nvmm_x86_vmx.c revision 1.88 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.88 2025/04/11 04:54:02 imil Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.88 2025/04/11 04:54:02 imil Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41 #include <sys/bitops.h>
42
43 #include <uvm/uvm_extern.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/apicvar.h>
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51
52 #include <machine/cpuvar.h>
53 #include <machine/pmap_private.h>
54
55 #include <dev/nvmm/nvmm.h>
56 #include <dev/nvmm/nvmm_internal.h>
57 #include <dev/nvmm/x86/nvmm_x86.h>
58
59 int _vmx_vmxon(paddr_t *pa);
60 int _vmx_vmxoff(void);
61 int vmx_vmlaunch(uint64_t *gprs);
62 int vmx_vmresume(uint64_t *gprs);
63
64 #define vmx_vmxon(a) \
65 if (__predict_false(_vmx_vmxon(a) != 0)) { \
66 panic("%s: VMXON failed", __func__); \
67 }
68 #define vmx_vmxoff() \
69 if (__predict_false(_vmx_vmxoff() != 0)) { \
70 panic("%s: VMXOFF failed", __func__); \
71 }
72
73 struct ept_desc {
74 uint64_t eptp;
75 uint64_t mbz;
76 } __packed;
77
78 struct vpid_desc {
79 uint64_t vpid;
80 uint64_t addr;
81 } __packed;
82
83 static inline void
84 vmx_invept(uint64_t op, struct ept_desc *desc)
85 {
86 asm volatile (
87 "invept %[desc],%[op];"
88 "jz vmx_insn_failvalid;"
89 "jc vmx_insn_failinvalid;"
90 :
91 : [desc] "m" (*desc), [op] "r" (op)
92 : "memory", "cc"
93 );
94 }
95
96 static inline void
97 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
98 {
99 asm volatile (
100 "invvpid %[desc],%[op];"
101 "jz vmx_insn_failvalid;"
102 "jc vmx_insn_failinvalid;"
103 :
104 : [desc] "m" (*desc), [op] "r" (op)
105 : "memory", "cc"
106 );
107 }
108
109 static inline uint64_t
110 vmx_vmread(uint64_t field)
111 {
112 uint64_t value;
113
114 asm volatile (
115 "vmread %[field],%[value];"
116 "jz vmx_insn_failvalid;"
117 "jc vmx_insn_failinvalid;"
118 : [value] "=r" (value)
119 : [field] "r" (field)
120 : "cc"
121 );
122
123 return value;
124 }
125
126 static inline void
127 vmx_vmwrite(uint64_t field, uint64_t value)
128 {
129 asm volatile (
130 "vmwrite %[value],%[field];"
131 "jz vmx_insn_failvalid;"
132 "jc vmx_insn_failinvalid;"
133 :
134 : [field] "r" (field), [value] "r" (value)
135 : "cc"
136 );
137 }
138
139 static inline paddr_t __diagused
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153
154 static inline void
155 vmx_vmptrld(paddr_t *pa)
156 {
157 asm volatile (
158 "vmptrld %[pa];"
159 "jz vmx_insn_failvalid;"
160 "jc vmx_insn_failinvalid;"
161 :
162 : [pa] "m" (*pa)
163 : "memory", "cc"
164 );
165 }
166
167 static inline void
168 vmx_vmclear(paddr_t *pa)
169 {
170 asm volatile (
171 "vmclear %[pa];"
172 "jz vmx_insn_failvalid;"
173 "jc vmx_insn_failinvalid;"
174 :
175 : [pa] "m" (*pa)
176 : "memory", "cc"
177 );
178 }
179
180 static inline void
181 vmx_cli(void)
182 {
183 asm volatile ("cli" ::: "memory");
184 }
185
186 static inline void
187 vmx_sti(void)
188 {
189 asm volatile ("sti" ::: "memory");
190 }
191
192 #define MSR_IA32_FEATURE_CONTROL 0x003A
193 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
194 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
195 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
196
197 #define MSR_IA32_VMX_BASIC 0x0480
198 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
199 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
200 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
201 #define IA32_VMX_BASIC_DUAL __BIT(49)
202 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
203 #define MEM_TYPE_UC 0
204 #define MEM_TYPE_WB 6
205 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
206 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
207
208 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
209 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
210 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
211 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
212 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
213
214 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
215 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
216 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
217 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
218
219 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
220 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
221 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
222 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
223
224 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
225 #define IA32_VMX_EPT_VPID_XO __BIT(0)
226 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
227 #define IA32_VMX_EPT_VPID_UC __BIT(8)
228 #define IA32_VMX_EPT_VPID_WB __BIT(14)
229 #define IA32_VMX_EPT_VPID_2MB __BIT(16)
230 #define IA32_VMX_EPT_VPID_1GB __BIT(17)
231 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
232 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
233 #define IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO __BIT(22)
234 #define IA32_VMX_EPT_VPID_SHSTK __BIT(23)
235 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
236 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
237 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
238 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
239 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
240 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
241 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
242
243 /* -------------------------------------------------------------------------- */
244
245 /* 16-bit control fields */
246 #define VMCS_VPID 0x00000000
247 #define VMCS_PIR_VECTOR 0x00000002
248 #define VMCS_EPTP_INDEX 0x00000004
249 /* 16-bit guest-state fields */
250 #define VMCS_GUEST_ES_SELECTOR 0x00000800
251 #define VMCS_GUEST_CS_SELECTOR 0x00000802
252 #define VMCS_GUEST_SS_SELECTOR 0x00000804
253 #define VMCS_GUEST_DS_SELECTOR 0x00000806
254 #define VMCS_GUEST_FS_SELECTOR 0x00000808
255 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
256 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
257 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
258 #define VMCS_GUEST_INTR_STATUS 0x00000810
259 #define VMCS_PML_INDEX 0x00000812
260 /* 16-bit host-state fields */
261 #define VMCS_HOST_ES_SELECTOR 0x00000C00
262 #define VMCS_HOST_CS_SELECTOR 0x00000C02
263 #define VMCS_HOST_SS_SELECTOR 0x00000C04
264 #define VMCS_HOST_DS_SELECTOR 0x00000C06
265 #define VMCS_HOST_FS_SELECTOR 0x00000C08
266 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
267 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
268 /* 64-bit control fields */
269 #define VMCS_IO_BITMAP_A 0x00002000
270 #define VMCS_IO_BITMAP_B 0x00002002
271 #define VMCS_MSR_BITMAP 0x00002004
272 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
273 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
274 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
275 #define VMCS_EXECUTIVE_VMCS 0x0000200C
276 #define VMCS_PML_ADDRESS 0x0000200E
277 #define VMCS_TSC_OFFSET 0x00002010
278 #define VMCS_VIRTUAL_APIC 0x00002012
279 #define VMCS_APIC_ACCESS 0x00002014
280 #define VMCS_PIR_DESC 0x00002016
281 #define VMCS_VM_CONTROL 0x00002018
282 #define VMCS_EPTP 0x0000201A
283 #define EPTP_TYPE __BITS(2,0)
284 #define EPTP_TYPE_UC 0
285 #define EPTP_TYPE_WB 6
286 #define EPTP_WALKLEN __BITS(5,3)
287 #define EPTP_FLAGS_AD __BIT(6)
288 #define EPTP_SSS __BIT(7)
289 #define EPTP_PHYSADDR __BITS(63,12)
290 #define VMCS_EOI_EXIT0 0x0000201C
291 #define VMCS_EOI_EXIT1 0x0000201E
292 #define VMCS_EOI_EXIT2 0x00002020
293 #define VMCS_EOI_EXIT3 0x00002022
294 #define VMCS_EPTP_LIST 0x00002024
295 #define VMCS_VMREAD_BITMAP 0x00002026
296 #define VMCS_VMWRITE_BITMAP 0x00002028
297 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
298 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
299 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
300 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
301 #define VMCS_TSC_MULTIPLIER 0x00002032
302 #define VMCS_ENCLV_EXIT_BITMAP 0x00002036
303 /* 64-bit read-only fields */
304 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
305 /* 64-bit guest-state fields */
306 #define VMCS_LINK_POINTER 0x00002800
307 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
308 #define VMCS_GUEST_IA32_PAT 0x00002804
309 #define VMCS_GUEST_IA32_EFER 0x00002806
310 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
311 #define VMCS_GUEST_PDPTE0 0x0000280A
312 #define VMCS_GUEST_PDPTE1 0x0000280C
313 #define VMCS_GUEST_PDPTE2 0x0000280E
314 #define VMCS_GUEST_PDPTE3 0x00002810
315 #define VMCS_GUEST_BNDCFGS 0x00002812
316 #define VMCS_GUEST_RTIT_CTL 0x00002814
317 #define VMCS_GUEST_PKRS 0x00002818
318 /* 64-bit host-state fields */
319 #define VMCS_HOST_IA32_PAT 0x00002C00
320 #define VMCS_HOST_IA32_EFER 0x00002C02
321 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
322 #define VMCS_HOST_IA32_PKRS 0x00002C06
323 /* 32-bit control fields */
324 #define VMCS_PINBASED_CTLS 0x00004000
325 #define PIN_CTLS_INT_EXITING __BIT(0)
326 #define PIN_CTLS_NMI_EXITING __BIT(3)
327 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
328 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
329 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
330 #define VMCS_PROCBASED_CTLS 0x00004002
331 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
332 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
333 #define PROC_CTLS_HLT_EXITING __BIT(7)
334 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
335 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
336 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
337 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
338 #define PROC_CTLS_RCR3_EXITING __BIT(15)
339 #define PROC_CTLS_LCR3_EXITING __BIT(16)
340 #define PROC_CTLS_RCR8_EXITING __BIT(19)
341 #define PROC_CTLS_LCR8_EXITING __BIT(20)
342 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
343 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
344 #define PROC_CTLS_DR_EXITING __BIT(23)
345 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
346 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
347 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
348 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
349 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
350 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
351 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
352 #define VMCS_EXCEPTION_BITMAP 0x00004004
353 #define VMCS_PF_ERROR_MASK 0x00004006
354 #define VMCS_PF_ERROR_MATCH 0x00004008
355 #define VMCS_CR3_TARGET_COUNT 0x0000400A
356 #define VMCS_EXIT_CTLS 0x0000400C
357 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
358 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
359 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
360 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
361 #define EXIT_CTLS_SAVE_PAT __BIT(18)
362 #define EXIT_CTLS_LOAD_PAT __BIT(19)
363 #define EXIT_CTLS_SAVE_EFER __BIT(20)
364 #define EXIT_CTLS_LOAD_EFER __BIT(21)
365 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
366 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
367 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
368 #define EXIT_CTLS_CLEAR_RTIT_CTL __BIT(25)
369 #define EXIT_CTLS_LOAD_CET __BIT(28)
370 #define EXIT_CTLS_LOAD_PKRS __BIT(29)
371 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
372 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
373 #define VMCS_ENTRY_CTLS 0x00004012
374 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
375 #define ENTRY_CTLS_LONG_MODE __BIT(9)
376 #define ENTRY_CTLS_SMM __BIT(10)
377 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
378 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
379 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
380 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
381 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
382 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
383 #define ENTRY_CTLS_LOAD_RTIT_CTL __BIT(18)
384 #define ENTRY_CTLS_LOAD_CET __BIT(20)
385 #define ENTRY_CTLS_LOAD_PKRS __BIT(22)
386 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
387 #define VMCS_ENTRY_INTR_INFO 0x00004016
388 #define INTR_INFO_VECTOR __BITS(7,0)
389 #define INTR_INFO_TYPE __BITS(10,8)
390 #define INTR_TYPE_EXT_INT 0
391 #define INTR_TYPE_NMI 2
392 #define INTR_TYPE_HW_EXC 3
393 #define INTR_TYPE_SW_INT 4
394 #define INTR_TYPE_PRIV_SW_EXC 5
395 #define INTR_TYPE_SW_EXC 6
396 #define INTR_TYPE_OTHER 7
397 #define INTR_INFO_ERROR __BIT(11)
398 #define INTR_INFO_VALID __BIT(31)
399 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
400 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
401 #define VMCS_TPR_THRESHOLD 0x0000401C
402 #define VMCS_PROCBASED_CTLS2 0x0000401E
403 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
404 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
405 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
406 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
407 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
408 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
409 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
410 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
411 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
412 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
413 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
414 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
415 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
416 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
417 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
418 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
419 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
420 #define PROC_CTLS2_PML_ENABLE __BIT(17)
421 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
422 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
423 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
424 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
425 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
426 #define PROC_CTLS2_PT_USES_GPA __BIT(24)
427 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
428 #define PROC_CTLS2_WAIT_PAUSE_ENABLE __BIT(26)
429 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
430 #define VMCS_PLE_GAP 0x00004020
431 #define VMCS_PLE_WINDOW 0x00004022
432 /* 32-bit read-only data fields */
433 #define VMCS_INSTRUCTION_ERROR 0x00004400
434 #define VMCS_EXIT_REASON 0x00004402
435 #define VMCS_EXIT_INTR_INFO 0x00004404
436 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
437 #define VMCS_IDT_VECTORING_INFO 0x00004408
438 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
439 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
440 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
441 /* 32-bit guest-state fields */
442 #define VMCS_GUEST_ES_LIMIT 0x00004800
443 #define VMCS_GUEST_CS_LIMIT 0x00004802
444 #define VMCS_GUEST_SS_LIMIT 0x00004804
445 #define VMCS_GUEST_DS_LIMIT 0x00004806
446 #define VMCS_GUEST_FS_LIMIT 0x00004808
447 #define VMCS_GUEST_GS_LIMIT 0x0000480A
448 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
449 #define VMCS_GUEST_TR_LIMIT 0x0000480E
450 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
451 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
452 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
453 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
454 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
455 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
456 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
457 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
458 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
459 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
460 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
461 #define INT_STATE_STI __BIT(0)
462 #define INT_STATE_MOVSS __BIT(1)
463 #define INT_STATE_SMI __BIT(2)
464 #define INT_STATE_NMI __BIT(3)
465 #define INT_STATE_ENCLAVE __BIT(4)
466 #define VMCS_GUEST_ACTIVITY 0x00004826
467 #define VMCS_GUEST_SMBASE 0x00004828
468 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
469 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
470 /* 32-bit host state fields */
471 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
472 /* Natural-Width control fields */
473 #define VMCS_CR0_MASK 0x00006000
474 #define VMCS_CR4_MASK 0x00006002
475 #define VMCS_CR0_SHADOW 0x00006004
476 #define VMCS_CR4_SHADOW 0x00006006
477 #define VMCS_CR3_TARGET0 0x00006008
478 #define VMCS_CR3_TARGET1 0x0000600A
479 #define VMCS_CR3_TARGET2 0x0000600C
480 #define VMCS_CR3_TARGET3 0x0000600E
481 /* Natural-Width read-only fields */
482 #define VMCS_EXIT_QUALIFICATION 0x00006400
483 #define VMCS_IO_RCX 0x00006402
484 #define VMCS_IO_RSI 0x00006404
485 #define VMCS_IO_RDI 0x00006406
486 #define VMCS_IO_RIP 0x00006408
487 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
488 /* Natural-Width guest-state fields */
489 #define VMCS_GUEST_CR0 0x00006800
490 #define VMCS_GUEST_CR3 0x00006802
491 #define VMCS_GUEST_CR4 0x00006804
492 #define VMCS_GUEST_ES_BASE 0x00006806
493 #define VMCS_GUEST_CS_BASE 0x00006808
494 #define VMCS_GUEST_SS_BASE 0x0000680A
495 #define VMCS_GUEST_DS_BASE 0x0000680C
496 #define VMCS_GUEST_FS_BASE 0x0000680E
497 #define VMCS_GUEST_GS_BASE 0x00006810
498 #define VMCS_GUEST_LDTR_BASE 0x00006812
499 #define VMCS_GUEST_TR_BASE 0x00006814
500 #define VMCS_GUEST_GDTR_BASE 0x00006816
501 #define VMCS_GUEST_IDTR_BASE 0x00006818
502 #define VMCS_GUEST_DR7 0x0000681A
503 #define VMCS_GUEST_RSP 0x0000681C
504 #define VMCS_GUEST_RIP 0x0000681E
505 #define VMCS_GUEST_RFLAGS 0x00006820
506 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
507 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
508 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
509 #define VMCS_GUEST_IA32_S_CET 0x00006828
510 #define VMCS_GUEST_SSP 0x0000682A
511 #define VMCS_GUEST_IA32_INTR_SSP_TABLE 0x0000682C
512 /* Natural-Width host-state fields */
513 #define VMCS_HOST_CR0 0x00006C00
514 #define VMCS_HOST_CR3 0x00006C02
515 #define VMCS_HOST_CR4 0x00006C04
516 #define VMCS_HOST_FS_BASE 0x00006C06
517 #define VMCS_HOST_GS_BASE 0x00006C08
518 #define VMCS_HOST_TR_BASE 0x00006C0A
519 #define VMCS_HOST_GDTR_BASE 0x00006C0C
520 #define VMCS_HOST_IDTR_BASE 0x00006C0E
521 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
522 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
523 #define VMCS_HOST_RSP 0x00006C14
524 #define VMCS_HOST_RIP 0x00006C16
525 #define VMCS_HOST_IA32_S_CET 0x00006C18
526 #define VMCS_HOST_SSP 0x00006C1A
527 #define VMCS_HOST_IA32_INTR_SSP_TABLE 0x00006C1C
528
529 /* VMX basic exit reasons. */
530 #define VMCS_EXITCODE_EXC_NMI 0
531 #define VMCS_EXITCODE_EXT_INT 1
532 #define VMCS_EXITCODE_SHUTDOWN 2
533 #define VMCS_EXITCODE_INIT 3
534 #define VMCS_EXITCODE_SIPI 4
535 #define VMCS_EXITCODE_SMI 5
536 #define VMCS_EXITCODE_OTHER_SMI 6
537 #define VMCS_EXITCODE_INT_WINDOW 7
538 #define VMCS_EXITCODE_NMI_WINDOW 8
539 #define VMCS_EXITCODE_TASK_SWITCH 9
540 #define VMCS_EXITCODE_CPUID 10
541 #define VMCS_EXITCODE_GETSEC 11
542 #define VMCS_EXITCODE_HLT 12
543 #define VMCS_EXITCODE_INVD 13
544 #define VMCS_EXITCODE_INVLPG 14
545 #define VMCS_EXITCODE_RDPMC 15
546 #define VMCS_EXITCODE_RDTSC 16
547 #define VMCS_EXITCODE_RSM 17
548 #define VMCS_EXITCODE_VMCALL 18
549 #define VMCS_EXITCODE_VMCLEAR 19
550 #define VMCS_EXITCODE_VMLAUNCH 20
551 #define VMCS_EXITCODE_VMPTRLD 21
552 #define VMCS_EXITCODE_VMPTRST 22
553 #define VMCS_EXITCODE_VMREAD 23
554 #define VMCS_EXITCODE_VMRESUME 24
555 #define VMCS_EXITCODE_VMWRITE 25
556 #define VMCS_EXITCODE_VMXOFF 26
557 #define VMCS_EXITCODE_VMXON 27
558 #define VMCS_EXITCODE_CR 28
559 #define VMCS_EXITCODE_DR 29
560 #define VMCS_EXITCODE_IO 30
561 #define VMCS_EXITCODE_RDMSR 31
562 #define VMCS_EXITCODE_WRMSR 32
563 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
564 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
565 #define VMCS_EXITCODE_MWAIT 36
566 #define VMCS_EXITCODE_TRAP_FLAG 37
567 #define VMCS_EXITCODE_MONITOR 39
568 #define VMCS_EXITCODE_PAUSE 40
569 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
570 #define VMCS_EXITCODE_TPR_BELOW 43
571 #define VMCS_EXITCODE_APIC_ACCESS 44
572 #define VMCS_EXITCODE_VEOI 45
573 #define VMCS_EXITCODE_GDTR_IDTR 46
574 #define VMCS_EXITCODE_LDTR_TR 47
575 #define VMCS_EXITCODE_EPT_VIOLATION 48
576 #define VMCS_EXITCODE_EPT_MISCONFIG 49
577 #define VMCS_EXITCODE_INVEPT 50
578 #define VMCS_EXITCODE_RDTSCP 51
579 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
580 #define VMCS_EXITCODE_INVVPID 53
581 #define VMCS_EXITCODE_WBINVD 54
582 #define VMCS_EXITCODE_XSETBV 55
583 #define VMCS_EXITCODE_APIC_WRITE 56
584 #define VMCS_EXITCODE_RDRAND 57
585 #define VMCS_EXITCODE_INVPCID 58
586 #define VMCS_EXITCODE_VMFUNC 59
587 #define VMCS_EXITCODE_ENCLS 60
588 #define VMCS_EXITCODE_RDSEED 61
589 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
590 #define VMCS_EXITCODE_XSAVES 63
591 #define VMCS_EXITCODE_XRSTORS 64
592 #define VMCS_EXITCODE_SPP 66
593 #define VMCS_EXITCODE_UMWAIT 67
594 #define VMCS_EXITCODE_TPAUSE 68
595
596 /* -------------------------------------------------------------------------- */
597
598 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
599 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
600
601 #define VMX_MSRLIST_STAR 0
602 #define VMX_MSRLIST_LSTAR 1
603 #define VMX_MSRLIST_CSTAR 2
604 #define VMX_MSRLIST_SFMASK 3
605 #define VMX_MSRLIST_KERNELGSBASE 4
606 #define VMX_MSRLIST_EXIT_NMSR 5
607 #define VMX_MSRLIST_L1DFLUSH 5
608
609 /* On entry, we may do +1 to include L1DFLUSH. */
610 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
611
612 struct vmxon {
613 uint32_t ident;
614 #define VMXON_IDENT_REVISION __BITS(30,0)
615
616 uint8_t data[PAGE_SIZE - 4];
617 } __packed;
618
619 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
620
621 struct vmxoncpu {
622 vaddr_t va;
623 paddr_t pa;
624 };
625
626 static struct vmxoncpu vmxoncpu[MAXCPUS];
627
628 struct vmcs {
629 uint32_t ident;
630 #define VMCS_IDENT_REVISION __BITS(30,0)
631 #define VMCS_IDENT_SHADOW __BIT(31)
632
633 uint32_t abort;
634 uint8_t data[PAGE_SIZE - 8];
635 } __packed;
636
637 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
638
639 struct msr_entry {
640 uint32_t msr;
641 uint32_t rsvd;
642 uint64_t val;
643 } __packed;
644
645 #define VPID_MAX 0xFFFF
646
647 /* Make sure we never run out of VPIDs. */
648 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
649
650 static uint64_t vmx_tlb_flush_op __read_mostly;
651 static uint64_t vmx_ept_flush_op __read_mostly;
652 static uint64_t vmx_eptp_type __read_mostly;
653
654 static uint64_t vmx_pinbased_ctls __read_mostly;
655 static uint64_t vmx_procbased_ctls __read_mostly;
656 static uint64_t vmx_procbased_ctls2 __read_mostly;
657 static uint64_t vmx_entry_ctls __read_mostly;
658 static uint64_t vmx_exit_ctls __read_mostly;
659
660 static uint64_t vmx_cr0_fixed0 __read_mostly;
661 static uint64_t vmx_cr0_fixed1 __read_mostly;
662 static uint64_t vmx_cr4_fixed0 __read_mostly;
663 static uint64_t vmx_cr4_fixed1 __read_mostly;
664
665 extern bool pmap_ept_has_ad;
666
667 #define VMX_PINBASED_CTLS_ONE \
668 (PIN_CTLS_INT_EXITING| \
669 PIN_CTLS_NMI_EXITING| \
670 PIN_CTLS_VIRTUAL_NMIS)
671
672 #define VMX_PINBASED_CTLS_ZERO 0
673
674 #define VMX_PROCBASED_CTLS_ONE \
675 (PROC_CTLS_USE_TSC_OFFSETTING| \
676 PROC_CTLS_HLT_EXITING| \
677 PROC_CTLS_MWAIT_EXITING | \
678 PROC_CTLS_RDPMC_EXITING | \
679 PROC_CTLS_RCR8_EXITING | \
680 PROC_CTLS_LCR8_EXITING | \
681 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
682 PROC_CTLS_USE_MSR_BITMAPS | \
683 PROC_CTLS_MONITOR_EXITING | \
684 PROC_CTLS_ACTIVATE_CTLS2)
685
686 #define VMX_PROCBASED_CTLS_ZERO \
687 (PROC_CTLS_RCR3_EXITING| \
688 PROC_CTLS_LCR3_EXITING)
689
690 #define VMX_PROCBASED_CTLS2_ONE \
691 (PROC_CTLS2_ENABLE_EPT| \
692 PROC_CTLS2_ENABLE_VPID| \
693 PROC_CTLS2_UNRESTRICTED_GUEST)
694
695 #define VMX_PROCBASED_CTLS2_ZERO 0
696
697 #define VMX_ENTRY_CTLS_ONE \
698 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
699 ENTRY_CTLS_LOAD_EFER| \
700 ENTRY_CTLS_LOAD_PAT)
701
702 #define VMX_ENTRY_CTLS_ZERO \
703 (ENTRY_CTLS_SMM| \
704 ENTRY_CTLS_DISABLE_DUAL)
705
706 #define VMX_EXIT_CTLS_ONE \
707 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
708 EXIT_CTLS_HOST_LONG_MODE| \
709 EXIT_CTLS_SAVE_PAT| \
710 EXIT_CTLS_LOAD_PAT| \
711 EXIT_CTLS_SAVE_EFER| \
712 EXIT_CTLS_LOAD_EFER)
713
714 #define VMX_EXIT_CTLS_ZERO 0
715
716 static uint8_t *vmx_asidmap __read_mostly;
717 static uint32_t vmx_maxasid __read_mostly;
718 static kmutex_t vmx_asidlock __cacheline_aligned;
719
720 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
721 static uint64_t vmx_xcr0_mask __read_mostly;
722
723 #define VMX_NCPUIDS 32
724
725 #define VMCS_NPAGES 1
726 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
727
728 #define MSRBM_NPAGES 1
729 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
730
731 #define CR0_STATIC_MASK \
732 (CR0_ET | CR0_NW | CR0_CD)
733
734 #define CR4_VALID \
735 (CR4_VME | \
736 CR4_PVI | \
737 CR4_TSD | \
738 CR4_DE | \
739 CR4_PSE | \
740 CR4_PAE | \
741 CR4_MCE | \
742 CR4_PGE | \
743 CR4_PCE | \
744 CR4_OSFXSR | \
745 CR4_OSXMMEXCPT | \
746 CR4_UMIP | \
747 /* CR4_LA57 excluded */ \
748 /* CR4_VMXE excluded */ \
749 /* CR4_SMXE excluded */ \
750 CR4_FSGSBASE | \
751 CR4_PCIDE | \
752 CR4_OSXSAVE | \
753 CR4_SMEP | \
754 CR4_SMAP \
755 /* CR4_PKE excluded */ \
756 /* CR4_CET excluded */ \
757 /* CR4_PKS excluded */)
758 #define CR4_INVALID \
759 (0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
760
761 #define EFER_TLB_FLUSH \
762 (EFER_NXE|EFER_LMA|EFER_LME)
763 #define CR0_TLB_FLUSH \
764 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
765 #define CR4_TLB_FLUSH \
766 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
767
768 /* -------------------------------------------------------------------------- */
769
770 struct vmx_machdata {
771 volatile uint64_t mach_htlb_gen;
772 };
773
774 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
775 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
776 sizeof(struct nvmm_vcpu_conf_cpuid),
777 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
778 sizeof(struct nvmm_vcpu_conf_tpr)
779 };
780
781 struct vmx_cpudata {
782 /* General */
783 uint64_t asid;
784 bool gtlb_want_flush;
785 bool gtsc_want_update;
786 uint64_t vcpu_htlb_gen;
787 kcpuset_t *htlb_want_flush;
788
789 /* VMCS */
790 struct vmcs *vmcs;
791 paddr_t vmcs_pa;
792 size_t vmcs_refcnt;
793 struct cpu_info *vmcs_ci;
794 bool vmcs_launched;
795
796 /* MSR bitmap */
797 uint8_t *msrbm;
798 paddr_t msrbm_pa;
799
800 /* Host state */
801 uint64_t hxcr0;
802 uint64_t star;
803 uint64_t lstar;
804 uint64_t cstar;
805 uint64_t sfmask;
806 uint64_t kernelgsbase;
807
808 /* Intr state */
809 bool int_window_exit;
810 bool nmi_window_exit;
811 bool evt_pending;
812
813 /* Guest state */
814 struct msr_entry *gmsr;
815 paddr_t gmsr_pa;
816 uint64_t gmsr_misc_enable;
817 uint64_t gcr2;
818 uint64_t gcr8;
819 uint64_t gxcr0;
820 uint64_t gprs[NVMM_X64_NGPR];
821 uint64_t drs[NVMM_X64_NDR];
822 uint64_t gtsc;
823 struct xsave_header gfpu __aligned(64);
824
825 /* VCPU configuration. */
826 bool cpuidpresent[VMX_NCPUIDS];
827 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
828 struct nvmm_vcpu_conf_tpr tpr;
829 };
830
831 static const struct {
832 uint64_t selector;
833 uint64_t attrib;
834 uint64_t limit;
835 uint64_t base;
836 } vmx_guest_segs[NVMM_X64_NSEG] = {
837 [NVMM_X64_SEG_ES] = {
838 VMCS_GUEST_ES_SELECTOR,
839 VMCS_GUEST_ES_ACCESS_RIGHTS,
840 VMCS_GUEST_ES_LIMIT,
841 VMCS_GUEST_ES_BASE
842 },
843 [NVMM_X64_SEG_CS] = {
844 VMCS_GUEST_CS_SELECTOR,
845 VMCS_GUEST_CS_ACCESS_RIGHTS,
846 VMCS_GUEST_CS_LIMIT,
847 VMCS_GUEST_CS_BASE
848 },
849 [NVMM_X64_SEG_SS] = {
850 VMCS_GUEST_SS_SELECTOR,
851 VMCS_GUEST_SS_ACCESS_RIGHTS,
852 VMCS_GUEST_SS_LIMIT,
853 VMCS_GUEST_SS_BASE
854 },
855 [NVMM_X64_SEG_DS] = {
856 VMCS_GUEST_DS_SELECTOR,
857 VMCS_GUEST_DS_ACCESS_RIGHTS,
858 VMCS_GUEST_DS_LIMIT,
859 VMCS_GUEST_DS_BASE
860 },
861 [NVMM_X64_SEG_FS] = {
862 VMCS_GUEST_FS_SELECTOR,
863 VMCS_GUEST_FS_ACCESS_RIGHTS,
864 VMCS_GUEST_FS_LIMIT,
865 VMCS_GUEST_FS_BASE
866 },
867 [NVMM_X64_SEG_GS] = {
868 VMCS_GUEST_GS_SELECTOR,
869 VMCS_GUEST_GS_ACCESS_RIGHTS,
870 VMCS_GUEST_GS_LIMIT,
871 VMCS_GUEST_GS_BASE
872 },
873 [NVMM_X64_SEG_GDT] = {
874 0, /* doesn't exist */
875 0, /* doesn't exist */
876 VMCS_GUEST_GDTR_LIMIT,
877 VMCS_GUEST_GDTR_BASE
878 },
879 [NVMM_X64_SEG_IDT] = {
880 0, /* doesn't exist */
881 0, /* doesn't exist */
882 VMCS_GUEST_IDTR_LIMIT,
883 VMCS_GUEST_IDTR_BASE
884 },
885 [NVMM_X64_SEG_LDT] = {
886 VMCS_GUEST_LDTR_SELECTOR,
887 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
888 VMCS_GUEST_LDTR_LIMIT,
889 VMCS_GUEST_LDTR_BASE
890 },
891 [NVMM_X64_SEG_TR] = {
892 VMCS_GUEST_TR_SELECTOR,
893 VMCS_GUEST_TR_ACCESS_RIGHTS,
894 VMCS_GUEST_TR_LIMIT,
895 VMCS_GUEST_TR_BASE
896 }
897 };
898
899 /* -------------------------------------------------------------------------- */
900
901 static uint64_t
902 vmx_get_revision(void)
903 {
904 uint64_t msr;
905
906 msr = rdmsr(MSR_IA32_VMX_BASIC);
907 msr &= IA32_VMX_BASIC_IDENT;
908
909 return msr;
910 }
911
912 static void
913 vmx_vmclear_ipi(void *arg1, void *arg2)
914 {
915 paddr_t vmcs_pa = (paddr_t)arg1;
916 vmx_vmclear(&vmcs_pa);
917 }
918
919 static void
920 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
921 {
922 uint64_t xc;
923 int bound;
924
925 KASSERT(kpreempt_disabled());
926
927 bound = curlwp_bind();
928 kpreempt_enable();
929
930 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
931 xc_wait(xc);
932
933 kpreempt_disable();
934 curlwp_bindx(bound);
935 }
936
937 static void
938 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
939 {
940 struct vmx_cpudata *cpudata = vcpu->cpudata;
941 struct cpu_info *vmcs_ci;
942
943 cpudata->vmcs_refcnt++;
944 if (cpudata->vmcs_refcnt > 1) {
945 KASSERT(kpreempt_disabled());
946 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
947 return;
948 }
949
950 vmcs_ci = cpudata->vmcs_ci;
951 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
952
953 kpreempt_disable();
954
955 if (vmcs_ci == NULL) {
956 /* This VMCS is loaded for the first time. */
957 vmx_vmclear(&cpudata->vmcs_pa);
958 cpudata->vmcs_launched = false;
959 } else if (vmcs_ci != curcpu()) {
960 /* This VMCS is active on a remote CPU. */
961 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
962 cpudata->vmcs_launched = false;
963 } else {
964 /* This VMCS is active on curcpu, nothing to do. */
965 }
966
967 vmx_vmptrld(&cpudata->vmcs_pa);
968 }
969
970 static void
971 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
972 {
973 struct vmx_cpudata *cpudata = vcpu->cpudata;
974
975 KASSERT(kpreempt_disabled());
976 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
977 KASSERT(cpudata->vmcs_refcnt > 0);
978 cpudata->vmcs_refcnt--;
979
980 if (cpudata->vmcs_refcnt > 0) {
981 return;
982 }
983
984 cpudata->vmcs_ci = curcpu();
985 kpreempt_enable();
986 }
987
988 static void
989 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
990 {
991 struct vmx_cpudata *cpudata = vcpu->cpudata;
992
993 KASSERT(kpreempt_disabled());
994 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
995 KASSERT(cpudata->vmcs_refcnt == 1);
996 cpudata->vmcs_refcnt--;
997
998 vmx_vmclear(&cpudata->vmcs_pa);
999 kpreempt_enable();
1000 }
1001
1002 /* -------------------------------------------------------------------------- */
1003
1004 static void
1005 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1006 {
1007 struct vmx_cpudata *cpudata = vcpu->cpudata;
1008 uint64_t ctls1;
1009
1010 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1011
1012 if (nmi) {
1013 // XXX INT_STATE_NMI?
1014 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1015 cpudata->nmi_window_exit = true;
1016 } else {
1017 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1018 cpudata->int_window_exit = true;
1019 }
1020
1021 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1022 }
1023
1024 static void
1025 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1026 {
1027 struct vmx_cpudata *cpudata = vcpu->cpudata;
1028 uint64_t ctls1;
1029
1030 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1031
1032 if (nmi) {
1033 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1034 cpudata->nmi_window_exit = false;
1035 } else {
1036 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1037 cpudata->int_window_exit = false;
1038 }
1039
1040 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1041 }
1042
1043 static inline bool
1044 vmx_excp_has_rf(uint8_t vector)
1045 {
1046 switch (vector) {
1047 case 1: /* #DB */
1048 case 4: /* #OF */
1049 case 8: /* #DF */
1050 case 18: /* #MC */
1051 return false;
1052 default:
1053 return true;
1054 }
1055 }
1056
1057 static inline int
1058 vmx_excp_has_error(uint8_t vector)
1059 {
1060 switch (vector) {
1061 case 8: /* #DF */
1062 case 10: /* #TS */
1063 case 11: /* #NP */
1064 case 12: /* #SS */
1065 case 13: /* #GP */
1066 case 14: /* #PF */
1067 case 17: /* #AC */
1068 case 30: /* #SX */
1069 return 1;
1070 default:
1071 return 0;
1072 }
1073 }
1074
1075 static int
1076 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1077 {
1078 struct nvmm_comm_page *comm = vcpu->comm;
1079 struct vmx_cpudata *cpudata = vcpu->cpudata;
1080 int type = 0, err = 0, ret = EINVAL;
1081 uint64_t rflags, info, error;
1082 u_int evtype;
1083 uint8_t vector;
1084
1085 evtype = comm->event.type;
1086 vector = comm->event.vector;
1087 error = comm->event.u.excp.error;
1088 __insn_barrier();
1089
1090 vmx_vmcs_enter(vcpu);
1091
1092 switch (evtype) {
1093 case NVMM_VCPU_EVENT_EXCP:
1094 if (vector == 2 || vector >= 32)
1095 goto out;
1096 if (vector == 3 || vector == 0)
1097 goto out;
1098 if (vmx_excp_has_rf(vector)) {
1099 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1100 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1101 }
1102 type = INTR_TYPE_HW_EXC;
1103 err = vmx_excp_has_error(vector);
1104 break;
1105 case NVMM_VCPU_EVENT_INTR:
1106 type = INTR_TYPE_EXT_INT;
1107 if (vector == 2) {
1108 type = INTR_TYPE_NMI;
1109 vmx_event_waitexit_enable(vcpu, true);
1110 }
1111 err = 0;
1112 break;
1113 default:
1114 goto out;
1115 }
1116
1117 info =
1118 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1119 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1120 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1121 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1122 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1123 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1124
1125 cpudata->evt_pending = true;
1126 ret = 0;
1127
1128 out:
1129 vmx_vmcs_leave(vcpu);
1130 return ret;
1131 }
1132
1133 static void
1134 vmx_inject_ud(struct nvmm_cpu *vcpu)
1135 {
1136 struct nvmm_comm_page *comm = vcpu->comm;
1137 int ret __diagused;
1138
1139 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1140 comm->event.vector = 6;
1141 comm->event.u.excp.error = 0;
1142
1143 ret = vmx_vcpu_inject(vcpu);
1144 KASSERT(ret == 0);
1145 }
1146
1147 static void
1148 vmx_inject_gp(struct nvmm_cpu *vcpu)
1149 {
1150 struct nvmm_comm_page *comm = vcpu->comm;
1151 int ret __diagused;
1152
1153 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1154 comm->event.vector = 13;
1155 comm->event.u.excp.error = 0;
1156
1157 ret = vmx_vcpu_inject(vcpu);
1158 KASSERT(ret == 0);
1159 }
1160
1161 static inline int
1162 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1163 {
1164 if (__predict_true(!vcpu->comm->event_commit)) {
1165 return 0;
1166 }
1167 vcpu->comm->event_commit = false;
1168 return vmx_vcpu_inject(vcpu);
1169 }
1170
1171 static inline void
1172 vmx_inkernel_advance(void)
1173 {
1174 uint64_t rip, inslen, intstate, rflags;
1175
1176 /*
1177 * Maybe we should also apply single-stepping and debug exceptions.
1178 * Matters for guest-ring3, because it can execute 'cpuid' under a
1179 * debugger.
1180 */
1181
1182 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1183 rip = vmx_vmread(VMCS_GUEST_RIP);
1184 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1185
1186 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1187 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1188
1189 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1190 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1191 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1192 }
1193
1194 static void
1195 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1196 {
1197 exit->u.inv.hwcode = code;
1198 exit->reason = NVMM_VCPU_EXIT_INVALID;
1199 }
1200
1201 static void
1202 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1203 struct nvmm_vcpu_exit *exit)
1204 {
1205 uint64_t qual;
1206
1207 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1208
1209 if ((qual & INTR_INFO_VALID) == 0) {
1210 goto error;
1211 }
1212 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1213 goto error;
1214 }
1215
1216 exit->reason = NVMM_VCPU_EXIT_NONE;
1217 return;
1218
1219 error:
1220 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1221 }
1222
1223 #define VMX_CPUID_MAX_BASIC 0x16
1224 #define VMX_CPUID_MAX_HYPERVISOR 0x40000010
1225 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1226 static uint32_t vmx_cpuid_max_basic __read_mostly;
1227 static uint32_t vmx_cpuid_max_extended __read_mostly;
1228
1229 static void
1230 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1231 {
1232 u_int descs[4];
1233
1234 x86_cpuid2(eax, ecx, descs);
1235 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1236 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1237 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1238 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1239 }
1240
1241 static void
1242 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1243 uint64_t eax, uint64_t ecx)
1244 {
1245 struct vmx_cpudata *cpudata = vcpu->cpudata;
1246 unsigned int ncpus;
1247 uint64_t cr4;
1248
1249 /*
1250 * `If a value entered for CPUID.EAX is higher than the maximum
1251 * input value for basic or extended function for that
1252 * processor then the dtaa for the highest basic information
1253 * leaf is returned.'
1254 *
1255 * --Intel 64 and IA-32 Architectures Software Developer's
1256 * Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
1257 * Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
1258 * pp. 3-214.
1259 *
1260 * We take the same to hold for the hypervisor range,
1261 * 0x40000000-0x4fffffff.
1262 */
1263 if (eax < 0x40000000) { /* basic CPUID range */
1264 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1265 eax = vmx_cpuid_max_basic;
1266 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1267 }
1268 } else if (eax < 0x80000000) { /* hypervisor CPUID range */
1269 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1270 eax = vmx_cpuid_max_basic;
1271 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1272 }
1273 } else { /* extended CPUID range */
1274 if (__predict_false(eax > vmx_cpuid_max_extended)) {
1275 eax = vmx_cpuid_max_basic;
1276 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1277 }
1278 }
1279
1280 switch (eax) {
1281
1282 /*
1283 * basic CPUID range
1284 */
1285 case 0x00000000:
1286 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1287 break;
1288 case 0x00000001:
1289 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1290
1291 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1292 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1293 CPUID_LOCAL_APIC_ID);
1294
1295 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1296 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1297 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1298 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1299 }
1300
1301 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1302
1303 /* CPUID2_OSXSAVE depends on CR4. */
1304 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1305 if (!(cr4 & CR4_OSXSAVE)) {
1306 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1307 }
1308 break;
1309 case 0x00000002:
1310 break;
1311 case 0x00000003:
1312 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1313 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1314 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1315 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1316 break;
1317 case 0x00000004: /* Deterministic Cache Parameters */
1318 break; /* TODO? */
1319 case 0x00000005: /* MONITOR/MWAIT */
1320 case 0x00000006: /* Thermal and Power Management */
1321 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1322 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1323 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1324 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1325 break;
1326 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1327 switch (ecx) {
1328 case 0:
1329 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1330 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1331 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1332 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1333 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1334 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1335 }
1336 break;
1337 default:
1338 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1339 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1340 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1341 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1342 break;
1343 }
1344 break;
1345 case 0x00000008: /* Empty */
1346 case 0x00000009: /* Direct Cache Access Information */
1347 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1348 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1349 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1350 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1351 break;
1352 case 0x0000000A: /* Architectural Performance Monitoring */
1353 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1354 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1355 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1356 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1357 break;
1358 case 0x0000000B: /* Extended Topology Enumeration */
1359 switch (ecx) {
1360 case 0: /* Threads */
1361 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1362 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1363 cpudata->gprs[NVMM_X64_GPR_RCX] =
1364 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1365 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1366 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1367 break;
1368 case 1: /* Cores */
1369 ncpus = atomic_load_relaxed(&mach->ncpus);
1370 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1371 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1372 cpudata->gprs[NVMM_X64_GPR_RCX] =
1373 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1374 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1375 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1376 break;
1377 default:
1378 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1379 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1380 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1381 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1382 break;
1383 }
1384 break;
1385 case 0x0000000C: /* Empty */
1386 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1387 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1388 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1389 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1390 break;
1391 case 0x0000000D: /* Processor Extended State Enumeration */
1392 if (vmx_xcr0_mask == 0) {
1393 break;
1394 }
1395 switch (ecx) {
1396 case 0:
1397 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1398 if (cpudata->gxcr0 & XCR0_SSE) {
1399 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1400 } else {
1401 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1402 }
1403 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1404 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1405 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1406 break;
1407 case 1:
1408 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1409 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1410 CPUID_PES1_XGETBV);
1411 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1412 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1413 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1414 break;
1415 default:
1416 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1417 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1418 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1419 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1420 break;
1421 }
1422 break;
1423 case 0x0000000E: /* Empty */
1424 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1425 case 0x00000010: /* Intel RDT Allocation Enumeration */
1426 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1427 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1428 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1429 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1430 break;
1431 case 0x00000011: /* Empty */
1432 case 0x00000012: /* Intel SGX Capability Enumeration */
1433 case 0x00000013: /* Empty */
1434 case 0x00000014: /* Intel Processor Trace Enumeration */
1435 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1436 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1437 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1438 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1439 break;
1440 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1441 case 0x00000016: /* Processor Frequency Information */
1442 break;
1443
1444 /*
1445 * hypervisor CPUID range
1446 */
1447 case 0x40000000: /* Hypervisor Information */
1448 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1449 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1450 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1451 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1452 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1453 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1454 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1455 break;
1456 case 0x40000010: /* VMware-style TSC and LAPIC freq */
1457 cpudata->gprs[NVMM_X64_GPR_RAX] = curcpu()->ci_data.cpu_cc_freq / 1000;
1458 if (has_lapic())
1459 cpudata->gprs[NVMM_X64_GPR_RBX] = lapic_per_second / 1000;
1460 else
1461 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1462 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1463 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1464 break;
1465
1466 /*
1467 * extended CPUID range
1468 */
1469 case 0x80000000:
1470 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1471 break;
1472 case 0x80000001:
1473 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1474 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1475 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1476 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1477 break;
1478 case 0x80000002: /* Processor Brand String */
1479 case 0x80000003: /* Processor Brand String */
1480 case 0x80000004: /* Processor Brand String */
1481 case 0x80000005: /* Reserved Zero */
1482 case 0x80000006: /* Cache Information */
1483 break;
1484 case 0x80000007: /* TSC Information */
1485 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1486 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1487 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1488 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1489 break;
1490 case 0x80000008: /* Address Sizes */
1491 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1492 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1493 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1494 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1495 break;
1496
1497 default:
1498 break;
1499 }
1500 }
1501
1502 static void
1503 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1504 {
1505 uint64_t inslen, rip;
1506
1507 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1508 rip = vmx_vmread(VMCS_GUEST_RIP);
1509 exit->u.insn.npc = rip + inslen;
1510 exit->reason = reason;
1511 }
1512
1513 static void
1514 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1515 struct nvmm_vcpu_exit *exit)
1516 {
1517 struct vmx_cpudata *cpudata = vcpu->cpudata;
1518 struct nvmm_vcpu_conf_cpuid *cpuid;
1519 uint64_t eax, ecx;
1520 size_t i;
1521
1522 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1523 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1524 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1525 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1526
1527 for (i = 0; i < VMX_NCPUIDS; i++) {
1528 if (!cpudata->cpuidpresent[i]) {
1529 continue;
1530 }
1531 cpuid = &cpudata->cpuid[i];
1532 if (cpuid->leaf != eax) {
1533 continue;
1534 }
1535
1536 if (cpuid->exit) {
1537 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1538 return;
1539 }
1540 KASSERT(cpuid->mask);
1541
1542 /* del */
1543 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1544 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1545 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1546 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1547
1548 /* set */
1549 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1550 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1551 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1552 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1553
1554 break;
1555 }
1556
1557 vmx_inkernel_advance();
1558 exit->reason = NVMM_VCPU_EXIT_NONE;
1559 }
1560
1561 static void
1562 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1563 struct nvmm_vcpu_exit *exit)
1564 {
1565 struct vmx_cpudata *cpudata = vcpu->cpudata;
1566 uint64_t rflags;
1567
1568 if (cpudata->int_window_exit) {
1569 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1570 if (rflags & PSL_I) {
1571 vmx_event_waitexit_disable(vcpu, false);
1572 }
1573 }
1574
1575 vmx_inkernel_advance();
1576 exit->reason = NVMM_VCPU_EXIT_HALTED;
1577 }
1578
1579 #define VMX_QUAL_CR_NUM __BITS(3,0)
1580 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1581 #define CR_TYPE_WRITE 0
1582 #define CR_TYPE_READ 1
1583 #define CR_TYPE_CLTS 2
1584 #define CR_TYPE_LMSW 3
1585 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1586 #define VMX_QUAL_CR_GPR __BITS(11,8)
1587 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1588
1589 static inline int
1590 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1591 {
1592 /* Bits set to 1 in fixed0 are fixed to 1. */
1593 if ((crval & fixed0) != fixed0) {
1594 return -1;
1595 }
1596 /* Bits set to 0 in fixed1 are fixed to 0. */
1597 if (crval & ~fixed1) {
1598 return -1;
1599 }
1600 return 0;
1601 }
1602
1603 static int
1604 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1605 uint64_t qual)
1606 {
1607 struct vmx_cpudata *cpudata = vcpu->cpudata;
1608 uint64_t type, gpr, oldcr0, realcr0, fakecr0;
1609 uint64_t efer, ctls1;
1610
1611 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1612 if (type != CR_TYPE_WRITE) {
1613 return -1;
1614 }
1615
1616 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1617 KASSERT(gpr < 16);
1618
1619 if (gpr == NVMM_X64_GPR_RSP) {
1620 fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
1621 } else {
1622 fakecr0 = cpudata->gprs[gpr];
1623 }
1624
1625 /*
1626 * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
1627 * actual value in %cr0.
1628 *
1629 * In fakecr0 we must force CR0_ET to 1.
1630 *
1631 * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
1632 * CR0_NE to 1.
1633 */
1634 fakecr0 |= CR0_ET;
1635 realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
1636
1637 if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1638 return -1;
1639 }
1640
1641 /*
1642 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1643 * from CR3.
1644 */
1645
1646 if (realcr0 & CR0_PG) {
1647 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1648 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1649 if (efer & EFER_LME) {
1650 ctls1 |= ENTRY_CTLS_LONG_MODE;
1651 efer |= EFER_LMA;
1652 } else {
1653 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1654 efer &= ~EFER_LMA;
1655 }
1656 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1657 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1658 }
1659
1660 oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
1661 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
1662 if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
1663 cpudata->gtlb_want_flush = true;
1664 }
1665
1666 vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
1667 vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
1668 vmx_inkernel_advance();
1669 return 0;
1670 }
1671
1672 static int
1673 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1674 uint64_t qual)
1675 {
1676 struct vmx_cpudata *cpudata = vcpu->cpudata;
1677 uint64_t type, gpr, oldcr4, cr4;
1678
1679 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1680 if (type != CR_TYPE_WRITE) {
1681 return -1;
1682 }
1683
1684 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1685 KASSERT(gpr < 16);
1686
1687 if (gpr == NVMM_X64_GPR_RSP) {
1688 gpr = vmx_vmread(VMCS_GUEST_RSP);
1689 } else {
1690 gpr = cpudata->gprs[gpr];
1691 }
1692
1693 if (gpr & CR4_INVALID) {
1694 return -1;
1695 }
1696 cr4 = gpr | CR4_VMXE;
1697 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1698 return -1;
1699 }
1700
1701 oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1702 if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1703 cpudata->gtlb_want_flush = true;
1704 }
1705
1706 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1707 vmx_inkernel_advance();
1708 return 0;
1709 }
1710
1711 static int
1712 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1713 uint64_t qual, struct nvmm_vcpu_exit *exit)
1714 {
1715 struct vmx_cpudata *cpudata = vcpu->cpudata;
1716 uint64_t type, gpr;
1717 bool write;
1718
1719 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1720 if (type == CR_TYPE_WRITE) {
1721 write = true;
1722 } else if (type == CR_TYPE_READ) {
1723 write = false;
1724 } else {
1725 return -1;
1726 }
1727
1728 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1729 KASSERT(gpr < 16);
1730
1731 if (write) {
1732 if (gpr == NVMM_X64_GPR_RSP) {
1733 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1734 } else {
1735 cpudata->gcr8 = cpudata->gprs[gpr];
1736 }
1737 if (cpudata->tpr.exit_changed) {
1738 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1739 }
1740 } else {
1741 if (gpr == NVMM_X64_GPR_RSP) {
1742 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1743 } else {
1744 cpudata->gprs[gpr] = cpudata->gcr8;
1745 }
1746 }
1747
1748 vmx_inkernel_advance();
1749 return 0;
1750 }
1751
1752 static void
1753 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1754 struct nvmm_vcpu_exit *exit)
1755 {
1756 uint64_t qual;
1757 int ret;
1758
1759 exit->reason = NVMM_VCPU_EXIT_NONE;
1760
1761 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1762
1763 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1764 case 0:
1765 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1766 break;
1767 case 4:
1768 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1769 break;
1770 case 8:
1771 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1772 break;
1773 default:
1774 ret = -1;
1775 break;
1776 }
1777
1778 if (ret == -1) {
1779 vmx_inject_gp(vcpu);
1780 }
1781 }
1782
1783 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1784 #define IO_SIZE_8 0
1785 #define IO_SIZE_16 1
1786 #define IO_SIZE_32 3
1787 #define VMX_QUAL_IO_IN __BIT(3)
1788 #define VMX_QUAL_IO_STR __BIT(4)
1789 #define VMX_QUAL_IO_REP __BIT(5)
1790 #define VMX_QUAL_IO_DX __BIT(6)
1791 #define VMX_QUAL_IO_PORT __BITS(31,16)
1792
1793 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1794 #define IO_ADRSIZE_16 0
1795 #define IO_ADRSIZE_32 1
1796 #define IO_ADRSIZE_64 2
1797 #define VMX_INFO_IO_SEG __BITS(17,15)
1798
1799 static void
1800 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1801 struct nvmm_vcpu_exit *exit)
1802 {
1803 uint64_t qual, info, inslen, rip;
1804
1805 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1806 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1807
1808 exit->reason = NVMM_VCPU_EXIT_IO;
1809
1810 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1811 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1812
1813 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1814 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1815
1816 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1817 exit->u.io.address_size = 8;
1818 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1819 exit->u.io.address_size = 4;
1820 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1821 exit->u.io.address_size = 2;
1822 }
1823
1824 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1825 exit->u.io.operand_size = 4;
1826 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1827 exit->u.io.operand_size = 2;
1828 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1829 exit->u.io.operand_size = 1;
1830 }
1831
1832 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1833 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1834
1835 if (exit->u.io.in && exit->u.io.str) {
1836 exit->u.io.seg = NVMM_X64_SEG_ES;
1837 }
1838
1839 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1840 rip = vmx_vmread(VMCS_GUEST_RIP);
1841 exit->u.io.npc = rip + inslen;
1842
1843 vmx_vcpu_state_provide(vcpu,
1844 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1845 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1846 }
1847
1848 static const uint64_t msr_ignore_list[] = {
1849 MSR_BIOS_SIGN,
1850 MSR_IA32_PLATFORM_ID
1851 };
1852
1853 static bool
1854 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1855 struct nvmm_vcpu_exit *exit)
1856 {
1857 struct vmx_cpudata *cpudata = vcpu->cpudata;
1858 uint64_t val;
1859 size_t i;
1860
1861 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1862 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1863 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1864 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1865 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1866 goto handled;
1867 }
1868 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1869 val = cpudata->gmsr_misc_enable;
1870 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1871 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1872 goto handled;
1873 }
1874 if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1875 u_int descs[4];
1876 if (cpuid_level < 7) {
1877 goto error;
1878 }
1879 x86_cpuid(7, descs);
1880 if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
1881 goto error;
1882 }
1883 val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1884 val &= (IA32_ARCH_RDCL_NO |
1885 IA32_ARCH_SSB_NO |
1886 IA32_ARCH_MDS_NO |
1887 IA32_ARCH_TAA_NO);
1888 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1889 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1890 goto handled;
1891 }
1892 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1893 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1894 continue;
1895 val = 0;
1896 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1897 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1898 goto handled;
1899 }
1900 } else {
1901 if (exit->u.wrmsr.msr == MSR_TSC) {
1902 cpudata->gtsc = exit->u.wrmsr.val;
1903 cpudata->gtsc_want_update = true;
1904 goto handled;
1905 }
1906 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1907 val = exit->u.wrmsr.val;
1908 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1909 goto error;
1910 }
1911 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1912 goto handled;
1913 }
1914 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1915 /* Don't care. */
1916 goto handled;
1917 }
1918 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1919 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1920 continue;
1921 goto handled;
1922 }
1923 }
1924
1925 return false;
1926
1927 handled:
1928 vmx_inkernel_advance();
1929 return true;
1930
1931 error:
1932 vmx_inject_gp(vcpu);
1933 return true;
1934 }
1935
1936 static void
1937 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1938 struct nvmm_vcpu_exit *exit)
1939 {
1940 struct vmx_cpudata *cpudata = vcpu->cpudata;
1941 uint64_t inslen, rip;
1942
1943 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1944 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1945
1946 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1947 exit->reason = NVMM_VCPU_EXIT_NONE;
1948 return;
1949 }
1950
1951 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1952 rip = vmx_vmread(VMCS_GUEST_RIP);
1953 exit->u.rdmsr.npc = rip + inslen;
1954
1955 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1956 }
1957
1958 static void
1959 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1960 struct nvmm_vcpu_exit *exit)
1961 {
1962 struct vmx_cpudata *cpudata = vcpu->cpudata;
1963 uint64_t rdx, rax, inslen, rip;
1964
1965 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1966 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1967
1968 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1969 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1970 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1971
1972 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1973 exit->reason = NVMM_VCPU_EXIT_NONE;
1974 return;
1975 }
1976
1977 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1978 rip = vmx_vmread(VMCS_GUEST_RIP);
1979 exit->u.wrmsr.npc = rip + inslen;
1980
1981 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1982 }
1983
1984 static void
1985 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1986 struct nvmm_vcpu_exit *exit)
1987 {
1988 struct vmx_cpudata *cpudata = vcpu->cpudata;
1989 uint64_t val;
1990
1991 exit->reason = NVMM_VCPU_EXIT_NONE;
1992
1993 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1994 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1995
1996 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1997 goto error;
1998 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1999 goto error;
2000 } else if (__predict_false((val & XCR0_X87) == 0)) {
2001 goto error;
2002 }
2003
2004 cpudata->gxcr0 = val;
2005
2006 vmx_inkernel_advance();
2007 return;
2008
2009 error:
2010 vmx_inject_gp(vcpu);
2011 }
2012
2013 #define VMX_EPT_VIOLATION_READ __BIT(0)
2014 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
2015 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
2016
2017 static void
2018 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2019 struct nvmm_vcpu_exit *exit)
2020 {
2021 uint64_t perm;
2022 gpaddr_t gpa;
2023
2024 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
2025
2026 exit->reason = NVMM_VCPU_EXIT_MEMORY;
2027 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
2028 if (perm & VMX_EPT_VIOLATION_WRITE)
2029 exit->u.mem.prot = PROT_WRITE;
2030 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
2031 exit->u.mem.prot = PROT_EXEC;
2032 else
2033 exit->u.mem.prot = PROT_READ;
2034 exit->u.mem.gpa = gpa;
2035 exit->u.mem.inst_len = 0;
2036
2037 vmx_vcpu_state_provide(vcpu,
2038 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2039 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2040 }
2041
2042 /* -------------------------------------------------------------------------- */
2043
2044 static void
2045 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2046 {
2047 struct vmx_cpudata *cpudata = vcpu->cpudata;
2048
2049 fpu_kern_enter();
2050 /* TODO: should we use *XSAVE64 here? */
2051 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask, false);
2052
2053 if (vmx_xcr0_mask != 0) {
2054 cpudata->hxcr0 = rdxcr(0);
2055 wrxcr(0, cpudata->gxcr0);
2056 }
2057 }
2058
2059 static void
2060 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2061 {
2062 struct vmx_cpudata *cpudata = vcpu->cpudata;
2063
2064 if (vmx_xcr0_mask != 0) {
2065 cpudata->gxcr0 = rdxcr(0);
2066 wrxcr(0, cpudata->hxcr0);
2067 }
2068
2069 /* TODO: should we use *XSAVE64 here? */
2070 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask, false);
2071 fpu_kern_leave();
2072 }
2073
2074 static void
2075 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2076 {
2077 struct vmx_cpudata *cpudata = vcpu->cpudata;
2078
2079 x86_dbregs_save(curlwp);
2080
2081 ldr7(0);
2082
2083 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
2084 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
2085 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
2086 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
2087 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
2088 }
2089
2090 static void
2091 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2092 {
2093 struct vmx_cpudata *cpudata = vcpu->cpudata;
2094
2095 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
2096 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
2097 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
2098 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
2099 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
2100
2101 x86_dbregs_restore(curlwp);
2102 }
2103
2104 static void
2105 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2106 {
2107 struct vmx_cpudata *cpudata = vcpu->cpudata;
2108
2109 /* This gets restored automatically by the CPU. */
2110 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
2111 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2112 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
2113 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
2114
2115 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2116 }
2117
2118 static void
2119 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2120 {
2121 struct vmx_cpudata *cpudata = vcpu->cpudata;
2122
2123 wrmsr(MSR_STAR, cpudata->star);
2124 wrmsr(MSR_LSTAR, cpudata->lstar);
2125 wrmsr(MSR_CSTAR, cpudata->cstar);
2126 wrmsr(MSR_SFMASK, cpudata->sfmask);
2127 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
2128 }
2129
2130 /* -------------------------------------------------------------------------- */
2131
2132 #define VMX_INVVPID_ADDRESS 0
2133 #define VMX_INVVPID_CONTEXT 1
2134 #define VMX_INVVPID_ALL 2
2135 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
2136
2137 #define VMX_INVEPT_CONTEXT 1
2138 #define VMX_INVEPT_ALL 2
2139
2140 static inline void
2141 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2142 {
2143 struct vmx_cpudata *cpudata = vcpu->cpudata;
2144
2145 if (vcpu->hcpu_last != hcpu) {
2146 cpudata->gtlb_want_flush = true;
2147 }
2148 }
2149
2150 static inline void
2151 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2152 {
2153 struct vmx_cpudata *cpudata = vcpu->cpudata;
2154 struct ept_desc ept_desc;
2155
2156 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
2157 return;
2158 }
2159
2160 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2161 ept_desc.mbz = 0;
2162 vmx_invept(vmx_ept_flush_op, &ept_desc);
2163 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
2164 }
2165
2166 static inline uint64_t
2167 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
2168 {
2169 struct ept_desc ept_desc;
2170 uint64_t machgen;
2171
2172 machgen = machdata->mach_htlb_gen;
2173 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2174 return machgen;
2175 }
2176
2177 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
2178
2179 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2180 ept_desc.mbz = 0;
2181 vmx_invept(vmx_ept_flush_op, &ept_desc);
2182
2183 return machgen;
2184 }
2185
2186 static inline void
2187 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2188 {
2189 cpudata->vcpu_htlb_gen = machgen;
2190 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2191 }
2192
2193 static inline void
2194 vmx_exit_evt(struct vmx_cpudata *cpudata)
2195 {
2196 uint64_t info, err, inslen;
2197
2198 cpudata->evt_pending = false;
2199
2200 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2201 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2202 return;
2203 }
2204 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2205
2206 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2207 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2208
2209 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2210 case INTR_TYPE_SW_INT:
2211 case INTR_TYPE_PRIV_SW_EXC:
2212 case INTR_TYPE_SW_EXC:
2213 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2214 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2215 }
2216
2217 cpudata->evt_pending = true;
2218 }
2219
2220 static int
2221 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2222 struct nvmm_vcpu_exit *exit)
2223 {
2224 struct nvmm_comm_page *comm = vcpu->comm;
2225 struct vmx_machdata *machdata = mach->machdata;
2226 struct vmx_cpudata *cpudata = vcpu->cpudata;
2227 struct vpid_desc vpid_desc;
2228 struct cpu_info *ci;
2229 uint64_t exitcode;
2230 uint64_t intstate;
2231 uint64_t machgen;
2232 int hcpu, ret;
2233 bool launched;
2234
2235 vmx_vmcs_enter(vcpu);
2236
2237 vmx_vcpu_state_commit(vcpu);
2238 comm->state_cached = 0;
2239
2240 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2241 vmx_vmcs_leave(vcpu);
2242 return EINVAL;
2243 }
2244
2245 ci = curcpu();
2246 hcpu = cpu_number();
2247 launched = cpudata->vmcs_launched;
2248
2249 vmx_gtlb_catchup(vcpu, hcpu);
2250 vmx_htlb_catchup(vcpu, hcpu);
2251
2252 if (vcpu->hcpu_last != hcpu) {
2253 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2254 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2255 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2256 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2257 cpudata->gtsc_want_update = true;
2258 vcpu->hcpu_last = hcpu;
2259 }
2260
2261 vmx_vcpu_guest_dbregs_enter(vcpu);
2262 vmx_vcpu_guest_misc_enter(vcpu);
2263
2264 while (1) {
2265 if (cpudata->gtlb_want_flush) {
2266 vpid_desc.vpid = cpudata->asid;
2267 vpid_desc.addr = 0;
2268 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2269 cpudata->gtlb_want_flush = false;
2270 }
2271
2272 if (__predict_false(cpudata->gtsc_want_update)) {
2273 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2274 cpudata->gtsc_want_update = false;
2275 }
2276
2277 vmx_vcpu_guest_fpu_enter(vcpu);
2278 vmx_cli();
2279 machgen = vmx_htlb_flush(machdata, cpudata);
2280 lcr2(cpudata->gcr2);
2281 if (launched) {
2282 ret = vmx_vmresume(cpudata->gprs);
2283 } else {
2284 ret = vmx_vmlaunch(cpudata->gprs);
2285 }
2286 cpudata->gcr2 = rcr2();
2287 vmx_htlb_flush_ack(cpudata, machgen);
2288 vmx_sti();
2289 vmx_vcpu_guest_fpu_leave(vcpu);
2290
2291 if (__predict_false(ret != 0)) {
2292 vmx_exit_invalid(exit, -1);
2293 break;
2294 }
2295 vmx_exit_evt(cpudata);
2296
2297 launched = true;
2298
2299 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2300 exitcode &= __BITS(15,0);
2301
2302 switch (exitcode) {
2303 case VMCS_EXITCODE_EXC_NMI:
2304 vmx_exit_exc_nmi(mach, vcpu, exit);
2305 break;
2306 case VMCS_EXITCODE_EXT_INT:
2307 exit->reason = NVMM_VCPU_EXIT_NONE;
2308 break;
2309 case VMCS_EXITCODE_CPUID:
2310 vmx_exit_cpuid(mach, vcpu, exit);
2311 break;
2312 case VMCS_EXITCODE_HLT:
2313 vmx_exit_hlt(mach, vcpu, exit);
2314 break;
2315 case VMCS_EXITCODE_CR:
2316 vmx_exit_cr(mach, vcpu, exit);
2317 break;
2318 case VMCS_EXITCODE_IO:
2319 vmx_exit_io(mach, vcpu, exit);
2320 break;
2321 case VMCS_EXITCODE_RDMSR:
2322 vmx_exit_rdmsr(mach, vcpu, exit);
2323 break;
2324 case VMCS_EXITCODE_WRMSR:
2325 vmx_exit_wrmsr(mach, vcpu, exit);
2326 break;
2327 case VMCS_EXITCODE_SHUTDOWN:
2328 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2329 break;
2330 case VMCS_EXITCODE_MONITOR:
2331 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2332 break;
2333 case VMCS_EXITCODE_MWAIT:
2334 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2335 break;
2336 case VMCS_EXITCODE_XSETBV:
2337 vmx_exit_xsetbv(mach, vcpu, exit);
2338 break;
2339 case VMCS_EXITCODE_RDPMC:
2340 case VMCS_EXITCODE_RDTSCP:
2341 case VMCS_EXITCODE_INVVPID:
2342 case VMCS_EXITCODE_INVEPT:
2343 case VMCS_EXITCODE_VMCALL:
2344 case VMCS_EXITCODE_VMCLEAR:
2345 case VMCS_EXITCODE_VMLAUNCH:
2346 case VMCS_EXITCODE_VMPTRLD:
2347 case VMCS_EXITCODE_VMPTRST:
2348 case VMCS_EXITCODE_VMREAD:
2349 case VMCS_EXITCODE_VMRESUME:
2350 case VMCS_EXITCODE_VMWRITE:
2351 case VMCS_EXITCODE_VMXOFF:
2352 case VMCS_EXITCODE_VMXON:
2353 vmx_inject_ud(vcpu);
2354 exit->reason = NVMM_VCPU_EXIT_NONE;
2355 break;
2356 case VMCS_EXITCODE_EPT_VIOLATION:
2357 vmx_exit_epf(mach, vcpu, exit);
2358 break;
2359 case VMCS_EXITCODE_INT_WINDOW:
2360 vmx_event_waitexit_disable(vcpu, false);
2361 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2362 break;
2363 case VMCS_EXITCODE_NMI_WINDOW:
2364 vmx_event_waitexit_disable(vcpu, true);
2365 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2366 break;
2367 default:
2368 vmx_exit_invalid(exit, exitcode);
2369 break;
2370 }
2371
2372 /* If no reason to return to userland, keep rolling. */
2373 if (nvmm_return_needed(vcpu, exit)) {
2374 break;
2375 }
2376 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2377 break;
2378 }
2379 }
2380
2381 cpudata->vmcs_launched = launched;
2382
2383 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2384
2385 vmx_vcpu_guest_misc_leave(vcpu);
2386 vmx_vcpu_guest_dbregs_leave(vcpu);
2387
2388 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2389 exit->exitstate.cr8 = cpudata->gcr8;
2390 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2391 exit->exitstate.int_shadow =
2392 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2393 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2394 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2395 exit->exitstate.evt_pending = cpudata->evt_pending;
2396
2397 vmx_vmcs_leave(vcpu);
2398
2399 return 0;
2400 }
2401
2402 /* -------------------------------------------------------------------------- */
2403
2404 static int
2405 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2406 {
2407 struct pglist pglist;
2408 paddr_t _pa;
2409 vaddr_t _va;
2410 size_t i;
2411 int ret;
2412
2413 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2414 &pglist, 1, 0);
2415 if (ret != 0)
2416 return ENOMEM;
2417 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2418 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2419 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2420 if (_va == 0)
2421 goto error;
2422
2423 for (i = 0; i < npages; i++) {
2424 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2425 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2426 }
2427 pmap_update(pmap_kernel());
2428
2429 memset((void *)_va, 0, npages * PAGE_SIZE);
2430
2431 *pa = _pa;
2432 *va = _va;
2433 return 0;
2434
2435 error:
2436 for (i = 0; i < npages; i++) {
2437 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2438 }
2439 return ENOMEM;
2440 }
2441
2442 static void
2443 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2444 {
2445 size_t i;
2446
2447 pmap_kremove(va, npages * PAGE_SIZE);
2448 pmap_update(pmap_kernel());
2449 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2450 for (i = 0; i < npages; i++) {
2451 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2452 }
2453 }
2454
2455 /* -------------------------------------------------------------------------- */
2456
2457 static void
2458 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2459 {
2460 uint64_t byte;
2461 uint8_t bitoff;
2462
2463 if (msr < 0x00002000) {
2464 /* Range 1 */
2465 byte = ((msr - 0x00000000) / 8) + 0;
2466 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2467 /* Range 2 */
2468 byte = ((msr - 0xC0000000) / 8) + 1024;
2469 } else {
2470 panic("%s: wrong range", __func__);
2471 }
2472
2473 bitoff = (msr & 0x7);
2474
2475 if (read) {
2476 bitmap[byte] &= ~__BIT(bitoff);
2477 }
2478 if (write) {
2479 bitmap[2048 + byte] &= ~__BIT(bitoff);
2480 }
2481 }
2482
2483 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2484 #define VMX_SEG_ATTRIB_S __BIT(4)
2485 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2486 #define VMX_SEG_ATTRIB_P __BIT(7)
2487 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2488 #define VMX_SEG_ATTRIB_L __BIT(13)
2489 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2490 #define VMX_SEG_ATTRIB_G __BIT(15)
2491 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2492
2493 static void
2494 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2495 {
2496 uint64_t attrib;
2497
2498 attrib =
2499 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2500 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2501 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2502 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2503 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2504 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2505 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2506 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2507 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2508
2509 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2510 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2511 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2512 }
2513 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2514 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2515 }
2516
2517 static void
2518 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2519 {
2520 uint64_t selector = 0, attrib = 0, base, limit;
2521
2522 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2523 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2524 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2525 }
2526 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2527 base = vmx_vmread(vmx_guest_segs[idx].base);
2528
2529 segs[idx].selector = selector;
2530 segs[idx].limit = limit;
2531 segs[idx].base = base;
2532 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2533 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2534 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2535 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2536 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2537 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2538 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2539 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2540 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2541 segs[idx].attrib.p = 0;
2542 }
2543 }
2544
2545 static inline bool
2546 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2547 {
2548 uint64_t cr0, cr3, cr4, efer;
2549
2550 if (flags & NVMM_X64_STATE_CRS) {
2551 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2552 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2553 return true;
2554 }
2555 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2556 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2557 return true;
2558 }
2559 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2560 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2561 return true;
2562 }
2563 }
2564
2565 if (flags & NVMM_X64_STATE_MSRS) {
2566 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2567 if ((efer ^
2568 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2569 return true;
2570 }
2571 }
2572
2573 return false;
2574 }
2575
2576 static void
2577 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2578 {
2579 struct nvmm_comm_page *comm = vcpu->comm;
2580 const struct nvmm_x64_state *state = &comm->state;
2581 struct vmx_cpudata *cpudata = vcpu->cpudata;
2582 struct fxsave *fpustate;
2583 uint64_t ctls1, intstate;
2584 uint64_t flags;
2585
2586 flags = comm->state_wanted;
2587
2588 vmx_vmcs_enter(vcpu);
2589
2590 if (vmx_state_tlb_flush(state, flags)) {
2591 cpudata->gtlb_want_flush = true;
2592 }
2593
2594 if (flags & NVMM_X64_STATE_SEGS) {
2595 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2596 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2597 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2598 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2599 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2600 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2601 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2602 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2603 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2604 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2605 }
2606
2607 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2608 if (flags & NVMM_X64_STATE_GPRS) {
2609 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2610
2611 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2612 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2613 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2614 }
2615
2616 if (flags & NVMM_X64_STATE_CRS) {
2617 /*
2618 * CR0_ET must be 1 both in the shadow and the real register.
2619 * CR0_NE must be 1 in the real register.
2620 * CR0_NW and CR0_CD must be 0 in the real register.
2621 */
2622 vmx_vmwrite(VMCS_CR0_SHADOW,
2623 (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
2624 CR0_ET);
2625 vmx_vmwrite(VMCS_GUEST_CR0,
2626 (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
2627 CR0_ET | CR0_NE);
2628
2629 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2630
2631 /* XXX We are not handling PDPTE here. */
2632 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
2633
2634 /* CR4_VMXE is mandatory. */
2635 vmx_vmwrite(VMCS_GUEST_CR4,
2636 (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2637
2638 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2639
2640 if (vmx_xcr0_mask != 0) {
2641 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2642 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2643 cpudata->gxcr0 &= vmx_xcr0_mask;
2644 cpudata->gxcr0 |= XCR0_X87;
2645 }
2646 }
2647
2648 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2649 if (flags & NVMM_X64_STATE_DRS) {
2650 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2651
2652 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2653 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2654 }
2655
2656 if (flags & NVMM_X64_STATE_MSRS) {
2657 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2658 state->msrs[NVMM_X64_MSR_STAR];
2659 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2660 state->msrs[NVMM_X64_MSR_LSTAR];
2661 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2662 state->msrs[NVMM_X64_MSR_CSTAR];
2663 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2664 state->msrs[NVMM_X64_MSR_SFMASK];
2665 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2666 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2667
2668 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2669 state->msrs[NVMM_X64_MSR_EFER]);
2670 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2671 state->msrs[NVMM_X64_MSR_PAT]);
2672 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2673 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2674 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2675 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2676 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2677 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2678
2679 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2680 cpudata->gtsc_want_update = true;
2681
2682 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2683 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2684 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2685 ctls1 |= ENTRY_CTLS_LONG_MODE;
2686 } else {
2687 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2688 }
2689 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2690 }
2691
2692 if (flags & NVMM_X64_STATE_INTR) {
2693 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2694 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2695 if (state->intr.int_shadow) {
2696 intstate |= INT_STATE_MOVSS;
2697 }
2698 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2699
2700 if (state->intr.int_window_exiting) {
2701 vmx_event_waitexit_enable(vcpu, false);
2702 } else {
2703 vmx_event_waitexit_disable(vcpu, false);
2704 }
2705
2706 if (state->intr.nmi_window_exiting) {
2707 vmx_event_waitexit_enable(vcpu, true);
2708 } else {
2709 vmx_event_waitexit_disable(vcpu, true);
2710 }
2711 }
2712
2713 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2714 if (flags & NVMM_X64_STATE_FPU) {
2715 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2716 sizeof(state->fpu));
2717
2718 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2719 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2720 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2721
2722 if (vmx_xcr0_mask != 0) {
2723 /* Reset XSTATE_BV, to force a reload. */
2724 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2725 }
2726 }
2727
2728 vmx_vmcs_leave(vcpu);
2729
2730 comm->state_wanted = 0;
2731 comm->state_cached |= flags;
2732 }
2733
2734 static void
2735 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2736 {
2737 struct nvmm_comm_page *comm = vcpu->comm;
2738 struct nvmm_x64_state *state = &comm->state;
2739 struct vmx_cpudata *cpudata = vcpu->cpudata;
2740 uint64_t intstate, flags;
2741
2742 flags = comm->state_wanted;
2743
2744 vmx_vmcs_enter(vcpu);
2745
2746 if (flags & NVMM_X64_STATE_SEGS) {
2747 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2748 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2749 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2750 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2751 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2752 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2753 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2754 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2755 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2756 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2757 }
2758
2759 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2760 if (flags & NVMM_X64_STATE_GPRS) {
2761 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2762
2763 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2764 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2765 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2766 }
2767
2768 if (flags & NVMM_X64_STATE_CRS) {
2769 state->crs[NVMM_X64_CR_CR0] =
2770 (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
2771 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
2772 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2773 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2774 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2775 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2776 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2777
2778 /* Hide VMXE. */
2779 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2780 }
2781
2782 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2783 if (flags & NVMM_X64_STATE_DRS) {
2784 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2785
2786 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2787 }
2788
2789 if (flags & NVMM_X64_STATE_MSRS) {
2790 state->msrs[NVMM_X64_MSR_STAR] =
2791 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2792 state->msrs[NVMM_X64_MSR_LSTAR] =
2793 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2794 state->msrs[NVMM_X64_MSR_CSTAR] =
2795 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2796 state->msrs[NVMM_X64_MSR_SFMASK] =
2797 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2798 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2799 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2800 state->msrs[NVMM_X64_MSR_EFER] =
2801 vmx_vmread(VMCS_GUEST_IA32_EFER);
2802 state->msrs[NVMM_X64_MSR_PAT] =
2803 vmx_vmread(VMCS_GUEST_IA32_PAT);
2804 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2805 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2806 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2807 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2808 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2809 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2810 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2811 }
2812
2813 if (flags & NVMM_X64_STATE_INTR) {
2814 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2815 state->intr.int_shadow =
2816 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2817 state->intr.int_window_exiting = cpudata->int_window_exit;
2818 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2819 state->intr.evt_pending = cpudata->evt_pending;
2820 }
2821
2822 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2823 if (flags & NVMM_X64_STATE_FPU) {
2824 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2825 sizeof(state->fpu));
2826 }
2827
2828 vmx_vmcs_leave(vcpu);
2829
2830 comm->state_wanted = 0;
2831 comm->state_cached |= flags;
2832 }
2833
2834 static void
2835 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2836 {
2837 vcpu->comm->state_wanted = flags;
2838 vmx_vcpu_getstate(vcpu);
2839 }
2840
2841 static void
2842 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2843 {
2844 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2845 vcpu->comm->state_commit = 0;
2846 vmx_vcpu_setstate(vcpu);
2847 }
2848
2849 /* -------------------------------------------------------------------------- */
2850
2851 static void
2852 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2853 {
2854 struct vmx_cpudata *cpudata = vcpu->cpudata;
2855 size_t i, oct, bit;
2856
2857 mutex_enter(&vmx_asidlock);
2858
2859 for (i = 0; i < vmx_maxasid; i++) {
2860 oct = i / 8;
2861 bit = i % 8;
2862
2863 if (vmx_asidmap[oct] & __BIT(bit)) {
2864 continue;
2865 }
2866
2867 cpudata->asid = i;
2868
2869 vmx_asidmap[oct] |= __BIT(bit);
2870 vmx_vmwrite(VMCS_VPID, i);
2871 mutex_exit(&vmx_asidlock);
2872 return;
2873 }
2874
2875 mutex_exit(&vmx_asidlock);
2876
2877 panic("%s: impossible", __func__);
2878 }
2879
2880 static void
2881 vmx_asid_free(struct nvmm_cpu *vcpu)
2882 {
2883 size_t oct, bit;
2884 uint64_t asid;
2885
2886 asid = vmx_vmread(VMCS_VPID);
2887
2888 oct = asid / 8;
2889 bit = asid % 8;
2890
2891 mutex_enter(&vmx_asidlock);
2892 vmx_asidmap[oct] &= ~__BIT(bit);
2893 mutex_exit(&vmx_asidlock);
2894 }
2895
2896 static void
2897 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2898 {
2899 struct vmx_cpudata *cpudata = vcpu->cpudata;
2900 struct vmcs *vmcs = cpudata->vmcs;
2901 struct msr_entry *gmsr = cpudata->gmsr;
2902 extern uint8_t vmx_resume_rip;
2903 uint64_t rev, eptp;
2904
2905 rev = vmx_get_revision();
2906
2907 memset(vmcs, 0, VMCS_SIZE);
2908 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2909 vmcs->abort = 0;
2910
2911 vmx_vmcs_enter(vcpu);
2912
2913 /* No link pointer. */
2914 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2915
2916 /* Install the CTLSs. */
2917 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2918 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2919 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2920 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2921 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2922
2923 /* Allow direct access to certain MSRs. */
2924 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2925 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2926 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2927 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2928 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2929 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2930 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2931 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2932 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2933 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2934 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2935 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2936 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2937 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2938
2939 /*
2940 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2941 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2942 */
2943 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2944 gmsr[VMX_MSRLIST_STAR].val = 0;
2945 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2946 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2947 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2948 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2949 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2950 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2951 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2952 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2953 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2954 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2955 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2956 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2957 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2958 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2959
2960 /* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
2961 vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
2962
2963 /* Force unsupported CR4 fields to zero. */
2964 vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
2965 vmx_vmwrite(VMCS_CR4_SHADOW, 0);
2966
2967 /* Set the Host state for resuming. */
2968 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2969 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2970 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2971 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2972 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2973 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2974 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2975 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2976 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2977 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2978 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2979 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2980 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2981
2982 /* Generate ASID. */
2983 vmx_asid_alloc(vcpu);
2984
2985 /* Enable Extended Paging, 4-Level. */
2986 eptp =
2987 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2988 __SHIFTIN(4-1, EPTP_WALKLEN) |
2989 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2990 mach->vm->vm_map.pmap->pm_pdirpa[0];
2991 vmx_vmwrite(VMCS_EPTP, eptp);
2992
2993 /* Init IA32_MISC_ENABLE. */
2994 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2995 cpudata->gmsr_misc_enable &=
2996 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2997 cpudata->gmsr_misc_enable |=
2998 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2999
3000 /* Init XSAVE header. */
3001 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
3002 cpudata->gfpu.xsh_xcomp_bv = 0;
3003
3004 /* These MSRs are static. */
3005 cpudata->star = rdmsr(MSR_STAR);
3006 cpudata->lstar = rdmsr(MSR_LSTAR);
3007 cpudata->cstar = rdmsr(MSR_CSTAR);
3008 cpudata->sfmask = rdmsr(MSR_SFMASK);
3009
3010 /* Install the RESET state. */
3011 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
3012 sizeof(nvmm_x86_reset_state));
3013 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
3014 vcpu->comm->state_cached = 0;
3015 vmx_vcpu_setstate(vcpu);
3016
3017 vmx_vmcs_leave(vcpu);
3018 }
3019
3020 static int
3021 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3022 {
3023 struct vmx_cpudata *cpudata;
3024 int error;
3025
3026 /* Allocate the VMX cpudata. */
3027 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
3028 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
3029 UVM_KMF_WIRED|UVM_KMF_ZERO);
3030 vcpu->cpudata = cpudata;
3031
3032 /* VMCS */
3033 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
3034 VMCS_NPAGES);
3035 if (error)
3036 goto error;
3037
3038 /* MSR Bitmap */
3039 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
3040 MSRBM_NPAGES);
3041 if (error)
3042 goto error;
3043
3044 /* Guest MSR List */
3045 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
3046 if (error)
3047 goto error;
3048
3049 kcpuset_create(&cpudata->htlb_want_flush, true);
3050
3051 /* Init the VCPU info. */
3052 vmx_vcpu_init(mach, vcpu);
3053
3054 return 0;
3055
3056 error:
3057 if (cpudata->vmcs_pa) {
3058 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3059 VMCS_NPAGES);
3060 }
3061 if (cpudata->msrbm_pa) {
3062 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3063 MSRBM_NPAGES);
3064 }
3065 if (cpudata->gmsr_pa) {
3066 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3067 }
3068
3069 kmem_free(cpudata, sizeof(*cpudata));
3070 return error;
3071 }
3072
3073 static void
3074 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3075 {
3076 struct vmx_cpudata *cpudata = vcpu->cpudata;
3077
3078 vmx_vmcs_enter(vcpu);
3079 vmx_asid_free(vcpu);
3080 vmx_vmcs_destroy(vcpu);
3081
3082 kcpuset_destroy(cpudata->htlb_want_flush);
3083
3084 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
3085 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
3086 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3087 uvm_km_free(kernel_map, (vaddr_t)cpudata,
3088 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3089 }
3090
3091 /* -------------------------------------------------------------------------- */
3092
3093 static int
3094 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3095 {
3096 struct nvmm_vcpu_conf_cpuid *cpuid = data;
3097 size_t i;
3098
3099 if (__predict_false(cpuid->mask && cpuid->exit)) {
3100 return EINVAL;
3101 }
3102 if (__predict_false(cpuid->mask &&
3103 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3104 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3105 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3106 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3107 return EINVAL;
3108 }
3109
3110 /* If unset, delete, to restore the default behavior. */
3111 if (!cpuid->mask && !cpuid->exit) {
3112 for (i = 0; i < VMX_NCPUIDS; i++) {
3113 if (!cpudata->cpuidpresent[i]) {
3114 continue;
3115 }
3116 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3117 cpudata->cpuidpresent[i] = false;
3118 }
3119 }
3120 return 0;
3121 }
3122
3123 /* If already here, replace. */
3124 for (i = 0; i < VMX_NCPUIDS; i++) {
3125 if (!cpudata->cpuidpresent[i]) {
3126 continue;
3127 }
3128 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3129 memcpy(&cpudata->cpuid[i], cpuid,
3130 sizeof(struct nvmm_vcpu_conf_cpuid));
3131 return 0;
3132 }
3133 }
3134
3135 /* Not here, insert. */
3136 for (i = 0; i < VMX_NCPUIDS; i++) {
3137 if (!cpudata->cpuidpresent[i]) {
3138 cpudata->cpuidpresent[i] = true;
3139 memcpy(&cpudata->cpuid[i], cpuid,
3140 sizeof(struct nvmm_vcpu_conf_cpuid));
3141 return 0;
3142 }
3143 }
3144
3145 return ENOBUFS;
3146 }
3147
3148 static int
3149 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3150 {
3151 struct nvmm_vcpu_conf_tpr *tpr = data;
3152
3153 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3154 return 0;
3155 }
3156
3157 static int
3158 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3159 {
3160 struct vmx_cpudata *cpudata = vcpu->cpudata;
3161
3162 switch (op) {
3163 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3164 return vmx_vcpu_configure_cpuid(cpudata, data);
3165 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3166 return vmx_vcpu_configure_tpr(cpudata, data);
3167 default:
3168 return EINVAL;
3169 }
3170 }
3171
3172 static void
3173 vmx_vcpu_suspend(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3174 {
3175 struct vmx_cpudata *cpudata = vcpu->cpudata;
3176 struct cpu_info *vmcs_ci;
3177
3178 KASSERT(cpudata->vmcs_refcnt == 0);
3179
3180 vmcs_ci = cpudata->vmcs_ci;
3181 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
3182
3183 kpreempt_disable();
3184 if (vmcs_ci == NULL) {
3185 /* VMCS is inactive, nothing to do. */
3186 } else if (vmcs_ci != curcpu()) {
3187 /* VMCS is active on a remote CPU; clear it there. */
3188 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
3189 } else {
3190 /* VMCS is active on this CPU; clear it here. */
3191 vmx_vmclear(&cpudata->vmcs_pa);
3192 }
3193 kpreempt_enable();
3194 }
3195
3196 static void
3197 vmx_vcpu_resume(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3198 {
3199 struct vmx_cpudata *cpudata = vcpu->cpudata;
3200
3201 KASSERT(cpudata->vmcs_refcnt == 0);
3202
3203 /* Mark VMCS as inactive. */
3204 cpudata->vmcs_ci = NULL;
3205 }
3206
3207 /* -------------------------------------------------------------------------- */
3208
3209 static void
3210 vmx_tlb_flush(struct pmap *pm)
3211 {
3212 struct nvmm_machine *mach = pm->pm_data;
3213 struct vmx_machdata *machdata = mach->machdata;
3214
3215 atomic_inc_64(&machdata->mach_htlb_gen);
3216
3217 /* Generates IPIs, which cause #VMEXITs. */
3218 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3219 }
3220
3221 static void
3222 vmx_machine_create(struct nvmm_machine *mach)
3223 {
3224 struct pmap *pmap = mach->vm->vm_map.pmap;
3225 struct vmx_machdata *machdata;
3226
3227 /* Convert to EPT. */
3228 pmap_ept_transform(pmap);
3229
3230 /* Fill in pmap info. */
3231 pmap->pm_data = (void *)mach;
3232 pmap->pm_tlb_flush = vmx_tlb_flush;
3233
3234 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3235 mach->machdata = machdata;
3236
3237 /* Start with an hTLB flush everywhere. */
3238 machdata->mach_htlb_gen = 1;
3239 }
3240
3241 static void
3242 vmx_machine_destroy(struct nvmm_machine *mach)
3243 {
3244 struct vmx_machdata *machdata = mach->machdata;
3245
3246 kmem_free(machdata, sizeof(struct vmx_machdata));
3247 }
3248
3249 static int
3250 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3251 {
3252 panic("%s: impossible", __func__);
3253 }
3254
3255 /* -------------------------------------------------------------------------- */
3256
3257 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3258 ((msrval & __BIT(32 + bitoff)) != 0)
3259 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3260 ((msrval & __BIT(bitoff)) == 0)
3261
3262 static int
3263 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3264 {
3265 uint64_t basic, val, true_val;
3266 bool has_true;
3267 size_t i;
3268
3269 basic = rdmsr(MSR_IA32_VMX_BASIC);
3270 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3271
3272 val = rdmsr(msr_ctls);
3273 if (has_true) {
3274 true_val = rdmsr(msr_true_ctls);
3275 } else {
3276 true_val = val;
3277 }
3278
3279 for (i = 0; i < 32; i++) {
3280 if (!(set_one & __BIT(i))) {
3281 continue;
3282 }
3283 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3284 return -1;
3285 }
3286 }
3287
3288 return 0;
3289 }
3290
3291 static int
3292 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3293 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3294 {
3295 uint64_t basic, val, true_val;
3296 bool one_allowed, zero_allowed, has_true;
3297 size_t i;
3298
3299 basic = rdmsr(MSR_IA32_VMX_BASIC);
3300 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3301
3302 val = rdmsr(msr_ctls);
3303 if (has_true) {
3304 true_val = rdmsr(msr_true_ctls);
3305 } else {
3306 true_val = val;
3307 }
3308
3309 for (i = 0; i < 32; i++) {
3310 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3311 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3312
3313 if (zero_allowed && !one_allowed) {
3314 if (set_one & __BIT(i))
3315 return -1;
3316 *res &= ~__BIT(i);
3317 } else if (one_allowed && !zero_allowed) {
3318 if (set_zero & __BIT(i))
3319 return -1;
3320 *res |= __BIT(i);
3321 } else {
3322 if (set_zero & __BIT(i)) {
3323 *res &= ~__BIT(i);
3324 } else if (set_one & __BIT(i)) {
3325 *res |= __BIT(i);
3326 } else if (!has_true) {
3327 *res &= ~__BIT(i);
3328 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3329 *res &= ~__BIT(i);
3330 } else if (CTLS_ONE_ALLOWED(val, i)) {
3331 *res |= __BIT(i);
3332 } else {
3333 return -1;
3334 }
3335 }
3336 }
3337
3338 return 0;
3339 }
3340
3341 static bool
3342 vmx_ident(void)
3343 {
3344 uint64_t msr;
3345 int ret;
3346
3347 if (!(cpu_feature[1] & CPUID2_VMX)) {
3348 return false;
3349 }
3350
3351 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3352 if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3353 (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3354 printf("NVMM: VMX disabled in BIOS\n");
3355 return false;
3356 }
3357
3358 msr = rdmsr(MSR_IA32_VMX_BASIC);
3359 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3360 printf("NVMM: I/O reporting not supported\n");
3361 return false;
3362 }
3363 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3364 printf("NVMM: WB memory not supported\n");
3365 return false;
3366 }
3367
3368 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3369 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3370 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3371 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3372 if (ret == -1) {
3373 printf("NVMM: CR0 requirements not satisfied\n");
3374 return false;
3375 }
3376
3377 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3378 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3379 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3380 if (ret == -1) {
3381 printf("NVMM: CR4 requirements not satisfied\n");
3382 return false;
3383 }
3384
3385 /* Init the CTLSs right now, and check for errors. */
3386 ret = vmx_init_ctls(
3387 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3388 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3389 &vmx_pinbased_ctls);
3390 if (ret == -1) {
3391 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3392 return false;
3393 }
3394 ret = vmx_init_ctls(
3395 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3396 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3397 &vmx_procbased_ctls);
3398 if (ret == -1) {
3399 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3400 return false;
3401 }
3402 ret = vmx_init_ctls(
3403 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3404 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3405 &vmx_procbased_ctls2);
3406 if (ret == -1) {
3407 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3408 return false;
3409 }
3410 ret = vmx_check_ctls(
3411 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3412 PROC_CTLS2_INVPCID_ENABLE);
3413 if (ret != -1) {
3414 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3415 }
3416 ret = vmx_init_ctls(
3417 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3418 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3419 &vmx_entry_ctls);
3420 if (ret == -1) {
3421 printf("NVMM: entry-ctls requirements not satisfied\n");
3422 return false;
3423 }
3424 ret = vmx_init_ctls(
3425 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3426 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3427 &vmx_exit_ctls);
3428 if (ret == -1) {
3429 printf("NVMM: exit-ctls requirements not satisfied\n");
3430 return false;
3431 }
3432
3433 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3434 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3435 printf("NVMM: 4-level page tree not supported\n");
3436 return false;
3437 }
3438 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3439 printf("NVMM: INVEPT not supported\n");
3440 return false;
3441 }
3442 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3443 printf("NVMM: INVVPID not supported\n");
3444 return false;
3445 }
3446 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3447 pmap_ept_has_ad = true;
3448 } else {
3449 pmap_ept_has_ad = false;
3450 }
3451 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3452 printf("NVMM: EPT UC/WB memory types not supported\n");
3453 return false;
3454 }
3455
3456 return true;
3457 }
3458
3459 static void
3460 vmx_init_asid(uint32_t maxasid)
3461 {
3462 size_t allocsz;
3463
3464 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3465
3466 vmx_maxasid = maxasid;
3467 allocsz = roundup(maxasid, 8) / 8;
3468 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3469
3470 /* ASID 0 is reserved for the host. */
3471 vmx_asidmap[0] |= __BIT(0);
3472 }
3473
3474 static void
3475 vmx_change_cpu(void *arg1, void *arg2)
3476 {
3477 struct cpu_info *ci = curcpu();
3478 bool enable = arg1 != NULL;
3479 uint64_t msr, cr4;
3480
3481 if (enable) {
3482 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3483 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3484 /* Lock now, with VMX-outside-SMX enabled. */
3485 wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3486 IA32_FEATURE_CONTROL_LOCK |
3487 IA32_FEATURE_CONTROL_OUT_SMX);
3488 }
3489 }
3490
3491 if (!enable) {
3492 vmx_vmxoff();
3493 }
3494
3495 cr4 = rcr4();
3496 if (enable) {
3497 cr4 |= CR4_VMXE;
3498 } else {
3499 cr4 &= ~CR4_VMXE;
3500 }
3501 lcr4(cr4);
3502
3503 if (enable) {
3504 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3505 }
3506 }
3507
3508 static void
3509 vmx_init_l1tf(void)
3510 {
3511 u_int descs[4];
3512 uint64_t msr;
3513
3514 if (cpuid_level < 7) {
3515 return;
3516 }
3517
3518 x86_cpuid(7, descs);
3519
3520 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3521 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3522 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3523 /* No mitigation needed. */
3524 return;
3525 }
3526 }
3527
3528 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3529 /* Enable hardware mitigation. */
3530 vmx_msrlist_entry_nmsr += 1;
3531 }
3532 }
3533
3534 static void
3535 vmx_suspend_interrupt(void)
3536 {
3537
3538 /*
3539 * Generates IPIs, which cause #VMEXITs. No other purpose for
3540 * the TLB business; the #VMEXIT triggered by IPI is the only
3541 * effect that matters here.
3542 */
3543 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3544 }
3545
3546 static void
3547 vmx_suspend(void)
3548 {
3549 uint64_t xc;
3550
3551 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3552 xc_wait(xc);
3553 }
3554
3555 static void
3556 vmx_resume(void)
3557 {
3558 uint64_t xc;
3559
3560 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3561 xc_wait(xc);
3562 }
3563
3564 static void
3565 vmx_init(void)
3566 {
3567 CPU_INFO_ITERATOR cii;
3568 struct cpu_info *ci;
3569 uint64_t msr;
3570 struct vmxon *vmxon;
3571 uint32_t revision;
3572 u_int descs[4];
3573 paddr_t pa;
3574 vaddr_t va;
3575 int error;
3576
3577 /* Init the ASID bitmap (VPID). */
3578 vmx_init_asid(VPID_MAX);
3579
3580 /* Init the XCR0 mask. */
3581 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3582
3583 /* Init the max basic CPUID leaf. */
3584 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3585
3586 /* Init the max extended CPUID leaf. */
3587 x86_cpuid(0x80000000, descs);
3588 vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
3589
3590 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3591 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3592 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3593 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3594 } else {
3595 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3596 }
3597 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3598 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3599 } else {
3600 vmx_ept_flush_op = VMX_INVEPT_ALL;
3601 }
3602 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3603 vmx_eptp_type = EPTP_TYPE_WB;
3604 } else {
3605 vmx_eptp_type = EPTP_TYPE_UC;
3606 }
3607
3608 /* Init the L1TF mitigation. */
3609 vmx_init_l1tf();
3610
3611 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3612 revision = vmx_get_revision();
3613
3614 for (CPU_INFO_FOREACH(cii, ci)) {
3615 error = vmx_memalloc(&pa, &va, 1);
3616 if (error) {
3617 panic("%s: out of memory", __func__);
3618 }
3619 vmxoncpu[cpu_index(ci)].pa = pa;
3620 vmxoncpu[cpu_index(ci)].va = va;
3621
3622 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3623 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3624 }
3625
3626 vmx_resume();
3627 }
3628
3629 static void
3630 vmx_fini_asid(void)
3631 {
3632 size_t allocsz;
3633
3634 allocsz = roundup(vmx_maxasid, 8) / 8;
3635 kmem_free(vmx_asidmap, allocsz);
3636
3637 mutex_destroy(&vmx_asidlock);
3638 }
3639
3640 static void
3641 vmx_fini(void)
3642 {
3643 size_t i;
3644
3645 vmx_suspend();
3646
3647 for (i = 0; i < MAXCPUS; i++) {
3648 if (vmxoncpu[i].pa != 0)
3649 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3650 }
3651
3652 vmx_fini_asid();
3653 }
3654
3655 static void
3656 vmx_capability(struct nvmm_capability *cap)
3657 {
3658 cap->arch.mach_conf_support = 0;
3659 cap->arch.vcpu_conf_support =
3660 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3661 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3662 cap->arch.xcr0_mask = vmx_xcr0_mask;
3663 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3664 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3665 }
3666
3667 const struct nvmm_impl nvmm_x86_vmx = {
3668 .name = "x86-vmx",
3669 .ident = vmx_ident,
3670 .init = vmx_init,
3671 .fini = vmx_fini,
3672 .suspend_interrupt = vmx_suspend_interrupt,
3673 .suspend = vmx_suspend,
3674 .resume = vmx_resume,
3675 .capability = vmx_capability,
3676 .mach_conf_max = NVMM_X86_MACH_NCONF,
3677 .mach_conf_sizes = NULL,
3678 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3679 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3680 .state_size = sizeof(struct nvmm_x64_state),
3681 .machine_create = vmx_machine_create,
3682 .machine_destroy = vmx_machine_destroy,
3683 .machine_configure = vmx_machine_configure,
3684 .vcpu_create = vmx_vcpu_create,
3685 .vcpu_destroy = vmx_vcpu_destroy,
3686 .vcpu_configure = vmx_vcpu_configure,
3687 .vcpu_setstate = vmx_vcpu_setstate,
3688 .vcpu_getstate = vmx_vcpu_getstate,
3689 .vcpu_inject = vmx_vcpu_inject,
3690 .vcpu_run = vmx_vcpu_run,
3691 .vcpu_suspend = vmx_vcpu_suspend,
3692 .vcpu_resume = vmx_vcpu_resume,
3693 };
3694