }
2027
2028 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
2029 fpu_kern_leave();
2030 }
2031
2032 static void
2033 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2034 {
2035 struct vmx_cpudata *cpudata = vcpu->cpudata;
2036
2037 x86_dbregs_save(curlwp);
2038
2039 ldr7(0);
2040
2041 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
2042 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
2043 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
2044 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
2045 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
2046 }
2047
2048 static void
2049 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2050 {
2051 struct vmx_cpudata *cpudata = vcpu->cpudata;
2052
2053 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
2054 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
2055 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
2056 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
2057 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
2058
2059 x86_dbregs_restore(curlwp);
2060 }
2061
2062 static void
2063 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2064 {
2065 struct vmx_cpudata *cpudata = vcpu->cpudata;
2066
2067 /* This gets restored automatically by the CPU. */
2068 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
2069 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2070 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
2071 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
2072
2073 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2074 }
2075
2076 static void
2077 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2078 {
2079 struct vmx_cpudata *cpudata = vcpu->cpudata;
2080
2081 wrmsr(MSR_STAR, cpudata->star);
2082 wrmsr(MSR_LSTAR, cpudata->lstar);
2083 wrmsr(MSR_CSTAR, cpudata->cstar);
2084 wrmsr(MSR_SFMASK, cpudata->sfmask);
2085 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
2086 }
2087
2088 /* -------------------------------------------------------------------------- */
2089
2090 #define VMX_INVVPID_ADDRESS 0
2091 #define VMX_INVVPID_CONTEXT 1
2092 #define VMX_INVVPID_ALL 2
2093 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
2094
2095 #define VMX_INVEPT_CONTEXT 1
2096 #define VMX_INVEPT_ALL 2
2097
2098 static inline void
2099 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2100 {
2101 struct vmx_cpudata *cpudata = vcpu->cpudata;
2102
2103 if (vcpu->hcpu_last != hcpu) {
2104 cpudata->gtlb_want_flush = true;
2105 }
2106 }
2107
2108 static inline void
2109 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2110 {
2111 struct vmx_cpudata *cpudata = vcpu->cpudata;
2112 struct ept_desc ept_desc;
2113
2114 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
2115 return;
2116 }
2117
2118 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2119 ept_desc.mbz = 0;
2120 vmx_invept(vmx_ept_flush_op, &ept_desc);
2121 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
2122 }
2123
2124 static inline uint64_t
2125 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
2126 {
2127 struct ept_desc ept_desc;
2128 uint64_t machgen;
2129
2130 machgen = machdata->mach_htlb_gen;
2131 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2132 return machgen;
2133 }
2134
2135 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
2136
2137 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2138 ept_desc.mbz = 0;
2139 vmx_invept(vmx_ept_flush_op, &ept_desc);
2140
2141 return machgen;
2142 }
2143
2144 static inline void
2145 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2146 {
2147 cpudata->vcpu_htlb_gen = machgen;
2148 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2149 }
2150
2151 static inline void
2152 vmx_exit_evt(struct vmx_cpudata *cpudata)
2153 {
2154 uint64_t info, err, inslen;
2155
2156 cpudata->evt_pending = false;
2157
2158 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2159 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2160 return;
2161 }
2162 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2163
2164 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2165 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2166
2167 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2168 case INTR_TYPE_SW_INT:
2169 case INTR_TYPE_PRIV_SW_EXC:
2170 case INTR_TYPE_SW_EXC:
2171 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2172 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2173 }
2174
2175 cpudata->evt_pending = true;
2176 }
2177
2178 static int
2179 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2180 struct nvmm_vcpu_exit *exit)
2181 {
2182 struct nvmm_comm_page *comm = vcpu->comm;
2183 struct vmx_machdata *machdata = mach->machdata;
2184 struct vmx_cpudata *cpudata = vcpu->cpudata;
2185 struct vpid_desc vpid_desc;
2186 struct cpu_info *ci;
2187 uint64_t exitcode;
2188 uint64_t intstate;
2189 uint64_t machgen;
2190 int hcpu, ret;
2191 bool launched;
2192
2193 vmx_vmcs_enter(vcpu);
2194
2195 vmx_vcpu_state_commit(vcpu);
2196 comm->state_cached = 0;
2197
2198 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2199 vmx_vmcs_leave(vcpu);
2200 return EINVAL;
2201 }
2202
2203 ci = curcpu();
2204 hcpu = cpu_number();
2205 launched = cpudata->vmcs_launched;
2206
2207 vmx_gtlb_catchup(vcpu, hcpu);
2208 vmx_htlb_catchup(vcpu, hcpu);
2209
2210 if (vcpu->hcpu_last != hcpu) {
2211 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2212 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2213 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2214 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2215 cpudata->gtsc_want_update = true;
2216 vcpu->hcpu_last = hcpu;
2217 }
2218
2219 vmx_vcpu_guest_dbregs_enter(vcpu);
2220 vmx_vcpu_guest_misc_enter(vcpu);
2221 vmx_vcpu_guest_fpu_enter(vcpu);
2222
2223 while (1) {
2224 if (cpudata->gtlb_want_flush) {
2225 vpid_desc.vpid = cpudata->asid;
2226 vpid_desc.addr = 0;
2227 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2228 cpudata->gtlb_want_flush = false;
2229 }
2230
2231 if (__predict_false(cpudata->gtsc_want_update)) {
2232 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2233 cpudata->gtsc_want_update = false;
2234 }
2235
2236 vmx_cli();
2237 machgen = vmx_htlb_flush(machdata, cpudata);
2238 lcr2(cpudata->gcr2);
2239 if (launched) {
2240 ret = vmx_vmresume(cpudata->gprs);
2241 } else {
2242 ret = vmx_vmlaunch(cpudata->gprs);
2243 }
2244 cpudata->gcr2 = rcr2();
2245 vmx_htlb_flush_ack(cpudata, machgen);
2246 vmx_sti();
2247
2248 if (__predict_false(ret != 0)) {
2249 vmx_exit_invalid(exit, -1);
2250 break;
2251 }
2252 vmx_exit_evt(cpudata);
2253
2254 launched = true;
2255
2256 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2257 exitcode &= __BITS(15,0);
2258
2259 switch (exitcode) {
2260 case VMCS_EXITCODE_EXC_NMI:
2261 vmx_exit_exc_nmi(mach, vcpu, exit);
2262 break;
2263 case VMCS_EXITCODE_EXT_INT:
2264 exit->reason = NVMM_VCPU_EXIT_NONE;
2265 break;
2266 case VMCS_EXITCODE_CPUID:
2267 vmx_exit_cpuid(mach, vcpu, exit);
2268 break;
2269 case VMCS_EXITCODE_HLT:
2270 vmx_exit_hlt(mach, vcpu, exit);
2271 break;
2272 case VMCS_EXITCODE_CR:
2273 vmx_exit_cr(mach, vcpu, exit);
2274 break;
2275 case VMCS_EXITCODE_IO:
2276 vmx_exit_io(mach, vcpu, exit);
2277 break;
2278 case VMCS_EXITCODE_RDMSR:
2279 vmx_exit_rdmsr(mach, vcpu, exit);
2280 break;
2281 case VMCS_EXITCODE_WRMSR:
2282 vmx_exit_wrmsr(mach, vcpu, exit);
2283 break;
2284 case VMCS_EXITCODE_SHUTDOWN:
2285 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2286 break;
2287 case VMCS_EXITCODE_MONITOR:
2288 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2289 break;
2290 case VMCS_EXITCODE_MWAIT:
2291 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2292 break;
2293 case VMCS_EXITCODE_XSETBV:
2294 vmx_exit_xsetbv(mach, vcpu, exit);
2295 break;
2296 case VMCS_EXITCODE_RDPMC:
2297 case VMCS_EXITCODE_RDTSCP:
2298 case VMCS_EXITCODE_INVVPID:
2299 case VMCS_EXITCODE_INVEPT:
2300 case VMCS_EXITCODE_VMCALL:
2301 case VMCS_EXITCODE_VMCLEAR:
2302 case VMCS_EXITCODE_VMLAUNCH:
2303 case VMCS_EXITCODE_VMPTRLD:
2304 case VMCS_EXITCODE_VMPTRST:
2305 case VMCS_EXITCODE_VMREAD:
2306 case VMCS_EXITCODE_VMRESUME:
2307 case VMCS_EXITCODE_VMWRITE:
2308 case VMCS_EXITCODE_VMXOFF:
2309 case VMCS_EXITCODE_VMXON:
2310 vmx_inject_ud(vcpu);
2311 exit->reason = NVMM_VCPU_EXIT_NONE;
2312 break;
2313 case VMCS_EXITCODE_EPT_VIOLATION:
2314 vmx_exit_epf(mach, vcpu, exit);
2315 break;
2316 case VMCS_EXITCODE_INT_WINDOW:
2317 vmx_event_waitexit_disable(vcpu, false);
2318 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2319 break;
2320 case VMCS_EXITCODE_NMI_WINDOW:
2321 vmx_event_waitexit_disable(vcpu, true);
2322 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2323 break;
2324 default:
2325 vmx_exit_invalid(exit, exitcode);
2326 break;
2327 }
2328
2329 /* If no reason to return to userland, keep rolling. */
2330 if (nvmm_return_needed()) {
2331 break;
2332 }
2333 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2334 break;
2335 }
2336 }
2337
2338 cpudata->vmcs_launched = launched;
2339
2340 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2341
2342 vmx_vcpu_guest_fpu_leave(vcpu);
2343 vmx_vcpu_guest_misc_leave(vcpu);
2344 vmx_vcpu_guest_dbregs_leave(vcpu);
2345
2346 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2347 exit->exitstate.cr8 = cpudata->gcr8;
2348 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2349 exit->exitstate.int_shadow =
2350 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2351 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2352 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2353 exit->exitstate.evt_pending = cpudata->evt_pending;
2354
2355 vmx_vmcs_leave(vcpu);
2356
2357 return 0;
2358 }
2359
2360 /* -------------------------------------------------------------------------- */
2361
2362 static int
2363 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2364 {
2365 struct pglist pglist;
2366 paddr_t _pa;
2367 vaddr_t _va;
2368 size_t i;
2369 int ret;
2370
2371 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2372 &pglist, 1, 0);
2373 if (ret != 0)
2374 return ENOMEM;
2375 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2376 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2377 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2378 if (_va == 0)
2379 goto error;
2380
2381 for (i = 0; i < npages; i++) {
2382 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2383 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2384 }
2385 pmap_update(pmap_kernel());
2386
2387 memset((void *)_va, 0, npages * PAGE_SIZE);
2388
2389 *pa = _pa;
2390 *va = _va;
2391 return 0;
2392
2393 error:
2394 for (i = 0; i < npages; i++) {
2395 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2396 }
2397 return ENOMEM;
2398 }
2399
2400 static void
2401 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2402 {
2403 size_t i;
2404
2405 pmap_kremove(va, npages * PAGE_SIZE);
2406 pmap_update(pmap_kernel());
2407 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2408 for (i = 0; i < npages; i++) {
2409 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2410 }
2411 }
2412
2413 /* -------------------------------------------------------------------------- */
2414
2415 static void
2416 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2417 {
2418 uint64_t byte;
2419 uint8_t bitoff;
2420
2421 if (msr < 0x00002000) {
2422 /* Range 1 */
2423 byte = ((msr - 0x00000000) / 8) + 0;
2424 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2425 /* Range 2 */
2426 byte = ((msr - 0xC0000000) / 8) + 1024;
2427 } else {
2428 panic("%s: wrong range", __func__);
2429 }
2430
2431 bitoff = (msr & 0x7);
2432
2433 if (read) {
2434 bitmap[byte] &= ~__BIT(bitoff);
2435 }
2436 if (write) {
2437 bitmap[2048 + byte] &= ~__BIT(bitoff);
2438 }
2439 }
2440
2441 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2442 #define VMX_SEG_ATTRIB_S __BIT(4)
2443 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2444 #define VMX_SEG_ATTRIB_P __BIT(7)
2445 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2446 #define VMX_SEG_ATTRIB_L __BIT(13)
2447 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2448 #define VMX_SEG_ATTRIB_G __BIT(15)
2449 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2450
2451 static void
2452 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2453 {
2454 uint64_t attrib;
2455
2456 attrib =
2457 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2458 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2459 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2460 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2461 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2462 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2463 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2464 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2465 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2466
2467 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2468 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2469 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2470 }
2471 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2472 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2473 }
2474
2475 static void
2476 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2477 {
2478 uint64_t selector = 0, attrib = 0, base, limit;
2479
2480 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2481 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2482 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2483 }
2484 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2485 base = vmx_vmread(vmx_guest_segs[idx].base);
2486
2487 segs[idx].selector = selector;
2488 segs[idx].limit = limit;
2489 segs[idx].base = base;
2490 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2491 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2492 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2493 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2494 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2495 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2496 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2497 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2498 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2499 segs[idx].attrib.p = 0;
2500 }
2501 }
2502
2503 static inline bool
2504 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2505 {
2506 uint64_t cr0, cr3, cr4, efer;
2507
2508 if (flags & NVMM_X64_STATE_CRS) {
2509 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2510 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2511 return true;
2512 }
2513 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2514 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2515 return true;
2516 }
2517 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2518 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2519 return true;
2520 }
2521 }
2522
2523 if (flags & NVMM_X64_STATE_MSRS) {
2524 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2525 if ((efer ^
2526 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2527 return true;
2528 }
2529 }
2530
2531 return false;
2532 }
2533
2534 static void
2535 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2536 {
2537 struct nvmm_comm_page *comm = vcpu->comm;
2538 const struct nvmm_x64_state *state = &comm->state;
2539 struct vmx_cpudata *cpudata = vcpu->cpudata;
2540 struct fxsave *fpustate;
2541 uint64_t ctls1, intstate;
2542 uint64_t flags;
2543
2544 flags = comm->state_wanted;
2545
2546 vmx_vmcs_enter(vcpu);
2547
2548 if (vmx_state_tlb_flush(state, flags)) {
2549 cpudata->gtlb_want_flush = true;
2550 }
2551
2552 if (flags & NVMM_X64_STATE_SEGS) {
2553 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2554 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2555 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2556 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2557 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2558 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2559 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2560 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2561 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2562 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2563 }
2564
2565 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2566 if (flags & NVMM_X64_STATE_GPRS) {
2567 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2568
2569 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2570 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2571 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2572 }
2573
2574 if (flags & NVMM_X64_STATE_CRS) {
2575 /*
2576 * CR0_NE and CR4_VMXE are mandatory.
2577 */
2578 vmx_vmwrite(VMCS_CR0_SHADOW, state->crs[NVMM_X64_CR_CR0]);
2579 vmx_vmwrite(VMCS_GUEST_CR0,
2580 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2581 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2582 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2583 vmx_vmwrite(VMCS_GUEST_CR4,
2584 (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2585 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2586
2587 if (vmx_xcr0_mask != 0) {
2588 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2589 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2590 cpudata->gxcr0 &= vmx_xcr0_mask;
2591 cpudata->gxcr0 |= XCR0_X87;
2592 }
2593 }
2594
2595 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2596 if (flags & NVMM_X64_STATE_DRS) {
2597 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2598
2599 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2600 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2601 }
2602
2603 if (flags & NVMM_X64_STATE_MSRS) {
2604 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2605 state->msrs[NVMM_X64_MSR_STAR];
2606 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2607 state->msrs[NVMM_X64_MSR_LSTAR];
2608 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2609 state->msrs[NVMM_X64_MSR_CSTAR];
2610 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2611 state->msrs[NVMM_X64_MSR_SFMASK];
2612 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2613 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2614
2615 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2616 state->msrs[NVMM_X64_MSR_EFER]);
2617 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2618 state->msrs[NVMM_X64_MSR_PAT]);
2619 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2620 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2621 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2622 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2623 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2624 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2625
2626 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2627 cpudata->gtsc_want_update = true;
2628
2629 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2630 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2631 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2632 ctls1 |= ENTRY_CTLS_LONG_MODE;
2633 } else {
2634 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2635 }
2636 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2637 }
2638
2639 if (flags & NVMM_X64_STATE_INTR) {
2640 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2641 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2642 if (state->intr.int_shadow) {
2643 intstate |= INT_STATE_MOVSS;
2644 }
2645 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2646
2647 if (state->intr.int_window_exiting) {
2648 vmx_event_waitexit_enable(vcpu, false);
2649 } else {
2650 vmx_event_waitexit_disable(vcpu, false);
2651 }
2652
2653 if (state->intr.nmi_window_exiting) {
2654 vmx_event_waitexit_enable(vcpu, true);
2655 } else {
2656 vmx_event_waitexit_disable(vcpu, true);
2657 }
2658 }
2659
2660 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2661 if (flags & NVMM_X64_STATE_FPU) {
2662 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2663 sizeof(state->fpu));
2664
2665 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2666 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2667 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2668
2669 if (vmx_xcr0_mask != 0) {
2670 /* Reset XSTATE_BV, to force a reload. */
2671 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2672 }
2673 }
2674
2675 vmx_vmcs_leave(vcpu);
2676
2677 comm->state_wanted = 0;
2678 comm->state_cached |= flags;
2679 }
2680
2681 static void
2682 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2683 {
2684 struct nvmm_comm_page *comm = vcpu->comm;
2685 struct nvmm_x64_state *state = &comm->state;
2686 struct vmx_cpudata *cpudata = vcpu->cpudata;
2687 uint64_t intstate, flags;
2688
2689 flags = comm->state_wanted;
2690
2691 vmx_vmcs_enter(vcpu);
2692
2693 if (flags & NVMM_X64_STATE_SEGS) {
2694 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2695 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2696 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2697 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2698 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2699 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2700 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2701 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2702 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2703 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2704 }
2705
2706 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2707 if (flags & NVMM_X64_STATE_GPRS) {
2708 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2709
2710 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2711 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2712 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2713 }
2714
2715 if (flags & NVMM_X64_STATE_CRS) {
2716 state->crs[NVMM_X64_CR_CR0] =
2717 (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC) |
2718 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC);
2719 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2720 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2721 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2722 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2723 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2724
2725 /* Hide VMXE. */
2726 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2727 }
2728
2729 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2730 if (flags & NVMM_X64_STATE_DRS) {
2731 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2732
2733 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2734 }
2735
2736 if (flags & NVMM_X64_STATE_MSRS) {
2737 state->msrs[NVMM_X64_MSR_STAR] =
2738 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2739 state->msrs[NVMM_X64_MSR_LSTAR] =
2740 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2741 state->msrs[NVMM_X64_MSR_CSTAR] =
2742 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2743 state->msrs[NVMM_X64_MSR_SFMASK] =
2744 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2745 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2746 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2747 state->msrs[NVMM_X64_MSR_EFER] =
2748 vmx_vmread(VMCS_GUEST_IA32_EFER);
2749 state->msrs[NVMM_X64_MSR_PAT] =
2750 vmx_vmread(VMCS_GUEST_IA32_PAT);
2751 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2752 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2753 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2754 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2755 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2756 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2757 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2758 }
2759
2760 if (flags & NVMM_X64_STATE_INTR) {
2761 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2762 state->intr.int_shadow =
2763 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2764 state->intr.int_window_exiting = cpudata->int_window_exit;
2765 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2766 state->intr.evt_pending = cpudata->evt_pending;
2767 }
2768
2769 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2770 if (flags & NVMM_X64_STATE_FPU) {
2771 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2772 sizeof(state->fpu));
2773 }
2774
2775 vmx_vmcs_leave(vcpu);
2776
2777 comm->state_wanted = 0;
2778 comm->state_cached |= flags;
2779 }
2780
2781 static void
2782 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2783 {
2784 vcpu->comm->state_wanted = flags;
2785 vmx_vcpu_getstate(vcpu);
2786 }
2787
2788 static void
2789 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2790 {
2791 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2792 vcpu->comm->state_commit = 0;
2793 vmx_vcpu_setstate(vcpu);
2794 }
2795
2796 /* -------------------------------------------------------------------------- */
2797
2798 static void
2799 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2800 {
2801 struct vmx_cpudata *cpudata = vcpu->cpudata;
2802 size_t i, oct, bit;
2803
2804 mutex_enter(&vmx_asidlock);
2805
2806 for (i = 0; i < vmx_maxasid; i++) {
2807 oct = i / 8;
2808 bit = i % 8;
2809
2810 if (vmx_asidmap[oct] & __BIT(bit)) {
2811 continue;
2812 }
2813
2814 cpudata->asid = i;
2815
2816 vmx_asidmap[oct] |= __BIT(bit);
2817 vmx_vmwrite(VMCS_VPID, i);
2818 mutex_exit(&vmx_asidlock);
2819 return;
2820 }
2821
2822 mutex_exit(&vmx_asidlock);
2823
2824 panic("%s: impossible", __func__);
2825 }
2826
2827 static void
2828 vmx_asid_free(struct nvmm_cpu *vcpu)
2829 {
2830 size_t oct, bit;
2831 uint64_t asid;
2832
2833 asid = vmx_vmread(VMCS_VPID);
2834
2835 oct = asid / 8;
2836 bit = asid % 8;
2837
2838 mutex_enter(&vmx_asidlock);
2839 vmx_asidmap[oct] &= ~__BIT(bit);
2840 mutex_exit(&vmx_asidlock);
2841 }
2842
2843 static void
2844 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2845 {
2846 struct vmx_cpudata *cpudata = vcpu->cpudata;
2847 struct vmcs *vmcs = cpudata->vmcs;
2848 struct msr_entry *gmsr = cpudata->gmsr;
2849 extern uint8_t vmx_resume_rip;
2850 uint64_t rev, eptp;
2851
2852 rev = vmx_get_revision();
2853
2854 memset(vmcs, 0, VMCS_SIZE);
2855 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2856 vmcs->abort = 0;
2857
2858 vmx_vmcs_enter(vcpu);
2859
2860 /* No link pointer. */
2861 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2862
2863 /* Install the CTLSs. */
2864 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2865 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2866 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2867 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2868 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2869
2870 /* Allow direct access to certain MSRs. */
2871 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2872 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2873 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2874 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2875 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2876 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2877 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2878 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2879 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2880 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2881 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2882 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2883 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2884 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2885
2886 /*
2887 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2888 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2889 */
2890 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2891 gmsr[VMX_MSRLIST_STAR].val = 0;
2892 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2893 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2894 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2895 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2896 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2897 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2898 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2899 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2900 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2901 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2902 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2903 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2904 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2905 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2906
2907 /* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
2908 vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC);
2909
2910 /* Force unsupported CR4 fields to zero. */
2911 vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
2912 vmx_vmwrite(VMCS_CR4_SHADOW, 0);
2913
2914 /* Set the Host state for resuming. */
2915 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2916 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2917 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2918 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2919 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2920 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2921 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2922 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2923 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2924 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2925 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2926 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2927 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2928
2929 /* Generate ASID. */
2930 vmx_asid_alloc(vcpu);
2931
2932 /* Enable Extended Paging, 4-Level. */
2933 eptp =
2934 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2935 __SHIFTIN(4-1, EPTP_WALKLEN) |
2936 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2937 mach->vm->vm_map.pmap->pm_pdirpa[0];
2938 vmx_vmwrite(VMCS_EPTP, eptp);
2939
2940 /* Init IA32_MISC_ENABLE. */
2941 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2942 cpudata->gmsr_misc_enable &=
2943 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2944 cpudata->gmsr_misc_enable |=
2945 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2946
2947 /* Init XSAVE header. */
2948 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2949 cpudata->gfpu.xsh_xcomp_bv = 0;
2950
2951 /* These MSRs are static. */
2952 cpudata->star = rdmsr(MSR_STAR);
2953 cpudata->lstar = rdmsr(MSR_LSTAR);
2954 cpudata->cstar = rdmsr(MSR_CSTAR);
2955 cpudata->sfmask = rdmsr(MSR_SFMASK);
2956
2957 /* Install the RESET state. */
2958 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2959 sizeof(nvmm_x86_reset_state));
2960 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2961 vcpu->comm->state_cached = 0;
2962 vmx_vcpu_setstate(vcpu);
2963
2964 vmx_vmcs_leave(vcpu);
2965 }
2966
2967 static int
2968 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2969 {
2970 struct vmx_cpudata *cpudata;
2971 int error;
2972
2973 /* Allocate the VMX cpudata. */
2974 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2975 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2976 UVM_KMF_WIRED|UVM_KMF_ZERO);
2977 vcpu->cpudata = cpudata;
2978
2979 /* VMCS */
2980 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2981 VMCS_NPAGES);
2982 if (error)
2983 goto error;
2984
2985 /* MSR Bitmap */
2986 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2987 MSRBM_NPAGES);
2988 if (error)
2989 goto error;
2990
2991 /* Guest MSR List */
2992 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2993 if (error)
2994 goto error;
2995
2996 kcpuset_create(&cpudata->htlb_want_flush, true);
2997
2998 /* Init the VCPU info. */
2999 vmx_vcpu_init(mach, vcpu);
3000
3001 return 0;
3002
3003 error:
3004 if (cpudata->vmcs_pa) {
3005 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3006 VMCS_NPAGES);
3007 }
3008 if (cpudata->msrbm_pa) {
3009 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3010 MSRBM_NPAGES);
3011 }
3012 if (cpudata->gmsr_pa) {
3013 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3014 }
3015
3016 kmem_free(cpudata, sizeof(*cpudata));
3017 return error;
3018 }
3019
3020 static void
3021 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3022 {
3023 struct vmx_cpudata *cpudata = vcpu->cpudata;
3024
3025 vmx_vmcs_enter(vcpu);
3026 vmx_asid_free(vcpu);
3027 vmx_vmcs_destroy(vcpu);
3028
3029 kcpuset_destroy(cpudata->htlb_want_flush);
3030
3031 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
3032 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
3033 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3034 uvm_km_free(kernel_map, (vaddr_t)cpudata,
3035 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3036 }
3037
3038 /* -------------------------------------------------------------------------- */
3039
3040 static int
3041 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3042 {
3043 struct nvmm_vcpu_conf_cpuid *cpuid = data;
3044 size_t i;
3045
3046 if (__predict_false(cpuid->mask && cpuid->exit)) {
3047 return EINVAL;
3048 }
3049 if (__predict_false(cpuid->mask &&
3050 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3051 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3052 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3053 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3054 return EINVAL;
3055 }
3056
3057 /* If unset, delete, to restore the default behavior. */
3058 if (!cpuid->mask && !cpuid->exit) {
3059 for (i = 0; i < VMX_NCPUIDS; i++) {
3060 if (!cpudata->cpuidpresent[i]) {
3061 continue;
3062 }
3063 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3064 cpudata->cpuidpresent[i] = false;
3065 }
3066 }
3067 return 0;
3068 }
3069
3070 /* If already here, replace. */
3071 for (i = 0; i < VMX_NCPUIDS; i++) {
3072 if (!cpudata->cpuidpresent[i]) {
3073 continue;
3074 }
3075 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3076 memcpy(&cpudata->cpuid[i], cpuid,
3077 sizeof(struct nvmm_vcpu_conf_cpuid));
3078 return 0;
3079 }
3080 }
3081
3082 /* Not here, insert. */
3083 for (i = 0; i < VMX_NCPUIDS; i++) {
3084 if (!cpudata->cpuidpresent[i]) {
3085 cpudata->cpuidpresent[i] = true;
3086 memcpy(&cpudata->cpuid[i], cpuid,
3087 sizeof(struct nvmm_vcpu_conf_cpuid));
3088 return 0;
3089 }
3090 }
3091
3092 return ENOBUFS;
3093 }
3094
3095 static int
3096 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3097 {
3098 struct nvmm_vcpu_conf_tpr *tpr = data;
3099
3100 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3101 return 0;
3102 }
3103
3104 static int
3105 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3106 {
3107 struct vmx_cpudata *cpudata = vcpu->cpudata;
3108
3109 switch (op) {
3110 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3111 return vmx_vcpu_configure_cpuid(cpudata, data);
3112 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3113 return vmx_vcpu_configure_tpr(cpudata, data);
3114 default:
3115 return EINVAL;
3116 }
3117 }
3118
3119 /* -------------------------------------------------------------------------- */
3120
3121 static void
3122 vmx_tlb_flush(struct pmap *pm)
3123 {
3124 struct nvmm_machine *mach = pm->pm_data;
3125 struct vmx_machdata *machdata = mach->machdata;
3126
3127 atomic_inc_64(&machdata->mach_htlb_gen);
3128
3129 /* Generates IPIs, which cause #VMEXITs. */
3130 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3131 }
3132
3133 static void
3134 vmx_machine_create(struct nvmm_machine *mach)
3135 {
3136 struct pmap *pmap = mach->vm->vm_map.pmap;
3137 struct vmx_machdata *machdata;
3138
3139 /* Convert to EPT. */
3140 pmap_ept_transform(pmap);
3141
3142 /* Fill in pmap info. */
3143 pmap->pm_data = (void *)mach;
3144 pmap->pm_tlb_flush = vmx_tlb_flush;
3145
3146 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3147 mach->machdata = machdata;
3148
3149 /* Start with an hTLB flush everywhere. */
3150 machdata->mach_htlb_gen = 1;
3151 }
3152
3153 static void
3154 vmx_machine_destroy(struct nvmm_machine *mach)
3155 {
3156 struct vmx_machdata *machdata = mach->machdata;
3157
3158 kmem_free(machdata, sizeof(struct vmx_machdata));
3159 }
3160
3161 static int
3162 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3163 {
3164 panic("%s: impossible", __func__);
3165 }
3166
3167 /* -------------------------------------------------------------------------- */
3168
3169 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3170 ((msrval & __BIT(32 + bitoff)) != 0)
3171 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3172 ((msrval & __BIT(bitoff)) == 0)
3173
3174 static int
3175 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3176 {
3177 uint64_t basic, val, true_val;
3178 bool has_true;
3179 size_t i;
3180
3181 basic = rdmsr(MSR_IA32_VMX_BASIC);
3182 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3183
3184 val = rdmsr(msr_ctls);
3185 if (has_true) {
3186 true_val = rdmsr(msr_true_ctls);
3187 } else {
3188 true_val = val;
3189 }
3190
3191 for (i = 0; i < 32; i++) {
3192 if (!(set_one & __BIT(i))) {
3193 continue;
3194 }
3195 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3196 return -1;
3197 }
3198 }
3199
3200 return 0;
3201 }
3202
3203 static int
3204 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3205 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3206 {
3207 uint64_t basic, val, true_val;
3208 bool one_allowed, zero_allowed, has_true;
3209 size_t i;
3210
3211 basic = rdmsr(MSR_IA32_VMX_BASIC);
3212 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3213
3214 val = rdmsr(msr_ctls);
3215 if (has_true) {
3216 true_val = rdmsr(msr_true_ctls);
3217 } else {
3218 true_val = val;
3219 }
3220
3221 for (i = 0; i < 32; i++) {
3222 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3223 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3224
3225 if (zero_allowed && !one_allowed) {
3226 if (set_one & __BIT(i))
3227 return -1;
3228 *res &= ~__BIT(i);
3229 } else if (one_allowed && !zero_allowed) {
3230 if (set_zero & __BIT(i))
3231 return -1;
3232 *res |= __BIT(i);
3233 } else {
3234 if (set_zero & __BIT(i)) {
3235 *res &= ~__BIT(i);
3236 } else if (set_one & __BIT(i)) {
3237 *res |= __BIT(i);
3238 } else if (!has_true) {
3239 *res &= ~__BIT(i);
3240 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3241 *res &= ~__BIT(i);
3242 } else if (CTLS_ONE_ALLOWED(val, i)) {
3243 *res |= __BIT(i);
3244 } else {
3245 return -1;
3246 }
3247 }
3248 }
3249
3250 return 0;
3251 }
3252
3253 static bool
3254 vmx_ident(void)
3255 {
3256 uint64_t msr;
3257 int ret;
3258
3259 if (!(cpu_feature[1] & CPUID2_VMX)) {
3260 return false;
3261 }
3262
3263 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3264 if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3265 (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3266 printf("NVMM: VMX disabled in BIOS\n");
3267 return false;
3268 }
3269
3270 msr = rdmsr(MSR_IA32_VMX_BASIC);
3271 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3272 printf("NVMM: I/O reporting not supported\n");
3273 return false;
3274 }
3275 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3276 printf("NVMM: WB memory not supported\n");
3277 return false;
3278 }
3279
3280 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3281 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3282 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3283 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3284 if (ret == -1) {
3285 printf("NVMM: CR0 requirements not satisfied\n");
3286 return false;
3287 }
3288
3289 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3290 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3291 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3292 if (ret == -1) {
3293 printf("NVMM: CR4 requirements not satisfied\n");
3294 return false;
3295 }
3296
3297 /* Init the CTLSs right now, and check for errors. */
3298 ret = vmx_init_ctls(
3299 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3300 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3301 &vmx_pinbased_ctls);
3302 if (ret == -1) {
3303 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3304 return false;
3305 }
3306 ret = vmx_init_ctls(
3307 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3308 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3309 &vmx_procbased_ctls);
3310 if (ret == -1) {
3311 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3312 return false;
3313 }
3314 ret = vmx_init_ctls(
3315 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3316 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3317 &vmx_procbased_ctls2);
3318 if (ret == -1) {
3319 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3320 return false;
3321 }
3322 ret = vmx_check_ctls(
3323 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3324 PROC_CTLS2_INVPCID_ENABLE);
3325 if (ret != -1) {
3326 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3327 }
3328 ret = vmx_init_ctls(
3329 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3330 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3331 &vmx_entry_ctls);
3332 if (ret == -1) {
3333 printf("NVMM: entry-ctls requirements not satisfied\n");
3334 return false;
3335 }
3336 ret = vmx_init_ctls(
3337 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3338 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3339 &vmx_exit_ctls);
3340 if (ret == -1) {
3341 printf("NVMM: exit-ctls requirements not satisfied\n");
3342 return false;
3343 }
3344
3345 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3346 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3347 printf("NVMM: 4-level page tree not supported\n");
3348 return false;
3349 }
3350 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3351 printf("NVMM: INVEPT not supported\n");
3352 return false;
3353 }
3354 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3355 printf("NVMM: INVVPID not supported\n");
3356 return false;
3357 }
3358 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3359 pmap_ept_has_ad = true;
3360 } else {
3361 pmap_ept_has_ad = false;
3362 }
3363 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3364 printf("NVMM: EPT UC/WB memory types not supported\n");
3365 return false;
3366 }
3367
3368 return true;
3369 }
3370
3371 static void
3372 vmx_init_asid(uint32_t maxasid)
3373 {
3374 size_t allocsz;
3375
3376 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3377
3378 vmx_maxasid = maxasid;
3379 allocsz = roundup(maxasid, 8) / 8;
3380 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3381
3382 /* ASID 0 is reserved for the host. */
3383 vmx_asidmap[0] |= __BIT(0);
3384 }
3385
3386 static void
3387 vmx_change_cpu(void *arg1, void *arg2)
3388 {
3389 struct cpu_info *ci = curcpu();
3390 bool enable = arg1 != NULL;
3391 uint64_t msr, cr4;
3392
3393 if (enable) {
3394 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3395 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3396 /* Lock now, with VMX-outside-SMX enabled. */
3397 wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3398 IA32_FEATURE_CONTROL_LOCK |
3399 IA32_FEATURE_CONTROL_OUT_SMX);
3400 }
3401 }
3402
3403 if (!enable) {
3404 vmx_vmxoff();
3405 }
3406
3407 cr4 = rcr4();
3408 if (enable) {
3409 cr4 |= CR4_VMXE;
3410 } else {
3411 cr4 &= ~CR4_VMXE;
3412 }
3413 lcr4(cr4);
3414
3415 if (enable) {
3416 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3417 }
3418 }
3419
3420 static void
3421 vmx_init_l1tf(void)
3422 {
3423 u_int descs[4];
3424 uint64_t msr;
3425
3426 if (cpuid_level < 7) {
3427 return;
3428 }
3429
3430 x86_cpuid(7, descs);
3431
3432 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3433 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3434 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3435 /* No mitigation needed. */
3436 return;
3437 }
3438 }
3439
3440 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3441 /* Enable hardware mitigation. */
3442 vmx_msrlist_entry_nmsr += 1;
3443 }
3444 }
3445
3446 static void
3447 vmx_init(void)
3448 {
3449 CPU_INFO_ITERATOR cii;
3450 struct cpu_info *ci;
3451 uint64_t xc, msr;
3452 struct vmxon *vmxon;
3453 uint32_t revision;
3454 u_int descs[4];
3455 paddr_t pa;
3456 vaddr_t va;
3457 int error;
3458
3459 /* Init the ASID bitmap (VPID). */
3460 vmx_init_asid(VPID_MAX);
3461
3462 /* Init the XCR0 mask. */
3463 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3464
3465 /* Init the max basic CPUID leaf. */
3466 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3467
3468 /* Init the max extended CPUID leaf. */
3469 x86_cpuid(0x80000000, descs);
3470 vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
3471
3472 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3473 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3474 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3475 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3476 } else {
3477 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3478 }
3479 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3480 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3481 } else {
3482 vmx_ept_flush_op = VMX_INVEPT_ALL;
3483 }
3484 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3485 vmx_eptp_type = EPTP_TYPE_WB;
3486 } else {
3487 vmx_eptp_type = EPTP_TYPE_UC;
3488 }
3489
3490 /* Init the L1TF mitigation. */
3491 vmx_init_l1tf();
3492
3493 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3494 revision = vmx_get_revision();
3495
3496 for (CPU_INFO_FOREACH(cii, ci)) {
3497 error = vmx_memalloc(&pa, &va, 1);
3498 if (error) {
3499 panic("%s: out of memory", __func__);
3500 }
3501 vmxoncpu[cpu_index(ci)].pa = pa;
3502 vmxoncpu[cpu_index(ci)].va = va;
3503
3504 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3505 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3506 }
3507
3508 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3509 xc_wait(xc);
3510 }
3511
3512 static void
3513 vmx_fini_asid(void)
3514 {
3515 size_t allocsz;
3516
3517 allocsz = roundup(vmx_maxasid, 8) / 8;
3518 kmem_free(vmx_asidmap, allocsz);
3519
3520 mutex_destroy(&vmx_asidlock);
3521 }
3522
3523 static void
3524 vmx_fini(void)
3525 {
3526 uint64_t xc;
3527 size_t i;
3528
3529 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3530 xc_wait(xc);
3531
3532 for (i = 0; i < MAXCPUS; i++) {
3533 if (vmxoncpu[i].pa != 0)
3534 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3535 }
3536
3537 vmx_fini_asid();
3538 }
3539
3540 static void
3541 vmx_capability(struct nvmm_capability *cap)
3542 {
3543 cap->arch.mach_conf_support = 0;
3544 cap->arch.vcpu_conf_support =
3545 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3546 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3547 cap->arch.xcr0_mask = vmx_xcr0_mask;
3548 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3549 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3550 }
3551
3552 const struct nvmm_impl nvmm_x86_vmx = {
3553 .name = "x86-vmx",
3554 .ident = vmx_ident,
3555 .init = vmx_init,
3556 .fini = vmx_fini,
3557 .capability = vmx_capability,
3558 .mach_conf_max = NVMM_X86_MACH_NCONF,
3559 .mach_conf_sizes = NULL,
3560 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3561 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3562 .state_size = sizeof(struct nvmm_x64_state),
3563 .machine_create = vmx_machine_create,
3564 .machine_destroy = vmx_machine_destroy,
3565 .machine_configure = vmx_machine_configure,
3566 .vcpu_create = vmx_vcpu_create,
3567 .vcpu_destroy = vmx_vcpu_destroy,
3568 .vcpu_configure = vmx_vcpu_configure,
3569 .vcpu_setstate = vmx_vcpu_setstate,
3570 .vcpu_getstate = vmx_vcpu_getstate,
3571 .vcpu_inject = vmx_vcpu_inject,
3572 .vcpu_run = vmx_vcpu_run
3573 };
3574