nvmm_x86_vmx.c revision 1.87 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.87 2025/03/09 19:16:47 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.87 2025/03/09 19:16:47 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41 #include <sys/bitops.h>
42
43 #include <uvm/uvm_extern.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50
51 #include <machine/cpuvar.h>
52 #include <machine/pmap_private.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int _vmx_vmxon(paddr_t *pa);
59 int _vmx_vmxoff(void);
60 int vmx_vmlaunch(uint64_t *gprs);
61 int vmx_vmresume(uint64_t *gprs);
62
63 #define vmx_vmxon(a) \
64 if (__predict_false(_vmx_vmxon(a) != 0)) { \
65 panic("%s: VMXON failed", __func__); \
66 }
67 #define vmx_vmxoff() \
68 if (__predict_false(_vmx_vmxoff() != 0)) { \
69 panic("%s: VMXOFF failed", __func__); \
70 }
71
72 struct ept_desc {
73 uint64_t eptp;
74 uint64_t mbz;
75 } __packed;
76
77 struct vpid_desc {
78 uint64_t vpid;
79 uint64_t addr;
80 } __packed;
81
82 static inline void
83 vmx_invept(uint64_t op, struct ept_desc *desc)
84 {
85 asm volatile (
86 "invept %[desc],%[op];"
87 "jz vmx_insn_failvalid;"
88 "jc vmx_insn_failinvalid;"
89 :
90 : [desc] "m" (*desc), [op] "r" (op)
91 : "memory", "cc"
92 );
93 }
94
95 static inline void
96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
97 {
98 asm volatile (
99 "invvpid %[desc],%[op];"
100 "jz vmx_insn_failvalid;"
101 "jc vmx_insn_failinvalid;"
102 :
103 : [desc] "m" (*desc), [op] "r" (op)
104 : "memory", "cc"
105 );
106 }
107
108 static inline uint64_t
109 vmx_vmread(uint64_t field)
110 {
111 uint64_t value;
112
113 asm volatile (
114 "vmread %[field],%[value];"
115 "jz vmx_insn_failvalid;"
116 "jc vmx_insn_failinvalid;"
117 : [value] "=r" (value)
118 : [field] "r" (field)
119 : "cc"
120 );
121
122 return value;
123 }
124
125 static inline void
126 vmx_vmwrite(uint64_t field, uint64_t value)
127 {
128 asm volatile (
129 "vmwrite %[value],%[field];"
130 "jz vmx_insn_failvalid;"
131 "jc vmx_insn_failinvalid;"
132 :
133 : [field] "r" (field), [value] "r" (value)
134 : "cc"
135 );
136 }
137
138 static inline paddr_t __diagused
139 vmx_vmptrst(void)
140 {
141 paddr_t pa;
142
143 asm volatile (
144 "vmptrst %[pa];"
145 :
146 : [pa] "m" (*(paddr_t *)&pa)
147 : "memory"
148 );
149
150 return pa;
151 }
152
153 static inline void
154 vmx_vmptrld(paddr_t *pa)
155 {
156 asm volatile (
157 "vmptrld %[pa];"
158 "jz vmx_insn_failvalid;"
159 "jc vmx_insn_failinvalid;"
160 :
161 : [pa] "m" (*pa)
162 : "memory", "cc"
163 );
164 }
165
166 static inline void
167 vmx_vmclear(paddr_t *pa)
168 {
169 asm volatile (
170 "vmclear %[pa];"
171 "jz vmx_insn_failvalid;"
172 "jc vmx_insn_failinvalid;"
173 :
174 : [pa] "m" (*pa)
175 : "memory", "cc"
176 );
177 }
178
179 static inline void
180 vmx_cli(void)
181 {
182 asm volatile ("cli" ::: "memory");
183 }
184
185 static inline void
186 vmx_sti(void)
187 {
188 asm volatile ("sti" ::: "memory");
189 }
190
191 #define MSR_IA32_FEATURE_CONTROL 0x003A
192 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
193 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
194 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
195
196 #define MSR_IA32_VMX_BASIC 0x0480
197 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
198 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
199 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
200 #define IA32_VMX_BASIC_DUAL __BIT(49)
201 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
202 #define MEM_TYPE_UC 0
203 #define MEM_TYPE_WB 6
204 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
205 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
206
207 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
208 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
209 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
210 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
211 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
212
213 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
214 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
215 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
216 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
217
218 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
219 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
220 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
221 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
222
223 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
224 #define IA32_VMX_EPT_VPID_XO __BIT(0)
225 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
226 #define IA32_VMX_EPT_VPID_UC __BIT(8)
227 #define IA32_VMX_EPT_VPID_WB __BIT(14)
228 #define IA32_VMX_EPT_VPID_2MB __BIT(16)
229 #define IA32_VMX_EPT_VPID_1GB __BIT(17)
230 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
231 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
232 #define IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO __BIT(22)
233 #define IA32_VMX_EPT_VPID_SHSTK __BIT(23)
234 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
235 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
236 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
237 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
238 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
239 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
240 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
241
242 /* -------------------------------------------------------------------------- */
243
244 /* 16-bit control fields */
245 #define VMCS_VPID 0x00000000
246 #define VMCS_PIR_VECTOR 0x00000002
247 #define VMCS_EPTP_INDEX 0x00000004
248 /* 16-bit guest-state fields */
249 #define VMCS_GUEST_ES_SELECTOR 0x00000800
250 #define VMCS_GUEST_CS_SELECTOR 0x00000802
251 #define VMCS_GUEST_SS_SELECTOR 0x00000804
252 #define VMCS_GUEST_DS_SELECTOR 0x00000806
253 #define VMCS_GUEST_FS_SELECTOR 0x00000808
254 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
255 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
256 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
257 #define VMCS_GUEST_INTR_STATUS 0x00000810
258 #define VMCS_PML_INDEX 0x00000812
259 /* 16-bit host-state fields */
260 #define VMCS_HOST_ES_SELECTOR 0x00000C00
261 #define VMCS_HOST_CS_SELECTOR 0x00000C02
262 #define VMCS_HOST_SS_SELECTOR 0x00000C04
263 #define VMCS_HOST_DS_SELECTOR 0x00000C06
264 #define VMCS_HOST_FS_SELECTOR 0x00000C08
265 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
266 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
267 /* 64-bit control fields */
268 #define VMCS_IO_BITMAP_A 0x00002000
269 #define VMCS_IO_BITMAP_B 0x00002002
270 #define VMCS_MSR_BITMAP 0x00002004
271 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
272 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
273 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
274 #define VMCS_EXECUTIVE_VMCS 0x0000200C
275 #define VMCS_PML_ADDRESS 0x0000200E
276 #define VMCS_TSC_OFFSET 0x00002010
277 #define VMCS_VIRTUAL_APIC 0x00002012
278 #define VMCS_APIC_ACCESS 0x00002014
279 #define VMCS_PIR_DESC 0x00002016
280 #define VMCS_VM_CONTROL 0x00002018
281 #define VMCS_EPTP 0x0000201A
282 #define EPTP_TYPE __BITS(2,0)
283 #define EPTP_TYPE_UC 0
284 #define EPTP_TYPE_WB 6
285 #define EPTP_WALKLEN __BITS(5,3)
286 #define EPTP_FLAGS_AD __BIT(6)
287 #define EPTP_SSS __BIT(7)
288 #define EPTP_PHYSADDR __BITS(63,12)
289 #define VMCS_EOI_EXIT0 0x0000201C
290 #define VMCS_EOI_EXIT1 0x0000201E
291 #define VMCS_EOI_EXIT2 0x00002020
292 #define VMCS_EOI_EXIT3 0x00002022
293 #define VMCS_EPTP_LIST 0x00002024
294 #define VMCS_VMREAD_BITMAP 0x00002026
295 #define VMCS_VMWRITE_BITMAP 0x00002028
296 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
297 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
298 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
299 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
300 #define VMCS_TSC_MULTIPLIER 0x00002032
301 #define VMCS_ENCLV_EXIT_BITMAP 0x00002036
302 /* 64-bit read-only fields */
303 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
304 /* 64-bit guest-state fields */
305 #define VMCS_LINK_POINTER 0x00002800
306 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
307 #define VMCS_GUEST_IA32_PAT 0x00002804
308 #define VMCS_GUEST_IA32_EFER 0x00002806
309 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
310 #define VMCS_GUEST_PDPTE0 0x0000280A
311 #define VMCS_GUEST_PDPTE1 0x0000280C
312 #define VMCS_GUEST_PDPTE2 0x0000280E
313 #define VMCS_GUEST_PDPTE3 0x00002810
314 #define VMCS_GUEST_BNDCFGS 0x00002812
315 #define VMCS_GUEST_RTIT_CTL 0x00002814
316 #define VMCS_GUEST_PKRS 0x00002818
317 /* 64-bit host-state fields */
318 #define VMCS_HOST_IA32_PAT 0x00002C00
319 #define VMCS_HOST_IA32_EFER 0x00002C02
320 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
321 #define VMCS_HOST_IA32_PKRS 0x00002C06
322 /* 32-bit control fields */
323 #define VMCS_PINBASED_CTLS 0x00004000
324 #define PIN_CTLS_INT_EXITING __BIT(0)
325 #define PIN_CTLS_NMI_EXITING __BIT(3)
326 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
327 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
328 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
329 #define VMCS_PROCBASED_CTLS 0x00004002
330 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
331 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
332 #define PROC_CTLS_HLT_EXITING __BIT(7)
333 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
334 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
335 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
336 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
337 #define PROC_CTLS_RCR3_EXITING __BIT(15)
338 #define PROC_CTLS_LCR3_EXITING __BIT(16)
339 #define PROC_CTLS_RCR8_EXITING __BIT(19)
340 #define PROC_CTLS_LCR8_EXITING __BIT(20)
341 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
342 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
343 #define PROC_CTLS_DR_EXITING __BIT(23)
344 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
345 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
346 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
347 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
348 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
349 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
350 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
351 #define VMCS_EXCEPTION_BITMAP 0x00004004
352 #define VMCS_PF_ERROR_MASK 0x00004006
353 #define VMCS_PF_ERROR_MATCH 0x00004008
354 #define VMCS_CR3_TARGET_COUNT 0x0000400A
355 #define VMCS_EXIT_CTLS 0x0000400C
356 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
357 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
358 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
359 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
360 #define EXIT_CTLS_SAVE_PAT __BIT(18)
361 #define EXIT_CTLS_LOAD_PAT __BIT(19)
362 #define EXIT_CTLS_SAVE_EFER __BIT(20)
363 #define EXIT_CTLS_LOAD_EFER __BIT(21)
364 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
365 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
366 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
367 #define EXIT_CTLS_CLEAR_RTIT_CTL __BIT(25)
368 #define EXIT_CTLS_LOAD_CET __BIT(28)
369 #define EXIT_CTLS_LOAD_PKRS __BIT(29)
370 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
371 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
372 #define VMCS_ENTRY_CTLS 0x00004012
373 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
374 #define ENTRY_CTLS_LONG_MODE __BIT(9)
375 #define ENTRY_CTLS_SMM __BIT(10)
376 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
377 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
378 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
379 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
380 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
381 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
382 #define ENTRY_CTLS_LOAD_RTIT_CTL __BIT(18)
383 #define ENTRY_CTLS_LOAD_CET __BIT(20)
384 #define ENTRY_CTLS_LOAD_PKRS __BIT(22)
385 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
386 #define VMCS_ENTRY_INTR_INFO 0x00004016
387 #define INTR_INFO_VECTOR __BITS(7,0)
388 #define INTR_INFO_TYPE __BITS(10,8)
389 #define INTR_TYPE_EXT_INT 0
390 #define INTR_TYPE_NMI 2
391 #define INTR_TYPE_HW_EXC 3
392 #define INTR_TYPE_SW_INT 4
393 #define INTR_TYPE_PRIV_SW_EXC 5
394 #define INTR_TYPE_SW_EXC 6
395 #define INTR_TYPE_OTHER 7
396 #define INTR_INFO_ERROR __BIT(11)
397 #define INTR_INFO_VALID __BIT(31)
398 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
399 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
400 #define VMCS_TPR_THRESHOLD 0x0000401C
401 #define VMCS_PROCBASED_CTLS2 0x0000401E
402 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
403 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
404 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
405 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
406 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
407 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
408 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
409 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
410 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
411 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
412 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
413 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
414 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
415 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
416 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
417 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
418 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
419 #define PROC_CTLS2_PML_ENABLE __BIT(17)
420 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
421 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
422 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
423 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
424 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
425 #define PROC_CTLS2_PT_USES_GPA __BIT(24)
426 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
427 #define PROC_CTLS2_WAIT_PAUSE_ENABLE __BIT(26)
428 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
429 #define VMCS_PLE_GAP 0x00004020
430 #define VMCS_PLE_WINDOW 0x00004022
431 /* 32-bit read-only data fields */
432 #define VMCS_INSTRUCTION_ERROR 0x00004400
433 #define VMCS_EXIT_REASON 0x00004402
434 #define VMCS_EXIT_INTR_INFO 0x00004404
435 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
436 #define VMCS_IDT_VECTORING_INFO 0x00004408
437 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
438 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
439 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
440 /* 32-bit guest-state fields */
441 #define VMCS_GUEST_ES_LIMIT 0x00004800
442 #define VMCS_GUEST_CS_LIMIT 0x00004802
443 #define VMCS_GUEST_SS_LIMIT 0x00004804
444 #define VMCS_GUEST_DS_LIMIT 0x00004806
445 #define VMCS_GUEST_FS_LIMIT 0x00004808
446 #define VMCS_GUEST_GS_LIMIT 0x0000480A
447 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
448 #define VMCS_GUEST_TR_LIMIT 0x0000480E
449 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
450 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
451 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
452 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
453 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
454 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
455 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
456 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
457 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
458 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
459 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
460 #define INT_STATE_STI __BIT(0)
461 #define INT_STATE_MOVSS __BIT(1)
462 #define INT_STATE_SMI __BIT(2)
463 #define INT_STATE_NMI __BIT(3)
464 #define INT_STATE_ENCLAVE __BIT(4)
465 #define VMCS_GUEST_ACTIVITY 0x00004826
466 #define VMCS_GUEST_SMBASE 0x00004828
467 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
468 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
469 /* 32-bit host state fields */
470 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
471 /* Natural-Width control fields */
472 #define VMCS_CR0_MASK 0x00006000
473 #define VMCS_CR4_MASK 0x00006002
474 #define VMCS_CR0_SHADOW 0x00006004
475 #define VMCS_CR4_SHADOW 0x00006006
476 #define VMCS_CR3_TARGET0 0x00006008
477 #define VMCS_CR3_TARGET1 0x0000600A
478 #define VMCS_CR3_TARGET2 0x0000600C
479 #define VMCS_CR3_TARGET3 0x0000600E
480 /* Natural-Width read-only fields */
481 #define VMCS_EXIT_QUALIFICATION 0x00006400
482 #define VMCS_IO_RCX 0x00006402
483 #define VMCS_IO_RSI 0x00006404
484 #define VMCS_IO_RDI 0x00006406
485 #define VMCS_IO_RIP 0x00006408
486 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
487 /* Natural-Width guest-state fields */
488 #define VMCS_GUEST_CR0 0x00006800
489 #define VMCS_GUEST_CR3 0x00006802
490 #define VMCS_GUEST_CR4 0x00006804
491 #define VMCS_GUEST_ES_BASE 0x00006806
492 #define VMCS_GUEST_CS_BASE 0x00006808
493 #define VMCS_GUEST_SS_BASE 0x0000680A
494 #define VMCS_GUEST_DS_BASE 0x0000680C
495 #define VMCS_GUEST_FS_BASE 0x0000680E
496 #define VMCS_GUEST_GS_BASE 0x00006810
497 #define VMCS_GUEST_LDTR_BASE 0x00006812
498 #define VMCS_GUEST_TR_BASE 0x00006814
499 #define VMCS_GUEST_GDTR_BASE 0x00006816
500 #define VMCS_GUEST_IDTR_BASE 0x00006818
501 #define VMCS_GUEST_DR7 0x0000681A
502 #define VMCS_GUEST_RSP 0x0000681C
503 #define VMCS_GUEST_RIP 0x0000681E
504 #define VMCS_GUEST_RFLAGS 0x00006820
505 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
506 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
507 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
508 #define VMCS_GUEST_IA32_S_CET 0x00006828
509 #define VMCS_GUEST_SSP 0x0000682A
510 #define VMCS_GUEST_IA32_INTR_SSP_TABLE 0x0000682C
511 /* Natural-Width host-state fields */
512 #define VMCS_HOST_CR0 0x00006C00
513 #define VMCS_HOST_CR3 0x00006C02
514 #define VMCS_HOST_CR4 0x00006C04
515 #define VMCS_HOST_FS_BASE 0x00006C06
516 #define VMCS_HOST_GS_BASE 0x00006C08
517 #define VMCS_HOST_TR_BASE 0x00006C0A
518 #define VMCS_HOST_GDTR_BASE 0x00006C0C
519 #define VMCS_HOST_IDTR_BASE 0x00006C0E
520 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
521 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
522 #define VMCS_HOST_RSP 0x00006C14
523 #define VMCS_HOST_RIP 0x00006C16
524 #define VMCS_HOST_IA32_S_CET 0x00006C18
525 #define VMCS_HOST_SSP 0x00006C1A
526 #define VMCS_HOST_IA32_INTR_SSP_TABLE 0x00006C1C
527
528 /* VMX basic exit reasons. */
529 #define VMCS_EXITCODE_EXC_NMI 0
530 #define VMCS_EXITCODE_EXT_INT 1
531 #define VMCS_EXITCODE_SHUTDOWN 2
532 #define VMCS_EXITCODE_INIT 3
533 #define VMCS_EXITCODE_SIPI 4
534 #define VMCS_EXITCODE_SMI 5
535 #define VMCS_EXITCODE_OTHER_SMI 6
536 #define VMCS_EXITCODE_INT_WINDOW 7
537 #define VMCS_EXITCODE_NMI_WINDOW 8
538 #define VMCS_EXITCODE_TASK_SWITCH 9
539 #define VMCS_EXITCODE_CPUID 10
540 #define VMCS_EXITCODE_GETSEC 11
541 #define VMCS_EXITCODE_HLT 12
542 #define VMCS_EXITCODE_INVD 13
543 #define VMCS_EXITCODE_INVLPG 14
544 #define VMCS_EXITCODE_RDPMC 15
545 #define VMCS_EXITCODE_RDTSC 16
546 #define VMCS_EXITCODE_RSM 17
547 #define VMCS_EXITCODE_VMCALL 18
548 #define VMCS_EXITCODE_VMCLEAR 19
549 #define VMCS_EXITCODE_VMLAUNCH 20
550 #define VMCS_EXITCODE_VMPTRLD 21
551 #define VMCS_EXITCODE_VMPTRST 22
552 #define VMCS_EXITCODE_VMREAD 23
553 #define VMCS_EXITCODE_VMRESUME 24
554 #define VMCS_EXITCODE_VMWRITE 25
555 #define VMCS_EXITCODE_VMXOFF 26
556 #define VMCS_EXITCODE_VMXON 27
557 #define VMCS_EXITCODE_CR 28
558 #define VMCS_EXITCODE_DR 29
559 #define VMCS_EXITCODE_IO 30
560 #define VMCS_EXITCODE_RDMSR 31
561 #define VMCS_EXITCODE_WRMSR 32
562 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
563 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
564 #define VMCS_EXITCODE_MWAIT 36
565 #define VMCS_EXITCODE_TRAP_FLAG 37
566 #define VMCS_EXITCODE_MONITOR 39
567 #define VMCS_EXITCODE_PAUSE 40
568 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
569 #define VMCS_EXITCODE_TPR_BELOW 43
570 #define VMCS_EXITCODE_APIC_ACCESS 44
571 #define VMCS_EXITCODE_VEOI 45
572 #define VMCS_EXITCODE_GDTR_IDTR 46
573 #define VMCS_EXITCODE_LDTR_TR 47
574 #define VMCS_EXITCODE_EPT_VIOLATION 48
575 #define VMCS_EXITCODE_EPT_MISCONFIG 49
576 #define VMCS_EXITCODE_INVEPT 50
577 #define VMCS_EXITCODE_RDTSCP 51
578 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
579 #define VMCS_EXITCODE_INVVPID 53
580 #define VMCS_EXITCODE_WBINVD 54
581 #define VMCS_EXITCODE_XSETBV 55
582 #define VMCS_EXITCODE_APIC_WRITE 56
583 #define VMCS_EXITCODE_RDRAND 57
584 #define VMCS_EXITCODE_INVPCID 58
585 #define VMCS_EXITCODE_VMFUNC 59
586 #define VMCS_EXITCODE_ENCLS 60
587 #define VMCS_EXITCODE_RDSEED 61
588 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
589 #define VMCS_EXITCODE_XSAVES 63
590 #define VMCS_EXITCODE_XRSTORS 64
591 #define VMCS_EXITCODE_SPP 66
592 #define VMCS_EXITCODE_UMWAIT 67
593 #define VMCS_EXITCODE_TPAUSE 68
594
595 /* -------------------------------------------------------------------------- */
596
597 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
598 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
599
600 #define VMX_MSRLIST_STAR 0
601 #define VMX_MSRLIST_LSTAR 1
602 #define VMX_MSRLIST_CSTAR 2
603 #define VMX_MSRLIST_SFMASK 3
604 #define VMX_MSRLIST_KERNELGSBASE 4
605 #define VMX_MSRLIST_EXIT_NMSR 5
606 #define VMX_MSRLIST_L1DFLUSH 5
607
608 /* On entry, we may do +1 to include L1DFLUSH. */
609 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
610
611 struct vmxon {
612 uint32_t ident;
613 #define VMXON_IDENT_REVISION __BITS(30,0)
614
615 uint8_t data[PAGE_SIZE - 4];
616 } __packed;
617
618 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
619
620 struct vmxoncpu {
621 vaddr_t va;
622 paddr_t pa;
623 };
624
625 static struct vmxoncpu vmxoncpu[MAXCPUS];
626
627 struct vmcs {
628 uint32_t ident;
629 #define VMCS_IDENT_REVISION __BITS(30,0)
630 #define VMCS_IDENT_SHADOW __BIT(31)
631
632 uint32_t abort;
633 uint8_t data[PAGE_SIZE - 8];
634 } __packed;
635
636 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
637
638 struct msr_entry {
639 uint32_t msr;
640 uint32_t rsvd;
641 uint64_t val;
642 } __packed;
643
644 #define VPID_MAX 0xFFFF
645
646 /* Make sure we never run out of VPIDs. */
647 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
648
649 static uint64_t vmx_tlb_flush_op __read_mostly;
650 static uint64_t vmx_ept_flush_op __read_mostly;
651 static uint64_t vmx_eptp_type __read_mostly;
652
653 static uint64_t vmx_pinbased_ctls __read_mostly;
654 static uint64_t vmx_procbased_ctls __read_mostly;
655 static uint64_t vmx_procbased_ctls2 __read_mostly;
656 static uint64_t vmx_entry_ctls __read_mostly;
657 static uint64_t vmx_exit_ctls __read_mostly;
658
659 static uint64_t vmx_cr0_fixed0 __read_mostly;
660 static uint64_t vmx_cr0_fixed1 __read_mostly;
661 static uint64_t vmx_cr4_fixed0 __read_mostly;
662 static uint64_t vmx_cr4_fixed1 __read_mostly;
663
664 extern bool pmap_ept_has_ad;
665
666 #define VMX_PINBASED_CTLS_ONE \
667 (PIN_CTLS_INT_EXITING| \
668 PIN_CTLS_NMI_EXITING| \
669 PIN_CTLS_VIRTUAL_NMIS)
670
671 #define VMX_PINBASED_CTLS_ZERO 0
672
673 #define VMX_PROCBASED_CTLS_ONE \
674 (PROC_CTLS_USE_TSC_OFFSETTING| \
675 PROC_CTLS_HLT_EXITING| \
676 PROC_CTLS_MWAIT_EXITING | \
677 PROC_CTLS_RDPMC_EXITING | \
678 PROC_CTLS_RCR8_EXITING | \
679 PROC_CTLS_LCR8_EXITING | \
680 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
681 PROC_CTLS_USE_MSR_BITMAPS | \
682 PROC_CTLS_MONITOR_EXITING | \
683 PROC_CTLS_ACTIVATE_CTLS2)
684
685 #define VMX_PROCBASED_CTLS_ZERO \
686 (PROC_CTLS_RCR3_EXITING| \
687 PROC_CTLS_LCR3_EXITING)
688
689 #define VMX_PROCBASED_CTLS2_ONE \
690 (PROC_CTLS2_ENABLE_EPT| \
691 PROC_CTLS2_ENABLE_VPID| \
692 PROC_CTLS2_UNRESTRICTED_GUEST)
693
694 #define VMX_PROCBASED_CTLS2_ZERO 0
695
696 #define VMX_ENTRY_CTLS_ONE \
697 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
698 ENTRY_CTLS_LOAD_EFER| \
699 ENTRY_CTLS_LOAD_PAT)
700
701 #define VMX_ENTRY_CTLS_ZERO \
702 (ENTRY_CTLS_SMM| \
703 ENTRY_CTLS_DISABLE_DUAL)
704
705 #define VMX_EXIT_CTLS_ONE \
706 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
707 EXIT_CTLS_HOST_LONG_MODE| \
708 EXIT_CTLS_SAVE_PAT| \
709 EXIT_CTLS_LOAD_PAT| \
710 EXIT_CTLS_SAVE_EFER| \
711 EXIT_CTLS_LOAD_EFER)
712
713 #define VMX_EXIT_CTLS_ZERO 0
714
715 static uint8_t *vmx_asidmap __read_mostly;
716 static uint32_t vmx_maxasid __read_mostly;
717 static kmutex_t vmx_asidlock __cacheline_aligned;
718
719 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
720 static uint64_t vmx_xcr0_mask __read_mostly;
721
722 #define VMX_NCPUIDS 32
723
724 #define VMCS_NPAGES 1
725 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
726
727 #define MSRBM_NPAGES 1
728 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
729
730 #define CR0_STATIC_MASK \
731 (CR0_ET | CR0_NW | CR0_CD)
732
733 #define CR4_VALID \
734 (CR4_VME | \
735 CR4_PVI | \
736 CR4_TSD | \
737 CR4_DE | \
738 CR4_PSE | \
739 CR4_PAE | \
740 CR4_MCE | \
741 CR4_PGE | \
742 CR4_PCE | \
743 CR4_OSFXSR | \
744 CR4_OSXMMEXCPT | \
745 CR4_UMIP | \
746 /* CR4_LA57 excluded */ \
747 /* CR4_VMXE excluded */ \
748 /* CR4_SMXE excluded */ \
749 CR4_FSGSBASE | \
750 CR4_PCIDE | \
751 CR4_OSXSAVE | \
752 CR4_SMEP | \
753 CR4_SMAP \
754 /* CR4_PKE excluded */ \
755 /* CR4_CET excluded */ \
756 /* CR4_PKS excluded */)
757 #define CR4_INVALID \
758 (0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
759
760 #define EFER_TLB_FLUSH \
761 (EFER_NXE|EFER_LMA|EFER_LME)
762 #define CR0_TLB_FLUSH \
763 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
764 #define CR4_TLB_FLUSH \
765 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
766
767 /* -------------------------------------------------------------------------- */
768
769 struct vmx_machdata {
770 volatile uint64_t mach_htlb_gen;
771 };
772
773 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
774 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
775 sizeof(struct nvmm_vcpu_conf_cpuid),
776 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
777 sizeof(struct nvmm_vcpu_conf_tpr)
778 };
779
780 struct vmx_cpudata {
781 /* General */
782 uint64_t asid;
783 bool gtlb_want_flush;
784 bool gtsc_want_update;
785 uint64_t vcpu_htlb_gen;
786 kcpuset_t *htlb_want_flush;
787
788 /* VMCS */
789 struct vmcs *vmcs;
790 paddr_t vmcs_pa;
791 size_t vmcs_refcnt;
792 struct cpu_info *vmcs_ci;
793 bool vmcs_launched;
794
795 /* MSR bitmap */
796 uint8_t *msrbm;
797 paddr_t msrbm_pa;
798
799 /* Host state */
800 uint64_t hxcr0;
801 uint64_t star;
802 uint64_t lstar;
803 uint64_t cstar;
804 uint64_t sfmask;
805 uint64_t kernelgsbase;
806
807 /* Intr state */
808 bool int_window_exit;
809 bool nmi_window_exit;
810 bool evt_pending;
811
812 /* Guest state */
813 struct msr_entry *gmsr;
814 paddr_t gmsr_pa;
815 uint64_t gmsr_misc_enable;
816 uint64_t gcr2;
817 uint64_t gcr8;
818 uint64_t gxcr0;
819 uint64_t gprs[NVMM_X64_NGPR];
820 uint64_t drs[NVMM_X64_NDR];
821 uint64_t gtsc;
822 struct xsave_header gfpu __aligned(64);
823
824 /* VCPU configuration. */
825 bool cpuidpresent[VMX_NCPUIDS];
826 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
827 struct nvmm_vcpu_conf_tpr tpr;
828 };
829
830 static const struct {
831 uint64_t selector;
832 uint64_t attrib;
833 uint64_t limit;
834 uint64_t base;
835 } vmx_guest_segs[NVMM_X64_NSEG] = {
836 [NVMM_X64_SEG_ES] = {
837 VMCS_GUEST_ES_SELECTOR,
838 VMCS_GUEST_ES_ACCESS_RIGHTS,
839 VMCS_GUEST_ES_LIMIT,
840 VMCS_GUEST_ES_BASE
841 },
842 [NVMM_X64_SEG_CS] = {
843 VMCS_GUEST_CS_SELECTOR,
844 VMCS_GUEST_CS_ACCESS_RIGHTS,
845 VMCS_GUEST_CS_LIMIT,
846 VMCS_GUEST_CS_BASE
847 },
848 [NVMM_X64_SEG_SS] = {
849 VMCS_GUEST_SS_SELECTOR,
850 VMCS_GUEST_SS_ACCESS_RIGHTS,
851 VMCS_GUEST_SS_LIMIT,
852 VMCS_GUEST_SS_BASE
853 },
854 [NVMM_X64_SEG_DS] = {
855 VMCS_GUEST_DS_SELECTOR,
856 VMCS_GUEST_DS_ACCESS_RIGHTS,
857 VMCS_GUEST_DS_LIMIT,
858 VMCS_GUEST_DS_BASE
859 },
860 [NVMM_X64_SEG_FS] = {
861 VMCS_GUEST_FS_SELECTOR,
862 VMCS_GUEST_FS_ACCESS_RIGHTS,
863 VMCS_GUEST_FS_LIMIT,
864 VMCS_GUEST_FS_BASE
865 },
866 [NVMM_X64_SEG_GS] = {
867 VMCS_GUEST_GS_SELECTOR,
868 VMCS_GUEST_GS_ACCESS_RIGHTS,
869 VMCS_GUEST_GS_LIMIT,
870 VMCS_GUEST_GS_BASE
871 },
872 [NVMM_X64_SEG_GDT] = {
873 0, /* doesn't exist */
874 0, /* doesn't exist */
875 VMCS_GUEST_GDTR_LIMIT,
876 VMCS_GUEST_GDTR_BASE
877 },
878 [NVMM_X64_SEG_IDT] = {
879 0, /* doesn't exist */
880 0, /* doesn't exist */
881 VMCS_GUEST_IDTR_LIMIT,
882 VMCS_GUEST_IDTR_BASE
883 },
884 [NVMM_X64_SEG_LDT] = {
885 VMCS_GUEST_LDTR_SELECTOR,
886 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
887 VMCS_GUEST_LDTR_LIMIT,
888 VMCS_GUEST_LDTR_BASE
889 },
890 [NVMM_X64_SEG_TR] = {
891 VMCS_GUEST_TR_SELECTOR,
892 VMCS_GUEST_TR_ACCESS_RIGHTS,
893 VMCS_GUEST_TR_LIMIT,
894 VMCS_GUEST_TR_BASE
895 }
896 };
897
898 /* -------------------------------------------------------------------------- */
899
900 static uint64_t
901 vmx_get_revision(void)
902 {
903 uint64_t msr;
904
905 msr = rdmsr(MSR_IA32_VMX_BASIC);
906 msr &= IA32_VMX_BASIC_IDENT;
907
908 return msr;
909 }
910
911 static void
912 vmx_vmclear_ipi(void *arg1, void *arg2)
913 {
914 paddr_t vmcs_pa = (paddr_t)arg1;
915 vmx_vmclear(&vmcs_pa);
916 }
917
918 static void
919 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
920 {
921 uint64_t xc;
922 int bound;
923
924 KASSERT(kpreempt_disabled());
925
926 bound = curlwp_bind();
927 kpreempt_enable();
928
929 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
930 xc_wait(xc);
931
932 kpreempt_disable();
933 curlwp_bindx(bound);
934 }
935
936 static void
937 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
938 {
939 struct vmx_cpudata *cpudata = vcpu->cpudata;
940 struct cpu_info *vmcs_ci;
941
942 cpudata->vmcs_refcnt++;
943 if (cpudata->vmcs_refcnt > 1) {
944 KASSERT(kpreempt_disabled());
945 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
946 return;
947 }
948
949 vmcs_ci = cpudata->vmcs_ci;
950 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
951
952 kpreempt_disable();
953
954 if (vmcs_ci == NULL) {
955 /* This VMCS is loaded for the first time. */
956 vmx_vmclear(&cpudata->vmcs_pa);
957 cpudata->vmcs_launched = false;
958 } else if (vmcs_ci != curcpu()) {
959 /* This VMCS is active on a remote CPU. */
960 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
961 cpudata->vmcs_launched = false;
962 } else {
963 /* This VMCS is active on curcpu, nothing to do. */
964 }
965
966 vmx_vmptrld(&cpudata->vmcs_pa);
967 }
968
969 static void
970 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
971 {
972 struct vmx_cpudata *cpudata = vcpu->cpudata;
973
974 KASSERT(kpreempt_disabled());
975 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
976 KASSERT(cpudata->vmcs_refcnt > 0);
977 cpudata->vmcs_refcnt--;
978
979 if (cpudata->vmcs_refcnt > 0) {
980 return;
981 }
982
983 cpudata->vmcs_ci = curcpu();
984 kpreempt_enable();
985 }
986
987 static void
988 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
989 {
990 struct vmx_cpudata *cpudata = vcpu->cpudata;
991
992 KASSERT(kpreempt_disabled());
993 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
994 KASSERT(cpudata->vmcs_refcnt == 1);
995 cpudata->vmcs_refcnt--;
996
997 vmx_vmclear(&cpudata->vmcs_pa);
998 kpreempt_enable();
999 }
1000
1001 /* -------------------------------------------------------------------------- */
1002
1003 static void
1004 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1005 {
1006 struct vmx_cpudata *cpudata = vcpu->cpudata;
1007 uint64_t ctls1;
1008
1009 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1010
1011 if (nmi) {
1012 // XXX INT_STATE_NMI?
1013 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1014 cpudata->nmi_window_exit = true;
1015 } else {
1016 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1017 cpudata->int_window_exit = true;
1018 }
1019
1020 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1021 }
1022
1023 static void
1024 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1025 {
1026 struct vmx_cpudata *cpudata = vcpu->cpudata;
1027 uint64_t ctls1;
1028
1029 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1030
1031 if (nmi) {
1032 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1033 cpudata->nmi_window_exit = false;
1034 } else {
1035 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1036 cpudata->int_window_exit = false;
1037 }
1038
1039 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1040 }
1041
1042 static inline bool
1043 vmx_excp_has_rf(uint8_t vector)
1044 {
1045 switch (vector) {
1046 case 1: /* #DB */
1047 case 4: /* #OF */
1048 case 8: /* #DF */
1049 case 18: /* #MC */
1050 return false;
1051 default:
1052 return true;
1053 }
1054 }
1055
1056 static inline int
1057 vmx_excp_has_error(uint8_t vector)
1058 {
1059 switch (vector) {
1060 case 8: /* #DF */
1061 case 10: /* #TS */
1062 case 11: /* #NP */
1063 case 12: /* #SS */
1064 case 13: /* #GP */
1065 case 14: /* #PF */
1066 case 17: /* #AC */
1067 case 30: /* #SX */
1068 return 1;
1069 default:
1070 return 0;
1071 }
1072 }
1073
1074 static int
1075 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1076 {
1077 struct nvmm_comm_page *comm = vcpu->comm;
1078 struct vmx_cpudata *cpudata = vcpu->cpudata;
1079 int type = 0, err = 0, ret = EINVAL;
1080 uint64_t rflags, info, error;
1081 u_int evtype;
1082 uint8_t vector;
1083
1084 evtype = comm->event.type;
1085 vector = comm->event.vector;
1086 error = comm->event.u.excp.error;
1087 __insn_barrier();
1088
1089 vmx_vmcs_enter(vcpu);
1090
1091 switch (evtype) {
1092 case NVMM_VCPU_EVENT_EXCP:
1093 if (vector == 2 || vector >= 32)
1094 goto out;
1095 if (vector == 3 || vector == 0)
1096 goto out;
1097 if (vmx_excp_has_rf(vector)) {
1098 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1099 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1100 }
1101 type = INTR_TYPE_HW_EXC;
1102 err = vmx_excp_has_error(vector);
1103 break;
1104 case NVMM_VCPU_EVENT_INTR:
1105 type = INTR_TYPE_EXT_INT;
1106 if (vector == 2) {
1107 type = INTR_TYPE_NMI;
1108 vmx_event_waitexit_enable(vcpu, true);
1109 }
1110 err = 0;
1111 break;
1112 default:
1113 goto out;
1114 }
1115
1116 info =
1117 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1118 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1119 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1120 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1121 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1122 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1123
1124 cpudata->evt_pending = true;
1125 ret = 0;
1126
1127 out:
1128 vmx_vmcs_leave(vcpu);
1129 return ret;
1130 }
1131
1132 static void
1133 vmx_inject_ud(struct nvmm_cpu *vcpu)
1134 {
1135 struct nvmm_comm_page *comm = vcpu->comm;
1136 int ret __diagused;
1137
1138 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1139 comm->event.vector = 6;
1140 comm->event.u.excp.error = 0;
1141
1142 ret = vmx_vcpu_inject(vcpu);
1143 KASSERT(ret == 0);
1144 }
1145
1146 static void
1147 vmx_inject_gp(struct nvmm_cpu *vcpu)
1148 {
1149 struct nvmm_comm_page *comm = vcpu->comm;
1150 int ret __diagused;
1151
1152 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1153 comm->event.vector = 13;
1154 comm->event.u.excp.error = 0;
1155
1156 ret = vmx_vcpu_inject(vcpu);
1157 KASSERT(ret == 0);
1158 }
1159
1160 static inline int
1161 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1162 {
1163 if (__predict_true(!vcpu->comm->event_commit)) {
1164 return 0;
1165 }
1166 vcpu->comm->event_commit = false;
1167 return vmx_vcpu_inject(vcpu);
1168 }
1169
1170 static inline void
1171 vmx_inkernel_advance(void)
1172 {
1173 uint64_t rip, inslen, intstate, rflags;
1174
1175 /*
1176 * Maybe we should also apply single-stepping and debug exceptions.
1177 * Matters for guest-ring3, because it can execute 'cpuid' under a
1178 * debugger.
1179 */
1180
1181 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1182 rip = vmx_vmread(VMCS_GUEST_RIP);
1183 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1184
1185 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1186 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1187
1188 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1189 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1190 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1191 }
1192
1193 static void
1194 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1195 {
1196 exit->u.inv.hwcode = code;
1197 exit->reason = NVMM_VCPU_EXIT_INVALID;
1198 }
1199
1200 static void
1201 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1202 struct nvmm_vcpu_exit *exit)
1203 {
1204 uint64_t qual;
1205
1206 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1207
1208 if ((qual & INTR_INFO_VALID) == 0) {
1209 goto error;
1210 }
1211 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1212 goto error;
1213 }
1214
1215 exit->reason = NVMM_VCPU_EXIT_NONE;
1216 return;
1217
1218 error:
1219 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1220 }
1221
1222 #define VMX_CPUID_MAX_BASIC 0x16
1223 #define VMX_CPUID_MAX_HYPERVISOR 0x40000000
1224 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1225 static uint32_t vmx_cpuid_max_basic __read_mostly;
1226 static uint32_t vmx_cpuid_max_extended __read_mostly;
1227
1228 static void
1229 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1230 {
1231 u_int descs[4];
1232
1233 x86_cpuid2(eax, ecx, descs);
1234 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1235 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1236 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1237 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1238 }
1239
1240 static void
1241 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1242 uint64_t eax, uint64_t ecx)
1243 {
1244 struct vmx_cpudata *cpudata = vcpu->cpudata;
1245 unsigned int ncpus;
1246 uint64_t cr4;
1247
1248 /*
1249 * `If a value entered for CPUID.EAX is higher than the maximum
1250 * input value for basic or extended function for that
1251 * processor then the dtaa for the highest basic information
1252 * leaf is returned.'
1253 *
1254 * --Intel 64 and IA-32 Architectures Software Developer's
1255 * Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
1256 * Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
1257 * pp. 3-214.
1258 *
1259 * We take the same to hold for the hypervisor range,
1260 * 0x40000000-0x4fffffff.
1261 */
1262 if (eax < 0x40000000) { /* basic CPUID range */
1263 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1264 eax = vmx_cpuid_max_basic;
1265 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1266 }
1267 } else if (eax < 0x80000000) { /* hypervisor CPUID range */
1268 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1269 eax = vmx_cpuid_max_basic;
1270 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1271 }
1272 } else { /* extended CPUID range */
1273 if (__predict_false(eax > vmx_cpuid_max_extended)) {
1274 eax = vmx_cpuid_max_basic;
1275 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1276 }
1277 }
1278
1279 switch (eax) {
1280
1281 /*
1282 * basic CPUID range
1283 */
1284 case 0x00000000:
1285 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1286 break;
1287 case 0x00000001:
1288 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1289
1290 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1291 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1292 CPUID_LOCAL_APIC_ID);
1293
1294 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1295 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1296 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1297 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1298 }
1299
1300 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1301
1302 /* CPUID2_OSXSAVE depends on CR4. */
1303 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1304 if (!(cr4 & CR4_OSXSAVE)) {
1305 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1306 }
1307 break;
1308 case 0x00000002:
1309 break;
1310 case 0x00000003:
1311 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1312 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1313 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1314 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1315 break;
1316 case 0x00000004: /* Deterministic Cache Parameters */
1317 break; /* TODO? */
1318 case 0x00000005: /* MONITOR/MWAIT */
1319 case 0x00000006: /* Thermal and Power Management */
1320 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1321 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1322 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1323 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1324 break;
1325 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1326 switch (ecx) {
1327 case 0:
1328 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1329 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1330 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1331 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1332 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1333 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1334 }
1335 break;
1336 default:
1337 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1338 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1339 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1340 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1341 break;
1342 }
1343 break;
1344 case 0x00000008: /* Empty */
1345 case 0x00000009: /* Direct Cache Access Information */
1346 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1347 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1348 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1349 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1350 break;
1351 case 0x0000000A: /* Architectural Performance Monitoring */
1352 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1353 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1354 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1355 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1356 break;
1357 case 0x0000000B: /* Extended Topology Enumeration */
1358 switch (ecx) {
1359 case 0: /* Threads */
1360 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1361 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1362 cpudata->gprs[NVMM_X64_GPR_RCX] =
1363 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1364 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1365 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1366 break;
1367 case 1: /* Cores */
1368 ncpus = atomic_load_relaxed(&mach->ncpus);
1369 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1370 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1371 cpudata->gprs[NVMM_X64_GPR_RCX] =
1372 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1373 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1374 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1375 break;
1376 default:
1377 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1378 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1379 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1380 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1381 break;
1382 }
1383 break;
1384 case 0x0000000C: /* Empty */
1385 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1386 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1387 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1388 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1389 break;
1390 case 0x0000000D: /* Processor Extended State Enumeration */
1391 if (vmx_xcr0_mask == 0) {
1392 break;
1393 }
1394 switch (ecx) {
1395 case 0:
1396 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1397 if (cpudata->gxcr0 & XCR0_SSE) {
1398 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1399 } else {
1400 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1401 }
1402 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1403 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1404 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1405 break;
1406 case 1:
1407 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1408 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1409 CPUID_PES1_XGETBV);
1410 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1411 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1412 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1413 break;
1414 default:
1415 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1416 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1417 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1418 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1419 break;
1420 }
1421 break;
1422 case 0x0000000E: /* Empty */
1423 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1424 case 0x00000010: /* Intel RDT Allocation Enumeration */
1425 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1426 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1427 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1428 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1429 break;
1430 case 0x00000011: /* Empty */
1431 case 0x00000012: /* Intel SGX Capability Enumeration */
1432 case 0x00000013: /* Empty */
1433 case 0x00000014: /* Intel Processor Trace Enumeration */
1434 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1435 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1436 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1437 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1438 break;
1439 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1440 case 0x00000016: /* Processor Frequency Information */
1441 break;
1442
1443 /*
1444 * hypervisor CPUID range
1445 */
1446 case 0x40000000: /* Hypervisor Information */
1447 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1448 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1449 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1450 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1451 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1452 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1453 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1454 break;
1455
1456 /*
1457 * extended CPUID range
1458 */
1459 case 0x80000000:
1460 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1461 break;
1462 case 0x80000001:
1463 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1464 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1465 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1466 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1467 break;
1468 case 0x80000002: /* Processor Brand String */
1469 case 0x80000003: /* Processor Brand String */
1470 case 0x80000004: /* Processor Brand String */
1471 case 0x80000005: /* Reserved Zero */
1472 case 0x80000006: /* Cache Information */
1473 break;
1474 case 0x80000007: /* TSC Information */
1475 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1476 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1477 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1478 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1479 break;
1480 case 0x80000008: /* Address Sizes */
1481 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1482 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1483 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1484 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1485 break;
1486
1487 default:
1488 break;
1489 }
1490 }
1491
1492 static void
1493 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1494 {
1495 uint64_t inslen, rip;
1496
1497 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1498 rip = vmx_vmread(VMCS_GUEST_RIP);
1499 exit->u.insn.npc = rip + inslen;
1500 exit->reason = reason;
1501 }
1502
1503 static void
1504 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1505 struct nvmm_vcpu_exit *exit)
1506 {
1507 struct vmx_cpudata *cpudata = vcpu->cpudata;
1508 struct nvmm_vcpu_conf_cpuid *cpuid;
1509 uint64_t eax, ecx;
1510 size_t i;
1511
1512 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1513 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1514 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1515 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1516
1517 for (i = 0; i < VMX_NCPUIDS; i++) {
1518 if (!cpudata->cpuidpresent[i]) {
1519 continue;
1520 }
1521 cpuid = &cpudata->cpuid[i];
1522 if (cpuid->leaf != eax) {
1523 continue;
1524 }
1525
1526 if (cpuid->exit) {
1527 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1528 return;
1529 }
1530 KASSERT(cpuid->mask);
1531
1532 /* del */
1533 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1534 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1535 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1536 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1537
1538 /* set */
1539 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1540 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1541 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1542 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1543
1544 break;
1545 }
1546
1547 vmx_inkernel_advance();
1548 exit->reason = NVMM_VCPU_EXIT_NONE;
1549 }
1550
1551 static void
1552 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1553 struct nvmm_vcpu_exit *exit)
1554 {
1555 struct vmx_cpudata *cpudata = vcpu->cpudata;
1556 uint64_t rflags;
1557
1558 if (cpudata->int_window_exit) {
1559 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1560 if (rflags & PSL_I) {
1561 vmx_event_waitexit_disable(vcpu, false);
1562 }
1563 }
1564
1565 vmx_inkernel_advance();
1566 exit->reason = NVMM_VCPU_EXIT_HALTED;
1567 }
1568
1569 #define VMX_QUAL_CR_NUM __BITS(3,0)
1570 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1571 #define CR_TYPE_WRITE 0
1572 #define CR_TYPE_READ 1
1573 #define CR_TYPE_CLTS 2
1574 #define CR_TYPE_LMSW 3
1575 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1576 #define VMX_QUAL_CR_GPR __BITS(11,8)
1577 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1578
1579 static inline int
1580 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1581 {
1582 /* Bits set to 1 in fixed0 are fixed to 1. */
1583 if ((crval & fixed0) != fixed0) {
1584 return -1;
1585 }
1586 /* Bits set to 0 in fixed1 are fixed to 0. */
1587 if (crval & ~fixed1) {
1588 return -1;
1589 }
1590 return 0;
1591 }
1592
1593 static int
1594 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1595 uint64_t qual)
1596 {
1597 struct vmx_cpudata *cpudata = vcpu->cpudata;
1598 uint64_t type, gpr, oldcr0, realcr0, fakecr0;
1599 uint64_t efer, ctls1;
1600
1601 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1602 if (type != CR_TYPE_WRITE) {
1603 return -1;
1604 }
1605
1606 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1607 KASSERT(gpr < 16);
1608
1609 if (gpr == NVMM_X64_GPR_RSP) {
1610 fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
1611 } else {
1612 fakecr0 = cpudata->gprs[gpr];
1613 }
1614
1615 /*
1616 * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
1617 * actual value in %cr0.
1618 *
1619 * In fakecr0 we must force CR0_ET to 1.
1620 *
1621 * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
1622 * CR0_NE to 1.
1623 */
1624 fakecr0 |= CR0_ET;
1625 realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
1626
1627 if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1628 return -1;
1629 }
1630
1631 /*
1632 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1633 * from CR3.
1634 */
1635
1636 if (realcr0 & CR0_PG) {
1637 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1638 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1639 if (efer & EFER_LME) {
1640 ctls1 |= ENTRY_CTLS_LONG_MODE;
1641 efer |= EFER_LMA;
1642 } else {
1643 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1644 efer &= ~EFER_LMA;
1645 }
1646 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1647 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1648 }
1649
1650 oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
1651 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
1652 if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
1653 cpudata->gtlb_want_flush = true;
1654 }
1655
1656 vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
1657 vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
1658 vmx_inkernel_advance();
1659 return 0;
1660 }
1661
1662 static int
1663 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1664 uint64_t qual)
1665 {
1666 struct vmx_cpudata *cpudata = vcpu->cpudata;
1667 uint64_t type, gpr, oldcr4, cr4;
1668
1669 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1670 if (type != CR_TYPE_WRITE) {
1671 return -1;
1672 }
1673
1674 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1675 KASSERT(gpr < 16);
1676
1677 if (gpr == NVMM_X64_GPR_RSP) {
1678 gpr = vmx_vmread(VMCS_GUEST_RSP);
1679 } else {
1680 gpr = cpudata->gprs[gpr];
1681 }
1682
1683 if (gpr & CR4_INVALID) {
1684 return -1;
1685 }
1686 cr4 = gpr | CR4_VMXE;
1687 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1688 return -1;
1689 }
1690
1691 oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1692 if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1693 cpudata->gtlb_want_flush = true;
1694 }
1695
1696 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1697 vmx_inkernel_advance();
1698 return 0;
1699 }
1700
1701 static int
1702 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1703 uint64_t qual, struct nvmm_vcpu_exit *exit)
1704 {
1705 struct vmx_cpudata *cpudata = vcpu->cpudata;
1706 uint64_t type, gpr;
1707 bool write;
1708
1709 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1710 if (type == CR_TYPE_WRITE) {
1711 write = true;
1712 } else if (type == CR_TYPE_READ) {
1713 write = false;
1714 } else {
1715 return -1;
1716 }
1717
1718 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1719 KASSERT(gpr < 16);
1720
1721 if (write) {
1722 if (gpr == NVMM_X64_GPR_RSP) {
1723 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1724 } else {
1725 cpudata->gcr8 = cpudata->gprs[gpr];
1726 }
1727 if (cpudata->tpr.exit_changed) {
1728 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1729 }
1730 } else {
1731 if (gpr == NVMM_X64_GPR_RSP) {
1732 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1733 } else {
1734 cpudata->gprs[gpr] = cpudata->gcr8;
1735 }
1736 }
1737
1738 vmx_inkernel_advance();
1739 return 0;
1740 }
1741
1742 static void
1743 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1744 struct nvmm_vcpu_exit *exit)
1745 {
1746 uint64_t qual;
1747 int ret;
1748
1749 exit->reason = NVMM_VCPU_EXIT_NONE;
1750
1751 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1752
1753 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1754 case 0:
1755 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1756 break;
1757 case 4:
1758 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1759 break;
1760 case 8:
1761 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1762 break;
1763 default:
1764 ret = -1;
1765 break;
1766 }
1767
1768 if (ret == -1) {
1769 vmx_inject_gp(vcpu);
1770 }
1771 }
1772
1773 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1774 #define IO_SIZE_8 0
1775 #define IO_SIZE_16 1
1776 #define IO_SIZE_32 3
1777 #define VMX_QUAL_IO_IN __BIT(3)
1778 #define VMX_QUAL_IO_STR __BIT(4)
1779 #define VMX_QUAL_IO_REP __BIT(5)
1780 #define VMX_QUAL_IO_DX __BIT(6)
1781 #define VMX_QUAL_IO_PORT __BITS(31,16)
1782
1783 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1784 #define IO_ADRSIZE_16 0
1785 #define IO_ADRSIZE_32 1
1786 #define IO_ADRSIZE_64 2
1787 #define VMX_INFO_IO_SEG __BITS(17,15)
1788
1789 static void
1790 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1791 struct nvmm_vcpu_exit *exit)
1792 {
1793 uint64_t qual, info, inslen, rip;
1794
1795 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1796 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1797
1798 exit->reason = NVMM_VCPU_EXIT_IO;
1799
1800 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1801 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1802
1803 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1804 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1805
1806 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1807 exit->u.io.address_size = 8;
1808 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1809 exit->u.io.address_size = 4;
1810 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1811 exit->u.io.address_size = 2;
1812 }
1813
1814 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1815 exit->u.io.operand_size = 4;
1816 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1817 exit->u.io.operand_size = 2;
1818 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1819 exit->u.io.operand_size = 1;
1820 }
1821
1822 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1823 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1824
1825 if (exit->u.io.in && exit->u.io.str) {
1826 exit->u.io.seg = NVMM_X64_SEG_ES;
1827 }
1828
1829 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1830 rip = vmx_vmread(VMCS_GUEST_RIP);
1831 exit->u.io.npc = rip + inslen;
1832
1833 vmx_vcpu_state_provide(vcpu,
1834 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1835 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1836 }
1837
1838 static const uint64_t msr_ignore_list[] = {
1839 MSR_BIOS_SIGN,
1840 MSR_IA32_PLATFORM_ID
1841 };
1842
1843 static bool
1844 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1845 struct nvmm_vcpu_exit *exit)
1846 {
1847 struct vmx_cpudata *cpudata = vcpu->cpudata;
1848 uint64_t val;
1849 size_t i;
1850
1851 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1852 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1853 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1854 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1855 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1856 goto handled;
1857 }
1858 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1859 val = cpudata->gmsr_misc_enable;
1860 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1861 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1862 goto handled;
1863 }
1864 if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1865 u_int descs[4];
1866 if (cpuid_level < 7) {
1867 goto error;
1868 }
1869 x86_cpuid(7, descs);
1870 if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
1871 goto error;
1872 }
1873 val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1874 val &= (IA32_ARCH_RDCL_NO |
1875 IA32_ARCH_SSB_NO |
1876 IA32_ARCH_MDS_NO |
1877 IA32_ARCH_TAA_NO);
1878 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1879 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1880 goto handled;
1881 }
1882 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1883 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1884 continue;
1885 val = 0;
1886 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1887 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1888 goto handled;
1889 }
1890 } else {
1891 if (exit->u.wrmsr.msr == MSR_TSC) {
1892 cpudata->gtsc = exit->u.wrmsr.val;
1893 cpudata->gtsc_want_update = true;
1894 goto handled;
1895 }
1896 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1897 val = exit->u.wrmsr.val;
1898 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1899 goto error;
1900 }
1901 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1902 goto handled;
1903 }
1904 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1905 /* Don't care. */
1906 goto handled;
1907 }
1908 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1909 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1910 continue;
1911 goto handled;
1912 }
1913 }
1914
1915 return false;
1916
1917 handled:
1918 vmx_inkernel_advance();
1919 return true;
1920
1921 error:
1922 vmx_inject_gp(vcpu);
1923 return true;
1924 }
1925
1926 static void
1927 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1928 struct nvmm_vcpu_exit *exit)
1929 {
1930 struct vmx_cpudata *cpudata = vcpu->cpudata;
1931 uint64_t inslen, rip;
1932
1933 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1934 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1935
1936 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1937 exit->reason = NVMM_VCPU_EXIT_NONE;
1938 return;
1939 }
1940
1941 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1942 rip = vmx_vmread(VMCS_GUEST_RIP);
1943 exit->u.rdmsr.npc = rip + inslen;
1944
1945 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1946 }
1947
1948 static void
1949 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1950 struct nvmm_vcpu_exit *exit)
1951 {
1952 struct vmx_cpudata *cpudata = vcpu->cpudata;
1953 uint64_t rdx, rax, inslen, rip;
1954
1955 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1956 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1957
1958 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1959 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1960 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1961
1962 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1963 exit->reason = NVMM_VCPU_EXIT_NONE;
1964 return;
1965 }
1966
1967 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1968 rip = vmx_vmread(VMCS_GUEST_RIP);
1969 exit->u.wrmsr.npc = rip + inslen;
1970
1971 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1972 }
1973
1974 static void
1975 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1976 struct nvmm_vcpu_exit *exit)
1977 {
1978 struct vmx_cpudata *cpudata = vcpu->cpudata;
1979 uint64_t val;
1980
1981 exit->reason = NVMM_VCPU_EXIT_NONE;
1982
1983 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1984 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1985
1986 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1987 goto error;
1988 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1989 goto error;
1990 } else if (__predict_false((val & XCR0_X87) == 0)) {
1991 goto error;
1992 }
1993
1994 cpudata->gxcr0 = val;
1995
1996 vmx_inkernel_advance();
1997 return;
1998
1999 error:
2000 vmx_inject_gp(vcpu);
2001 }
2002
2003 #define VMX_EPT_VIOLATION_READ __BIT(0)
2004 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
2005 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
2006
2007 static void
2008 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2009 struct nvmm_vcpu_exit *exit)
2010 {
2011 uint64_t perm;
2012 gpaddr_t gpa;
2013
2014 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
2015
2016 exit->reason = NVMM_VCPU_EXIT_MEMORY;
2017 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
2018 if (perm & VMX_EPT_VIOLATION_WRITE)
2019 exit->u.mem.prot = PROT_WRITE;
2020 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
2021 exit->u.mem.prot = PROT_EXEC;
2022 else
2023 exit->u.mem.prot = PROT_READ;
2024 exit->u.mem.gpa = gpa;
2025 exit->u.mem.inst_len = 0;
2026
2027 vmx_vcpu_state_provide(vcpu,
2028 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2029 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2030 }
2031
2032 /* -------------------------------------------------------------------------- */
2033
2034 static void
2035 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2036 {
2037 struct vmx_cpudata *cpudata = vcpu->cpudata;
2038
2039 fpu_kern_enter();
2040 /* TODO: should we use *XSAVE64 here? */
2041 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask, false);
2042
2043 if (vmx_xcr0_mask != 0) {
2044 cpudata->hxcr0 = rdxcr(0);
2045 wrxcr(0, cpudata->gxcr0);
2046 }
2047 }
2048
2049 static void
2050 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2051 {
2052 struct vmx_cpudata *cpudata = vcpu->cpudata;
2053
2054 if (vmx_xcr0_mask != 0) {
2055 cpudata->gxcr0 = rdxcr(0);
2056 wrxcr(0, cpudata->hxcr0);
2057 }
2058
2059 /* TODO: should we use *XSAVE64 here? */
2060 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask, false);
2061 fpu_kern_leave();
2062 }
2063
2064 static void
2065 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2066 {
2067 struct vmx_cpudata *cpudata = vcpu->cpudata;
2068
2069 x86_dbregs_save(curlwp);
2070
2071 ldr7(0);
2072
2073 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
2074 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
2075 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
2076 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
2077 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
2078 }
2079
2080 static void
2081 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2082 {
2083 struct vmx_cpudata *cpudata = vcpu->cpudata;
2084
2085 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
2086 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
2087 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
2088 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
2089 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
2090
2091 x86_dbregs_restore(curlwp);
2092 }
2093
2094 static void
2095 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2096 {
2097 struct vmx_cpudata *cpudata = vcpu->cpudata;
2098
2099 /* This gets restored automatically by the CPU. */
2100 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
2101 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2102 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
2103 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
2104
2105 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2106 }
2107
2108 static void
2109 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2110 {
2111 struct vmx_cpudata *cpudata = vcpu->cpudata;
2112
2113 wrmsr(MSR_STAR, cpudata->star);
2114 wrmsr(MSR_LSTAR, cpudata->lstar);
2115 wrmsr(MSR_CSTAR, cpudata->cstar);
2116 wrmsr(MSR_SFMASK, cpudata->sfmask);
2117 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
2118 }
2119
2120 /* -------------------------------------------------------------------------- */
2121
2122 #define VMX_INVVPID_ADDRESS 0
2123 #define VMX_INVVPID_CONTEXT 1
2124 #define VMX_INVVPID_ALL 2
2125 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
2126
2127 #define VMX_INVEPT_CONTEXT 1
2128 #define VMX_INVEPT_ALL 2
2129
2130 static inline void
2131 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2132 {
2133 struct vmx_cpudata *cpudata = vcpu->cpudata;
2134
2135 if (vcpu->hcpu_last != hcpu) {
2136 cpudata->gtlb_want_flush = true;
2137 }
2138 }
2139
2140 static inline void
2141 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2142 {
2143 struct vmx_cpudata *cpudata = vcpu->cpudata;
2144 struct ept_desc ept_desc;
2145
2146 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
2147 return;
2148 }
2149
2150 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2151 ept_desc.mbz = 0;
2152 vmx_invept(vmx_ept_flush_op, &ept_desc);
2153 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
2154 }
2155
2156 static inline uint64_t
2157 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
2158 {
2159 struct ept_desc ept_desc;
2160 uint64_t machgen;
2161
2162 machgen = machdata->mach_htlb_gen;
2163 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2164 return machgen;
2165 }
2166
2167 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
2168
2169 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2170 ept_desc.mbz = 0;
2171 vmx_invept(vmx_ept_flush_op, &ept_desc);
2172
2173 return machgen;
2174 }
2175
2176 static inline void
2177 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2178 {
2179 cpudata->vcpu_htlb_gen = machgen;
2180 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2181 }
2182
2183 static inline void
2184 vmx_exit_evt(struct vmx_cpudata *cpudata)
2185 {
2186 uint64_t info, err, inslen;
2187
2188 cpudata->evt_pending = false;
2189
2190 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2191 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2192 return;
2193 }
2194 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2195
2196 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2197 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2198
2199 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2200 case INTR_TYPE_SW_INT:
2201 case INTR_TYPE_PRIV_SW_EXC:
2202 case INTR_TYPE_SW_EXC:
2203 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2204 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2205 }
2206
2207 cpudata->evt_pending = true;
2208 }
2209
2210 static int
2211 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2212 struct nvmm_vcpu_exit *exit)
2213 {
2214 struct nvmm_comm_page *comm = vcpu->comm;
2215 struct vmx_machdata *machdata = mach->machdata;
2216 struct vmx_cpudata *cpudata = vcpu->cpudata;
2217 struct vpid_desc vpid_desc;
2218 struct cpu_info *ci;
2219 uint64_t exitcode;
2220 uint64_t intstate;
2221 uint64_t machgen;
2222 int hcpu, ret;
2223 bool launched;
2224
2225 vmx_vmcs_enter(vcpu);
2226
2227 vmx_vcpu_state_commit(vcpu);
2228 comm->state_cached = 0;
2229
2230 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2231 vmx_vmcs_leave(vcpu);
2232 return EINVAL;
2233 }
2234
2235 ci = curcpu();
2236 hcpu = cpu_number();
2237 launched = cpudata->vmcs_launched;
2238
2239 vmx_gtlb_catchup(vcpu, hcpu);
2240 vmx_htlb_catchup(vcpu, hcpu);
2241
2242 if (vcpu->hcpu_last != hcpu) {
2243 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2244 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2245 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2246 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2247 cpudata->gtsc_want_update = true;
2248 vcpu->hcpu_last = hcpu;
2249 }
2250
2251 vmx_vcpu_guest_dbregs_enter(vcpu);
2252 vmx_vcpu_guest_misc_enter(vcpu);
2253
2254 while (1) {
2255 if (cpudata->gtlb_want_flush) {
2256 vpid_desc.vpid = cpudata->asid;
2257 vpid_desc.addr = 0;
2258 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2259 cpudata->gtlb_want_flush = false;
2260 }
2261
2262 if (__predict_false(cpudata->gtsc_want_update)) {
2263 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2264 cpudata->gtsc_want_update = false;
2265 }
2266
2267 vmx_vcpu_guest_fpu_enter(vcpu);
2268 vmx_cli();
2269 machgen = vmx_htlb_flush(machdata, cpudata);
2270 lcr2(cpudata->gcr2);
2271 if (launched) {
2272 ret = vmx_vmresume(cpudata->gprs);
2273 } else {
2274 ret = vmx_vmlaunch(cpudata->gprs);
2275 }
2276 cpudata->gcr2 = rcr2();
2277 vmx_htlb_flush_ack(cpudata, machgen);
2278 vmx_sti();
2279 vmx_vcpu_guest_fpu_leave(vcpu);
2280
2281 if (__predict_false(ret != 0)) {
2282 vmx_exit_invalid(exit, -1);
2283 break;
2284 }
2285 vmx_exit_evt(cpudata);
2286
2287 launched = true;
2288
2289 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2290 exitcode &= __BITS(15,0);
2291
2292 switch (exitcode) {
2293 case VMCS_EXITCODE_EXC_NMI:
2294 vmx_exit_exc_nmi(mach, vcpu, exit);
2295 break;
2296 case VMCS_EXITCODE_EXT_INT:
2297 exit->reason = NVMM_VCPU_EXIT_NONE;
2298 break;
2299 case VMCS_EXITCODE_CPUID:
2300 vmx_exit_cpuid(mach, vcpu, exit);
2301 break;
2302 case VMCS_EXITCODE_HLT:
2303 vmx_exit_hlt(mach, vcpu, exit);
2304 break;
2305 case VMCS_EXITCODE_CR:
2306 vmx_exit_cr(mach, vcpu, exit);
2307 break;
2308 case VMCS_EXITCODE_IO:
2309 vmx_exit_io(mach, vcpu, exit);
2310 break;
2311 case VMCS_EXITCODE_RDMSR:
2312 vmx_exit_rdmsr(mach, vcpu, exit);
2313 break;
2314 case VMCS_EXITCODE_WRMSR:
2315 vmx_exit_wrmsr(mach, vcpu, exit);
2316 break;
2317 case VMCS_EXITCODE_SHUTDOWN:
2318 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2319 break;
2320 case VMCS_EXITCODE_MONITOR:
2321 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2322 break;
2323 case VMCS_EXITCODE_MWAIT:
2324 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2325 break;
2326 case VMCS_EXITCODE_XSETBV:
2327 vmx_exit_xsetbv(mach, vcpu, exit);
2328 break;
2329 case VMCS_EXITCODE_RDPMC:
2330 case VMCS_EXITCODE_RDTSCP:
2331 case VMCS_EXITCODE_INVVPID:
2332 case VMCS_EXITCODE_INVEPT:
2333 case VMCS_EXITCODE_VMCALL:
2334 case VMCS_EXITCODE_VMCLEAR:
2335 case VMCS_EXITCODE_VMLAUNCH:
2336 case VMCS_EXITCODE_VMPTRLD:
2337 case VMCS_EXITCODE_VMPTRST:
2338 case VMCS_EXITCODE_VMREAD:
2339 case VMCS_EXITCODE_VMRESUME:
2340 case VMCS_EXITCODE_VMWRITE:
2341 case VMCS_EXITCODE_VMXOFF:
2342 case VMCS_EXITCODE_VMXON:
2343 vmx_inject_ud(vcpu);
2344 exit->reason = NVMM_VCPU_EXIT_NONE;
2345 break;
2346 case VMCS_EXITCODE_EPT_VIOLATION:
2347 vmx_exit_epf(mach, vcpu, exit);
2348 break;
2349 case VMCS_EXITCODE_INT_WINDOW:
2350 vmx_event_waitexit_disable(vcpu, false);
2351 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2352 break;
2353 case VMCS_EXITCODE_NMI_WINDOW:
2354 vmx_event_waitexit_disable(vcpu, true);
2355 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2356 break;
2357 default:
2358 vmx_exit_invalid(exit, exitcode);
2359 break;
2360 }
2361
2362 /* If no reason to return to userland, keep rolling. */
2363 if (nvmm_return_needed(vcpu, exit)) {
2364 break;
2365 }
2366 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2367 break;
2368 }
2369 }
2370
2371 cpudata->vmcs_launched = launched;
2372
2373 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2374
2375 vmx_vcpu_guest_misc_leave(vcpu);
2376 vmx_vcpu_guest_dbregs_leave(vcpu);
2377
2378 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2379 exit->exitstate.cr8 = cpudata->gcr8;
2380 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2381 exit->exitstate.int_shadow =
2382 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2383 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2384 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2385 exit->exitstate.evt_pending = cpudata->evt_pending;
2386
2387 vmx_vmcs_leave(vcpu);
2388
2389 return 0;
2390 }
2391
2392 /* -------------------------------------------------------------------------- */
2393
2394 static int
2395 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2396 {
2397 struct pglist pglist;
2398 paddr_t _pa;
2399 vaddr_t _va;
2400 size_t i;
2401 int ret;
2402
2403 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2404 &pglist, 1, 0);
2405 if (ret != 0)
2406 return ENOMEM;
2407 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2408 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2409 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2410 if (_va == 0)
2411 goto error;
2412
2413 for (i = 0; i < npages; i++) {
2414 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2415 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2416 }
2417 pmap_update(pmap_kernel());
2418
2419 memset((void *)_va, 0, npages * PAGE_SIZE);
2420
2421 *pa = _pa;
2422 *va = _va;
2423 return 0;
2424
2425 error:
2426 for (i = 0; i < npages; i++) {
2427 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2428 }
2429 return ENOMEM;
2430 }
2431
2432 static void
2433 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2434 {
2435 size_t i;
2436
2437 pmap_kremove(va, npages * PAGE_SIZE);
2438 pmap_update(pmap_kernel());
2439 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2440 for (i = 0; i < npages; i++) {
2441 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2442 }
2443 }
2444
2445 /* -------------------------------------------------------------------------- */
2446
2447 static void
2448 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2449 {
2450 uint64_t byte;
2451 uint8_t bitoff;
2452
2453 if (msr < 0x00002000) {
2454 /* Range 1 */
2455 byte = ((msr - 0x00000000) / 8) + 0;
2456 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2457 /* Range 2 */
2458 byte = ((msr - 0xC0000000) / 8) + 1024;
2459 } else {
2460 panic("%s: wrong range", __func__);
2461 }
2462
2463 bitoff = (msr & 0x7);
2464
2465 if (read) {
2466 bitmap[byte] &= ~__BIT(bitoff);
2467 }
2468 if (write) {
2469 bitmap[2048 + byte] &= ~__BIT(bitoff);
2470 }
2471 }
2472
2473 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2474 #define VMX_SEG_ATTRIB_S __BIT(4)
2475 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2476 #define VMX_SEG_ATTRIB_P __BIT(7)
2477 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2478 #define VMX_SEG_ATTRIB_L __BIT(13)
2479 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2480 #define VMX_SEG_ATTRIB_G __BIT(15)
2481 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2482
2483 static void
2484 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2485 {
2486 uint64_t attrib;
2487
2488 attrib =
2489 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2490 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2491 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2492 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2493 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2494 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2495 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2496 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2497 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2498
2499 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2500 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2501 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2502 }
2503 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2504 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2505 }
2506
2507 static void
2508 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2509 {
2510 uint64_t selector = 0, attrib = 0, base, limit;
2511
2512 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2513 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2514 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2515 }
2516 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2517 base = vmx_vmread(vmx_guest_segs[idx].base);
2518
2519 segs[idx].selector = selector;
2520 segs[idx].limit = limit;
2521 segs[idx].base = base;
2522 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2523 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2524 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2525 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2526 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2527 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2528 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2529 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2530 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2531 segs[idx].attrib.p = 0;
2532 }
2533 }
2534
2535 static inline bool
2536 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2537 {
2538 uint64_t cr0, cr3, cr4, efer;
2539
2540 if (flags & NVMM_X64_STATE_CRS) {
2541 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2542 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2543 return true;
2544 }
2545 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2546 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2547 return true;
2548 }
2549 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2550 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2551 return true;
2552 }
2553 }
2554
2555 if (flags & NVMM_X64_STATE_MSRS) {
2556 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2557 if ((efer ^
2558 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2559 return true;
2560 }
2561 }
2562
2563 return false;
2564 }
2565
2566 static void
2567 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2568 {
2569 struct nvmm_comm_page *comm = vcpu->comm;
2570 const struct nvmm_x64_state *state = &comm->state;
2571 struct vmx_cpudata *cpudata = vcpu->cpudata;
2572 struct fxsave *fpustate;
2573 uint64_t ctls1, intstate;
2574 uint64_t flags;
2575
2576 flags = comm->state_wanted;
2577
2578 vmx_vmcs_enter(vcpu);
2579
2580 if (vmx_state_tlb_flush(state, flags)) {
2581 cpudata->gtlb_want_flush = true;
2582 }
2583
2584 if (flags & NVMM_X64_STATE_SEGS) {
2585 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2586 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2587 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2588 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2589 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2590 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2591 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2592 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2593 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2594 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2595 }
2596
2597 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2598 if (flags & NVMM_X64_STATE_GPRS) {
2599 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2600
2601 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2602 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2603 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2604 }
2605
2606 if (flags & NVMM_X64_STATE_CRS) {
2607 /*
2608 * CR0_ET must be 1 both in the shadow and the real register.
2609 * CR0_NE must be 1 in the real register.
2610 * CR0_NW and CR0_CD must be 0 in the real register.
2611 */
2612 vmx_vmwrite(VMCS_CR0_SHADOW,
2613 (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
2614 CR0_ET);
2615 vmx_vmwrite(VMCS_GUEST_CR0,
2616 (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
2617 CR0_ET | CR0_NE);
2618
2619 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2620
2621 /* XXX We are not handling PDPTE here. */
2622 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
2623
2624 /* CR4_VMXE is mandatory. */
2625 vmx_vmwrite(VMCS_GUEST_CR4,
2626 (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2627
2628 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2629
2630 if (vmx_xcr0_mask != 0) {
2631 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2632 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2633 cpudata->gxcr0 &= vmx_xcr0_mask;
2634 cpudata->gxcr0 |= XCR0_X87;
2635 }
2636 }
2637
2638 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2639 if (flags & NVMM_X64_STATE_DRS) {
2640 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2641
2642 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2643 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2644 }
2645
2646 if (flags & NVMM_X64_STATE_MSRS) {
2647 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2648 state->msrs[NVMM_X64_MSR_STAR];
2649 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2650 state->msrs[NVMM_X64_MSR_LSTAR];
2651 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2652 state->msrs[NVMM_X64_MSR_CSTAR];
2653 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2654 state->msrs[NVMM_X64_MSR_SFMASK];
2655 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2656 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2657
2658 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2659 state->msrs[NVMM_X64_MSR_EFER]);
2660 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2661 state->msrs[NVMM_X64_MSR_PAT]);
2662 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2663 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2664 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2665 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2666 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2667 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2668
2669 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2670 cpudata->gtsc_want_update = true;
2671
2672 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2673 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2674 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2675 ctls1 |= ENTRY_CTLS_LONG_MODE;
2676 } else {
2677 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2678 }
2679 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2680 }
2681
2682 if (flags & NVMM_X64_STATE_INTR) {
2683 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2684 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2685 if (state->intr.int_shadow) {
2686 intstate |= INT_STATE_MOVSS;
2687 }
2688 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2689
2690 if (state->intr.int_window_exiting) {
2691 vmx_event_waitexit_enable(vcpu, false);
2692 } else {
2693 vmx_event_waitexit_disable(vcpu, false);
2694 }
2695
2696 if (state->intr.nmi_window_exiting) {
2697 vmx_event_waitexit_enable(vcpu, true);
2698 } else {
2699 vmx_event_waitexit_disable(vcpu, true);
2700 }
2701 }
2702
2703 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2704 if (flags & NVMM_X64_STATE_FPU) {
2705 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2706 sizeof(state->fpu));
2707
2708 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2709 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2710 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2711
2712 if (vmx_xcr0_mask != 0) {
2713 /* Reset XSTATE_BV, to force a reload. */
2714 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2715 }
2716 }
2717
2718 vmx_vmcs_leave(vcpu);
2719
2720 comm->state_wanted = 0;
2721 comm->state_cached |= flags;
2722 }
2723
2724 static void
2725 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2726 {
2727 struct nvmm_comm_page *comm = vcpu->comm;
2728 struct nvmm_x64_state *state = &comm->state;
2729 struct vmx_cpudata *cpudata = vcpu->cpudata;
2730 uint64_t intstate, flags;
2731
2732 flags = comm->state_wanted;
2733
2734 vmx_vmcs_enter(vcpu);
2735
2736 if (flags & NVMM_X64_STATE_SEGS) {
2737 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2738 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2739 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2740 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2741 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2742 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2743 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2744 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2745 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2746 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2747 }
2748
2749 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2750 if (flags & NVMM_X64_STATE_GPRS) {
2751 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2752
2753 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2754 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2755 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2756 }
2757
2758 if (flags & NVMM_X64_STATE_CRS) {
2759 state->crs[NVMM_X64_CR_CR0] =
2760 (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
2761 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
2762 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2763 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2764 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2765 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2766 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2767
2768 /* Hide VMXE. */
2769 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2770 }
2771
2772 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2773 if (flags & NVMM_X64_STATE_DRS) {
2774 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2775
2776 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2777 }
2778
2779 if (flags & NVMM_X64_STATE_MSRS) {
2780 state->msrs[NVMM_X64_MSR_STAR] =
2781 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2782 state->msrs[NVMM_X64_MSR_LSTAR] =
2783 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2784 state->msrs[NVMM_X64_MSR_CSTAR] =
2785 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2786 state->msrs[NVMM_X64_MSR_SFMASK] =
2787 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2788 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2789 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2790 state->msrs[NVMM_X64_MSR_EFER] =
2791 vmx_vmread(VMCS_GUEST_IA32_EFER);
2792 state->msrs[NVMM_X64_MSR_PAT] =
2793 vmx_vmread(VMCS_GUEST_IA32_PAT);
2794 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2795 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2796 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2797 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2798 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2799 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2800 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2801 }
2802
2803 if (flags & NVMM_X64_STATE_INTR) {
2804 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2805 state->intr.int_shadow =
2806 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2807 state->intr.int_window_exiting = cpudata->int_window_exit;
2808 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2809 state->intr.evt_pending = cpudata->evt_pending;
2810 }
2811
2812 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2813 if (flags & NVMM_X64_STATE_FPU) {
2814 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2815 sizeof(state->fpu));
2816 }
2817
2818 vmx_vmcs_leave(vcpu);
2819
2820 comm->state_wanted = 0;
2821 comm->state_cached |= flags;
2822 }
2823
2824 static void
2825 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2826 {
2827 vcpu->comm->state_wanted = flags;
2828 vmx_vcpu_getstate(vcpu);
2829 }
2830
2831 static void
2832 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2833 {
2834 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2835 vcpu->comm->state_commit = 0;
2836 vmx_vcpu_setstate(vcpu);
2837 }
2838
2839 /* -------------------------------------------------------------------------- */
2840
2841 static void
2842 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2843 {
2844 struct vmx_cpudata *cpudata = vcpu->cpudata;
2845 size_t i, oct, bit;
2846
2847 mutex_enter(&vmx_asidlock);
2848
2849 for (i = 0; i < vmx_maxasid; i++) {
2850 oct = i / 8;
2851 bit = i % 8;
2852
2853 if (vmx_asidmap[oct] & __BIT(bit)) {
2854 continue;
2855 }
2856
2857 cpudata->asid = i;
2858
2859 vmx_asidmap[oct] |= __BIT(bit);
2860 vmx_vmwrite(VMCS_VPID, i);
2861 mutex_exit(&vmx_asidlock);
2862 return;
2863 }
2864
2865 mutex_exit(&vmx_asidlock);
2866
2867 panic("%s: impossible", __func__);
2868 }
2869
2870 static void
2871 vmx_asid_free(struct nvmm_cpu *vcpu)
2872 {
2873 size_t oct, bit;
2874 uint64_t asid;
2875
2876 asid = vmx_vmread(VMCS_VPID);
2877
2878 oct = asid / 8;
2879 bit = asid % 8;
2880
2881 mutex_enter(&vmx_asidlock);
2882 vmx_asidmap[oct] &= ~__BIT(bit);
2883 mutex_exit(&vmx_asidlock);
2884 }
2885
2886 static void
2887 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2888 {
2889 struct vmx_cpudata *cpudata = vcpu->cpudata;
2890 struct vmcs *vmcs = cpudata->vmcs;
2891 struct msr_entry *gmsr = cpudata->gmsr;
2892 extern uint8_t vmx_resume_rip;
2893 uint64_t rev, eptp;
2894
2895 rev = vmx_get_revision();
2896
2897 memset(vmcs, 0, VMCS_SIZE);
2898 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2899 vmcs->abort = 0;
2900
2901 vmx_vmcs_enter(vcpu);
2902
2903 /* No link pointer. */
2904 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2905
2906 /* Install the CTLSs. */
2907 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2908 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2909 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2910 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2911 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2912
2913 /* Allow direct access to certain MSRs. */
2914 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2915 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2916 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2917 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2918 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2919 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2920 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2921 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2922 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2923 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2924 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2925 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2926 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2927 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2928
2929 /*
2930 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2931 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2932 */
2933 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2934 gmsr[VMX_MSRLIST_STAR].val = 0;
2935 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2936 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2937 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2938 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2939 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2940 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2941 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2942 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2943 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2944 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2945 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2946 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2947 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2948 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2949
2950 /* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
2951 vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
2952
2953 /* Force unsupported CR4 fields to zero. */
2954 vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
2955 vmx_vmwrite(VMCS_CR4_SHADOW, 0);
2956
2957 /* Set the Host state for resuming. */
2958 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2959 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2960 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2961 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2962 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2963 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2964 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2965 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2966 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2967 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2968 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2969 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2970 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2971
2972 /* Generate ASID. */
2973 vmx_asid_alloc(vcpu);
2974
2975 /* Enable Extended Paging, 4-Level. */
2976 eptp =
2977 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2978 __SHIFTIN(4-1, EPTP_WALKLEN) |
2979 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2980 mach->vm->vm_map.pmap->pm_pdirpa[0];
2981 vmx_vmwrite(VMCS_EPTP, eptp);
2982
2983 /* Init IA32_MISC_ENABLE. */
2984 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2985 cpudata->gmsr_misc_enable &=
2986 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2987 cpudata->gmsr_misc_enable |=
2988 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2989
2990 /* Init XSAVE header. */
2991 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2992 cpudata->gfpu.xsh_xcomp_bv = 0;
2993
2994 /* These MSRs are static. */
2995 cpudata->star = rdmsr(MSR_STAR);
2996 cpudata->lstar = rdmsr(MSR_LSTAR);
2997 cpudata->cstar = rdmsr(MSR_CSTAR);
2998 cpudata->sfmask = rdmsr(MSR_SFMASK);
2999
3000 /* Install the RESET state. */
3001 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
3002 sizeof(nvmm_x86_reset_state));
3003 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
3004 vcpu->comm->state_cached = 0;
3005 vmx_vcpu_setstate(vcpu);
3006
3007 vmx_vmcs_leave(vcpu);
3008 }
3009
3010 static int
3011 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3012 {
3013 struct vmx_cpudata *cpudata;
3014 int error;
3015
3016 /* Allocate the VMX cpudata. */
3017 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
3018 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
3019 UVM_KMF_WIRED|UVM_KMF_ZERO);
3020 vcpu->cpudata = cpudata;
3021
3022 /* VMCS */
3023 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
3024 VMCS_NPAGES);
3025 if (error)
3026 goto error;
3027
3028 /* MSR Bitmap */
3029 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
3030 MSRBM_NPAGES);
3031 if (error)
3032 goto error;
3033
3034 /* Guest MSR List */
3035 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
3036 if (error)
3037 goto error;
3038
3039 kcpuset_create(&cpudata->htlb_want_flush, true);
3040
3041 /* Init the VCPU info. */
3042 vmx_vcpu_init(mach, vcpu);
3043
3044 return 0;
3045
3046 error:
3047 if (cpudata->vmcs_pa) {
3048 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3049 VMCS_NPAGES);
3050 }
3051 if (cpudata->msrbm_pa) {
3052 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3053 MSRBM_NPAGES);
3054 }
3055 if (cpudata->gmsr_pa) {
3056 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3057 }
3058
3059 kmem_free(cpudata, sizeof(*cpudata));
3060 return error;
3061 }
3062
3063 static void
3064 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3065 {
3066 struct vmx_cpudata *cpudata = vcpu->cpudata;
3067
3068 vmx_vmcs_enter(vcpu);
3069 vmx_asid_free(vcpu);
3070 vmx_vmcs_destroy(vcpu);
3071
3072 kcpuset_destroy(cpudata->htlb_want_flush);
3073
3074 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
3075 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
3076 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3077 uvm_km_free(kernel_map, (vaddr_t)cpudata,
3078 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3079 }
3080
3081 /* -------------------------------------------------------------------------- */
3082
3083 static int
3084 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3085 {
3086 struct nvmm_vcpu_conf_cpuid *cpuid = data;
3087 size_t i;
3088
3089 if (__predict_false(cpuid->mask && cpuid->exit)) {
3090 return EINVAL;
3091 }
3092 if (__predict_false(cpuid->mask &&
3093 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3094 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3095 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3096 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3097 return EINVAL;
3098 }
3099
3100 /* If unset, delete, to restore the default behavior. */
3101 if (!cpuid->mask && !cpuid->exit) {
3102 for (i = 0; i < VMX_NCPUIDS; i++) {
3103 if (!cpudata->cpuidpresent[i]) {
3104 continue;
3105 }
3106 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3107 cpudata->cpuidpresent[i] = false;
3108 }
3109 }
3110 return 0;
3111 }
3112
3113 /* If already here, replace. */
3114 for (i = 0; i < VMX_NCPUIDS; i++) {
3115 if (!cpudata->cpuidpresent[i]) {
3116 continue;
3117 }
3118 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3119 memcpy(&cpudata->cpuid[i], cpuid,
3120 sizeof(struct nvmm_vcpu_conf_cpuid));
3121 return 0;
3122 }
3123 }
3124
3125 /* Not here, insert. */
3126 for (i = 0; i < VMX_NCPUIDS; i++) {
3127 if (!cpudata->cpuidpresent[i]) {
3128 cpudata->cpuidpresent[i] = true;
3129 memcpy(&cpudata->cpuid[i], cpuid,
3130 sizeof(struct nvmm_vcpu_conf_cpuid));
3131 return 0;
3132 }
3133 }
3134
3135 return ENOBUFS;
3136 }
3137
3138 static int
3139 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3140 {
3141 struct nvmm_vcpu_conf_tpr *tpr = data;
3142
3143 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3144 return 0;
3145 }
3146
3147 static int
3148 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3149 {
3150 struct vmx_cpudata *cpudata = vcpu->cpudata;
3151
3152 switch (op) {
3153 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3154 return vmx_vcpu_configure_cpuid(cpudata, data);
3155 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3156 return vmx_vcpu_configure_tpr(cpudata, data);
3157 default:
3158 return EINVAL;
3159 }
3160 }
3161
3162 static void
3163 vmx_vcpu_suspend(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3164 {
3165 struct vmx_cpudata *cpudata = vcpu->cpudata;
3166 struct cpu_info *vmcs_ci;
3167
3168 KASSERT(cpudata->vmcs_refcnt == 0);
3169
3170 vmcs_ci = cpudata->vmcs_ci;
3171 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
3172
3173 kpreempt_disable();
3174 if (vmcs_ci == NULL) {
3175 /* VMCS is inactive, nothing to do. */
3176 } else if (vmcs_ci != curcpu()) {
3177 /* VMCS is active on a remote CPU; clear it there. */
3178 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
3179 } else {
3180 /* VMCS is active on this CPU; clear it here. */
3181 vmx_vmclear(&cpudata->vmcs_pa);
3182 }
3183 kpreempt_enable();
3184 }
3185
3186 static void
3187 vmx_vcpu_resume(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3188 {
3189 struct vmx_cpudata *cpudata = vcpu->cpudata;
3190
3191 KASSERT(cpudata->vmcs_refcnt == 0);
3192
3193 /* Mark VMCS as inactive. */
3194 cpudata->vmcs_ci = NULL;
3195 }
3196
3197 /* -------------------------------------------------------------------------- */
3198
3199 static void
3200 vmx_tlb_flush(struct pmap *pm)
3201 {
3202 struct nvmm_machine *mach = pm->pm_data;
3203 struct vmx_machdata *machdata = mach->machdata;
3204
3205 atomic_inc_64(&machdata->mach_htlb_gen);
3206
3207 /* Generates IPIs, which cause #VMEXITs. */
3208 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3209 }
3210
3211 static void
3212 vmx_machine_create(struct nvmm_machine *mach)
3213 {
3214 struct pmap *pmap = mach->vm->vm_map.pmap;
3215 struct vmx_machdata *machdata;
3216
3217 /* Convert to EPT. */
3218 pmap_ept_transform(pmap);
3219
3220 /* Fill in pmap info. */
3221 pmap->pm_data = (void *)mach;
3222 pmap->pm_tlb_flush = vmx_tlb_flush;
3223
3224 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3225 mach->machdata = machdata;
3226
3227 /* Start with an hTLB flush everywhere. */
3228 machdata->mach_htlb_gen = 1;
3229 }
3230
3231 static void
3232 vmx_machine_destroy(struct nvmm_machine *mach)
3233 {
3234 struct vmx_machdata *machdata = mach->machdata;
3235
3236 kmem_free(machdata, sizeof(struct vmx_machdata));
3237 }
3238
3239 static int
3240 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3241 {
3242 panic("%s: impossible", __func__);
3243 }
3244
3245 /* -------------------------------------------------------------------------- */
3246
3247 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3248 ((msrval & __BIT(32 + bitoff)) != 0)
3249 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3250 ((msrval & __BIT(bitoff)) == 0)
3251
3252 static int
3253 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3254 {
3255 uint64_t basic, val, true_val;
3256 bool has_true;
3257 size_t i;
3258
3259 basic = rdmsr(MSR_IA32_VMX_BASIC);
3260 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3261
3262 val = rdmsr(msr_ctls);
3263 if (has_true) {
3264 true_val = rdmsr(msr_true_ctls);
3265 } else {
3266 true_val = val;
3267 }
3268
3269 for (i = 0; i < 32; i++) {
3270 if (!(set_one & __BIT(i))) {
3271 continue;
3272 }
3273 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3274 return -1;
3275 }
3276 }
3277
3278 return 0;
3279 }
3280
3281 static int
3282 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3283 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3284 {
3285 uint64_t basic, val, true_val;
3286 bool one_allowed, zero_allowed, has_true;
3287 size_t i;
3288
3289 basic = rdmsr(MSR_IA32_VMX_BASIC);
3290 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3291
3292 val = rdmsr(msr_ctls);
3293 if (has_true) {
3294 true_val = rdmsr(msr_true_ctls);
3295 } else {
3296 true_val = val;
3297 }
3298
3299 for (i = 0; i < 32; i++) {
3300 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3301 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3302
3303 if (zero_allowed && !one_allowed) {
3304 if (set_one & __BIT(i))
3305 return -1;
3306 *res &= ~__BIT(i);
3307 } else if (one_allowed && !zero_allowed) {
3308 if (set_zero & __BIT(i))
3309 return -1;
3310 *res |= __BIT(i);
3311 } else {
3312 if (set_zero & __BIT(i)) {
3313 *res &= ~__BIT(i);
3314 } else if (set_one & __BIT(i)) {
3315 *res |= __BIT(i);
3316 } else if (!has_true) {
3317 *res &= ~__BIT(i);
3318 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3319 *res &= ~__BIT(i);
3320 } else if (CTLS_ONE_ALLOWED(val, i)) {
3321 *res |= __BIT(i);
3322 } else {
3323 return -1;
3324 }
3325 }
3326 }
3327
3328 return 0;
3329 }
3330
3331 static bool
3332 vmx_ident(void)
3333 {
3334 uint64_t msr;
3335 int ret;
3336
3337 if (!(cpu_feature[1] & CPUID2_VMX)) {
3338 return false;
3339 }
3340
3341 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3342 if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3343 (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3344 printf("NVMM: VMX disabled in BIOS\n");
3345 return false;
3346 }
3347
3348 msr = rdmsr(MSR_IA32_VMX_BASIC);
3349 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3350 printf("NVMM: I/O reporting not supported\n");
3351 return false;
3352 }
3353 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3354 printf("NVMM: WB memory not supported\n");
3355 return false;
3356 }
3357
3358 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3359 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3360 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3361 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3362 if (ret == -1) {
3363 printf("NVMM: CR0 requirements not satisfied\n");
3364 return false;
3365 }
3366
3367 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3368 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3369 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3370 if (ret == -1) {
3371 printf("NVMM: CR4 requirements not satisfied\n");
3372 return false;
3373 }
3374
3375 /* Init the CTLSs right now, and check for errors. */
3376 ret = vmx_init_ctls(
3377 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3378 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3379 &vmx_pinbased_ctls);
3380 if (ret == -1) {
3381 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3382 return false;
3383 }
3384 ret = vmx_init_ctls(
3385 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3386 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3387 &vmx_procbased_ctls);
3388 if (ret == -1) {
3389 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3390 return false;
3391 }
3392 ret = vmx_init_ctls(
3393 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3394 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3395 &vmx_procbased_ctls2);
3396 if (ret == -1) {
3397 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3398 return false;
3399 }
3400 ret = vmx_check_ctls(
3401 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3402 PROC_CTLS2_INVPCID_ENABLE);
3403 if (ret != -1) {
3404 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3405 }
3406 ret = vmx_init_ctls(
3407 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3408 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3409 &vmx_entry_ctls);
3410 if (ret == -1) {
3411 printf("NVMM: entry-ctls requirements not satisfied\n");
3412 return false;
3413 }
3414 ret = vmx_init_ctls(
3415 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3416 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3417 &vmx_exit_ctls);
3418 if (ret == -1) {
3419 printf("NVMM: exit-ctls requirements not satisfied\n");
3420 return false;
3421 }
3422
3423 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3424 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3425 printf("NVMM: 4-level page tree not supported\n");
3426 return false;
3427 }
3428 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3429 printf("NVMM: INVEPT not supported\n");
3430 return false;
3431 }
3432 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3433 printf("NVMM: INVVPID not supported\n");
3434 return false;
3435 }
3436 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3437 pmap_ept_has_ad = true;
3438 } else {
3439 pmap_ept_has_ad = false;
3440 }
3441 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3442 printf("NVMM: EPT UC/WB memory types not supported\n");
3443 return false;
3444 }
3445
3446 return true;
3447 }
3448
3449 static void
3450 vmx_init_asid(uint32_t maxasid)
3451 {
3452 size_t allocsz;
3453
3454 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3455
3456 vmx_maxasid = maxasid;
3457 allocsz = roundup(maxasid, 8) / 8;
3458 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3459
3460 /* ASID 0 is reserved for the host. */
3461 vmx_asidmap[0] |= __BIT(0);
3462 }
3463
3464 static void
3465 vmx_change_cpu(void *arg1, void *arg2)
3466 {
3467 struct cpu_info *ci = curcpu();
3468 bool enable = arg1 != NULL;
3469 uint64_t msr, cr4;
3470
3471 if (enable) {
3472 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3473 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3474 /* Lock now, with VMX-outside-SMX enabled. */
3475 wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3476 IA32_FEATURE_CONTROL_LOCK |
3477 IA32_FEATURE_CONTROL_OUT_SMX);
3478 }
3479 }
3480
3481 if (!enable) {
3482 vmx_vmxoff();
3483 }
3484
3485 cr4 = rcr4();
3486 if (enable) {
3487 cr4 |= CR4_VMXE;
3488 } else {
3489 cr4 &= ~CR4_VMXE;
3490 }
3491 lcr4(cr4);
3492
3493 if (enable) {
3494 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3495 }
3496 }
3497
3498 static void
3499 vmx_init_l1tf(void)
3500 {
3501 u_int descs[4];
3502 uint64_t msr;
3503
3504 if (cpuid_level < 7) {
3505 return;
3506 }
3507
3508 x86_cpuid(7, descs);
3509
3510 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3511 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3512 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3513 /* No mitigation needed. */
3514 return;
3515 }
3516 }
3517
3518 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3519 /* Enable hardware mitigation. */
3520 vmx_msrlist_entry_nmsr += 1;
3521 }
3522 }
3523
3524 static void
3525 vmx_suspend_interrupt(void)
3526 {
3527
3528 /*
3529 * Generates IPIs, which cause #VMEXITs. No other purpose for
3530 * the TLB business; the #VMEXIT triggered by IPI is the only
3531 * effect that matters here.
3532 */
3533 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3534 }
3535
3536 static void
3537 vmx_suspend(void)
3538 {
3539 uint64_t xc;
3540
3541 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3542 xc_wait(xc);
3543 }
3544
3545 static void
3546 vmx_resume(void)
3547 {
3548 uint64_t xc;
3549
3550 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3551 xc_wait(xc);
3552 }
3553
3554 static void
3555 vmx_init(void)
3556 {
3557 CPU_INFO_ITERATOR cii;
3558 struct cpu_info *ci;
3559 uint64_t msr;
3560 struct vmxon *vmxon;
3561 uint32_t revision;
3562 u_int descs[4];
3563 paddr_t pa;
3564 vaddr_t va;
3565 int error;
3566
3567 /* Init the ASID bitmap (VPID). */
3568 vmx_init_asid(VPID_MAX);
3569
3570 /* Init the XCR0 mask. */
3571 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3572
3573 /* Init the max basic CPUID leaf. */
3574 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3575
3576 /* Init the max extended CPUID leaf. */
3577 x86_cpuid(0x80000000, descs);
3578 vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
3579
3580 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3581 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3582 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3583 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3584 } else {
3585 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3586 }
3587 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3588 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3589 } else {
3590 vmx_ept_flush_op = VMX_INVEPT_ALL;
3591 }
3592 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3593 vmx_eptp_type = EPTP_TYPE_WB;
3594 } else {
3595 vmx_eptp_type = EPTP_TYPE_UC;
3596 }
3597
3598 /* Init the L1TF mitigation. */
3599 vmx_init_l1tf();
3600
3601 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3602 revision = vmx_get_revision();
3603
3604 for (CPU_INFO_FOREACH(cii, ci)) {
3605 error = vmx_memalloc(&pa, &va, 1);
3606 if (error) {
3607 panic("%s: out of memory", __func__);
3608 }
3609 vmxoncpu[cpu_index(ci)].pa = pa;
3610 vmxoncpu[cpu_index(ci)].va = va;
3611
3612 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3613 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3614 }
3615
3616 vmx_resume();
3617 }
3618
3619 static void
3620 vmx_fini_asid(void)
3621 {
3622 size_t allocsz;
3623
3624 allocsz = roundup(vmx_maxasid, 8) / 8;
3625 kmem_free(vmx_asidmap, allocsz);
3626
3627 mutex_destroy(&vmx_asidlock);
3628 }
3629
3630 static void
3631 vmx_fini(void)
3632 {
3633 size_t i;
3634
3635 vmx_suspend();
3636
3637 for (i = 0; i < MAXCPUS; i++) {
3638 if (vmxoncpu[i].pa != 0)
3639 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3640 }
3641
3642 vmx_fini_asid();
3643 }
3644
3645 static void
3646 vmx_capability(struct nvmm_capability *cap)
3647 {
3648 cap->arch.mach_conf_support = 0;
3649 cap->arch.vcpu_conf_support =
3650 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3651 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3652 cap->arch.xcr0_mask = vmx_xcr0_mask;
3653 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3654 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3655 }
3656
3657 const struct nvmm_impl nvmm_x86_vmx = {
3658 .name = "x86-vmx",
3659 .ident = vmx_ident,
3660 .init = vmx_init,
3661 .fini = vmx_fini,
3662 .suspend_interrupt = vmx_suspend_interrupt,
3663 .suspend = vmx_suspend,
3664 .resume = vmx_resume,
3665 .capability = vmx_capability,
3666 .mach_conf_max = NVMM_X86_MACH_NCONF,
3667 .mach_conf_sizes = NULL,
3668 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3669 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3670 .state_size = sizeof(struct nvmm_x64_state),
3671 .machine_create = vmx_machine_create,
3672 .machine_destroy = vmx_machine_destroy,
3673 .machine_configure = vmx_machine_configure,
3674 .vcpu_create = vmx_vcpu_create,
3675 .vcpu_destroy = vmx_vcpu_destroy,
3676 .vcpu_configure = vmx_vcpu_configure,
3677 .vcpu_setstate = vmx_vcpu_setstate,
3678 .vcpu_getstate = vmx_vcpu_getstate,
3679 .vcpu_inject = vmx_vcpu_inject,
3680 .vcpu_run = vmx_vcpu_run,
3681 .vcpu_suspend = vmx_vcpu_suspend,
3682 .vcpu_resume = vmx_vcpu_resume,
3683 };
3684