Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.87
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.87 2025/03/09 19:16:47 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
      5  * All rights reserved.
      6  *
      7  * This code is part of the NVMM hypervisor.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.87 2025/03/09 19:16:47 riastradh Exp $");
     33 
     34 #include <sys/param.h>
     35 #include <sys/systm.h>
     36 #include <sys/kernel.h>
     37 #include <sys/kmem.h>
     38 #include <sys/cpu.h>
     39 #include <sys/xcall.h>
     40 #include <sys/mman.h>
     41 #include <sys/bitops.h>
     42 
     43 #include <uvm/uvm_extern.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/dbregs.h>
     49 #include <x86/cpu_counter.h>
     50 
     51 #include <machine/cpuvar.h>
     52 #include <machine/pmap_private.h>
     53 
     54 #include <dev/nvmm/nvmm.h>
     55 #include <dev/nvmm/nvmm_internal.h>
     56 #include <dev/nvmm/x86/nvmm_x86.h>
     57 
     58 int _vmx_vmxon(paddr_t *pa);
     59 int _vmx_vmxoff(void);
     60 int vmx_vmlaunch(uint64_t *gprs);
     61 int vmx_vmresume(uint64_t *gprs);
     62 
     63 #define vmx_vmxon(a) \
     64 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     65 		panic("%s: VMXON failed", __func__); \
     66 	}
     67 #define vmx_vmxoff() \
     68 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     69 		panic("%s: VMXOFF failed", __func__); \
     70 	}
     71 
     72 struct ept_desc {
     73 	uint64_t eptp;
     74 	uint64_t mbz;
     75 } __packed;
     76 
     77 struct vpid_desc {
     78 	uint64_t vpid;
     79 	uint64_t addr;
     80 } __packed;
     81 
     82 static inline void
     83 vmx_invept(uint64_t op, struct ept_desc *desc)
     84 {
     85 	asm volatile (
     86 		"invept		%[desc],%[op];"
     87 		"jz		vmx_insn_failvalid;"
     88 		"jc		vmx_insn_failinvalid;"
     89 		:
     90 		: [desc] "m" (*desc), [op] "r" (op)
     91 		: "memory", "cc"
     92 	);
     93 }
     94 
     95 static inline void
     96 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
     97 {
     98 	asm volatile (
     99 		"invvpid	%[desc],%[op];"
    100 		"jz		vmx_insn_failvalid;"
    101 		"jc		vmx_insn_failinvalid;"
    102 		:
    103 		: [desc] "m" (*desc), [op] "r" (op)
    104 		: "memory", "cc"
    105 	);
    106 }
    107 
    108 static inline uint64_t
    109 vmx_vmread(uint64_t field)
    110 {
    111 	uint64_t value;
    112 
    113 	asm volatile (
    114 		"vmread		%[field],%[value];"
    115 		"jz		vmx_insn_failvalid;"
    116 		"jc		vmx_insn_failinvalid;"
    117 		: [value] "=r" (value)
    118 		: [field] "r" (field)
    119 		: "cc"
    120 	);
    121 
    122 	return value;
    123 }
    124 
    125 static inline void
    126 vmx_vmwrite(uint64_t field, uint64_t value)
    127 {
    128 	asm volatile (
    129 		"vmwrite	%[value],%[field];"
    130 		"jz		vmx_insn_failvalid;"
    131 		"jc		vmx_insn_failinvalid;"
    132 		:
    133 		: [field] "r" (field), [value] "r" (value)
    134 		: "cc"
    135 	);
    136 }
    137 
    138 static inline paddr_t __diagused
    139 vmx_vmptrst(void)
    140 {
    141 	paddr_t pa;
    142 
    143 	asm volatile (
    144 		"vmptrst	%[pa];"
    145 		:
    146 		: [pa] "m" (*(paddr_t *)&pa)
    147 		: "memory"
    148 	);
    149 
    150 	return pa;
    151 }
    152 
    153 static inline void
    154 vmx_vmptrld(paddr_t *pa)
    155 {
    156 	asm volatile (
    157 		"vmptrld	%[pa];"
    158 		"jz		vmx_insn_failvalid;"
    159 		"jc		vmx_insn_failinvalid;"
    160 		:
    161 		: [pa] "m" (*pa)
    162 		: "memory", "cc"
    163 	);
    164 }
    165 
    166 static inline void
    167 vmx_vmclear(paddr_t *pa)
    168 {
    169 	asm volatile (
    170 		"vmclear	%[pa];"
    171 		"jz		vmx_insn_failvalid;"
    172 		"jc		vmx_insn_failinvalid;"
    173 		:
    174 		: [pa] "m" (*pa)
    175 		: "memory", "cc"
    176 	);
    177 }
    178 
    179 static inline void
    180 vmx_cli(void)
    181 {
    182 	asm volatile ("cli" ::: "memory");
    183 }
    184 
    185 static inline void
    186 vmx_sti(void)
    187 {
    188 	asm volatile ("sti" ::: "memory");
    189 }
    190 
    191 #define MSR_IA32_FEATURE_CONTROL	0x003A
    192 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    193 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    194 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    195 
    196 #define MSR_IA32_VMX_BASIC		0x0480
    197 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    198 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    199 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    200 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    201 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    202 #define			MEM_TYPE_UC		0
    203 #define			MEM_TYPE_WB		6
    204 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    205 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    206 
    207 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    208 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    209 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    210 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    211 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    212 
    213 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    214 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    215 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    216 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    217 
    218 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    219 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    220 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    221 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    222 
    223 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    224 #define		IA32_VMX_EPT_VPID_XO			__BIT(0)
    225 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    226 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    227 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    228 #define		IA32_VMX_EPT_VPID_2MB			__BIT(16)
    229 #define		IA32_VMX_EPT_VPID_1GB			__BIT(17)
    230 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    231 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    232 #define		IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO	__BIT(22)
    233 #define		IA32_VMX_EPT_VPID_SHSTK			__BIT(23)
    234 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    235 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    236 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    237 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    238 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    239 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    240 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    241 
    242 /* -------------------------------------------------------------------------- */
    243 
    244 /* 16-bit control fields */
    245 #define VMCS_VPID				0x00000000
    246 #define VMCS_PIR_VECTOR				0x00000002
    247 #define VMCS_EPTP_INDEX				0x00000004
    248 /* 16-bit guest-state fields */
    249 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    250 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    251 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    252 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    253 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    254 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    255 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    256 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    257 #define VMCS_GUEST_INTR_STATUS			0x00000810
    258 #define VMCS_PML_INDEX				0x00000812
    259 /* 16-bit host-state fields */
    260 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    261 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    262 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    263 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    264 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    265 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    266 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    267 /* 64-bit control fields */
    268 #define VMCS_IO_BITMAP_A			0x00002000
    269 #define VMCS_IO_BITMAP_B			0x00002002
    270 #define VMCS_MSR_BITMAP				0x00002004
    271 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    272 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    273 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    274 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    275 #define VMCS_PML_ADDRESS			0x0000200E
    276 #define VMCS_TSC_OFFSET				0x00002010
    277 #define VMCS_VIRTUAL_APIC			0x00002012
    278 #define VMCS_APIC_ACCESS			0x00002014
    279 #define VMCS_PIR_DESC				0x00002016
    280 #define VMCS_VM_CONTROL				0x00002018
    281 #define VMCS_EPTP				0x0000201A
    282 #define		EPTP_TYPE			__BITS(2,0)
    283 #define			EPTP_TYPE_UC		0
    284 #define			EPTP_TYPE_WB		6
    285 #define		EPTP_WALKLEN			__BITS(5,3)
    286 #define		EPTP_FLAGS_AD			__BIT(6)
    287 #define		EPTP_SSS			__BIT(7)
    288 #define		EPTP_PHYSADDR			__BITS(63,12)
    289 #define VMCS_EOI_EXIT0				0x0000201C
    290 #define VMCS_EOI_EXIT1				0x0000201E
    291 #define VMCS_EOI_EXIT2				0x00002020
    292 #define VMCS_EOI_EXIT3				0x00002022
    293 #define VMCS_EPTP_LIST				0x00002024
    294 #define VMCS_VMREAD_BITMAP			0x00002026
    295 #define VMCS_VMWRITE_BITMAP			0x00002028
    296 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    297 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    298 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    299 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
    300 #define VMCS_TSC_MULTIPLIER			0x00002032
    301 #define VMCS_ENCLV_EXIT_BITMAP			0x00002036
    302 /* 64-bit read-only fields */
    303 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    304 /* 64-bit guest-state fields */
    305 #define VMCS_LINK_POINTER			0x00002800
    306 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    307 #define VMCS_GUEST_IA32_PAT			0x00002804
    308 #define VMCS_GUEST_IA32_EFER			0x00002806
    309 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    310 #define VMCS_GUEST_PDPTE0			0x0000280A
    311 #define VMCS_GUEST_PDPTE1			0x0000280C
    312 #define VMCS_GUEST_PDPTE2			0x0000280E
    313 #define VMCS_GUEST_PDPTE3			0x00002810
    314 #define VMCS_GUEST_BNDCFGS			0x00002812
    315 #define VMCS_GUEST_RTIT_CTL			0x00002814
    316 #define VMCS_GUEST_PKRS				0x00002818
    317 /* 64-bit host-state fields */
    318 #define VMCS_HOST_IA32_PAT			0x00002C00
    319 #define VMCS_HOST_IA32_EFER			0x00002C02
    320 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    321 #define VMCS_HOST_IA32_PKRS			0x00002C06
    322 /* 32-bit control fields */
    323 #define VMCS_PINBASED_CTLS			0x00004000
    324 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    325 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    326 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    327 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    328 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
    329 #define VMCS_PROCBASED_CTLS			0x00004002
    330 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    331 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    332 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    333 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    334 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    335 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    336 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    337 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    338 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    339 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    340 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    341 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    342 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    343 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    344 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    345 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    346 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    347 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    348 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    349 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    350 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    351 #define VMCS_EXCEPTION_BITMAP			0x00004004
    352 #define VMCS_PF_ERROR_MASK			0x00004006
    353 #define VMCS_PF_ERROR_MATCH			0x00004008
    354 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    355 #define VMCS_EXIT_CTLS				0x0000400C
    356 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    357 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    358 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    359 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    360 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    361 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    362 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    363 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    364 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    365 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    366 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    367 #define		EXIT_CTLS_CLEAR_RTIT_CTL	__BIT(25)
    368 #define		EXIT_CTLS_LOAD_CET		__BIT(28)
    369 #define		EXIT_CTLS_LOAD_PKRS		__BIT(29)
    370 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    371 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    372 #define VMCS_ENTRY_CTLS				0x00004012
    373 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    374 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    375 #define		ENTRY_CTLS_SMM			__BIT(10)
    376 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    377 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    378 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    379 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    380 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    381 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    382 #define		ENTRY_CTLS_LOAD_RTIT_CTL	__BIT(18)
    383 #define		ENTRY_CTLS_LOAD_CET		__BIT(20)
    384 #define		ENTRY_CTLS_LOAD_PKRS		__BIT(22)
    385 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    386 #define VMCS_ENTRY_INTR_INFO			0x00004016
    387 #define		INTR_INFO_VECTOR		__BITS(7,0)
    388 #define		INTR_INFO_TYPE			__BITS(10,8)
    389 #define			INTR_TYPE_EXT_INT	0
    390 #define			INTR_TYPE_NMI		2
    391 #define			INTR_TYPE_HW_EXC	3
    392 #define			INTR_TYPE_SW_INT	4
    393 #define			INTR_TYPE_PRIV_SW_EXC	5
    394 #define			INTR_TYPE_SW_EXC	6
    395 #define			INTR_TYPE_OTHER		7
    396 #define		INTR_INFO_ERROR			__BIT(11)
    397 #define		INTR_INFO_VALID			__BIT(31)
    398 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    399 #define VMCS_ENTRY_INSTRUCTION_LENGTH		0x0000401A
    400 #define VMCS_TPR_THRESHOLD			0x0000401C
    401 #define VMCS_PROCBASED_CTLS2			0x0000401E
    402 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    403 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    404 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    405 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    406 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    407 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    408 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    409 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    410 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    411 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    412 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    413 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    414 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    415 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    416 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    417 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    418 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    419 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    420 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    421 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    422 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    423 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    424 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
    425 #define		PROC_CTLS2_PT_USES_GPA		__BIT(24)
    426 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    427 #define		PROC_CTLS2_WAIT_PAUSE_ENABLE	__BIT(26)
    428 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
    429 #define VMCS_PLE_GAP				0x00004020
    430 #define VMCS_PLE_WINDOW				0x00004022
    431 /* 32-bit read-only data fields */
    432 #define VMCS_INSTRUCTION_ERROR			0x00004400
    433 #define VMCS_EXIT_REASON			0x00004402
    434 #define VMCS_EXIT_INTR_INFO			0x00004404
    435 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    436 #define VMCS_IDT_VECTORING_INFO			0x00004408
    437 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    438 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    439 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    440 /* 32-bit guest-state fields */
    441 #define VMCS_GUEST_ES_LIMIT			0x00004800
    442 #define VMCS_GUEST_CS_LIMIT			0x00004802
    443 #define VMCS_GUEST_SS_LIMIT			0x00004804
    444 #define VMCS_GUEST_DS_LIMIT			0x00004806
    445 #define VMCS_GUEST_FS_LIMIT			0x00004808
    446 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    447 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    448 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    449 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    450 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    451 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    452 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    453 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    454 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    455 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    456 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    457 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    458 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    459 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    460 #define		INT_STATE_STI			__BIT(0)
    461 #define		INT_STATE_MOVSS			__BIT(1)
    462 #define		INT_STATE_SMI			__BIT(2)
    463 #define		INT_STATE_NMI			__BIT(3)
    464 #define		INT_STATE_ENCLAVE		__BIT(4)
    465 #define VMCS_GUEST_ACTIVITY			0x00004826
    466 #define VMCS_GUEST_SMBASE			0x00004828
    467 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    468 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    469 /* 32-bit host state fields */
    470 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    471 /* Natural-Width control fields */
    472 #define VMCS_CR0_MASK				0x00006000
    473 #define VMCS_CR4_MASK				0x00006002
    474 #define VMCS_CR0_SHADOW				0x00006004
    475 #define VMCS_CR4_SHADOW				0x00006006
    476 #define VMCS_CR3_TARGET0			0x00006008
    477 #define VMCS_CR3_TARGET1			0x0000600A
    478 #define VMCS_CR3_TARGET2			0x0000600C
    479 #define VMCS_CR3_TARGET3			0x0000600E
    480 /* Natural-Width read-only fields */
    481 #define VMCS_EXIT_QUALIFICATION			0x00006400
    482 #define VMCS_IO_RCX				0x00006402
    483 #define VMCS_IO_RSI				0x00006404
    484 #define VMCS_IO_RDI				0x00006406
    485 #define VMCS_IO_RIP				0x00006408
    486 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    487 /* Natural-Width guest-state fields */
    488 #define VMCS_GUEST_CR0				0x00006800
    489 #define VMCS_GUEST_CR3				0x00006802
    490 #define VMCS_GUEST_CR4				0x00006804
    491 #define VMCS_GUEST_ES_BASE			0x00006806
    492 #define VMCS_GUEST_CS_BASE			0x00006808
    493 #define VMCS_GUEST_SS_BASE			0x0000680A
    494 #define VMCS_GUEST_DS_BASE			0x0000680C
    495 #define VMCS_GUEST_FS_BASE			0x0000680E
    496 #define VMCS_GUEST_GS_BASE			0x00006810
    497 #define VMCS_GUEST_LDTR_BASE			0x00006812
    498 #define VMCS_GUEST_TR_BASE			0x00006814
    499 #define VMCS_GUEST_GDTR_BASE			0x00006816
    500 #define VMCS_GUEST_IDTR_BASE			0x00006818
    501 #define VMCS_GUEST_DR7				0x0000681A
    502 #define VMCS_GUEST_RSP				0x0000681C
    503 #define VMCS_GUEST_RIP				0x0000681E
    504 #define VMCS_GUEST_RFLAGS			0x00006820
    505 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    506 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    507 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    508 #define VMCS_GUEST_IA32_S_CET			0x00006828
    509 #define VMCS_GUEST_SSP				0x0000682A
    510 #define VMCS_GUEST_IA32_INTR_SSP_TABLE		0x0000682C
    511 /* Natural-Width host-state fields */
    512 #define VMCS_HOST_CR0				0x00006C00
    513 #define VMCS_HOST_CR3				0x00006C02
    514 #define VMCS_HOST_CR4				0x00006C04
    515 #define VMCS_HOST_FS_BASE			0x00006C06
    516 #define VMCS_HOST_GS_BASE			0x00006C08
    517 #define VMCS_HOST_TR_BASE			0x00006C0A
    518 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    519 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    520 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    521 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    522 #define VMCS_HOST_RSP				0x00006C14
    523 #define VMCS_HOST_RIP				0x00006C16
    524 #define VMCS_HOST_IA32_S_CET			0x00006C18
    525 #define VMCS_HOST_SSP				0x00006C1A
    526 #define VMCS_HOST_IA32_INTR_SSP_TABLE		0x00006C1C
    527 
    528 /* VMX basic exit reasons. */
    529 #define VMCS_EXITCODE_EXC_NMI			0
    530 #define VMCS_EXITCODE_EXT_INT			1
    531 #define VMCS_EXITCODE_SHUTDOWN			2
    532 #define VMCS_EXITCODE_INIT			3
    533 #define VMCS_EXITCODE_SIPI			4
    534 #define VMCS_EXITCODE_SMI			5
    535 #define VMCS_EXITCODE_OTHER_SMI			6
    536 #define VMCS_EXITCODE_INT_WINDOW		7
    537 #define VMCS_EXITCODE_NMI_WINDOW		8
    538 #define VMCS_EXITCODE_TASK_SWITCH		9
    539 #define VMCS_EXITCODE_CPUID			10
    540 #define VMCS_EXITCODE_GETSEC			11
    541 #define VMCS_EXITCODE_HLT			12
    542 #define VMCS_EXITCODE_INVD			13
    543 #define VMCS_EXITCODE_INVLPG			14
    544 #define VMCS_EXITCODE_RDPMC			15
    545 #define VMCS_EXITCODE_RDTSC			16
    546 #define VMCS_EXITCODE_RSM			17
    547 #define VMCS_EXITCODE_VMCALL			18
    548 #define VMCS_EXITCODE_VMCLEAR			19
    549 #define VMCS_EXITCODE_VMLAUNCH			20
    550 #define VMCS_EXITCODE_VMPTRLD			21
    551 #define VMCS_EXITCODE_VMPTRST			22
    552 #define VMCS_EXITCODE_VMREAD			23
    553 #define VMCS_EXITCODE_VMRESUME			24
    554 #define VMCS_EXITCODE_VMWRITE			25
    555 #define VMCS_EXITCODE_VMXOFF			26
    556 #define VMCS_EXITCODE_VMXON			27
    557 #define VMCS_EXITCODE_CR			28
    558 #define VMCS_EXITCODE_DR			29
    559 #define VMCS_EXITCODE_IO			30
    560 #define VMCS_EXITCODE_RDMSR			31
    561 #define VMCS_EXITCODE_WRMSR			32
    562 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    563 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    564 #define VMCS_EXITCODE_MWAIT			36
    565 #define VMCS_EXITCODE_TRAP_FLAG			37
    566 #define VMCS_EXITCODE_MONITOR			39
    567 #define VMCS_EXITCODE_PAUSE			40
    568 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    569 #define VMCS_EXITCODE_TPR_BELOW			43
    570 #define VMCS_EXITCODE_APIC_ACCESS		44
    571 #define VMCS_EXITCODE_VEOI			45
    572 #define VMCS_EXITCODE_GDTR_IDTR			46
    573 #define VMCS_EXITCODE_LDTR_TR			47
    574 #define VMCS_EXITCODE_EPT_VIOLATION		48
    575 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    576 #define VMCS_EXITCODE_INVEPT			50
    577 #define VMCS_EXITCODE_RDTSCP			51
    578 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    579 #define VMCS_EXITCODE_INVVPID			53
    580 #define VMCS_EXITCODE_WBINVD			54
    581 #define VMCS_EXITCODE_XSETBV			55
    582 #define VMCS_EXITCODE_APIC_WRITE		56
    583 #define VMCS_EXITCODE_RDRAND			57
    584 #define VMCS_EXITCODE_INVPCID			58
    585 #define VMCS_EXITCODE_VMFUNC			59
    586 #define VMCS_EXITCODE_ENCLS			60
    587 #define VMCS_EXITCODE_RDSEED			61
    588 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    589 #define VMCS_EXITCODE_XSAVES			63
    590 #define VMCS_EXITCODE_XRSTORS			64
    591 #define VMCS_EXITCODE_SPP			66
    592 #define VMCS_EXITCODE_UMWAIT			67
    593 #define VMCS_EXITCODE_TPAUSE			68
    594 
    595 /* -------------------------------------------------------------------------- */
    596 
    597 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    598 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
    599 
    600 #define VMX_MSRLIST_STAR		0
    601 #define VMX_MSRLIST_LSTAR		1
    602 #define VMX_MSRLIST_CSTAR		2
    603 #define VMX_MSRLIST_SFMASK		3
    604 #define VMX_MSRLIST_KERNELGSBASE	4
    605 #define VMX_MSRLIST_EXIT_NMSR		5
    606 #define VMX_MSRLIST_L1DFLUSH		5
    607 
    608 /* On entry, we may do +1 to include L1DFLUSH. */
    609 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    610 
    611 struct vmxon {
    612 	uint32_t ident;
    613 #define VMXON_IDENT_REVISION	__BITS(30,0)
    614 
    615 	uint8_t data[PAGE_SIZE - 4];
    616 } __packed;
    617 
    618 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    619 
    620 struct vmxoncpu {
    621 	vaddr_t va;
    622 	paddr_t pa;
    623 };
    624 
    625 static struct vmxoncpu vmxoncpu[MAXCPUS];
    626 
    627 struct vmcs {
    628 	uint32_t ident;
    629 #define VMCS_IDENT_REVISION	__BITS(30,0)
    630 #define VMCS_IDENT_SHADOW	__BIT(31)
    631 
    632 	uint32_t abort;
    633 	uint8_t data[PAGE_SIZE - 8];
    634 } __packed;
    635 
    636 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    637 
    638 struct msr_entry {
    639 	uint32_t msr;
    640 	uint32_t rsvd;
    641 	uint64_t val;
    642 } __packed;
    643 
    644 #define VPID_MAX	0xFFFF
    645 
    646 /* Make sure we never run out of VPIDs. */
    647 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    648 
    649 static uint64_t vmx_tlb_flush_op __read_mostly;
    650 static uint64_t vmx_ept_flush_op __read_mostly;
    651 static uint64_t vmx_eptp_type __read_mostly;
    652 
    653 static uint64_t vmx_pinbased_ctls __read_mostly;
    654 static uint64_t vmx_procbased_ctls __read_mostly;
    655 static uint64_t vmx_procbased_ctls2 __read_mostly;
    656 static uint64_t vmx_entry_ctls __read_mostly;
    657 static uint64_t vmx_exit_ctls __read_mostly;
    658 
    659 static uint64_t vmx_cr0_fixed0 __read_mostly;
    660 static uint64_t vmx_cr0_fixed1 __read_mostly;
    661 static uint64_t vmx_cr4_fixed0 __read_mostly;
    662 static uint64_t vmx_cr4_fixed1 __read_mostly;
    663 
    664 extern bool pmap_ept_has_ad;
    665 
    666 #define VMX_PINBASED_CTLS_ONE	\
    667 	(PIN_CTLS_INT_EXITING| \
    668 	 PIN_CTLS_NMI_EXITING| \
    669 	 PIN_CTLS_VIRTUAL_NMIS)
    670 
    671 #define VMX_PINBASED_CTLS_ZERO	0
    672 
    673 #define VMX_PROCBASED_CTLS_ONE	\
    674 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    675 	 PROC_CTLS_HLT_EXITING| \
    676 	 PROC_CTLS_MWAIT_EXITING | \
    677 	 PROC_CTLS_RDPMC_EXITING | \
    678 	 PROC_CTLS_RCR8_EXITING | \
    679 	 PROC_CTLS_LCR8_EXITING | \
    680 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    681 	 PROC_CTLS_USE_MSR_BITMAPS | \
    682 	 PROC_CTLS_MONITOR_EXITING | \
    683 	 PROC_CTLS_ACTIVATE_CTLS2)
    684 
    685 #define VMX_PROCBASED_CTLS_ZERO	\
    686 	(PROC_CTLS_RCR3_EXITING| \
    687 	 PROC_CTLS_LCR3_EXITING)
    688 
    689 #define VMX_PROCBASED_CTLS2_ONE	\
    690 	(PROC_CTLS2_ENABLE_EPT| \
    691 	 PROC_CTLS2_ENABLE_VPID| \
    692 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    693 
    694 #define VMX_PROCBASED_CTLS2_ZERO	0
    695 
    696 #define VMX_ENTRY_CTLS_ONE	\
    697 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    698 	 ENTRY_CTLS_LOAD_EFER| \
    699 	 ENTRY_CTLS_LOAD_PAT)
    700 
    701 #define VMX_ENTRY_CTLS_ZERO	\
    702 	(ENTRY_CTLS_SMM| \
    703 	 ENTRY_CTLS_DISABLE_DUAL)
    704 
    705 #define VMX_EXIT_CTLS_ONE	\
    706 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    707 	 EXIT_CTLS_HOST_LONG_MODE| \
    708 	 EXIT_CTLS_SAVE_PAT| \
    709 	 EXIT_CTLS_LOAD_PAT| \
    710 	 EXIT_CTLS_SAVE_EFER| \
    711 	 EXIT_CTLS_LOAD_EFER)
    712 
    713 #define VMX_EXIT_CTLS_ZERO	0
    714 
    715 static uint8_t *vmx_asidmap __read_mostly;
    716 static uint32_t vmx_maxasid __read_mostly;
    717 static kmutex_t vmx_asidlock __cacheline_aligned;
    718 
    719 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    720 static uint64_t vmx_xcr0_mask __read_mostly;
    721 
    722 #define VMX_NCPUIDS	32
    723 
    724 #define VMCS_NPAGES	1
    725 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    726 
    727 #define MSRBM_NPAGES	1
    728 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    729 
    730 #define CR0_STATIC_MASK \
    731 	(CR0_ET | CR0_NW | CR0_CD)
    732 
    733 #define CR4_VALID \
    734 	(CR4_VME |			\
    735 	 CR4_PVI |			\
    736 	 CR4_TSD |			\
    737 	 CR4_DE |			\
    738 	 CR4_PSE |			\
    739 	 CR4_PAE |			\
    740 	 CR4_MCE |			\
    741 	 CR4_PGE |			\
    742 	 CR4_PCE |			\
    743 	 CR4_OSFXSR |			\
    744 	 CR4_OSXMMEXCPT |		\
    745 	 CR4_UMIP |			\
    746 	 /* CR4_LA57 excluded */	\
    747 	 /* CR4_VMXE excluded */	\
    748 	 /* CR4_SMXE excluded */	\
    749 	 CR4_FSGSBASE |			\
    750 	 CR4_PCIDE |			\
    751 	 CR4_OSXSAVE |			\
    752 	 CR4_SMEP |			\
    753 	 CR4_SMAP			\
    754 	 /* CR4_PKE excluded */		\
    755 	 /* CR4_CET excluded */		\
    756 	 /* CR4_PKS excluded */)
    757 #define CR4_INVALID \
    758 	(0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
    759 
    760 #define EFER_TLB_FLUSH \
    761 	(EFER_NXE|EFER_LMA|EFER_LME)
    762 #define CR0_TLB_FLUSH \
    763 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    764 #define CR4_TLB_FLUSH \
    765 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
    766 
    767 /* -------------------------------------------------------------------------- */
    768 
    769 struct vmx_machdata {
    770 	volatile uint64_t mach_htlb_gen;
    771 };
    772 
    773 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
    774 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
    775 	    sizeof(struct nvmm_vcpu_conf_cpuid),
    776 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
    777 	    sizeof(struct nvmm_vcpu_conf_tpr)
    778 };
    779 
    780 struct vmx_cpudata {
    781 	/* General */
    782 	uint64_t asid;
    783 	bool gtlb_want_flush;
    784 	bool gtsc_want_update;
    785 	uint64_t vcpu_htlb_gen;
    786 	kcpuset_t *htlb_want_flush;
    787 
    788 	/* VMCS */
    789 	struct vmcs *vmcs;
    790 	paddr_t vmcs_pa;
    791 	size_t vmcs_refcnt;
    792 	struct cpu_info *vmcs_ci;
    793 	bool vmcs_launched;
    794 
    795 	/* MSR bitmap */
    796 	uint8_t *msrbm;
    797 	paddr_t msrbm_pa;
    798 
    799 	/* Host state */
    800 	uint64_t hxcr0;
    801 	uint64_t star;
    802 	uint64_t lstar;
    803 	uint64_t cstar;
    804 	uint64_t sfmask;
    805 	uint64_t kernelgsbase;
    806 
    807 	/* Intr state */
    808 	bool int_window_exit;
    809 	bool nmi_window_exit;
    810 	bool evt_pending;
    811 
    812 	/* Guest state */
    813 	struct msr_entry *gmsr;
    814 	paddr_t gmsr_pa;
    815 	uint64_t gmsr_misc_enable;
    816 	uint64_t gcr2;
    817 	uint64_t gcr8;
    818 	uint64_t gxcr0;
    819 	uint64_t gprs[NVMM_X64_NGPR];
    820 	uint64_t drs[NVMM_X64_NDR];
    821 	uint64_t gtsc;
    822 	struct xsave_header gfpu __aligned(64);
    823 
    824 	/* VCPU configuration. */
    825 	bool cpuidpresent[VMX_NCPUIDS];
    826 	struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
    827 	struct nvmm_vcpu_conf_tpr tpr;
    828 };
    829 
    830 static const struct {
    831 	uint64_t selector;
    832 	uint64_t attrib;
    833 	uint64_t limit;
    834 	uint64_t base;
    835 } vmx_guest_segs[NVMM_X64_NSEG] = {
    836 	[NVMM_X64_SEG_ES] = {
    837 		VMCS_GUEST_ES_SELECTOR,
    838 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    839 		VMCS_GUEST_ES_LIMIT,
    840 		VMCS_GUEST_ES_BASE
    841 	},
    842 	[NVMM_X64_SEG_CS] = {
    843 		VMCS_GUEST_CS_SELECTOR,
    844 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    845 		VMCS_GUEST_CS_LIMIT,
    846 		VMCS_GUEST_CS_BASE
    847 	},
    848 	[NVMM_X64_SEG_SS] = {
    849 		VMCS_GUEST_SS_SELECTOR,
    850 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    851 		VMCS_GUEST_SS_LIMIT,
    852 		VMCS_GUEST_SS_BASE
    853 	},
    854 	[NVMM_X64_SEG_DS] = {
    855 		VMCS_GUEST_DS_SELECTOR,
    856 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    857 		VMCS_GUEST_DS_LIMIT,
    858 		VMCS_GUEST_DS_BASE
    859 	},
    860 	[NVMM_X64_SEG_FS] = {
    861 		VMCS_GUEST_FS_SELECTOR,
    862 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    863 		VMCS_GUEST_FS_LIMIT,
    864 		VMCS_GUEST_FS_BASE
    865 	},
    866 	[NVMM_X64_SEG_GS] = {
    867 		VMCS_GUEST_GS_SELECTOR,
    868 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    869 		VMCS_GUEST_GS_LIMIT,
    870 		VMCS_GUEST_GS_BASE
    871 	},
    872 	[NVMM_X64_SEG_GDT] = {
    873 		0, /* doesn't exist */
    874 		0, /* doesn't exist */
    875 		VMCS_GUEST_GDTR_LIMIT,
    876 		VMCS_GUEST_GDTR_BASE
    877 	},
    878 	[NVMM_X64_SEG_IDT] = {
    879 		0, /* doesn't exist */
    880 		0, /* doesn't exist */
    881 		VMCS_GUEST_IDTR_LIMIT,
    882 		VMCS_GUEST_IDTR_BASE
    883 	},
    884 	[NVMM_X64_SEG_LDT] = {
    885 		VMCS_GUEST_LDTR_SELECTOR,
    886 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    887 		VMCS_GUEST_LDTR_LIMIT,
    888 		VMCS_GUEST_LDTR_BASE
    889 	},
    890 	[NVMM_X64_SEG_TR] = {
    891 		VMCS_GUEST_TR_SELECTOR,
    892 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    893 		VMCS_GUEST_TR_LIMIT,
    894 		VMCS_GUEST_TR_BASE
    895 	}
    896 };
    897 
    898 /* -------------------------------------------------------------------------- */
    899 
    900 static uint64_t
    901 vmx_get_revision(void)
    902 {
    903 	uint64_t msr;
    904 
    905 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    906 	msr &= IA32_VMX_BASIC_IDENT;
    907 
    908 	return msr;
    909 }
    910 
    911 static void
    912 vmx_vmclear_ipi(void *arg1, void *arg2)
    913 {
    914 	paddr_t vmcs_pa = (paddr_t)arg1;
    915 	vmx_vmclear(&vmcs_pa);
    916 }
    917 
    918 static void
    919 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    920 {
    921 	uint64_t xc;
    922 	int bound;
    923 
    924 	KASSERT(kpreempt_disabled());
    925 
    926 	bound = curlwp_bind();
    927 	kpreempt_enable();
    928 
    929 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    930 	xc_wait(xc);
    931 
    932 	kpreempt_disable();
    933 	curlwp_bindx(bound);
    934 }
    935 
    936 static void
    937 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    938 {
    939 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    940 	struct cpu_info *vmcs_ci;
    941 
    942 	cpudata->vmcs_refcnt++;
    943 	if (cpudata->vmcs_refcnt > 1) {
    944 		KASSERT(kpreempt_disabled());
    945 		KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    946 		return;
    947 	}
    948 
    949 	vmcs_ci = cpudata->vmcs_ci;
    950 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    951 
    952 	kpreempt_disable();
    953 
    954 	if (vmcs_ci == NULL) {
    955 		/* This VMCS is loaded for the first time. */
    956 		vmx_vmclear(&cpudata->vmcs_pa);
    957 		cpudata->vmcs_launched = false;
    958 	} else if (vmcs_ci != curcpu()) {
    959 		/* This VMCS is active on a remote CPU. */
    960 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    961 		cpudata->vmcs_launched = false;
    962 	} else {
    963 		/* This VMCS is active on curcpu, nothing to do. */
    964 	}
    965 
    966 	vmx_vmptrld(&cpudata->vmcs_pa);
    967 }
    968 
    969 static void
    970 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    971 {
    972 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    973 
    974 	KASSERT(kpreempt_disabled());
    975 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    976 	KASSERT(cpudata->vmcs_refcnt > 0);
    977 	cpudata->vmcs_refcnt--;
    978 
    979 	if (cpudata->vmcs_refcnt > 0) {
    980 		return;
    981 	}
    982 
    983 	cpudata->vmcs_ci = curcpu();
    984 	kpreempt_enable();
    985 }
    986 
    987 static void
    988 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    989 {
    990 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    991 
    992 	KASSERT(kpreempt_disabled());
    993 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    994 	KASSERT(cpudata->vmcs_refcnt == 1);
    995 	cpudata->vmcs_refcnt--;
    996 
    997 	vmx_vmclear(&cpudata->vmcs_pa);
    998 	kpreempt_enable();
    999 }
   1000 
   1001 /* -------------------------------------------------------------------------- */
   1002 
   1003 static void
   1004 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
   1005 {
   1006 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1007 	uint64_t ctls1;
   1008 
   1009 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
   1010 
   1011 	if (nmi) {
   1012 		// XXX INT_STATE_NMI?
   1013 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
   1014 		cpudata->nmi_window_exit = true;
   1015 	} else {
   1016 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
   1017 		cpudata->int_window_exit = true;
   1018 	}
   1019 
   1020 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
   1021 }
   1022 
   1023 static void
   1024 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
   1025 {
   1026 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1027 	uint64_t ctls1;
   1028 
   1029 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
   1030 
   1031 	if (nmi) {
   1032 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
   1033 		cpudata->nmi_window_exit = false;
   1034 	} else {
   1035 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
   1036 		cpudata->int_window_exit = false;
   1037 	}
   1038 
   1039 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
   1040 }
   1041 
   1042 static inline bool
   1043 vmx_excp_has_rf(uint8_t vector)
   1044 {
   1045 	switch (vector) {
   1046 	case 1:		/* #DB */
   1047 	case 4:		/* #OF */
   1048 	case 8:		/* #DF */
   1049 	case 18:	/* #MC */
   1050 		return false;
   1051 	default:
   1052 		return true;
   1053 	}
   1054 }
   1055 
   1056 static inline int
   1057 vmx_excp_has_error(uint8_t vector)
   1058 {
   1059 	switch (vector) {
   1060 	case 8:		/* #DF */
   1061 	case 10:	/* #TS */
   1062 	case 11:	/* #NP */
   1063 	case 12:	/* #SS */
   1064 	case 13:	/* #GP */
   1065 	case 14:	/* #PF */
   1066 	case 17:	/* #AC */
   1067 	case 30:	/* #SX */
   1068 		return 1;
   1069 	default:
   1070 		return 0;
   1071 	}
   1072 }
   1073 
   1074 static int
   1075 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
   1076 {
   1077 	struct nvmm_comm_page *comm = vcpu->comm;
   1078 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1079 	int type = 0, err = 0, ret = EINVAL;
   1080 	uint64_t rflags, info, error;
   1081 	u_int evtype;
   1082 	uint8_t vector;
   1083 
   1084 	evtype = comm->event.type;
   1085 	vector = comm->event.vector;
   1086 	error = comm->event.u.excp.error;
   1087 	__insn_barrier();
   1088 
   1089 	vmx_vmcs_enter(vcpu);
   1090 
   1091 	switch (evtype) {
   1092 	case NVMM_VCPU_EVENT_EXCP:
   1093 		if (vector == 2 || vector >= 32)
   1094 			goto out;
   1095 		if (vector == 3 || vector == 0)
   1096 			goto out;
   1097 		if (vmx_excp_has_rf(vector)) {
   1098 			rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1099 			vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
   1100 		}
   1101 		type = INTR_TYPE_HW_EXC;
   1102 		err = vmx_excp_has_error(vector);
   1103 		break;
   1104 	case NVMM_VCPU_EVENT_INTR:
   1105 		type = INTR_TYPE_EXT_INT;
   1106 		if (vector == 2) {
   1107 			type = INTR_TYPE_NMI;
   1108 			vmx_event_waitexit_enable(vcpu, true);
   1109 		}
   1110 		err = 0;
   1111 		break;
   1112 	default:
   1113 		goto out;
   1114 	}
   1115 
   1116 	info =
   1117 	    __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
   1118 	    __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
   1119 	    __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
   1120 	    __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
   1121 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   1122 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
   1123 
   1124 	cpudata->evt_pending = true;
   1125 	ret = 0;
   1126 
   1127 out:
   1128 	vmx_vmcs_leave(vcpu);
   1129 	return ret;
   1130 }
   1131 
   1132 static void
   1133 vmx_inject_ud(struct nvmm_cpu *vcpu)
   1134 {
   1135 	struct nvmm_comm_page *comm = vcpu->comm;
   1136 	int ret __diagused;
   1137 
   1138 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1139 	comm->event.vector = 6;
   1140 	comm->event.u.excp.error = 0;
   1141 
   1142 	ret = vmx_vcpu_inject(vcpu);
   1143 	KASSERT(ret == 0);
   1144 }
   1145 
   1146 static void
   1147 vmx_inject_gp(struct nvmm_cpu *vcpu)
   1148 {
   1149 	struct nvmm_comm_page *comm = vcpu->comm;
   1150 	int ret __diagused;
   1151 
   1152 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
   1153 	comm->event.vector = 13;
   1154 	comm->event.u.excp.error = 0;
   1155 
   1156 	ret = vmx_vcpu_inject(vcpu);
   1157 	KASSERT(ret == 0);
   1158 }
   1159 
   1160 static inline int
   1161 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
   1162 {
   1163 	if (__predict_true(!vcpu->comm->event_commit)) {
   1164 		return 0;
   1165 	}
   1166 	vcpu->comm->event_commit = false;
   1167 	return vmx_vcpu_inject(vcpu);
   1168 }
   1169 
   1170 static inline void
   1171 vmx_inkernel_advance(void)
   1172 {
   1173 	uint64_t rip, inslen, intstate, rflags;
   1174 
   1175 	/*
   1176 	 * Maybe we should also apply single-stepping and debug exceptions.
   1177 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1178 	 * debugger.
   1179 	 */
   1180 
   1181 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1182 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1183 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1184 
   1185 	rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1186 	vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
   1187 
   1188 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   1189 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1190 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1191 }
   1192 
   1193 static void
   1194 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
   1195 {
   1196 	exit->u.inv.hwcode = code;
   1197 	exit->reason = NVMM_VCPU_EXIT_INVALID;
   1198 }
   1199 
   1200 static void
   1201 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1202     struct nvmm_vcpu_exit *exit)
   1203 {
   1204 	uint64_t qual;
   1205 
   1206 	qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
   1207 
   1208 	if ((qual & INTR_INFO_VALID) == 0) {
   1209 		goto error;
   1210 	}
   1211 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1212 		goto error;
   1213 	}
   1214 
   1215 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1216 	return;
   1217 
   1218 error:
   1219 	vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
   1220 }
   1221 
   1222 #define VMX_CPUID_MAX_BASIC		0x16
   1223 #define VMX_CPUID_MAX_HYPERVISOR	0x40000000
   1224 #define VMX_CPUID_MAX_EXTENDED		0x80000008
   1225 static uint32_t vmx_cpuid_max_basic __read_mostly;
   1226 static uint32_t vmx_cpuid_max_extended __read_mostly;
   1227 
   1228 static void
   1229 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
   1230 {
   1231 	u_int descs[4];
   1232 
   1233 	x86_cpuid2(eax, ecx, descs);
   1234 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1235 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1236 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1237 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1238 }
   1239 
   1240 static void
   1241 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1242     uint64_t eax, uint64_t ecx)
   1243 {
   1244 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1245 	unsigned int ncpus;
   1246 	uint64_t cr4;
   1247 
   1248 	/*
   1249 	 * `If a value entered for CPUID.EAX is higher than the maximum
   1250 	 *  input value for basic or extended function for that
   1251 	 *  processor then the dtaa for the highest basic information
   1252 	 *  leaf is returned.'
   1253 	 *
   1254 	 * --Intel 64 and IA-32 Architectures Software Developer's
   1255 	 *   Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
   1256 	 *   Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
   1257 	 *   pp. 3-214.
   1258 	 *
   1259 	 * We take the same to hold for the hypervisor range,
   1260 	 * 0x40000000-0x4fffffff.
   1261 	 */
   1262 	if (eax < 0x40000000) {		/* basic CPUID range */
   1263 		if (__predict_false(eax > vmx_cpuid_max_basic)) {
   1264 			eax = vmx_cpuid_max_basic;
   1265 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1266 		}
   1267 	} else if (eax < 0x80000000) {	/* hypervisor CPUID range */
   1268 		if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
   1269 			eax = vmx_cpuid_max_basic;
   1270 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1271 		}
   1272 	} else {			/* extended CPUID range */
   1273 		if (__predict_false(eax > vmx_cpuid_max_extended)) {
   1274 			eax = vmx_cpuid_max_basic;
   1275 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1276 		}
   1277 	}
   1278 
   1279 	switch (eax) {
   1280 
   1281 	/*
   1282 	 * basic CPUID range
   1283 	 */
   1284 	case 0x00000000:
   1285 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
   1286 		break;
   1287 	case 0x00000001:
   1288 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1289 
   1290 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1291 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1292 		    CPUID_LOCAL_APIC_ID);
   1293 
   1294 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1295 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1296 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1297 			cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
   1298 		}
   1299 
   1300 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1301 
   1302 		/* CPUID2_OSXSAVE depends on CR4. */
   1303 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   1304 		if (!(cr4 & CR4_OSXSAVE)) {
   1305 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1306 		}
   1307 		break;
   1308 	case 0x00000002:
   1309 		break;
   1310 	case 0x00000003:
   1311 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1312 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1313 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1314 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1315 		break;
   1316 	case 0x00000004: /* Deterministic Cache Parameters */
   1317 		break; /* TODO? */
   1318 	case 0x00000005: /* MONITOR/MWAIT */
   1319 	case 0x00000006: /* Thermal and Power Management */
   1320 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1321 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1322 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1323 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1324 		break;
   1325 	case 0x00000007: /* Structured Extended Feature Flags Enumeration */
   1326 		switch (ecx) {
   1327 		case 0:
   1328 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1329 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1330 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1331 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1332 			if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
   1333 				cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
   1334 			}
   1335 			break;
   1336 		default:
   1337 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1338 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1339 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1340 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1341 			break;
   1342 		}
   1343 		break;
   1344 	case 0x00000008: /* Empty */
   1345 	case 0x00000009: /* Direct Cache Access Information */
   1346 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1347 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1348 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1349 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1350 		break;
   1351 	case 0x0000000A: /* Architectural Performance Monitoring */
   1352 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1353 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1354 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1355 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1356 		break;
   1357 	case 0x0000000B: /* Extended Topology Enumeration */
   1358 		switch (ecx) {
   1359 		case 0: /* Threads */
   1360 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1361 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1362 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1363 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1364 			    __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
   1365 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1366 			break;
   1367 		case 1: /* Cores */
   1368 			ncpus = atomic_load_relaxed(&mach->ncpus);
   1369 			cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
   1370 			cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
   1371 			cpudata->gprs[NVMM_X64_GPR_RCX] =
   1372 			    __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
   1373 			    __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
   1374 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
   1375 			break;
   1376 		default:
   1377 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1378 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1379 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
   1380 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1381 			break;
   1382 		}
   1383 		break;
   1384 	case 0x0000000C: /* Empty */
   1385 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1386 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1387 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1388 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1389 		break;
   1390 	case 0x0000000D: /* Processor Extended State Enumeration */
   1391 		if (vmx_xcr0_mask == 0) {
   1392 			break;
   1393 		}
   1394 		switch (ecx) {
   1395 		case 0:
   1396 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1397 			if (cpudata->gxcr0 & XCR0_SSE) {
   1398 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1399 			} else {
   1400 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1401 			}
   1402 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1403 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
   1404 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1405 			break;
   1406 		case 1:
   1407 			cpudata->gprs[NVMM_X64_GPR_RAX] &=
   1408 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
   1409 			     CPUID_PES1_XGETBV);
   1410 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1411 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1412 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1413 			break;
   1414 		default:
   1415 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1416 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1417 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1418 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1419 			break;
   1420 		}
   1421 		break;
   1422 	case 0x0000000E: /* Empty */
   1423 	case 0x0000000F: /* Intel RDT Monitoring Enumeration */
   1424 	case 0x00000010: /* Intel RDT Allocation Enumeration */
   1425 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1426 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1427 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1428 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1429 		break;
   1430 	case 0x00000011: /* Empty */
   1431 	case 0x00000012: /* Intel SGX Capability Enumeration */
   1432 	case 0x00000013: /* Empty */
   1433 	case 0x00000014: /* Intel Processor Trace Enumeration */
   1434 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1435 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1436 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1437 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1438 		break;
   1439 	case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
   1440 	case 0x00000016: /* Processor Frequency Information */
   1441 		break;
   1442 
   1443 	/*
   1444 	 * hypervisor CPUID range
   1445 	 */
   1446 	case 0x40000000: /* Hypervisor Information */
   1447 		cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
   1448 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1449 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1450 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1451 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1452 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1453 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1454 		break;
   1455 
   1456 	/*
   1457 	 * extended CPUID range
   1458 	 */
   1459 	case 0x80000000:
   1460 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
   1461 		break;
   1462 	case 0x80000001:
   1463 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1464 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1465 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1466 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1467 		break;
   1468 	case 0x80000002: /* Processor Brand String */
   1469 	case 0x80000003: /* Processor Brand String */
   1470 	case 0x80000004: /* Processor Brand String */
   1471 	case 0x80000005: /* Reserved Zero */
   1472 	case 0x80000006: /* Cache Information */
   1473 		break;
   1474 	case 0x80000007: /* TSC Information */
   1475 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
   1476 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
   1477 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
   1478 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
   1479 		break;
   1480 	case 0x80000008: /* Address Sizes */
   1481 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
   1482 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
   1483 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
   1484 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
   1485 		break;
   1486 
   1487 	default:
   1488 		break;
   1489 	}
   1490 }
   1491 
   1492 static void
   1493 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
   1494 {
   1495 	uint64_t inslen, rip;
   1496 
   1497 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1498 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1499 	exit->u.insn.npc = rip + inslen;
   1500 	exit->reason = reason;
   1501 }
   1502 
   1503 static void
   1504 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1505     struct nvmm_vcpu_exit *exit)
   1506 {
   1507 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1508 	struct nvmm_vcpu_conf_cpuid *cpuid;
   1509 	uint64_t eax, ecx;
   1510 	size_t i;
   1511 
   1512 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1513 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1514 	vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
   1515 	vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
   1516 
   1517 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1518 		if (!cpudata->cpuidpresent[i]) {
   1519 			continue;
   1520 		}
   1521 		cpuid = &cpudata->cpuid[i];
   1522 		if (cpuid->leaf != eax) {
   1523 			continue;
   1524 		}
   1525 
   1526 		if (cpuid->exit) {
   1527 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
   1528 			return;
   1529 		}
   1530 		KASSERT(cpuid->mask);
   1531 
   1532 		/* del */
   1533 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
   1534 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
   1535 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
   1536 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
   1537 
   1538 		/* set */
   1539 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
   1540 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
   1541 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
   1542 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
   1543 
   1544 		break;
   1545 	}
   1546 
   1547 	vmx_inkernel_advance();
   1548 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1549 }
   1550 
   1551 static void
   1552 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1553     struct nvmm_vcpu_exit *exit)
   1554 {
   1555 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1556 	uint64_t rflags;
   1557 
   1558 	if (cpudata->int_window_exit) {
   1559 		rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1560 		if (rflags & PSL_I) {
   1561 			vmx_event_waitexit_disable(vcpu, false);
   1562 		}
   1563 	}
   1564 
   1565 	vmx_inkernel_advance();
   1566 	exit->reason = NVMM_VCPU_EXIT_HALTED;
   1567 }
   1568 
   1569 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1570 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1571 #define		CR_TYPE_WRITE	0
   1572 #define		CR_TYPE_READ	1
   1573 #define		CR_TYPE_CLTS	2
   1574 #define		CR_TYPE_LMSW	3
   1575 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1576 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1577 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1578 
   1579 static inline int
   1580 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1581 {
   1582 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1583 	if ((crval & fixed0) != fixed0) {
   1584 		return -1;
   1585 	}
   1586 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1587 	if (crval & ~fixed1) {
   1588 		return -1;
   1589 	}
   1590 	return 0;
   1591 }
   1592 
   1593 static int
   1594 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1595     uint64_t qual)
   1596 {
   1597 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1598 	uint64_t type, gpr, oldcr0, realcr0, fakecr0;
   1599 	uint64_t efer, ctls1;
   1600 
   1601 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1602 	if (type != CR_TYPE_WRITE) {
   1603 		return -1;
   1604 	}
   1605 
   1606 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1607 	KASSERT(gpr < 16);
   1608 
   1609 	if (gpr == NVMM_X64_GPR_RSP) {
   1610 		fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
   1611 	} else {
   1612 		fakecr0 = cpudata->gprs[gpr];
   1613 	}
   1614 
   1615 	/*
   1616 	 * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
   1617 	 * actual value in %cr0.
   1618 	 *
   1619 	 * In fakecr0 we must force CR0_ET to 1.
   1620 	 *
   1621 	 * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
   1622 	 * CR0_NE to 1.
   1623 	 */
   1624 	fakecr0 |= CR0_ET;
   1625 	realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
   1626 
   1627 	if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1628 		return -1;
   1629 	}
   1630 
   1631 	/*
   1632 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1633 	 * from CR3.
   1634 	 */
   1635 
   1636 	if (realcr0 & CR0_PG) {
   1637 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   1638 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   1639 		if (efer & EFER_LME) {
   1640 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1641 			efer |= EFER_LMA;
   1642 		} else {
   1643 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1644 			efer &= ~EFER_LMA;
   1645 		}
   1646 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1647 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1648 	}
   1649 
   1650 	oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
   1651 	    (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
   1652 	if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
   1653 		cpudata->gtlb_want_flush = true;
   1654 	}
   1655 
   1656 	vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
   1657 	vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
   1658 	vmx_inkernel_advance();
   1659 	return 0;
   1660 }
   1661 
   1662 static int
   1663 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1664     uint64_t qual)
   1665 {
   1666 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1667 	uint64_t type, gpr, oldcr4, cr4;
   1668 
   1669 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1670 	if (type != CR_TYPE_WRITE) {
   1671 		return -1;
   1672 	}
   1673 
   1674 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1675 	KASSERT(gpr < 16);
   1676 
   1677 	if (gpr == NVMM_X64_GPR_RSP) {
   1678 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1679 	} else {
   1680 		gpr = cpudata->gprs[gpr];
   1681 	}
   1682 
   1683 	if (gpr & CR4_INVALID) {
   1684 		return -1;
   1685 	}
   1686 	cr4 = gpr | CR4_VMXE;
   1687 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1688 		return -1;
   1689 	}
   1690 
   1691 	oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
   1692 	if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
   1693 		cpudata->gtlb_want_flush = true;
   1694 	}
   1695 
   1696 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1697 	vmx_inkernel_advance();
   1698 	return 0;
   1699 }
   1700 
   1701 static int
   1702 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1703     uint64_t qual, struct nvmm_vcpu_exit *exit)
   1704 {
   1705 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1706 	uint64_t type, gpr;
   1707 	bool write;
   1708 
   1709 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1710 	if (type == CR_TYPE_WRITE) {
   1711 		write = true;
   1712 	} else if (type == CR_TYPE_READ) {
   1713 		write = false;
   1714 	} else {
   1715 		return -1;
   1716 	}
   1717 
   1718 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1719 	KASSERT(gpr < 16);
   1720 
   1721 	if (write) {
   1722 		if (gpr == NVMM_X64_GPR_RSP) {
   1723 			cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
   1724 		} else {
   1725 			cpudata->gcr8 = cpudata->gprs[gpr];
   1726 		}
   1727 		if (cpudata->tpr.exit_changed) {
   1728 			exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
   1729 		}
   1730 	} else {
   1731 		if (gpr == NVMM_X64_GPR_RSP) {
   1732 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1733 		} else {
   1734 			cpudata->gprs[gpr] = cpudata->gcr8;
   1735 		}
   1736 	}
   1737 
   1738 	vmx_inkernel_advance();
   1739 	return 0;
   1740 }
   1741 
   1742 static void
   1743 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1744     struct nvmm_vcpu_exit *exit)
   1745 {
   1746 	uint64_t qual;
   1747 	int ret;
   1748 
   1749 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1750 
   1751 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1752 
   1753 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1754 	case 0:
   1755 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1756 		break;
   1757 	case 4:
   1758 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1759 		break;
   1760 	case 8:
   1761 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
   1762 		break;
   1763 	default:
   1764 		ret = -1;
   1765 		break;
   1766 	}
   1767 
   1768 	if (ret == -1) {
   1769 		vmx_inject_gp(vcpu);
   1770 	}
   1771 }
   1772 
   1773 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1774 #define		IO_SIZE_8	0
   1775 #define		IO_SIZE_16	1
   1776 #define		IO_SIZE_32	3
   1777 #define VMX_QUAL_IO_IN		__BIT(3)
   1778 #define VMX_QUAL_IO_STR		__BIT(4)
   1779 #define VMX_QUAL_IO_REP		__BIT(5)
   1780 #define VMX_QUAL_IO_DX		__BIT(6)
   1781 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1782 
   1783 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1784 #define		IO_ADRSIZE_16	0
   1785 #define		IO_ADRSIZE_32	1
   1786 #define		IO_ADRSIZE_64	2
   1787 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1788 
   1789 static void
   1790 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1791     struct nvmm_vcpu_exit *exit)
   1792 {
   1793 	uint64_t qual, info, inslen, rip;
   1794 
   1795 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1796 	info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
   1797 
   1798 	exit->reason = NVMM_VCPU_EXIT_IO;
   1799 
   1800 	exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
   1801 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1802 
   1803 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1804 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1805 
   1806 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1807 		exit->u.io.address_size = 8;
   1808 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1809 		exit->u.io.address_size = 4;
   1810 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1811 		exit->u.io.address_size = 2;
   1812 	}
   1813 
   1814 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1815 		exit->u.io.operand_size = 4;
   1816 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1817 		exit->u.io.operand_size = 2;
   1818 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1819 		exit->u.io.operand_size = 1;
   1820 	}
   1821 
   1822 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1823 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1824 
   1825 	if (exit->u.io.in && exit->u.io.str) {
   1826 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1827 	}
   1828 
   1829 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1830 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1831 	exit->u.io.npc = rip + inslen;
   1832 
   1833 	vmx_vcpu_state_provide(vcpu,
   1834 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1835 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1836 }
   1837 
   1838 static const uint64_t msr_ignore_list[] = {
   1839 	MSR_BIOS_SIGN,
   1840 	MSR_IA32_PLATFORM_ID
   1841 };
   1842 
   1843 static bool
   1844 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1845     struct nvmm_vcpu_exit *exit)
   1846 {
   1847 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1848 	uint64_t val;
   1849 	size_t i;
   1850 
   1851 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
   1852 		if (exit->u.rdmsr.msr == MSR_CR_PAT) {
   1853 			val = vmx_vmread(VMCS_GUEST_IA32_PAT);
   1854 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1855 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1856 			goto handled;
   1857 		}
   1858 		if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
   1859 			val = cpudata->gmsr_misc_enable;
   1860 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1861 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1862 			goto handled;
   1863 		}
   1864 		if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
   1865 			u_int descs[4];
   1866 			if (cpuid_level < 7) {
   1867 				goto error;
   1868 			}
   1869 			x86_cpuid(7, descs);
   1870 			if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
   1871 				goto error;
   1872 			}
   1873 			val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   1874 			val &= (IA32_ARCH_RDCL_NO |
   1875 			    IA32_ARCH_SSB_NO |
   1876 			    IA32_ARCH_MDS_NO |
   1877 			    IA32_ARCH_TAA_NO);
   1878 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1879 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1880 			goto handled;
   1881 		}
   1882 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1883 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
   1884 				continue;
   1885 			val = 0;
   1886 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1887 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1888 			goto handled;
   1889 		}
   1890 	} else {
   1891 		if (exit->u.wrmsr.msr == MSR_TSC) {
   1892 			cpudata->gtsc = exit->u.wrmsr.val;
   1893 			cpudata->gtsc_want_update = true;
   1894 			goto handled;
   1895 		}
   1896 		if (exit->u.wrmsr.msr == MSR_CR_PAT) {
   1897 			val = exit->u.wrmsr.val;
   1898 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
   1899 				goto error;
   1900 			}
   1901 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
   1902 			goto handled;
   1903 		}
   1904 		if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
   1905 			/* Don't care. */
   1906 			goto handled;
   1907 		}
   1908 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1909 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
   1910 				continue;
   1911 			goto handled;
   1912 		}
   1913 	}
   1914 
   1915 	return false;
   1916 
   1917 handled:
   1918 	vmx_inkernel_advance();
   1919 	return true;
   1920 
   1921 error:
   1922 	vmx_inject_gp(vcpu);
   1923 	return true;
   1924 }
   1925 
   1926 static void
   1927 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1928     struct nvmm_vcpu_exit *exit)
   1929 {
   1930 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1931 	uint64_t inslen, rip;
   1932 
   1933 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
   1934 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1935 
   1936 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1937 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1938 		return;
   1939 	}
   1940 
   1941 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1942 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1943 	exit->u.rdmsr.npc = rip + inslen;
   1944 
   1945 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1946 }
   1947 
   1948 static void
   1949 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1950     struct nvmm_vcpu_exit *exit)
   1951 {
   1952 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1953 	uint64_t rdx, rax, inslen, rip;
   1954 
   1955 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1956 	rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1957 
   1958 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
   1959 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1960 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1961 
   1962 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1963 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1964 		return;
   1965 	}
   1966 
   1967 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1968 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1969 	exit->u.wrmsr.npc = rip + inslen;
   1970 
   1971 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1972 }
   1973 
   1974 static void
   1975 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1976     struct nvmm_vcpu_exit *exit)
   1977 {
   1978 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1979 	uint64_t val;
   1980 
   1981 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1982 
   1983 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1984 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1985 
   1986 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1987 		goto error;
   1988 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1989 		goto error;
   1990 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1991 		goto error;
   1992 	}
   1993 
   1994 	cpudata->gxcr0 = val;
   1995 
   1996 	vmx_inkernel_advance();
   1997 	return;
   1998 
   1999 error:
   2000 	vmx_inject_gp(vcpu);
   2001 }
   2002 
   2003 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   2004 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   2005 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   2006 
   2007 static void
   2008 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   2009     struct nvmm_vcpu_exit *exit)
   2010 {
   2011 	uint64_t perm;
   2012 	gpaddr_t gpa;
   2013 
   2014 	gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
   2015 
   2016 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
   2017 	perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   2018 	if (perm & VMX_EPT_VIOLATION_WRITE)
   2019 		exit->u.mem.prot = PROT_WRITE;
   2020 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   2021 		exit->u.mem.prot = PROT_EXEC;
   2022 	else
   2023 		exit->u.mem.prot = PROT_READ;
   2024 	exit->u.mem.gpa = gpa;
   2025 	exit->u.mem.inst_len = 0;
   2026 
   2027 	vmx_vcpu_state_provide(vcpu,
   2028 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   2029 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   2030 }
   2031 
   2032 /* -------------------------------------------------------------------------- */
   2033 
   2034 static void
   2035 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   2036 {
   2037 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2038 
   2039 	fpu_kern_enter();
   2040 	/* TODO: should we use *XSAVE64 here? */
   2041 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask, false);
   2042 
   2043 	if (vmx_xcr0_mask != 0) {
   2044 		cpudata->hxcr0 = rdxcr(0);
   2045 		wrxcr(0, cpudata->gxcr0);
   2046 	}
   2047 }
   2048 
   2049 static void
   2050 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   2051 {
   2052 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2053 
   2054 	if (vmx_xcr0_mask != 0) {
   2055 		cpudata->gxcr0 = rdxcr(0);
   2056 		wrxcr(0, cpudata->hxcr0);
   2057 	}
   2058 
   2059 	/* TODO: should we use *XSAVE64 here? */
   2060 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask, false);
   2061 	fpu_kern_leave();
   2062 }
   2063 
   2064 static void
   2065 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   2066 {
   2067 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2068 
   2069 	x86_dbregs_save(curlwp);
   2070 
   2071 	ldr7(0);
   2072 
   2073 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   2074 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   2075 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   2076 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   2077 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   2078 }
   2079 
   2080 static void
   2081 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   2082 {
   2083 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2084 
   2085 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   2086 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   2087 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   2088 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   2089 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   2090 
   2091 	x86_dbregs_restore(curlwp);
   2092 }
   2093 
   2094 static void
   2095 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   2096 {
   2097 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2098 
   2099 	/* This gets restored automatically by the CPU. */
   2100 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
   2101 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   2102 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   2103 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   2104 
   2105 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   2106 }
   2107 
   2108 static void
   2109 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   2110 {
   2111 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2112 
   2113 	wrmsr(MSR_STAR, cpudata->star);
   2114 	wrmsr(MSR_LSTAR, cpudata->lstar);
   2115 	wrmsr(MSR_CSTAR, cpudata->cstar);
   2116 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   2117 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   2118 }
   2119 
   2120 /* -------------------------------------------------------------------------- */
   2121 
   2122 #define VMX_INVVPID_ADDRESS		0
   2123 #define VMX_INVVPID_CONTEXT		1
   2124 #define VMX_INVVPID_ALL			2
   2125 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   2126 
   2127 #define VMX_INVEPT_CONTEXT		1
   2128 #define VMX_INVEPT_ALL			2
   2129 
   2130 static inline void
   2131 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   2132 {
   2133 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2134 
   2135 	if (vcpu->hcpu_last != hcpu) {
   2136 		cpudata->gtlb_want_flush = true;
   2137 	}
   2138 }
   2139 
   2140 static inline void
   2141 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   2142 {
   2143 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2144 	struct ept_desc ept_desc;
   2145 
   2146 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   2147 		return;
   2148 	}
   2149 
   2150 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   2151 	ept_desc.mbz = 0;
   2152 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   2153 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   2154 }
   2155 
   2156 static inline uint64_t
   2157 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   2158 {
   2159 	struct ept_desc ept_desc;
   2160 	uint64_t machgen;
   2161 
   2162 	machgen = machdata->mach_htlb_gen;
   2163 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   2164 		return machgen;
   2165 	}
   2166 
   2167 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   2168 
   2169 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   2170 	ept_desc.mbz = 0;
   2171 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   2172 
   2173 	return machgen;
   2174 }
   2175 
   2176 static inline void
   2177 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   2178 {
   2179 	cpudata->vcpu_htlb_gen = machgen;
   2180 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   2181 }
   2182 
   2183 static inline void
   2184 vmx_exit_evt(struct vmx_cpudata *cpudata)
   2185 {
   2186 	uint64_t info, err, inslen;
   2187 
   2188 	cpudata->evt_pending = false;
   2189 
   2190 	info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
   2191 	if (__predict_true((info & INTR_INFO_VALID) == 0)) {
   2192 		return;
   2193 	}
   2194 	err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
   2195 
   2196 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   2197 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
   2198 
   2199 	switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
   2200 	case INTR_TYPE_SW_INT:
   2201 	case INTR_TYPE_PRIV_SW_EXC:
   2202 	case INTR_TYPE_SW_EXC:
   2203 		inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   2204 		vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
   2205 	}
   2206 
   2207 	cpudata->evt_pending = true;
   2208 }
   2209 
   2210 static int
   2211 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   2212     struct nvmm_vcpu_exit *exit)
   2213 {
   2214 	struct nvmm_comm_page *comm = vcpu->comm;
   2215 	struct vmx_machdata *machdata = mach->machdata;
   2216 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2217 	struct vpid_desc vpid_desc;
   2218 	struct cpu_info *ci;
   2219 	uint64_t exitcode;
   2220 	uint64_t intstate;
   2221 	uint64_t machgen;
   2222 	int hcpu, ret;
   2223 	bool launched;
   2224 
   2225 	vmx_vmcs_enter(vcpu);
   2226 
   2227 	vmx_vcpu_state_commit(vcpu);
   2228 	comm->state_cached = 0;
   2229 
   2230 	if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
   2231 		vmx_vmcs_leave(vcpu);
   2232 		return EINVAL;
   2233 	}
   2234 
   2235 	ci = curcpu();
   2236 	hcpu = cpu_number();
   2237 	launched = cpudata->vmcs_launched;
   2238 
   2239 	vmx_gtlb_catchup(vcpu, hcpu);
   2240 	vmx_htlb_catchup(vcpu, hcpu);
   2241 
   2242 	if (vcpu->hcpu_last != hcpu) {
   2243 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   2244 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   2245 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   2246 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   2247 		cpudata->gtsc_want_update = true;
   2248 		vcpu->hcpu_last = hcpu;
   2249 	}
   2250 
   2251 	vmx_vcpu_guest_dbregs_enter(vcpu);
   2252 	vmx_vcpu_guest_misc_enter(vcpu);
   2253 
   2254 	while (1) {
   2255 		if (cpudata->gtlb_want_flush) {
   2256 			vpid_desc.vpid = cpudata->asid;
   2257 			vpid_desc.addr = 0;
   2258 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   2259 			cpudata->gtlb_want_flush = false;
   2260 		}
   2261 
   2262 		if (__predict_false(cpudata->gtsc_want_update)) {
   2263 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   2264 			cpudata->gtsc_want_update = false;
   2265 		}
   2266 
   2267 		vmx_vcpu_guest_fpu_enter(vcpu);
   2268 		vmx_cli();
   2269 		machgen = vmx_htlb_flush(machdata, cpudata);
   2270 		lcr2(cpudata->gcr2);
   2271 		if (launched) {
   2272 			ret = vmx_vmresume(cpudata->gprs);
   2273 		} else {
   2274 			ret = vmx_vmlaunch(cpudata->gprs);
   2275 		}
   2276 		cpudata->gcr2 = rcr2();
   2277 		vmx_htlb_flush_ack(cpudata, machgen);
   2278 		vmx_sti();
   2279 		vmx_vcpu_guest_fpu_leave(vcpu);
   2280 
   2281 		if (__predict_false(ret != 0)) {
   2282 			vmx_exit_invalid(exit, -1);
   2283 			break;
   2284 		}
   2285 		vmx_exit_evt(cpudata);
   2286 
   2287 		launched = true;
   2288 
   2289 		exitcode = vmx_vmread(VMCS_EXIT_REASON);
   2290 		exitcode &= __BITS(15,0);
   2291 
   2292 		switch (exitcode) {
   2293 		case VMCS_EXITCODE_EXC_NMI:
   2294 			vmx_exit_exc_nmi(mach, vcpu, exit);
   2295 			break;
   2296 		case VMCS_EXITCODE_EXT_INT:
   2297 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2298 			break;
   2299 		case VMCS_EXITCODE_CPUID:
   2300 			vmx_exit_cpuid(mach, vcpu, exit);
   2301 			break;
   2302 		case VMCS_EXITCODE_HLT:
   2303 			vmx_exit_hlt(mach, vcpu, exit);
   2304 			break;
   2305 		case VMCS_EXITCODE_CR:
   2306 			vmx_exit_cr(mach, vcpu, exit);
   2307 			break;
   2308 		case VMCS_EXITCODE_IO:
   2309 			vmx_exit_io(mach, vcpu, exit);
   2310 			break;
   2311 		case VMCS_EXITCODE_RDMSR:
   2312 			vmx_exit_rdmsr(mach, vcpu, exit);
   2313 			break;
   2314 		case VMCS_EXITCODE_WRMSR:
   2315 			vmx_exit_wrmsr(mach, vcpu, exit);
   2316 			break;
   2317 		case VMCS_EXITCODE_SHUTDOWN:
   2318 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
   2319 			break;
   2320 		case VMCS_EXITCODE_MONITOR:
   2321 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
   2322 			break;
   2323 		case VMCS_EXITCODE_MWAIT:
   2324 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
   2325 			break;
   2326 		case VMCS_EXITCODE_XSETBV:
   2327 			vmx_exit_xsetbv(mach, vcpu, exit);
   2328 			break;
   2329 		case VMCS_EXITCODE_RDPMC:
   2330 		case VMCS_EXITCODE_RDTSCP:
   2331 		case VMCS_EXITCODE_INVVPID:
   2332 		case VMCS_EXITCODE_INVEPT:
   2333 		case VMCS_EXITCODE_VMCALL:
   2334 		case VMCS_EXITCODE_VMCLEAR:
   2335 		case VMCS_EXITCODE_VMLAUNCH:
   2336 		case VMCS_EXITCODE_VMPTRLD:
   2337 		case VMCS_EXITCODE_VMPTRST:
   2338 		case VMCS_EXITCODE_VMREAD:
   2339 		case VMCS_EXITCODE_VMRESUME:
   2340 		case VMCS_EXITCODE_VMWRITE:
   2341 		case VMCS_EXITCODE_VMXOFF:
   2342 		case VMCS_EXITCODE_VMXON:
   2343 			vmx_inject_ud(vcpu);
   2344 			exit->reason = NVMM_VCPU_EXIT_NONE;
   2345 			break;
   2346 		case VMCS_EXITCODE_EPT_VIOLATION:
   2347 			vmx_exit_epf(mach, vcpu, exit);
   2348 			break;
   2349 		case VMCS_EXITCODE_INT_WINDOW:
   2350 			vmx_event_waitexit_disable(vcpu, false);
   2351 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
   2352 			break;
   2353 		case VMCS_EXITCODE_NMI_WINDOW:
   2354 			vmx_event_waitexit_disable(vcpu, true);
   2355 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
   2356 			break;
   2357 		default:
   2358 			vmx_exit_invalid(exit, exitcode);
   2359 			break;
   2360 		}
   2361 
   2362 		/* If no reason to return to userland, keep rolling. */
   2363 		if (nvmm_return_needed(vcpu, exit)) {
   2364 			break;
   2365 		}
   2366 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
   2367 			break;
   2368 		}
   2369 	}
   2370 
   2371 	cpudata->vmcs_launched = launched;
   2372 
   2373 	cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
   2374 
   2375 	vmx_vcpu_guest_misc_leave(vcpu);
   2376 	vmx_vcpu_guest_dbregs_leave(vcpu);
   2377 
   2378 	exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   2379 	exit->exitstate.cr8 = cpudata->gcr8;
   2380 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2381 	exit->exitstate.int_shadow =
   2382 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2383 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
   2384 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
   2385 	exit->exitstate.evt_pending = cpudata->evt_pending;
   2386 
   2387 	vmx_vmcs_leave(vcpu);
   2388 
   2389 	return 0;
   2390 }
   2391 
   2392 /* -------------------------------------------------------------------------- */
   2393 
   2394 static int
   2395 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   2396 {
   2397 	struct pglist pglist;
   2398 	paddr_t _pa;
   2399 	vaddr_t _va;
   2400 	size_t i;
   2401 	int ret;
   2402 
   2403 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   2404 	    &pglist, 1, 0);
   2405 	if (ret != 0)
   2406 		return ENOMEM;
   2407 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
   2408 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   2409 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   2410 	if (_va == 0)
   2411 		goto error;
   2412 
   2413 	for (i = 0; i < npages; i++) {
   2414 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   2415 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   2416 	}
   2417 	pmap_update(pmap_kernel());
   2418 
   2419 	memset((void *)_va, 0, npages * PAGE_SIZE);
   2420 
   2421 	*pa = _pa;
   2422 	*va = _va;
   2423 	return 0;
   2424 
   2425 error:
   2426 	for (i = 0; i < npages; i++) {
   2427 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   2428 	}
   2429 	return ENOMEM;
   2430 }
   2431 
   2432 static void
   2433 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   2434 {
   2435 	size_t i;
   2436 
   2437 	pmap_kremove(va, npages * PAGE_SIZE);
   2438 	pmap_update(pmap_kernel());
   2439 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   2440 	for (i = 0; i < npages; i++) {
   2441 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   2442 	}
   2443 }
   2444 
   2445 /* -------------------------------------------------------------------------- */
   2446 
   2447 static void
   2448 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2449 {
   2450 	uint64_t byte;
   2451 	uint8_t bitoff;
   2452 
   2453 	if (msr < 0x00002000) {
   2454 		/* Range 1 */
   2455 		byte = ((msr - 0x00000000) / 8) + 0;
   2456 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2457 		/* Range 2 */
   2458 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2459 	} else {
   2460 		panic("%s: wrong range", __func__);
   2461 	}
   2462 
   2463 	bitoff = (msr & 0x7);
   2464 
   2465 	if (read) {
   2466 		bitmap[byte] &= ~__BIT(bitoff);
   2467 	}
   2468 	if (write) {
   2469 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2470 	}
   2471 }
   2472 
   2473 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2474 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2475 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2476 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2477 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2478 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2479 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2480 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2481 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2482 
   2483 static void
   2484 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2485 {
   2486 	uint64_t attrib;
   2487 
   2488 	attrib =
   2489 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2490 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2491 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2492 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2493 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2494 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2495 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2496 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2497 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2498 
   2499 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2500 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2501 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2502 	}
   2503 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2504 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2505 }
   2506 
   2507 static void
   2508 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2509 {
   2510 	uint64_t selector = 0, attrib = 0, base, limit;
   2511 
   2512 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2513 		selector = vmx_vmread(vmx_guest_segs[idx].selector);
   2514 		attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
   2515 	}
   2516 	limit = vmx_vmread(vmx_guest_segs[idx].limit);
   2517 	base = vmx_vmread(vmx_guest_segs[idx].base);
   2518 
   2519 	segs[idx].selector = selector;
   2520 	segs[idx].limit = limit;
   2521 	segs[idx].base = base;
   2522 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2523 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2524 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2525 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2526 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2527 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2528 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2529 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2530 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2531 		segs[idx].attrib.p = 0;
   2532 	}
   2533 }
   2534 
   2535 static inline bool
   2536 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2537 {
   2538 	uint64_t cr0, cr3, cr4, efer;
   2539 
   2540 	if (flags & NVMM_X64_STATE_CRS) {
   2541 		cr0 = vmx_vmread(VMCS_GUEST_CR0);
   2542 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2543 			return true;
   2544 		}
   2545 		cr3 = vmx_vmread(VMCS_GUEST_CR3);
   2546 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2547 			return true;
   2548 		}
   2549 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   2550 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2551 			return true;
   2552 		}
   2553 	}
   2554 
   2555 	if (flags & NVMM_X64_STATE_MSRS) {
   2556 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   2557 		if ((efer ^
   2558 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2559 			return true;
   2560 		}
   2561 	}
   2562 
   2563 	return false;
   2564 }
   2565 
   2566 static void
   2567 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
   2568 {
   2569 	struct nvmm_comm_page *comm = vcpu->comm;
   2570 	const struct nvmm_x64_state *state = &comm->state;
   2571 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2572 	struct fxsave *fpustate;
   2573 	uint64_t ctls1, intstate;
   2574 	uint64_t flags;
   2575 
   2576 	flags = comm->state_wanted;
   2577 
   2578 	vmx_vmcs_enter(vcpu);
   2579 
   2580 	if (vmx_state_tlb_flush(state, flags)) {
   2581 		cpudata->gtlb_want_flush = true;
   2582 	}
   2583 
   2584 	if (flags & NVMM_X64_STATE_SEGS) {
   2585 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2586 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2587 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2588 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2589 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2590 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2591 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2592 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2593 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2594 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2595 	}
   2596 
   2597 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2598 	if (flags & NVMM_X64_STATE_GPRS) {
   2599 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2600 
   2601 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2602 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2603 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2604 	}
   2605 
   2606 	if (flags & NVMM_X64_STATE_CRS) {
   2607 		/*
   2608 		 * CR0_ET must be 1 both in the shadow and the real register.
   2609 		 * CR0_NE must be 1 in the real register.
   2610 		 * CR0_NW and CR0_CD must be 0 in the real register.
   2611 		 */
   2612 		vmx_vmwrite(VMCS_CR0_SHADOW,
   2613 		    (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
   2614 		    CR0_ET);
   2615 		vmx_vmwrite(VMCS_GUEST_CR0,
   2616 		    (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
   2617 		    CR0_ET | CR0_NE);
   2618 
   2619 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2620 
   2621 		/* XXX We are not handling PDPTE here. */
   2622 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
   2623 
   2624 		/* CR4_VMXE is mandatory. */
   2625 		vmx_vmwrite(VMCS_GUEST_CR4,
   2626 		    (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
   2627 
   2628 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2629 
   2630 		if (vmx_xcr0_mask != 0) {
   2631 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2632 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2633 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2634 			cpudata->gxcr0 |= XCR0_X87;
   2635 		}
   2636 	}
   2637 
   2638 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2639 	if (flags & NVMM_X64_STATE_DRS) {
   2640 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2641 
   2642 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2643 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2644 	}
   2645 
   2646 	if (flags & NVMM_X64_STATE_MSRS) {
   2647 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2648 		    state->msrs[NVMM_X64_MSR_STAR];
   2649 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2650 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2651 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2652 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2653 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2654 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2655 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2656 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2657 
   2658 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2659 		    state->msrs[NVMM_X64_MSR_EFER]);
   2660 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2661 		    state->msrs[NVMM_X64_MSR_PAT]);
   2662 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2663 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2664 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2665 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2666 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2667 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2668 
   2669 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2670 		cpudata->gtsc_want_update = true;
   2671 
   2672 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2673 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   2674 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2675 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2676 		} else {
   2677 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2678 		}
   2679 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2680 	}
   2681 
   2682 	if (flags & NVMM_X64_STATE_INTR) {
   2683 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2684 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2685 		if (state->intr.int_shadow) {
   2686 			intstate |= INT_STATE_MOVSS;
   2687 		}
   2688 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2689 
   2690 		if (state->intr.int_window_exiting) {
   2691 			vmx_event_waitexit_enable(vcpu, false);
   2692 		} else {
   2693 			vmx_event_waitexit_disable(vcpu, false);
   2694 		}
   2695 
   2696 		if (state->intr.nmi_window_exiting) {
   2697 			vmx_event_waitexit_enable(vcpu, true);
   2698 		} else {
   2699 			vmx_event_waitexit_disable(vcpu, true);
   2700 		}
   2701 	}
   2702 
   2703 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2704 	if (flags & NVMM_X64_STATE_FPU) {
   2705 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2706 		    sizeof(state->fpu));
   2707 
   2708 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2709 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2710 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2711 
   2712 		if (vmx_xcr0_mask != 0) {
   2713 			/* Reset XSTATE_BV, to force a reload. */
   2714 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2715 		}
   2716 	}
   2717 
   2718 	vmx_vmcs_leave(vcpu);
   2719 
   2720 	comm->state_wanted = 0;
   2721 	comm->state_cached |= flags;
   2722 }
   2723 
   2724 static void
   2725 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
   2726 {
   2727 	struct nvmm_comm_page *comm = vcpu->comm;
   2728 	struct nvmm_x64_state *state = &comm->state;
   2729 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2730 	uint64_t intstate, flags;
   2731 
   2732 	flags = comm->state_wanted;
   2733 
   2734 	vmx_vmcs_enter(vcpu);
   2735 
   2736 	if (flags & NVMM_X64_STATE_SEGS) {
   2737 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2738 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2739 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2740 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2741 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2742 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2743 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2744 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2745 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2746 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2747 	}
   2748 
   2749 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2750 	if (flags & NVMM_X64_STATE_GPRS) {
   2751 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2752 
   2753 		state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
   2754 		state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
   2755 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
   2756 	}
   2757 
   2758 	if (flags & NVMM_X64_STATE_CRS) {
   2759 		state->crs[NVMM_X64_CR_CR0] =
   2760 		    (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
   2761 		    (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
   2762 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2763 		state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
   2764 		state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
   2765 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2766 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2767 
   2768 		/* Hide VMXE. */
   2769 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2770 	}
   2771 
   2772 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2773 	if (flags & NVMM_X64_STATE_DRS) {
   2774 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2775 
   2776 		state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
   2777 	}
   2778 
   2779 	if (flags & NVMM_X64_STATE_MSRS) {
   2780 		state->msrs[NVMM_X64_MSR_STAR] =
   2781 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2782 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2783 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2784 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2785 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2786 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2787 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2788 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2789 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2790 		state->msrs[NVMM_X64_MSR_EFER] =
   2791 		    vmx_vmread(VMCS_GUEST_IA32_EFER);
   2792 		state->msrs[NVMM_X64_MSR_PAT] =
   2793 		    vmx_vmread(VMCS_GUEST_IA32_PAT);
   2794 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   2795 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
   2796 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   2797 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
   2798 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   2799 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
   2800 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2801 	}
   2802 
   2803 	if (flags & NVMM_X64_STATE_INTR) {
   2804 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2805 		state->intr.int_shadow =
   2806 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2807 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2808 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2809 		state->intr.evt_pending = cpudata->evt_pending;
   2810 	}
   2811 
   2812 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2813 	if (flags & NVMM_X64_STATE_FPU) {
   2814 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2815 		    sizeof(state->fpu));
   2816 	}
   2817 
   2818 	vmx_vmcs_leave(vcpu);
   2819 
   2820 	comm->state_wanted = 0;
   2821 	comm->state_cached |= flags;
   2822 }
   2823 
   2824 static void
   2825 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   2826 {
   2827 	vcpu->comm->state_wanted = flags;
   2828 	vmx_vcpu_getstate(vcpu);
   2829 }
   2830 
   2831 static void
   2832 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
   2833 {
   2834 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   2835 	vcpu->comm->state_commit = 0;
   2836 	vmx_vcpu_setstate(vcpu);
   2837 }
   2838 
   2839 /* -------------------------------------------------------------------------- */
   2840 
   2841 static void
   2842 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2843 {
   2844 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2845 	size_t i, oct, bit;
   2846 
   2847 	mutex_enter(&vmx_asidlock);
   2848 
   2849 	for (i = 0; i < vmx_maxasid; i++) {
   2850 		oct = i / 8;
   2851 		bit = i % 8;
   2852 
   2853 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2854 			continue;
   2855 		}
   2856 
   2857 		cpudata->asid = i;
   2858 
   2859 		vmx_asidmap[oct] |= __BIT(bit);
   2860 		vmx_vmwrite(VMCS_VPID, i);
   2861 		mutex_exit(&vmx_asidlock);
   2862 		return;
   2863 	}
   2864 
   2865 	mutex_exit(&vmx_asidlock);
   2866 
   2867 	panic("%s: impossible", __func__);
   2868 }
   2869 
   2870 static void
   2871 vmx_asid_free(struct nvmm_cpu *vcpu)
   2872 {
   2873 	size_t oct, bit;
   2874 	uint64_t asid;
   2875 
   2876 	asid = vmx_vmread(VMCS_VPID);
   2877 
   2878 	oct = asid / 8;
   2879 	bit = asid % 8;
   2880 
   2881 	mutex_enter(&vmx_asidlock);
   2882 	vmx_asidmap[oct] &= ~__BIT(bit);
   2883 	mutex_exit(&vmx_asidlock);
   2884 }
   2885 
   2886 static void
   2887 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2888 {
   2889 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2890 	struct vmcs *vmcs = cpudata->vmcs;
   2891 	struct msr_entry *gmsr = cpudata->gmsr;
   2892 	extern uint8_t vmx_resume_rip;
   2893 	uint64_t rev, eptp;
   2894 
   2895 	rev = vmx_get_revision();
   2896 
   2897 	memset(vmcs, 0, VMCS_SIZE);
   2898 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2899 	vmcs->abort = 0;
   2900 
   2901 	vmx_vmcs_enter(vcpu);
   2902 
   2903 	/* No link pointer. */
   2904 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2905 
   2906 	/* Install the CTLSs. */
   2907 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2908 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2909 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2910 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2911 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2912 
   2913 	/* Allow direct access to certain MSRs. */
   2914 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2915 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2916 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2917 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2918 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2919 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2920 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2921 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2922 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2923 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2924 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2925 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2926 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2927 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2928 
   2929 	/*
   2930 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2931 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2932 	 */
   2933 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2934 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2935 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2936 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2937 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2938 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2939 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2940 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2941 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2942 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2943 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2944 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2945 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2946 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2947 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2948 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2949 
   2950 	/* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
   2951 	vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
   2952 
   2953 	/* Force unsupported CR4 fields to zero. */
   2954 	vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
   2955 	vmx_vmwrite(VMCS_CR4_SHADOW, 0);
   2956 
   2957 	/* Set the Host state for resuming. */
   2958 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2959 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2960 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2961 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2962 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2963 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2964 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2965 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2966 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2967 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2968 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2969 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2970 	vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
   2971 
   2972 	/* Generate ASID. */
   2973 	vmx_asid_alloc(vcpu);
   2974 
   2975 	/* Enable Extended Paging, 4-Level. */
   2976 	eptp =
   2977 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2978 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2979 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2980 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2981 	vmx_vmwrite(VMCS_EPTP, eptp);
   2982 
   2983 	/* Init IA32_MISC_ENABLE. */
   2984 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2985 	cpudata->gmsr_misc_enable &=
   2986 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2987 	cpudata->gmsr_misc_enable |=
   2988 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2989 
   2990 	/* Init XSAVE header. */
   2991 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2992 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2993 
   2994 	/* These MSRs are static. */
   2995 	cpudata->star = rdmsr(MSR_STAR);
   2996 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2997 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2998 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2999 
   3000 	/* Install the RESET state. */
   3001 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   3002 	    sizeof(nvmm_x86_reset_state));
   3003 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   3004 	vcpu->comm->state_cached = 0;
   3005 	vmx_vcpu_setstate(vcpu);
   3006 
   3007 	vmx_vmcs_leave(vcpu);
   3008 }
   3009 
   3010 static int
   3011 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   3012 {
   3013 	struct vmx_cpudata *cpudata;
   3014 	int error;
   3015 
   3016 	/* Allocate the VMX cpudata. */
   3017 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   3018 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   3019 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   3020 	vcpu->cpudata = cpudata;
   3021 
   3022 	/* VMCS */
   3023 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   3024 	    VMCS_NPAGES);
   3025 	if (error)
   3026 		goto error;
   3027 
   3028 	/* MSR Bitmap */
   3029 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   3030 	    MSRBM_NPAGES);
   3031 	if (error)
   3032 		goto error;
   3033 
   3034 	/* Guest MSR List */
   3035 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   3036 	if (error)
   3037 		goto error;
   3038 
   3039 	kcpuset_create(&cpudata->htlb_want_flush, true);
   3040 
   3041 	/* Init the VCPU info. */
   3042 	vmx_vcpu_init(mach, vcpu);
   3043 
   3044 	return 0;
   3045 
   3046 error:
   3047 	if (cpudata->vmcs_pa) {
   3048 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   3049 		    VMCS_NPAGES);
   3050 	}
   3051 	if (cpudata->msrbm_pa) {
   3052 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   3053 		    MSRBM_NPAGES);
   3054 	}
   3055 	if (cpudata->gmsr_pa) {
   3056 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   3057 	}
   3058 
   3059 	kmem_free(cpudata, sizeof(*cpudata));
   3060 	return error;
   3061 }
   3062 
   3063 static void
   3064 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   3065 {
   3066 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   3067 
   3068 	vmx_vmcs_enter(vcpu);
   3069 	vmx_asid_free(vcpu);
   3070 	vmx_vmcs_destroy(vcpu);
   3071 
   3072 	kcpuset_destroy(cpudata->htlb_want_flush);
   3073 
   3074 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   3075 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   3076 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   3077 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   3078 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   3079 }
   3080 
   3081 /* -------------------------------------------------------------------------- */
   3082 
   3083 static int
   3084 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
   3085 {
   3086 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
   3087 	size_t i;
   3088 
   3089 	if (__predict_false(cpuid->mask && cpuid->exit)) {
   3090 		return EINVAL;
   3091 	}
   3092 	if (__predict_false(cpuid->mask &&
   3093 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
   3094 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
   3095 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
   3096 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
   3097 		return EINVAL;
   3098 	}
   3099 
   3100 	/* If unset, delete, to restore the default behavior. */
   3101 	if (!cpuid->mask && !cpuid->exit) {
   3102 		for (i = 0; i < VMX_NCPUIDS; i++) {
   3103 			if (!cpudata->cpuidpresent[i]) {
   3104 				continue;
   3105 			}
   3106 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   3107 				cpudata->cpuidpresent[i] = false;
   3108 			}
   3109 		}
   3110 		return 0;
   3111 	}
   3112 
   3113 	/* If already here, replace. */
   3114 	for (i = 0; i < VMX_NCPUIDS; i++) {
   3115 		if (!cpudata->cpuidpresent[i]) {
   3116 			continue;
   3117 		}
   3118 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   3119 			memcpy(&cpudata->cpuid[i], cpuid,
   3120 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   3121 			return 0;
   3122 		}
   3123 	}
   3124 
   3125 	/* Not here, insert. */
   3126 	for (i = 0; i < VMX_NCPUIDS; i++) {
   3127 		if (!cpudata->cpuidpresent[i]) {
   3128 			cpudata->cpuidpresent[i] = true;
   3129 			memcpy(&cpudata->cpuid[i], cpuid,
   3130 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   3131 			return 0;
   3132 		}
   3133 	}
   3134 
   3135 	return ENOBUFS;
   3136 }
   3137 
   3138 static int
   3139 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
   3140 {
   3141 	struct nvmm_vcpu_conf_tpr *tpr = data;
   3142 
   3143 	memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
   3144 	return 0;
   3145 }
   3146 
   3147 static int
   3148 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
   3149 {
   3150 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   3151 
   3152 	switch (op) {
   3153 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
   3154 		return vmx_vcpu_configure_cpuid(cpudata, data);
   3155 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
   3156 		return vmx_vcpu_configure_tpr(cpudata, data);
   3157 	default:
   3158 		return EINVAL;
   3159 	}
   3160 }
   3161 
   3162 static void
   3163 vmx_vcpu_suspend(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   3164 {
   3165 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   3166 	struct cpu_info *vmcs_ci;
   3167 
   3168 	KASSERT(cpudata->vmcs_refcnt == 0);
   3169 
   3170 	vmcs_ci = cpudata->vmcs_ci;
   3171 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
   3172 
   3173 	kpreempt_disable();
   3174 	if (vmcs_ci == NULL) {
   3175 		/* VMCS is inactive, nothing to do.  */
   3176 	} else if (vmcs_ci != curcpu()) {
   3177 		/* VMCS is active on a remote CPU; clear it there.  */
   3178 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
   3179 	} else {
   3180 		/* VMCS is active on this CPU; clear it here.  */
   3181 		vmx_vmclear(&cpudata->vmcs_pa);
   3182 	}
   3183 	kpreempt_enable();
   3184 }
   3185 
   3186 static void
   3187 vmx_vcpu_resume(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   3188 {
   3189 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   3190 
   3191 	KASSERT(cpudata->vmcs_refcnt == 0);
   3192 
   3193 	/* Mark VMCS as inactive.  */
   3194 	cpudata->vmcs_ci = NULL;
   3195 }
   3196 
   3197 /* -------------------------------------------------------------------------- */
   3198 
   3199 static void
   3200 vmx_tlb_flush(struct pmap *pm)
   3201 {
   3202 	struct nvmm_machine *mach = pm->pm_data;
   3203 	struct vmx_machdata *machdata = mach->machdata;
   3204 
   3205 	atomic_inc_64(&machdata->mach_htlb_gen);
   3206 
   3207 	/* Generates IPIs, which cause #VMEXITs. */
   3208 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   3209 }
   3210 
   3211 static void
   3212 vmx_machine_create(struct nvmm_machine *mach)
   3213 {
   3214 	struct pmap *pmap = mach->vm->vm_map.pmap;
   3215 	struct vmx_machdata *machdata;
   3216 
   3217 	/* Convert to EPT. */
   3218 	pmap_ept_transform(pmap);
   3219 
   3220 	/* Fill in pmap info. */
   3221 	pmap->pm_data = (void *)mach;
   3222 	pmap->pm_tlb_flush = vmx_tlb_flush;
   3223 
   3224 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   3225 	mach->machdata = machdata;
   3226 
   3227 	/* Start with an hTLB flush everywhere. */
   3228 	machdata->mach_htlb_gen = 1;
   3229 }
   3230 
   3231 static void
   3232 vmx_machine_destroy(struct nvmm_machine *mach)
   3233 {
   3234 	struct vmx_machdata *machdata = mach->machdata;
   3235 
   3236 	kmem_free(machdata, sizeof(struct vmx_machdata));
   3237 }
   3238 
   3239 static int
   3240 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   3241 {
   3242 	panic("%s: impossible", __func__);
   3243 }
   3244 
   3245 /* -------------------------------------------------------------------------- */
   3246 
   3247 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
   3248 	((msrval & __BIT(32 + bitoff)) != 0)
   3249 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
   3250 	((msrval & __BIT(bitoff)) == 0)
   3251 
   3252 static int
   3253 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
   3254 {
   3255 	uint64_t basic, val, true_val;
   3256 	bool has_true;
   3257 	size_t i;
   3258 
   3259 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3260 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3261 
   3262 	val = rdmsr(msr_ctls);
   3263 	if (has_true) {
   3264 		true_val = rdmsr(msr_true_ctls);
   3265 	} else {
   3266 		true_val = val;
   3267 	}
   3268 
   3269 	for (i = 0; i < 32; i++) {
   3270 		if (!(set_one & __BIT(i))) {
   3271 			continue;
   3272 		}
   3273 		if (!CTLS_ONE_ALLOWED(true_val, i)) {
   3274 			return -1;
   3275 		}
   3276 	}
   3277 
   3278 	return 0;
   3279 }
   3280 
   3281 static int
   3282 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   3283     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   3284 {
   3285 	uint64_t basic, val, true_val;
   3286 	bool one_allowed, zero_allowed, has_true;
   3287 	size_t i;
   3288 
   3289 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   3290 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   3291 
   3292 	val = rdmsr(msr_ctls);
   3293 	if (has_true) {
   3294 		true_val = rdmsr(msr_true_ctls);
   3295 	} else {
   3296 		true_val = val;
   3297 	}
   3298 
   3299 	for (i = 0; i < 32; i++) {
   3300 		one_allowed = CTLS_ONE_ALLOWED(true_val, i);
   3301 		zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
   3302 
   3303 		if (zero_allowed && !one_allowed) {
   3304 			if (set_one & __BIT(i))
   3305 				return -1;
   3306 			*res &= ~__BIT(i);
   3307 		} else if (one_allowed && !zero_allowed) {
   3308 			if (set_zero & __BIT(i))
   3309 				return -1;
   3310 			*res |= __BIT(i);
   3311 		} else {
   3312 			if (set_zero & __BIT(i)) {
   3313 				*res &= ~__BIT(i);
   3314 			} else if (set_one & __BIT(i)) {
   3315 				*res |= __BIT(i);
   3316 			} else if (!has_true) {
   3317 				*res &= ~__BIT(i);
   3318 			} else if (CTLS_ZERO_ALLOWED(val, i)) {
   3319 				*res &= ~__BIT(i);
   3320 			} else if (CTLS_ONE_ALLOWED(val, i)) {
   3321 				*res |= __BIT(i);
   3322 			} else {
   3323 				return -1;
   3324 			}
   3325 		}
   3326 	}
   3327 
   3328 	return 0;
   3329 }
   3330 
   3331 static bool
   3332 vmx_ident(void)
   3333 {
   3334 	uint64_t msr;
   3335 	int ret;
   3336 
   3337 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   3338 		return false;
   3339 	}
   3340 
   3341 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   3342 	if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
   3343 	    (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
   3344 		printf("NVMM: VMX disabled in BIOS\n");
   3345 		return false;
   3346 	}
   3347 
   3348 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   3349 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   3350 		printf("NVMM: I/O reporting not supported\n");
   3351 		return false;
   3352 	}
   3353 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   3354 		printf("NVMM: WB memory not supported\n");
   3355 		return false;
   3356 	}
   3357 
   3358 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   3359 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   3360 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   3361 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   3362 	if (ret == -1) {
   3363 		printf("NVMM: CR0 requirements not satisfied\n");
   3364 		return false;
   3365 	}
   3366 
   3367 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   3368 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   3369 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   3370 	if (ret == -1) {
   3371 		printf("NVMM: CR4 requirements not satisfied\n");
   3372 		return false;
   3373 	}
   3374 
   3375 	/* Init the CTLSs right now, and check for errors. */
   3376 	ret = vmx_init_ctls(
   3377 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   3378 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   3379 	    &vmx_pinbased_ctls);
   3380 	if (ret == -1) {
   3381 		printf("NVMM: pin-based-ctls requirements not satisfied\n");
   3382 		return false;
   3383 	}
   3384 	ret = vmx_init_ctls(
   3385 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   3386 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   3387 	    &vmx_procbased_ctls);
   3388 	if (ret == -1) {
   3389 		printf("NVMM: proc-based-ctls requirements not satisfied\n");
   3390 		return false;
   3391 	}
   3392 	ret = vmx_init_ctls(
   3393 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3394 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   3395 	    &vmx_procbased_ctls2);
   3396 	if (ret == -1) {
   3397 		printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
   3398 		return false;
   3399 	}
   3400 	ret = vmx_check_ctls(
   3401 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   3402 	    PROC_CTLS2_INVPCID_ENABLE);
   3403 	if (ret != -1) {
   3404 		vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
   3405 	}
   3406 	ret = vmx_init_ctls(
   3407 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   3408 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   3409 	    &vmx_entry_ctls);
   3410 	if (ret == -1) {
   3411 		printf("NVMM: entry-ctls requirements not satisfied\n");
   3412 		return false;
   3413 	}
   3414 	ret = vmx_init_ctls(
   3415 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   3416 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   3417 	    &vmx_exit_ctls);
   3418 	if (ret == -1) {
   3419 		printf("NVMM: exit-ctls requirements not satisfied\n");
   3420 		return false;
   3421 	}
   3422 
   3423 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3424 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   3425 		printf("NVMM: 4-level page tree not supported\n");
   3426 		return false;
   3427 	}
   3428 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   3429 		printf("NVMM: INVEPT not supported\n");
   3430 		return false;
   3431 	}
   3432 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   3433 		printf("NVMM: INVVPID not supported\n");
   3434 		return false;
   3435 	}
   3436 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   3437 		pmap_ept_has_ad = true;
   3438 	} else {
   3439 		pmap_ept_has_ad = false;
   3440 	}
   3441 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   3442 		printf("NVMM: EPT UC/WB memory types not supported\n");
   3443 		return false;
   3444 	}
   3445 
   3446 	return true;
   3447 }
   3448 
   3449 static void
   3450 vmx_init_asid(uint32_t maxasid)
   3451 {
   3452 	size_t allocsz;
   3453 
   3454 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   3455 
   3456 	vmx_maxasid = maxasid;
   3457 	allocsz = roundup(maxasid, 8) / 8;
   3458 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   3459 
   3460 	/* ASID 0 is reserved for the host. */
   3461 	vmx_asidmap[0] |= __BIT(0);
   3462 }
   3463 
   3464 static void
   3465 vmx_change_cpu(void *arg1, void *arg2)
   3466 {
   3467 	struct cpu_info *ci = curcpu();
   3468 	bool enable = arg1 != NULL;
   3469 	uint64_t msr, cr4;
   3470 
   3471 	if (enable) {
   3472 		msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   3473 		if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   3474 			/* Lock now, with VMX-outside-SMX enabled. */
   3475 			wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
   3476 			    IA32_FEATURE_CONTROL_LOCK |
   3477 			    IA32_FEATURE_CONTROL_OUT_SMX);
   3478 		}
   3479 	}
   3480 
   3481 	if (!enable) {
   3482 		vmx_vmxoff();
   3483 	}
   3484 
   3485 	cr4 = rcr4();
   3486 	if (enable) {
   3487 		cr4 |= CR4_VMXE;
   3488 	} else {
   3489 		cr4 &= ~CR4_VMXE;
   3490 	}
   3491 	lcr4(cr4);
   3492 
   3493 	if (enable) {
   3494 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   3495 	}
   3496 }
   3497 
   3498 static void
   3499 vmx_init_l1tf(void)
   3500 {
   3501 	u_int descs[4];
   3502 	uint64_t msr;
   3503 
   3504 	if (cpuid_level < 7) {
   3505 		return;
   3506 	}
   3507 
   3508 	x86_cpuid(7, descs);
   3509 
   3510 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   3511 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   3512 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   3513 			/* No mitigation needed. */
   3514 			return;
   3515 		}
   3516 	}
   3517 
   3518 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   3519 		/* Enable hardware mitigation. */
   3520 		vmx_msrlist_entry_nmsr += 1;
   3521 	}
   3522 }
   3523 
   3524 static void
   3525 vmx_suspend_interrupt(void)
   3526 {
   3527 
   3528 	/*
   3529 	 * Generates IPIs, which cause #VMEXITs.  No other purpose for
   3530 	 * the TLB business; the #VMEXIT triggered by IPI is the only
   3531 	 * effect that matters here.
   3532 	 */
   3533 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   3534 }
   3535 
   3536 static void
   3537 vmx_suspend(void)
   3538 {
   3539 	uint64_t xc;
   3540 
   3541 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   3542 	xc_wait(xc);
   3543 }
   3544 
   3545 static void
   3546 vmx_resume(void)
   3547 {
   3548 	uint64_t xc;
   3549 
   3550 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   3551 	xc_wait(xc);
   3552 }
   3553 
   3554 static void
   3555 vmx_init(void)
   3556 {
   3557 	CPU_INFO_ITERATOR cii;
   3558 	struct cpu_info *ci;
   3559 	uint64_t msr;
   3560 	struct vmxon *vmxon;
   3561 	uint32_t revision;
   3562 	u_int descs[4];
   3563 	paddr_t pa;
   3564 	vaddr_t va;
   3565 	int error;
   3566 
   3567 	/* Init the ASID bitmap (VPID). */
   3568 	vmx_init_asid(VPID_MAX);
   3569 
   3570 	/* Init the XCR0 mask. */
   3571 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   3572 
   3573 	/* Init the max basic CPUID leaf. */
   3574 	vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
   3575 
   3576 	/* Init the max extended CPUID leaf. */
   3577 	x86_cpuid(0x80000000, descs);
   3578 	vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
   3579 
   3580 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   3581 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   3582 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   3583 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   3584 	} else {
   3585 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   3586 	}
   3587 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   3588 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   3589 	} else {
   3590 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   3591 	}
   3592 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   3593 		vmx_eptp_type = EPTP_TYPE_WB;
   3594 	} else {
   3595 		vmx_eptp_type = EPTP_TYPE_UC;
   3596 	}
   3597 
   3598 	/* Init the L1TF mitigation. */
   3599 	vmx_init_l1tf();
   3600 
   3601 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   3602 	revision = vmx_get_revision();
   3603 
   3604 	for (CPU_INFO_FOREACH(cii, ci)) {
   3605 		error = vmx_memalloc(&pa, &va, 1);
   3606 		if (error) {
   3607 			panic("%s: out of memory", __func__);
   3608 		}
   3609 		vmxoncpu[cpu_index(ci)].pa = pa;
   3610 		vmxoncpu[cpu_index(ci)].va = va;
   3611 
   3612 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   3613 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   3614 	}
   3615 
   3616 	vmx_resume();
   3617 }
   3618 
   3619 static void
   3620 vmx_fini_asid(void)
   3621 {
   3622 	size_t allocsz;
   3623 
   3624 	allocsz = roundup(vmx_maxasid, 8) / 8;
   3625 	kmem_free(vmx_asidmap, allocsz);
   3626 
   3627 	mutex_destroy(&vmx_asidlock);
   3628 }
   3629 
   3630 static void
   3631 vmx_fini(void)
   3632 {
   3633 	size_t i;
   3634 
   3635 	vmx_suspend();
   3636 
   3637 	for (i = 0; i < MAXCPUS; i++) {
   3638 		if (vmxoncpu[i].pa != 0)
   3639 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   3640 	}
   3641 
   3642 	vmx_fini_asid();
   3643 }
   3644 
   3645 static void
   3646 vmx_capability(struct nvmm_capability *cap)
   3647 {
   3648 	cap->arch.mach_conf_support = 0;
   3649 	cap->arch.vcpu_conf_support =
   3650 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID |
   3651 	    NVMM_CAP_ARCH_VCPU_CONF_TPR;
   3652 	cap->arch.xcr0_mask = vmx_xcr0_mask;
   3653 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   3654 	cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
   3655 }
   3656 
   3657 const struct nvmm_impl nvmm_x86_vmx = {
   3658 	.name = "x86-vmx",
   3659 	.ident = vmx_ident,
   3660 	.init = vmx_init,
   3661 	.fini = vmx_fini,
   3662 	.suspend_interrupt = vmx_suspend_interrupt,
   3663 	.suspend = vmx_suspend,
   3664 	.resume = vmx_resume,
   3665 	.capability = vmx_capability,
   3666 	.mach_conf_max = NVMM_X86_MACH_NCONF,
   3667 	.mach_conf_sizes = NULL,
   3668 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
   3669 	.vcpu_conf_sizes = vmx_vcpu_conf_sizes,
   3670 	.state_size = sizeof(struct nvmm_x64_state),
   3671 	.machine_create = vmx_machine_create,
   3672 	.machine_destroy = vmx_machine_destroy,
   3673 	.machine_configure = vmx_machine_configure,
   3674 	.vcpu_create = vmx_vcpu_create,
   3675 	.vcpu_destroy = vmx_vcpu_destroy,
   3676 	.vcpu_configure = vmx_vcpu_configure,
   3677 	.vcpu_setstate = vmx_vcpu_setstate,
   3678 	.vcpu_getstate = vmx_vcpu_getstate,
   3679 	.vcpu_inject = vmx_vcpu_inject,
   3680 	.vcpu_run = vmx_vcpu_run,
   3681 	.vcpu_suspend = vmx_vcpu_suspend,
   3682 	.vcpu_resume = vmx_vcpu_resume,
   3683 };
   3684