nvmm_x86_vmx.c revision 1.90 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.90 2025/04/21 22:55:38 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.90 2025/04/21 22:55:38 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41 #include <sys/bitops.h>
42
43 #include <uvm/uvm_extern.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/apicvar.h>
47 #include <x86/cputypes.h>
48 #include <x86/specialreg.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51
52 #include <machine/cpuvar.h>
53 #include <machine/pmap_private.h>
54
55 #include <dev/nvmm/nvmm.h>
56 #include <dev/nvmm/nvmm_internal.h>
57 #include <dev/nvmm/x86/nvmm_x86.h>
58
59 int _vmx_vmxon(paddr_t *pa);
60 int _vmx_vmxoff(void);
61 int vmx_vmlaunch(uint64_t *gprs);
62 int vmx_vmresume(uint64_t *gprs);
63
64 #define vmx_vmxon(a) \
65 if (__predict_false(_vmx_vmxon(a) != 0)) { \
66 panic("%s: VMXON failed", __func__); \
67 }
68 #define vmx_vmxoff() \
69 if (__predict_false(_vmx_vmxoff() != 0)) { \
70 panic("%s: VMXOFF failed", __func__); \
71 }
72
73 struct ept_desc {
74 uint64_t eptp;
75 uint64_t mbz;
76 } __packed;
77
78 struct vpid_desc {
79 uint64_t vpid;
80 uint64_t addr;
81 } __packed;
82
83 static inline void
84 vmx_invept(uint64_t op, struct ept_desc *desc)
85 {
86 asm volatile (
87 "invept %[desc],%[op];"
88 "jz vmx_insn_failvalid;"
89 "jc vmx_insn_failinvalid;"
90 :
91 : [desc] "m" (*desc), [op] "r" (op)
92 : "memory", "cc"
93 );
94 }
95
96 static inline void
97 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
98 {
99 asm volatile (
100 "invvpid %[desc],%[op];"
101 "jz vmx_insn_failvalid;"
102 "jc vmx_insn_failinvalid;"
103 :
104 : [desc] "m" (*desc), [op] "r" (op)
105 : "memory", "cc"
106 );
107 }
108
109 static inline uint64_t
110 vmx_vmread(uint64_t field)
111 {
112 uint64_t value;
113
114 asm volatile (
115 "vmread %[field],%[value];"
116 "jz vmx_insn_failvalid;"
117 "jc vmx_insn_failinvalid;"
118 : [value] "=r" (value)
119 : [field] "r" (field)
120 : "cc"
121 );
122
123 return value;
124 }
125
126 static inline void
127 vmx_vmwrite(uint64_t field, uint64_t value)
128 {
129 asm volatile (
130 "vmwrite %[value],%[field];"
131 "jz vmx_insn_failvalid;"
132 "jc vmx_insn_failinvalid;"
133 :
134 : [field] "r" (field), [value] "r" (value)
135 : "cc"
136 );
137 }
138
139 static inline paddr_t __diagused
140 vmx_vmptrst(void)
141 {
142 paddr_t pa;
143
144 asm volatile (
145 "vmptrst %[pa];"
146 :
147 : [pa] "m" (*(paddr_t *)&pa)
148 : "memory"
149 );
150
151 return pa;
152 }
153
154 static inline void
155 vmx_vmptrld(paddr_t *pa)
156 {
157 asm volatile (
158 "vmptrld %[pa];"
159 "jz vmx_insn_failvalid;"
160 "jc vmx_insn_failinvalid;"
161 :
162 : [pa] "m" (*pa)
163 : "memory", "cc"
164 );
165 }
166
167 static inline void
168 vmx_vmclear(paddr_t *pa)
169 {
170 asm volatile (
171 "vmclear %[pa];"
172 "jz vmx_insn_failvalid;"
173 "jc vmx_insn_failinvalid;"
174 :
175 : [pa] "m" (*pa)
176 : "memory", "cc"
177 );
178 }
179
180 static inline void
181 vmx_cli(void)
182 {
183 asm volatile ("cli" ::: "memory");
184 }
185
186 static inline void
187 vmx_sti(void)
188 {
189 asm volatile ("sti" ::: "memory");
190 }
191
192 #define MSR_IA32_FEATURE_CONTROL 0x003A
193 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
194 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
195 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
196
197 #define MSR_IA32_VMX_BASIC 0x0480
198 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
199 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
200 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
201 #define IA32_VMX_BASIC_DUAL __BIT(49)
202 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
203 #define MEM_TYPE_UC 0
204 #define MEM_TYPE_WB 6
205 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
206 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
207
208 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
209 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
210 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
211 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
212 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
213
214 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
215 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
216 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
217 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
218
219 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
220 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
221 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
222 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
223
224 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
225 #define IA32_VMX_EPT_VPID_XO __BIT(0)
226 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
227 #define IA32_VMX_EPT_VPID_UC __BIT(8)
228 #define IA32_VMX_EPT_VPID_WB __BIT(14)
229 #define IA32_VMX_EPT_VPID_2MB __BIT(16)
230 #define IA32_VMX_EPT_VPID_1GB __BIT(17)
231 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
232 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
233 #define IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO __BIT(22)
234 #define IA32_VMX_EPT_VPID_SHSTK __BIT(23)
235 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
236 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
237 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
238 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
239 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
240 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
241 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
242
243 /* -------------------------------------------------------------------------- */
244
245 /* 16-bit control fields */
246 #define VMCS_VPID 0x00000000
247 #define VMCS_PIR_VECTOR 0x00000002
248 #define VMCS_EPTP_INDEX 0x00000004
249 /* 16-bit guest-state fields */
250 #define VMCS_GUEST_ES_SELECTOR 0x00000800
251 #define VMCS_GUEST_CS_SELECTOR 0x00000802
252 #define VMCS_GUEST_SS_SELECTOR 0x00000804
253 #define VMCS_GUEST_DS_SELECTOR 0x00000806
254 #define VMCS_GUEST_FS_SELECTOR 0x00000808
255 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
256 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
257 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
258 #define VMCS_GUEST_INTR_STATUS 0x00000810
259 #define VMCS_PML_INDEX 0x00000812
260 /* 16-bit host-state fields */
261 #define VMCS_HOST_ES_SELECTOR 0x00000C00
262 #define VMCS_HOST_CS_SELECTOR 0x00000C02
263 #define VMCS_HOST_SS_SELECTOR 0x00000C04
264 #define VMCS_HOST_DS_SELECTOR 0x00000C06
265 #define VMCS_HOST_FS_SELECTOR 0x00000C08
266 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
267 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
268 /* 64-bit control fields */
269 #define VMCS_IO_BITMAP_A 0x00002000
270 #define VMCS_IO_BITMAP_B 0x00002002
271 #define VMCS_MSR_BITMAP 0x00002004
272 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
273 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
274 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
275 #define VMCS_EXECUTIVE_VMCS 0x0000200C
276 #define VMCS_PML_ADDRESS 0x0000200E
277 #define VMCS_TSC_OFFSET 0x00002010
278 #define VMCS_VIRTUAL_APIC 0x00002012
279 #define VMCS_APIC_ACCESS 0x00002014
280 #define VMCS_PIR_DESC 0x00002016
281 #define VMCS_VM_CONTROL 0x00002018
282 #define VMCS_EPTP 0x0000201A
283 #define EPTP_TYPE __BITS(2,0)
284 #define EPTP_TYPE_UC 0
285 #define EPTP_TYPE_WB 6
286 #define EPTP_WALKLEN __BITS(5,3)
287 #define EPTP_FLAGS_AD __BIT(6)
288 #define EPTP_SSS __BIT(7)
289 #define EPTP_PHYSADDR __BITS(63,12)
290 #define VMCS_EOI_EXIT0 0x0000201C
291 #define VMCS_EOI_EXIT1 0x0000201E
292 #define VMCS_EOI_EXIT2 0x00002020
293 #define VMCS_EOI_EXIT3 0x00002022
294 #define VMCS_EPTP_LIST 0x00002024
295 #define VMCS_VMREAD_BITMAP 0x00002026
296 #define VMCS_VMWRITE_BITMAP 0x00002028
297 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
298 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
299 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
300 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
301 #define VMCS_TSC_MULTIPLIER 0x00002032
302 #define VMCS_ENCLV_EXIT_BITMAP 0x00002036
303 /* 64-bit read-only fields */
304 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
305 /* 64-bit guest-state fields */
306 #define VMCS_LINK_POINTER 0x00002800
307 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
308 #define VMCS_GUEST_IA32_PAT 0x00002804
309 #define VMCS_GUEST_IA32_EFER 0x00002806
310 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
311 #define VMCS_GUEST_PDPTE0 0x0000280A
312 #define VMCS_GUEST_PDPTE1 0x0000280C
313 #define VMCS_GUEST_PDPTE2 0x0000280E
314 #define VMCS_GUEST_PDPTE3 0x00002810
315 #define VMCS_GUEST_BNDCFGS 0x00002812
316 #define VMCS_GUEST_RTIT_CTL 0x00002814
317 #define VMCS_GUEST_PKRS 0x00002818
318 /* 64-bit host-state fields */
319 #define VMCS_HOST_IA32_PAT 0x00002C00
320 #define VMCS_HOST_IA32_EFER 0x00002C02
321 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
322 #define VMCS_HOST_IA32_PKRS 0x00002C06
323 /* 32-bit control fields */
324 #define VMCS_PINBASED_CTLS 0x00004000
325 #define PIN_CTLS_INT_EXITING __BIT(0)
326 #define PIN_CTLS_NMI_EXITING __BIT(3)
327 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
328 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
329 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
330 #define VMCS_PROCBASED_CTLS 0x00004002
331 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
332 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
333 #define PROC_CTLS_HLT_EXITING __BIT(7)
334 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
335 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
336 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
337 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
338 #define PROC_CTLS_RCR3_EXITING __BIT(15)
339 #define PROC_CTLS_LCR3_EXITING __BIT(16)
340 #define PROC_CTLS_RCR8_EXITING __BIT(19)
341 #define PROC_CTLS_LCR8_EXITING __BIT(20)
342 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
343 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
344 #define PROC_CTLS_DR_EXITING __BIT(23)
345 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
346 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
347 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
348 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
349 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
350 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
351 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
352 #define VMCS_EXCEPTION_BITMAP 0x00004004
353 #define VMCS_PF_ERROR_MASK 0x00004006
354 #define VMCS_PF_ERROR_MATCH 0x00004008
355 #define VMCS_CR3_TARGET_COUNT 0x0000400A
356 #define VMCS_EXIT_CTLS 0x0000400C
357 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
358 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
359 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
360 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
361 #define EXIT_CTLS_SAVE_PAT __BIT(18)
362 #define EXIT_CTLS_LOAD_PAT __BIT(19)
363 #define EXIT_CTLS_SAVE_EFER __BIT(20)
364 #define EXIT_CTLS_LOAD_EFER __BIT(21)
365 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
366 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
367 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
368 #define EXIT_CTLS_CLEAR_RTIT_CTL __BIT(25)
369 #define EXIT_CTLS_LOAD_CET __BIT(28)
370 #define EXIT_CTLS_LOAD_PKRS __BIT(29)
371 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
372 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
373 #define VMCS_ENTRY_CTLS 0x00004012
374 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
375 #define ENTRY_CTLS_LONG_MODE __BIT(9)
376 #define ENTRY_CTLS_SMM __BIT(10)
377 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
378 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
379 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
380 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
381 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
382 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
383 #define ENTRY_CTLS_LOAD_RTIT_CTL __BIT(18)
384 #define ENTRY_CTLS_LOAD_CET __BIT(20)
385 #define ENTRY_CTLS_LOAD_PKRS __BIT(22)
386 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
387 #define VMCS_ENTRY_INTR_INFO 0x00004016
388 #define INTR_INFO_VECTOR __BITS(7,0)
389 #define INTR_INFO_TYPE __BITS(10,8)
390 #define INTR_TYPE_EXT_INT 0
391 #define INTR_TYPE_NMI 2
392 #define INTR_TYPE_HW_EXC 3
393 #define INTR_TYPE_SW_INT 4
394 #define INTR_TYPE_PRIV_SW_EXC 5
395 #define INTR_TYPE_SW_EXC 6
396 #define INTR_TYPE_OTHER 7
397 #define INTR_INFO_ERROR __BIT(11)
398 #define INTR_INFO_VALID __BIT(31)
399 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
400 #define VMCS_ENTRY_INSTRUCTION_LENGTH 0x0000401A
401 #define VMCS_TPR_THRESHOLD 0x0000401C
402 #define VMCS_PROCBASED_CTLS2 0x0000401E
403 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
404 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
405 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
406 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
407 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
408 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
409 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
410 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
411 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
412 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
413 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
414 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
415 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
416 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
417 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
418 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
419 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
420 #define PROC_CTLS2_PML_ENABLE __BIT(17)
421 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
422 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
423 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
424 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
425 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
426 #define PROC_CTLS2_PT_USES_GPA __BIT(24)
427 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
428 #define PROC_CTLS2_WAIT_PAUSE_ENABLE __BIT(26)
429 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
430 #define VMCS_PLE_GAP 0x00004020
431 #define VMCS_PLE_WINDOW 0x00004022
432 /* 32-bit read-only data fields */
433 #define VMCS_INSTRUCTION_ERROR 0x00004400
434 #define VMCS_EXIT_REASON 0x00004402
435 #define VMCS_EXIT_INTR_INFO 0x00004404
436 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
437 #define VMCS_IDT_VECTORING_INFO 0x00004408
438 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
439 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
440 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
441 /* 32-bit guest-state fields */
442 #define VMCS_GUEST_ES_LIMIT 0x00004800
443 #define VMCS_GUEST_CS_LIMIT 0x00004802
444 #define VMCS_GUEST_SS_LIMIT 0x00004804
445 #define VMCS_GUEST_DS_LIMIT 0x00004806
446 #define VMCS_GUEST_FS_LIMIT 0x00004808
447 #define VMCS_GUEST_GS_LIMIT 0x0000480A
448 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
449 #define VMCS_GUEST_TR_LIMIT 0x0000480E
450 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
451 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
452 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
453 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
454 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
455 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
456 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
457 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
458 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
459 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
460 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
461 #define INT_STATE_STI __BIT(0)
462 #define INT_STATE_MOVSS __BIT(1)
463 #define INT_STATE_SMI __BIT(2)
464 #define INT_STATE_NMI __BIT(3)
465 #define INT_STATE_ENCLAVE __BIT(4)
466 #define VMCS_GUEST_ACTIVITY 0x00004826
467 #define VMCS_GUEST_SMBASE 0x00004828
468 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
469 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
470 /* 32-bit host state fields */
471 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
472 /* Natural-Width control fields */
473 #define VMCS_CR0_MASK 0x00006000
474 #define VMCS_CR4_MASK 0x00006002
475 #define VMCS_CR0_SHADOW 0x00006004
476 #define VMCS_CR4_SHADOW 0x00006006
477 #define VMCS_CR3_TARGET0 0x00006008
478 #define VMCS_CR3_TARGET1 0x0000600A
479 #define VMCS_CR3_TARGET2 0x0000600C
480 #define VMCS_CR3_TARGET3 0x0000600E
481 /* Natural-Width read-only fields */
482 #define VMCS_EXIT_QUALIFICATION 0x00006400
483 #define VMCS_IO_RCX 0x00006402
484 #define VMCS_IO_RSI 0x00006404
485 #define VMCS_IO_RDI 0x00006406
486 #define VMCS_IO_RIP 0x00006408
487 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
488 /* Natural-Width guest-state fields */
489 #define VMCS_GUEST_CR0 0x00006800
490 #define VMCS_GUEST_CR3 0x00006802
491 #define VMCS_GUEST_CR4 0x00006804
492 #define VMCS_GUEST_ES_BASE 0x00006806
493 #define VMCS_GUEST_CS_BASE 0x00006808
494 #define VMCS_GUEST_SS_BASE 0x0000680A
495 #define VMCS_GUEST_DS_BASE 0x0000680C
496 #define VMCS_GUEST_FS_BASE 0x0000680E
497 #define VMCS_GUEST_GS_BASE 0x00006810
498 #define VMCS_GUEST_LDTR_BASE 0x00006812
499 #define VMCS_GUEST_TR_BASE 0x00006814
500 #define VMCS_GUEST_GDTR_BASE 0x00006816
501 #define VMCS_GUEST_IDTR_BASE 0x00006818
502 #define VMCS_GUEST_DR7 0x0000681A
503 #define VMCS_GUEST_RSP 0x0000681C
504 #define VMCS_GUEST_RIP 0x0000681E
505 #define VMCS_GUEST_RFLAGS 0x00006820
506 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
507 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
508 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
509 #define VMCS_GUEST_IA32_S_CET 0x00006828
510 #define VMCS_GUEST_SSP 0x0000682A
511 #define VMCS_GUEST_IA32_INTR_SSP_TABLE 0x0000682C
512 /* Natural-Width host-state fields */
513 #define VMCS_HOST_CR0 0x00006C00
514 #define VMCS_HOST_CR3 0x00006C02
515 #define VMCS_HOST_CR4 0x00006C04
516 #define VMCS_HOST_FS_BASE 0x00006C06
517 #define VMCS_HOST_GS_BASE 0x00006C08
518 #define VMCS_HOST_TR_BASE 0x00006C0A
519 #define VMCS_HOST_GDTR_BASE 0x00006C0C
520 #define VMCS_HOST_IDTR_BASE 0x00006C0E
521 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
522 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
523 #define VMCS_HOST_RSP 0x00006C14
524 #define VMCS_HOST_RIP 0x00006C16
525 #define VMCS_HOST_IA32_S_CET 0x00006C18
526 #define VMCS_HOST_SSP 0x00006C1A
527 #define VMCS_HOST_IA32_INTR_SSP_TABLE 0x00006C1C
528
529 /* VMX basic exit reasons. */
530 #define VMCS_EXITCODE_EXC_NMI 0
531 #define VMCS_EXITCODE_EXT_INT 1
532 #define VMCS_EXITCODE_SHUTDOWN 2
533 #define VMCS_EXITCODE_INIT 3
534 #define VMCS_EXITCODE_SIPI 4
535 #define VMCS_EXITCODE_SMI 5
536 #define VMCS_EXITCODE_OTHER_SMI 6
537 #define VMCS_EXITCODE_INT_WINDOW 7
538 #define VMCS_EXITCODE_NMI_WINDOW 8
539 #define VMCS_EXITCODE_TASK_SWITCH 9
540 #define VMCS_EXITCODE_CPUID 10
541 #define VMCS_EXITCODE_GETSEC 11
542 #define VMCS_EXITCODE_HLT 12
543 #define VMCS_EXITCODE_INVD 13
544 #define VMCS_EXITCODE_INVLPG 14
545 #define VMCS_EXITCODE_RDPMC 15
546 #define VMCS_EXITCODE_RDTSC 16
547 #define VMCS_EXITCODE_RSM 17
548 #define VMCS_EXITCODE_VMCALL 18
549 #define VMCS_EXITCODE_VMCLEAR 19
550 #define VMCS_EXITCODE_VMLAUNCH 20
551 #define VMCS_EXITCODE_VMPTRLD 21
552 #define VMCS_EXITCODE_VMPTRST 22
553 #define VMCS_EXITCODE_VMREAD 23
554 #define VMCS_EXITCODE_VMRESUME 24
555 #define VMCS_EXITCODE_VMWRITE 25
556 #define VMCS_EXITCODE_VMXOFF 26
557 #define VMCS_EXITCODE_VMXON 27
558 #define VMCS_EXITCODE_CR 28
559 #define VMCS_EXITCODE_DR 29
560 #define VMCS_EXITCODE_IO 30
561 #define VMCS_EXITCODE_RDMSR 31
562 #define VMCS_EXITCODE_WRMSR 32
563 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
564 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
565 #define VMCS_EXITCODE_MWAIT 36
566 #define VMCS_EXITCODE_TRAP_FLAG 37
567 #define VMCS_EXITCODE_MONITOR 39
568 #define VMCS_EXITCODE_PAUSE 40
569 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
570 #define VMCS_EXITCODE_TPR_BELOW 43
571 #define VMCS_EXITCODE_APIC_ACCESS 44
572 #define VMCS_EXITCODE_VEOI 45
573 #define VMCS_EXITCODE_GDTR_IDTR 46
574 #define VMCS_EXITCODE_LDTR_TR 47
575 #define VMCS_EXITCODE_EPT_VIOLATION 48
576 #define VMCS_EXITCODE_EPT_MISCONFIG 49
577 #define VMCS_EXITCODE_INVEPT 50
578 #define VMCS_EXITCODE_RDTSCP 51
579 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
580 #define VMCS_EXITCODE_INVVPID 53
581 #define VMCS_EXITCODE_WBINVD 54
582 #define VMCS_EXITCODE_XSETBV 55
583 #define VMCS_EXITCODE_APIC_WRITE 56
584 #define VMCS_EXITCODE_RDRAND 57
585 #define VMCS_EXITCODE_INVPCID 58
586 #define VMCS_EXITCODE_VMFUNC 59
587 #define VMCS_EXITCODE_ENCLS 60
588 #define VMCS_EXITCODE_RDSEED 61
589 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
590 #define VMCS_EXITCODE_XSAVES 63
591 #define VMCS_EXITCODE_XRSTORS 64
592 #define VMCS_EXITCODE_SPP 66
593 #define VMCS_EXITCODE_UMWAIT 67
594 #define VMCS_EXITCODE_TPAUSE 68
595
596 /* -------------------------------------------------------------------------- */
597
598 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
599 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
600
601 #define VMX_MSRLIST_STAR 0
602 #define VMX_MSRLIST_LSTAR 1
603 #define VMX_MSRLIST_CSTAR 2
604 #define VMX_MSRLIST_SFMASK 3
605 #define VMX_MSRLIST_KERNELGSBASE 4
606 #define VMX_MSRLIST_EXIT_NMSR 5
607 #define VMX_MSRLIST_L1DFLUSH 5
608
609 /* On entry, we may do +1 to include L1DFLUSH. */
610 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
611
612 struct vmxon {
613 uint32_t ident;
614 #define VMXON_IDENT_REVISION __BITS(30,0)
615
616 uint8_t data[PAGE_SIZE - 4];
617 } __packed;
618
619 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
620
621 struct vmxoncpu {
622 vaddr_t va;
623 paddr_t pa;
624 };
625
626 static struct vmxoncpu vmxoncpu[MAXCPUS];
627
628 struct vmcs {
629 uint32_t ident;
630 #define VMCS_IDENT_REVISION __BITS(30,0)
631 #define VMCS_IDENT_SHADOW __BIT(31)
632
633 uint32_t abort;
634 uint8_t data[PAGE_SIZE - 8];
635 } __packed;
636
637 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
638
639 struct msr_entry {
640 uint32_t msr;
641 uint32_t rsvd;
642 uint64_t val;
643 } __packed;
644
645 #define VPID_MAX 0xFFFF
646
647 /* Make sure we never run out of VPIDs. */
648 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
649
650 static uint64_t vmx_tlb_flush_op __read_mostly;
651 static uint64_t vmx_ept_flush_op __read_mostly;
652 static uint64_t vmx_eptp_type __read_mostly;
653
654 static uint64_t vmx_pinbased_ctls __read_mostly;
655 static uint64_t vmx_procbased_ctls __read_mostly;
656 static uint64_t vmx_procbased_ctls2 __read_mostly;
657 static uint64_t vmx_entry_ctls __read_mostly;
658 static uint64_t vmx_exit_ctls __read_mostly;
659
660 static uint64_t vmx_cr0_fixed0 __read_mostly;
661 static uint64_t vmx_cr0_fixed1 __read_mostly;
662 static uint64_t vmx_cr4_fixed0 __read_mostly;
663 static uint64_t vmx_cr4_fixed1 __read_mostly;
664
665 extern bool pmap_ept_has_ad;
666
667 #define VMX_PINBASED_CTLS_ONE \
668 (PIN_CTLS_INT_EXITING| \
669 PIN_CTLS_NMI_EXITING| \
670 PIN_CTLS_VIRTUAL_NMIS)
671
672 #define VMX_PINBASED_CTLS_ZERO 0
673
674 #define VMX_PROCBASED_CTLS_ONE \
675 (PROC_CTLS_USE_TSC_OFFSETTING| \
676 PROC_CTLS_HLT_EXITING| \
677 PROC_CTLS_MWAIT_EXITING | \
678 PROC_CTLS_RDPMC_EXITING | \
679 PROC_CTLS_RCR8_EXITING | \
680 PROC_CTLS_LCR8_EXITING | \
681 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
682 PROC_CTLS_USE_MSR_BITMAPS | \
683 PROC_CTLS_MONITOR_EXITING | \
684 PROC_CTLS_ACTIVATE_CTLS2)
685
686 #define VMX_PROCBASED_CTLS_ZERO \
687 (PROC_CTLS_RCR3_EXITING| \
688 PROC_CTLS_LCR3_EXITING)
689
690 #define VMX_PROCBASED_CTLS2_ONE \
691 (PROC_CTLS2_ENABLE_EPT| \
692 PROC_CTLS2_ENABLE_VPID| \
693 PROC_CTLS2_UNRESTRICTED_GUEST)
694
695 #define VMX_PROCBASED_CTLS2_ZERO 0
696
697 #define VMX_ENTRY_CTLS_ONE \
698 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
699 ENTRY_CTLS_LOAD_EFER| \
700 ENTRY_CTLS_LOAD_PAT)
701
702 #define VMX_ENTRY_CTLS_ZERO \
703 (ENTRY_CTLS_SMM| \
704 ENTRY_CTLS_DISABLE_DUAL)
705
706 #define VMX_EXIT_CTLS_ONE \
707 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
708 EXIT_CTLS_HOST_LONG_MODE| \
709 EXIT_CTLS_SAVE_PAT| \
710 EXIT_CTLS_LOAD_PAT| \
711 EXIT_CTLS_SAVE_EFER| \
712 EXIT_CTLS_LOAD_EFER)
713
714 #define VMX_EXIT_CTLS_ZERO 0
715
716 static uint8_t *vmx_asidmap __read_mostly;
717 static uint32_t vmx_maxasid __read_mostly;
718 static kmutex_t vmx_asidlock __cacheline_aligned;
719
720 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
721 static uint64_t vmx_xcr0_mask __read_mostly;
722
723 #define VMX_NCPUIDS 32
724
725 #define VMCS_NPAGES 1
726 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
727
728 #define MSRBM_NPAGES 1
729 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
730
731 #define CR0_STATIC_MASK \
732 (CR0_ET | CR0_NW | CR0_CD)
733
734 #define CR4_VALID \
735 (CR4_VME | \
736 CR4_PVI | \
737 CR4_TSD | \
738 CR4_DE | \
739 CR4_PSE | \
740 CR4_PAE | \
741 CR4_MCE | \
742 CR4_PGE | \
743 CR4_PCE | \
744 CR4_OSFXSR | \
745 CR4_OSXMMEXCPT | \
746 CR4_UMIP | \
747 /* CR4_LA57 excluded */ \
748 /* CR4_VMXE excluded */ \
749 /* CR4_SMXE excluded */ \
750 CR4_FSGSBASE | \
751 CR4_PCIDE | \
752 CR4_OSXSAVE | \
753 CR4_SMEP | \
754 CR4_SMAP \
755 /* CR4_PKE excluded */ \
756 /* CR4_CET excluded */ \
757 /* CR4_PKS excluded */)
758 #define CR4_INVALID \
759 (0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
760
761 #define EFER_TLB_FLUSH \
762 (EFER_NXE|EFER_LMA|EFER_LME)
763 #define CR0_TLB_FLUSH \
764 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
765 #define CR4_TLB_FLUSH \
766 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
767
768 /* -------------------------------------------------------------------------- */
769
770 struct vmx_machdata {
771 volatile uint64_t mach_htlb_gen;
772 };
773
774 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
775 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
776 sizeof(struct nvmm_vcpu_conf_cpuid),
777 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
778 sizeof(struct nvmm_vcpu_conf_tpr)
779 };
780
781 struct vmx_cpudata {
782 /* General */
783 uint64_t asid;
784 bool gtlb_want_flush;
785 bool gtsc_want_update;
786 uint64_t vcpu_htlb_gen;
787 kcpuset_t *htlb_want_flush;
788
789 /* VMCS */
790 struct vmcs *vmcs;
791 paddr_t vmcs_pa;
792 size_t vmcs_refcnt;
793 struct cpu_info *vmcs_ci;
794 bool vmcs_launched;
795
796 /* MSR bitmap */
797 uint8_t *msrbm;
798 paddr_t msrbm_pa;
799
800 /* Host state */
801 uint64_t hxcr0;
802 uint64_t star;
803 uint64_t lstar;
804 uint64_t cstar;
805 uint64_t sfmask;
806 uint64_t kernelgsbase;
807
808 /* Intr state */
809 bool int_window_exit;
810 bool nmi_window_exit;
811 bool evt_pending;
812
813 /* Guest state */
814 struct msr_entry *gmsr;
815 paddr_t gmsr_pa;
816 uint64_t gmsr_misc_enable;
817 uint64_t gcr2;
818 uint64_t gcr8;
819 uint64_t gxcr0;
820 uint64_t gprs[NVMM_X64_NGPR];
821 uint64_t drs[NVMM_X64_NDR];
822 uint64_t gtsc;
823 struct xsave_header gfpu __aligned(64);
824
825 /* VCPU configuration. */
826 bool cpuidpresent[VMX_NCPUIDS];
827 struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
828 struct nvmm_vcpu_conf_tpr tpr;
829 };
830
831 static const struct {
832 uint64_t selector;
833 uint64_t attrib;
834 uint64_t limit;
835 uint64_t base;
836 } vmx_guest_segs[NVMM_X64_NSEG] = {
837 [NVMM_X64_SEG_ES] = {
838 VMCS_GUEST_ES_SELECTOR,
839 VMCS_GUEST_ES_ACCESS_RIGHTS,
840 VMCS_GUEST_ES_LIMIT,
841 VMCS_GUEST_ES_BASE
842 },
843 [NVMM_X64_SEG_CS] = {
844 VMCS_GUEST_CS_SELECTOR,
845 VMCS_GUEST_CS_ACCESS_RIGHTS,
846 VMCS_GUEST_CS_LIMIT,
847 VMCS_GUEST_CS_BASE
848 },
849 [NVMM_X64_SEG_SS] = {
850 VMCS_GUEST_SS_SELECTOR,
851 VMCS_GUEST_SS_ACCESS_RIGHTS,
852 VMCS_GUEST_SS_LIMIT,
853 VMCS_GUEST_SS_BASE
854 },
855 [NVMM_X64_SEG_DS] = {
856 VMCS_GUEST_DS_SELECTOR,
857 VMCS_GUEST_DS_ACCESS_RIGHTS,
858 VMCS_GUEST_DS_LIMIT,
859 VMCS_GUEST_DS_BASE
860 },
861 [NVMM_X64_SEG_FS] = {
862 VMCS_GUEST_FS_SELECTOR,
863 VMCS_GUEST_FS_ACCESS_RIGHTS,
864 VMCS_GUEST_FS_LIMIT,
865 VMCS_GUEST_FS_BASE
866 },
867 [NVMM_X64_SEG_GS] = {
868 VMCS_GUEST_GS_SELECTOR,
869 VMCS_GUEST_GS_ACCESS_RIGHTS,
870 VMCS_GUEST_GS_LIMIT,
871 VMCS_GUEST_GS_BASE
872 },
873 [NVMM_X64_SEG_GDT] = {
874 0, /* doesn't exist */
875 0, /* doesn't exist */
876 VMCS_GUEST_GDTR_LIMIT,
877 VMCS_GUEST_GDTR_BASE
878 },
879 [NVMM_X64_SEG_IDT] = {
880 0, /* doesn't exist */
881 0, /* doesn't exist */
882 VMCS_GUEST_IDTR_LIMIT,
883 VMCS_GUEST_IDTR_BASE
884 },
885 [NVMM_X64_SEG_LDT] = {
886 VMCS_GUEST_LDTR_SELECTOR,
887 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
888 VMCS_GUEST_LDTR_LIMIT,
889 VMCS_GUEST_LDTR_BASE
890 },
891 [NVMM_X64_SEG_TR] = {
892 VMCS_GUEST_TR_SELECTOR,
893 VMCS_GUEST_TR_ACCESS_RIGHTS,
894 VMCS_GUEST_TR_LIMIT,
895 VMCS_GUEST_TR_BASE
896 }
897 };
898
899 /* -------------------------------------------------------------------------- */
900
901 static uint64_t
902 vmx_get_revision(void)
903 {
904 uint64_t msr;
905
906 msr = rdmsr(MSR_IA32_VMX_BASIC);
907 msr &= IA32_VMX_BASIC_IDENT;
908
909 return msr;
910 }
911
912 static void
913 vmx_vmclear_ipi(void *arg1, void *arg2)
914 {
915 paddr_t vmcs_pa = (paddr_t)arg1;
916 vmx_vmclear(&vmcs_pa);
917 }
918
919 static void
920 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
921 {
922 uint64_t xc;
923 int bound;
924
925 KASSERT(kpreempt_disabled());
926
927 bound = curlwp_bind();
928 kpreempt_enable();
929
930 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
931 xc_wait(xc);
932
933 kpreempt_disable();
934 curlwp_bindx(bound);
935 }
936
937 static void
938 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
939 {
940 struct vmx_cpudata *cpudata = vcpu->cpudata;
941 struct cpu_info *vmcs_ci;
942
943 cpudata->vmcs_refcnt++;
944 if (cpudata->vmcs_refcnt > 1) {
945 KASSERT(kpreempt_disabled());
946 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
947 return;
948 }
949
950 vmcs_ci = cpudata->vmcs_ci;
951 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
952
953 kpreempt_disable();
954
955 if (vmcs_ci == NULL) {
956 /* This VMCS is loaded for the first time. */
957 vmx_vmclear(&cpudata->vmcs_pa);
958 cpudata->vmcs_launched = false;
959 } else if (vmcs_ci != curcpu()) {
960 /* This VMCS is active on a remote CPU. */
961 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
962 cpudata->vmcs_launched = false;
963 } else {
964 /* This VMCS is active on curcpu, nothing to do. */
965 }
966
967 vmx_vmptrld(&cpudata->vmcs_pa);
968 }
969
970 static void
971 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
972 {
973 struct vmx_cpudata *cpudata = vcpu->cpudata;
974
975 KASSERT(kpreempt_disabled());
976 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
977 KASSERT(cpudata->vmcs_refcnt > 0);
978 cpudata->vmcs_refcnt--;
979
980 if (cpudata->vmcs_refcnt > 0) {
981 return;
982 }
983
984 cpudata->vmcs_ci = curcpu();
985 kpreempt_enable();
986 }
987
988 static void
989 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
990 {
991 struct vmx_cpudata *cpudata = vcpu->cpudata;
992
993 KASSERT(kpreempt_disabled());
994 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
995 KASSERT(cpudata->vmcs_refcnt == 1);
996 cpudata->vmcs_refcnt--;
997
998 vmx_vmclear(&cpudata->vmcs_pa);
999 kpreempt_enable();
1000 }
1001
1002 /* -------------------------------------------------------------------------- */
1003
1004 static void
1005 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1006 {
1007 struct vmx_cpudata *cpudata = vcpu->cpudata;
1008 uint64_t ctls1;
1009
1010 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1011
1012 if (nmi) {
1013 // XXX INT_STATE_NMI?
1014 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1015 cpudata->nmi_window_exit = true;
1016 } else {
1017 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1018 cpudata->int_window_exit = true;
1019 }
1020
1021 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1022 }
1023
1024 static void
1025 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1026 {
1027 struct vmx_cpudata *cpudata = vcpu->cpudata;
1028 uint64_t ctls1;
1029
1030 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1031
1032 if (nmi) {
1033 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1034 cpudata->nmi_window_exit = false;
1035 } else {
1036 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1037 cpudata->int_window_exit = false;
1038 }
1039
1040 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1041 }
1042
1043 static inline bool
1044 vmx_excp_has_rf(uint8_t vector)
1045 {
1046 switch (vector) {
1047 case 1: /* #DB */
1048 case 4: /* #OF */
1049 case 8: /* #DF */
1050 case 18: /* #MC */
1051 return false;
1052 default:
1053 return true;
1054 }
1055 }
1056
1057 static inline int
1058 vmx_excp_has_error(uint8_t vector)
1059 {
1060 switch (vector) {
1061 case 8: /* #DF */
1062 case 10: /* #TS */
1063 case 11: /* #NP */
1064 case 12: /* #SS */
1065 case 13: /* #GP */
1066 case 14: /* #PF */
1067 case 17: /* #AC */
1068 case 30: /* #SX */
1069 return 1;
1070 default:
1071 return 0;
1072 }
1073 }
1074
1075 static int
1076 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1077 {
1078 struct nvmm_comm_page *comm = vcpu->comm;
1079 struct vmx_cpudata *cpudata = vcpu->cpudata;
1080 int type = 0, err = 0, ret = EINVAL;
1081 uint64_t rflags, info, error;
1082 u_int evtype;
1083 uint8_t vector;
1084
1085 evtype = comm->event.type;
1086 vector = comm->event.vector;
1087 error = comm->event.u.excp.error;
1088 __insn_barrier();
1089
1090 vmx_vmcs_enter(vcpu);
1091
1092 switch (evtype) {
1093 case NVMM_VCPU_EVENT_EXCP:
1094 if (vector == 2 || vector >= 32)
1095 goto out;
1096 if (vector == 3 || vector == 0)
1097 goto out;
1098 if (vmx_excp_has_rf(vector)) {
1099 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1100 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1101 }
1102 type = INTR_TYPE_HW_EXC;
1103 err = vmx_excp_has_error(vector);
1104 break;
1105 case NVMM_VCPU_EVENT_INTR:
1106 type = INTR_TYPE_EXT_INT;
1107 if (vector == 2) {
1108 type = INTR_TYPE_NMI;
1109 vmx_event_waitexit_enable(vcpu, true);
1110 }
1111 err = 0;
1112 break;
1113 default:
1114 goto out;
1115 }
1116
1117 info =
1118 __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1119 __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1120 __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1121 __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1122 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1123 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1124
1125 cpudata->evt_pending = true;
1126 ret = 0;
1127
1128 out:
1129 vmx_vmcs_leave(vcpu);
1130 return ret;
1131 }
1132
1133 static void
1134 vmx_inject_ud(struct nvmm_cpu *vcpu)
1135 {
1136 struct nvmm_comm_page *comm = vcpu->comm;
1137 int ret __diagused;
1138
1139 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1140 comm->event.vector = 6;
1141 comm->event.u.excp.error = 0;
1142
1143 ret = vmx_vcpu_inject(vcpu);
1144 KASSERT(ret == 0);
1145 }
1146
1147 static void
1148 vmx_inject_gp(struct nvmm_cpu *vcpu)
1149 {
1150 struct nvmm_comm_page *comm = vcpu->comm;
1151 int ret __diagused;
1152
1153 comm->event.type = NVMM_VCPU_EVENT_EXCP;
1154 comm->event.vector = 13;
1155 comm->event.u.excp.error = 0;
1156
1157 ret = vmx_vcpu_inject(vcpu);
1158 KASSERT(ret == 0);
1159 }
1160
1161 static inline int
1162 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1163 {
1164 if (__predict_true(!vcpu->comm->event_commit)) {
1165 return 0;
1166 }
1167 vcpu->comm->event_commit = false;
1168 return vmx_vcpu_inject(vcpu);
1169 }
1170
1171 static inline void
1172 vmx_inkernel_advance(void)
1173 {
1174 uint64_t rip, inslen, intstate, rflags;
1175
1176 /*
1177 * Maybe we should also apply single-stepping and debug exceptions.
1178 * Matters for guest-ring3, because it can execute 'cpuid' under a
1179 * debugger.
1180 */
1181
1182 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1183 rip = vmx_vmread(VMCS_GUEST_RIP);
1184 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1185
1186 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1187 vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1188
1189 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1190 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1191 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1192 }
1193
1194 static void
1195 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1196 {
1197 exit->u.inv.hwcode = code;
1198 exit->reason = NVMM_VCPU_EXIT_INVALID;
1199 }
1200
1201 static void
1202 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1203 struct nvmm_vcpu_exit *exit)
1204 {
1205 uint64_t qual;
1206
1207 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1208
1209 if ((qual & INTR_INFO_VALID) == 0) {
1210 goto error;
1211 }
1212 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1213 goto error;
1214 }
1215
1216 exit->reason = NVMM_VCPU_EXIT_NONE;
1217 return;
1218
1219 error:
1220 vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1221 }
1222
1223 #define VMX_CPUID_MAX_BASIC 0x16
1224 #define VMX_CPUID_MAX_HYPERVISOR 0x40000010
1225 #define VMX_CPUID_MAX_EXTENDED 0x80000008
1226 static uint32_t vmx_cpuid_max_basic __read_mostly;
1227 static uint32_t vmx_cpuid_max_extended __read_mostly;
1228
1229 static void
1230 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint64_t eax, uint64_t ecx)
1231 {
1232 u_int descs[4];
1233
1234 x86_cpuid2(eax, ecx, descs);
1235 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1236 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1237 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1238 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1239 }
1240
1241 static void
1242 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1243 uint64_t eax, uint64_t ecx)
1244 {
1245 struct vmx_cpudata *cpudata = vcpu->cpudata;
1246 unsigned int ncpus;
1247 uint64_t cr4;
1248
1249 /*
1250 * `If a value entered for CPUID.EAX is higher than the maximum
1251 * input value for basic or extended function for that
1252 * processor then the data for the highest basic information
1253 * leaf is returned.'
1254 *
1255 * --Intel 64 and IA-32 Architectures Software Developer's
1256 * Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
1257 * Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
1258 * p. 3-214.
1259 *
1260 * We take the same to hold for the hypervisor range,
1261 * 0x40000000-0x4fffffff.
1262 *
1263 * (Sync with nvmm_x86_svm.c.)
1264 */
1265 if (eax < 0x40000000) { /* basic CPUID range */
1266 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1267 eax = vmx_cpuid_max_basic;
1268 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1269 }
1270 } else if (eax < 0x80000000) { /* hypervisor CPUID range */
1271 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1272 eax = vmx_cpuid_max_basic;
1273 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1274 }
1275 } else { /* extended CPUID range */
1276 if (__predict_false(eax > vmx_cpuid_max_extended)) {
1277 eax = vmx_cpuid_max_basic;
1278 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1279 }
1280 }
1281
1282 switch (eax) {
1283
1284 /*
1285 * basic CPUID range
1286 */
1287 case 0x00000000:
1288 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1289 break;
1290 case 0x00000001:
1291 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1292
1293 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1294 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1295 CPUID_LOCAL_APIC_ID);
1296
1297 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1298 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1299 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1300 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1301 }
1302
1303 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1304
1305 /* CPUID2_OSXSAVE depends on CR4. */
1306 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1307 if (!(cr4 & CR4_OSXSAVE)) {
1308 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1309 }
1310 break;
1311 case 0x00000002:
1312 break;
1313 case 0x00000003:
1314 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1315 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1316 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1317 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1318 break;
1319 case 0x00000004: /* Deterministic Cache Parameters */
1320 break; /* TODO? */
1321 case 0x00000005: /* MONITOR/MWAIT */
1322 case 0x00000006: /* Thermal and Power Management */
1323 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1324 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1325 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1326 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1327 break;
1328 case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1329 switch (ecx) {
1330 case 0:
1331 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1332 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1333 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1334 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1335 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1336 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1337 }
1338 break;
1339 default:
1340 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1341 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1342 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1343 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1344 break;
1345 }
1346 break;
1347 case 0x00000008: /* Empty */
1348 case 0x00000009: /* Direct Cache Access Information */
1349 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1350 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1351 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1352 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1353 break;
1354 case 0x0000000A: /* Architectural Performance Monitoring */
1355 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1356 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1357 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1358 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1359 break;
1360 case 0x0000000B: /* Extended Topology Enumeration */
1361 switch (ecx) {
1362 case 0: /* Threads */
1363 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1364 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1365 cpudata->gprs[NVMM_X64_GPR_RCX] =
1366 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1367 __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1368 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1369 break;
1370 case 1: /* Cores */
1371 ncpus = atomic_load_relaxed(&mach->ncpus);
1372 cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1373 cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1374 cpudata->gprs[NVMM_X64_GPR_RCX] =
1375 __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1376 __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1377 cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1378 break;
1379 default:
1380 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1381 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1382 cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1383 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1384 break;
1385 }
1386 break;
1387 case 0x0000000C: /* Empty */
1388 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1389 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1390 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1391 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1392 break;
1393 case 0x0000000D: /* Processor Extended State Enumeration */
1394 if (vmx_xcr0_mask == 0) {
1395 break;
1396 }
1397 switch (ecx) {
1398 case 0:
1399 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1400 if (cpudata->gxcr0 & XCR0_SSE) {
1401 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1402 } else {
1403 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1404 }
1405 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1406 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1407 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1408 break;
1409 case 1:
1410 cpudata->gprs[NVMM_X64_GPR_RAX] &=
1411 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1412 CPUID_PES1_XGETBV);
1413 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1414 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1415 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1416 break;
1417 default:
1418 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1419 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1420 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1421 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1422 break;
1423 }
1424 break;
1425 case 0x0000000E: /* Empty */
1426 case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1427 case 0x00000010: /* Intel RDT Allocation Enumeration */
1428 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1429 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1430 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1431 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1432 break;
1433 case 0x00000011: /* Empty */
1434 case 0x00000012: /* Intel SGX Capability Enumeration */
1435 case 0x00000013: /* Empty */
1436 case 0x00000014: /* Intel Processor Trace Enumeration */
1437 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1438 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1439 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1440 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1441 break;
1442 case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1443 case 0x00000016: /* Processor Frequency Information */
1444 break;
1445
1446 /*
1447 * hypervisor CPUID range
1448 */
1449 case 0x40000000: /* Hypervisor Information */
1450 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1451 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1452 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1453 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1454 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1455 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1456 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1457 break;
1458 case 0x40000010: /* VMware-style TSC and LAPIC freq */
1459 cpudata->gprs[NVMM_X64_GPR_RAX] = curcpu()->ci_data.cpu_cc_freq / 1000;
1460 if (has_lapic())
1461 cpudata->gprs[NVMM_X64_GPR_RBX] = lapic_per_second / 1000;
1462 else
1463 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1464 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1465 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1466 break;
1467
1468 /*
1469 * extended CPUID range
1470 */
1471 case 0x80000000:
1472 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1473 break;
1474 case 0x80000001:
1475 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1476 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1477 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1478 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1479 break;
1480 case 0x80000002: /* Processor Brand String */
1481 case 0x80000003: /* Processor Brand String */
1482 case 0x80000004: /* Processor Brand String */
1483 case 0x80000005: /* Reserved Zero */
1484 case 0x80000006: /* Cache Information */
1485 break;
1486 case 0x80000007: /* TSC Information */
1487 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1488 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1489 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1490 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1491 break;
1492 case 0x80000008: /* Address Sizes */
1493 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1494 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1495 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1496 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1497 break;
1498
1499 default:
1500 break;
1501 }
1502 }
1503
1504 static void
1505 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1506 {
1507 uint64_t inslen, rip;
1508
1509 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1510 rip = vmx_vmread(VMCS_GUEST_RIP);
1511 exit->u.insn.npc = rip + inslen;
1512 exit->reason = reason;
1513 }
1514
1515 static void
1516 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1517 struct nvmm_vcpu_exit *exit)
1518 {
1519 struct vmx_cpudata *cpudata = vcpu->cpudata;
1520 struct nvmm_vcpu_conf_cpuid *cpuid;
1521 uint64_t eax, ecx;
1522 size_t i;
1523
1524 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1525 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1526 vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1527 vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1528
1529 for (i = 0; i < VMX_NCPUIDS; i++) {
1530 if (!cpudata->cpuidpresent[i]) {
1531 continue;
1532 }
1533 cpuid = &cpudata->cpuid[i];
1534 if (cpuid->leaf != eax) {
1535 continue;
1536 }
1537
1538 if (cpuid->exit) {
1539 vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1540 return;
1541 }
1542 KASSERT(cpuid->mask);
1543
1544 /* del */
1545 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1546 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1547 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1548 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1549
1550 /* set */
1551 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1552 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1553 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1554 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1555
1556 break;
1557 }
1558
1559 vmx_inkernel_advance();
1560 exit->reason = NVMM_VCPU_EXIT_NONE;
1561 }
1562
1563 static void
1564 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1565 struct nvmm_vcpu_exit *exit)
1566 {
1567 struct vmx_cpudata *cpudata = vcpu->cpudata;
1568 uint64_t rflags;
1569
1570 if (cpudata->int_window_exit) {
1571 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1572 if (rflags & PSL_I) {
1573 vmx_event_waitexit_disable(vcpu, false);
1574 }
1575 }
1576
1577 vmx_inkernel_advance();
1578 exit->reason = NVMM_VCPU_EXIT_HALTED;
1579 }
1580
1581 #define VMX_QUAL_CR_NUM __BITS(3,0)
1582 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1583 #define CR_TYPE_WRITE 0
1584 #define CR_TYPE_READ 1
1585 #define CR_TYPE_CLTS 2
1586 #define CR_TYPE_LMSW 3
1587 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1588 #define VMX_QUAL_CR_GPR __BITS(11,8)
1589 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1590
1591 static inline int
1592 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1593 {
1594 /* Bits set to 1 in fixed0 are fixed to 1. */
1595 if ((crval & fixed0) != fixed0) {
1596 return -1;
1597 }
1598 /* Bits set to 0 in fixed1 are fixed to 0. */
1599 if (crval & ~fixed1) {
1600 return -1;
1601 }
1602 return 0;
1603 }
1604
1605 static int
1606 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1607 uint64_t qual)
1608 {
1609 struct vmx_cpudata *cpudata = vcpu->cpudata;
1610 uint64_t type, gpr, oldcr0, realcr0, fakecr0;
1611 uint64_t efer, ctls1;
1612
1613 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1614 if (type != CR_TYPE_WRITE) {
1615 return -1;
1616 }
1617
1618 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1619 KASSERT(gpr < 16);
1620
1621 if (gpr == NVMM_X64_GPR_RSP) {
1622 fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
1623 } else {
1624 fakecr0 = cpudata->gprs[gpr];
1625 }
1626
1627 /*
1628 * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
1629 * actual value in %cr0.
1630 *
1631 * In fakecr0 we must force CR0_ET to 1.
1632 *
1633 * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
1634 * CR0_NE to 1.
1635 */
1636 fakecr0 |= CR0_ET;
1637 realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
1638
1639 if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1640 return -1;
1641 }
1642
1643 /*
1644 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1645 * from CR3.
1646 */
1647
1648 if (realcr0 & CR0_PG) {
1649 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1650 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1651 if (efer & EFER_LME) {
1652 ctls1 |= ENTRY_CTLS_LONG_MODE;
1653 efer |= EFER_LMA;
1654 } else {
1655 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1656 efer &= ~EFER_LMA;
1657 }
1658 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1659 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1660 }
1661
1662 oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
1663 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
1664 if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
1665 cpudata->gtlb_want_flush = true;
1666 }
1667
1668 vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
1669 vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
1670 vmx_inkernel_advance();
1671 return 0;
1672 }
1673
1674 static int
1675 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1676 uint64_t qual)
1677 {
1678 struct vmx_cpudata *cpudata = vcpu->cpudata;
1679 uint64_t type, gpr, oldcr4, cr4;
1680
1681 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1682 if (type != CR_TYPE_WRITE) {
1683 return -1;
1684 }
1685
1686 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1687 KASSERT(gpr < 16);
1688
1689 if (gpr == NVMM_X64_GPR_RSP) {
1690 gpr = vmx_vmread(VMCS_GUEST_RSP);
1691 } else {
1692 gpr = cpudata->gprs[gpr];
1693 }
1694
1695 if (gpr & CR4_INVALID) {
1696 return -1;
1697 }
1698 cr4 = gpr | CR4_VMXE;
1699 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1700 return -1;
1701 }
1702
1703 oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1704 if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1705 cpudata->gtlb_want_flush = true;
1706 }
1707
1708 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1709 vmx_inkernel_advance();
1710 return 0;
1711 }
1712
1713 static int
1714 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1715 uint64_t qual, struct nvmm_vcpu_exit *exit)
1716 {
1717 struct vmx_cpudata *cpudata = vcpu->cpudata;
1718 uint64_t type, gpr;
1719 bool write;
1720
1721 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1722 if (type == CR_TYPE_WRITE) {
1723 write = true;
1724 } else if (type == CR_TYPE_READ) {
1725 write = false;
1726 } else {
1727 return -1;
1728 }
1729
1730 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1731 KASSERT(gpr < 16);
1732
1733 if (write) {
1734 if (gpr == NVMM_X64_GPR_RSP) {
1735 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1736 } else {
1737 cpudata->gcr8 = cpudata->gprs[gpr];
1738 }
1739 if (cpudata->tpr.exit_changed) {
1740 exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1741 }
1742 } else {
1743 if (gpr == NVMM_X64_GPR_RSP) {
1744 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1745 } else {
1746 cpudata->gprs[gpr] = cpudata->gcr8;
1747 }
1748 }
1749
1750 vmx_inkernel_advance();
1751 return 0;
1752 }
1753
1754 static void
1755 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1756 struct nvmm_vcpu_exit *exit)
1757 {
1758 uint64_t qual;
1759 int ret;
1760
1761 exit->reason = NVMM_VCPU_EXIT_NONE;
1762
1763 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1764
1765 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1766 case 0:
1767 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1768 break;
1769 case 4:
1770 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1771 break;
1772 case 8:
1773 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1774 break;
1775 default:
1776 ret = -1;
1777 break;
1778 }
1779
1780 if (ret == -1) {
1781 vmx_inject_gp(vcpu);
1782 }
1783 }
1784
1785 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1786 #define IO_SIZE_8 0
1787 #define IO_SIZE_16 1
1788 #define IO_SIZE_32 3
1789 #define VMX_QUAL_IO_IN __BIT(3)
1790 #define VMX_QUAL_IO_STR __BIT(4)
1791 #define VMX_QUAL_IO_REP __BIT(5)
1792 #define VMX_QUAL_IO_DX __BIT(6)
1793 #define VMX_QUAL_IO_PORT __BITS(31,16)
1794
1795 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1796 #define IO_ADRSIZE_16 0
1797 #define IO_ADRSIZE_32 1
1798 #define IO_ADRSIZE_64 2
1799 #define VMX_INFO_IO_SEG __BITS(17,15)
1800
1801 static void
1802 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1803 struct nvmm_vcpu_exit *exit)
1804 {
1805 uint64_t qual, info, inslen, rip;
1806
1807 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1808 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1809
1810 exit->reason = NVMM_VCPU_EXIT_IO;
1811
1812 exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1813 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1814
1815 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1816 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1817
1818 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1819 exit->u.io.address_size = 8;
1820 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1821 exit->u.io.address_size = 4;
1822 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1823 exit->u.io.address_size = 2;
1824 }
1825
1826 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1827 exit->u.io.operand_size = 4;
1828 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1829 exit->u.io.operand_size = 2;
1830 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1831 exit->u.io.operand_size = 1;
1832 }
1833
1834 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1835 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1836
1837 if (exit->u.io.in && exit->u.io.str) {
1838 exit->u.io.seg = NVMM_X64_SEG_ES;
1839 }
1840
1841 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1842 rip = vmx_vmread(VMCS_GUEST_RIP);
1843 exit->u.io.npc = rip + inslen;
1844
1845 vmx_vcpu_state_provide(vcpu,
1846 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1847 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1848 }
1849
1850 static const uint64_t msr_ignore_list[] = {
1851 MSR_BIOS_SIGN,
1852 MSR_IA32_PLATFORM_ID
1853 };
1854
1855 static bool
1856 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1857 struct nvmm_vcpu_exit *exit)
1858 {
1859 struct vmx_cpudata *cpudata = vcpu->cpudata;
1860 uint64_t val;
1861 size_t i;
1862
1863 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1864 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1865 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1866 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1867 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1868 goto handled;
1869 }
1870 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1871 val = cpudata->gmsr_misc_enable;
1872 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1873 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1874 goto handled;
1875 }
1876 if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1877 u_int descs[4];
1878 if (cpuid_level < 7) {
1879 goto error;
1880 }
1881 x86_cpuid(7, descs);
1882 if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
1883 goto error;
1884 }
1885 val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1886 val &= (IA32_ARCH_RDCL_NO |
1887 IA32_ARCH_SSB_NO |
1888 IA32_ARCH_MDS_NO |
1889 IA32_ARCH_TAA_NO);
1890 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1891 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1892 goto handled;
1893 }
1894 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1895 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1896 continue;
1897 val = 0;
1898 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1899 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1900 goto handled;
1901 }
1902 } else {
1903 if (exit->u.wrmsr.msr == MSR_TSC) {
1904 cpudata->gtsc = exit->u.wrmsr.val;
1905 cpudata->gtsc_want_update = true;
1906 goto handled;
1907 }
1908 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1909 val = exit->u.wrmsr.val;
1910 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1911 goto error;
1912 }
1913 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1914 goto handled;
1915 }
1916 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1917 /* Don't care. */
1918 goto handled;
1919 }
1920 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1921 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1922 continue;
1923 goto handled;
1924 }
1925 }
1926
1927 return false;
1928
1929 handled:
1930 vmx_inkernel_advance();
1931 return true;
1932
1933 error:
1934 vmx_inject_gp(vcpu);
1935 return true;
1936 }
1937
1938 static void
1939 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1940 struct nvmm_vcpu_exit *exit)
1941 {
1942 struct vmx_cpudata *cpudata = vcpu->cpudata;
1943 uint64_t inslen, rip;
1944
1945 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1946 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1947
1948 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1949 exit->reason = NVMM_VCPU_EXIT_NONE;
1950 return;
1951 }
1952
1953 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1954 rip = vmx_vmread(VMCS_GUEST_RIP);
1955 exit->u.rdmsr.npc = rip + inslen;
1956
1957 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1958 }
1959
1960 static void
1961 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1962 struct nvmm_vcpu_exit *exit)
1963 {
1964 struct vmx_cpudata *cpudata = vcpu->cpudata;
1965 uint64_t rdx, rax, inslen, rip;
1966
1967 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1968 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1969
1970 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1971 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1972 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1973
1974 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1975 exit->reason = NVMM_VCPU_EXIT_NONE;
1976 return;
1977 }
1978
1979 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1980 rip = vmx_vmread(VMCS_GUEST_RIP);
1981 exit->u.wrmsr.npc = rip + inslen;
1982
1983 vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1984 }
1985
1986 static void
1987 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1988 struct nvmm_vcpu_exit *exit)
1989 {
1990 struct vmx_cpudata *cpudata = vcpu->cpudata;
1991 uint64_t val;
1992
1993 exit->reason = NVMM_VCPU_EXIT_NONE;
1994
1995 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1996 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1997
1998 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1999 goto error;
2000 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
2001 goto error;
2002 } else if (__predict_false((val & XCR0_X87) == 0)) {
2003 goto error;
2004 }
2005
2006 cpudata->gxcr0 = val;
2007
2008 vmx_inkernel_advance();
2009 return;
2010
2011 error:
2012 vmx_inject_gp(vcpu);
2013 }
2014
2015 #define VMX_EPT_VIOLATION_READ __BIT(0)
2016 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
2017 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
2018
2019 static void
2020 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2021 struct nvmm_vcpu_exit *exit)
2022 {
2023 uint64_t perm;
2024 gpaddr_t gpa;
2025
2026 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
2027
2028 exit->reason = NVMM_VCPU_EXIT_MEMORY;
2029 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
2030 if (perm & VMX_EPT_VIOLATION_WRITE)
2031 exit->u.mem.prot = PROT_WRITE;
2032 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
2033 exit->u.mem.prot = PROT_EXEC;
2034 else
2035 exit->u.mem.prot = PROT_READ;
2036 exit->u.mem.gpa = gpa;
2037 exit->u.mem.inst_len = 0;
2038
2039 vmx_vcpu_state_provide(vcpu,
2040 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2041 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2042 }
2043
2044 /* -------------------------------------------------------------------------- */
2045
2046 static void
2047 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2048 {
2049 struct vmx_cpudata *cpudata = vcpu->cpudata;
2050
2051 fpu_kern_enter();
2052 /* TODO: should we use *XSAVE64 here? */
2053 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask, false);
2054
2055 if (vmx_xcr0_mask != 0) {
2056 cpudata->hxcr0 = rdxcr(0);
2057 wrxcr(0, cpudata->gxcr0);
2058 }
2059 }
2060
2061 static void
2062 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2063 {
2064 struct vmx_cpudata *cpudata = vcpu->cpudata;
2065
2066 if (vmx_xcr0_mask != 0) {
2067 cpudata->gxcr0 = rdxcr(0);
2068 wrxcr(0, cpudata->hxcr0);
2069 }
2070
2071 /* TODO: should we use *XSAVE64 here? */
2072 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask, false);
2073 fpu_kern_leave();
2074 }
2075
2076 static void
2077 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2078 {
2079 struct vmx_cpudata *cpudata = vcpu->cpudata;
2080
2081 x86_dbregs_save(curlwp);
2082
2083 ldr7(0);
2084
2085 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
2086 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
2087 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
2088 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
2089 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
2090 }
2091
2092 static void
2093 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2094 {
2095 struct vmx_cpudata *cpudata = vcpu->cpudata;
2096
2097 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
2098 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
2099 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
2100 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
2101 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
2102
2103 x86_dbregs_restore(curlwp);
2104 }
2105
2106 static void
2107 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2108 {
2109 struct vmx_cpudata *cpudata = vcpu->cpudata;
2110
2111 /* This gets restored automatically by the CPU. */
2112 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
2113 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2114 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
2115 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
2116
2117 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2118 }
2119
2120 static void
2121 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2122 {
2123 struct vmx_cpudata *cpudata = vcpu->cpudata;
2124
2125 wrmsr(MSR_STAR, cpudata->star);
2126 wrmsr(MSR_LSTAR, cpudata->lstar);
2127 wrmsr(MSR_CSTAR, cpudata->cstar);
2128 wrmsr(MSR_SFMASK, cpudata->sfmask);
2129 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
2130 }
2131
2132 /* -------------------------------------------------------------------------- */
2133
2134 #define VMX_INVVPID_ADDRESS 0
2135 #define VMX_INVVPID_CONTEXT 1
2136 #define VMX_INVVPID_ALL 2
2137 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
2138
2139 #define VMX_INVEPT_CONTEXT 1
2140 #define VMX_INVEPT_ALL 2
2141
2142 static inline void
2143 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2144 {
2145 struct vmx_cpudata *cpudata = vcpu->cpudata;
2146
2147 if (vcpu->hcpu_last != hcpu) {
2148 cpudata->gtlb_want_flush = true;
2149 }
2150 }
2151
2152 static inline void
2153 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2154 {
2155 struct vmx_cpudata *cpudata = vcpu->cpudata;
2156 struct ept_desc ept_desc;
2157
2158 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
2159 return;
2160 }
2161
2162 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2163 ept_desc.mbz = 0;
2164 vmx_invept(vmx_ept_flush_op, &ept_desc);
2165 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
2166 }
2167
2168 static inline uint64_t
2169 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
2170 {
2171 struct ept_desc ept_desc;
2172 uint64_t machgen;
2173
2174 machgen = machdata->mach_htlb_gen;
2175 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2176 return machgen;
2177 }
2178
2179 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
2180
2181 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2182 ept_desc.mbz = 0;
2183 vmx_invept(vmx_ept_flush_op, &ept_desc);
2184
2185 return machgen;
2186 }
2187
2188 static inline void
2189 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2190 {
2191 cpudata->vcpu_htlb_gen = machgen;
2192 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
2193 }
2194
2195 static inline void
2196 vmx_exit_evt(struct vmx_cpudata *cpudata)
2197 {
2198 uint64_t info, err, inslen;
2199
2200 cpudata->evt_pending = false;
2201
2202 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2203 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2204 return;
2205 }
2206 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2207
2208 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2209 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2210
2211 switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2212 case INTR_TYPE_SW_INT:
2213 case INTR_TYPE_PRIV_SW_EXC:
2214 case INTR_TYPE_SW_EXC:
2215 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2216 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2217 }
2218
2219 cpudata->evt_pending = true;
2220 }
2221
2222 static int
2223 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2224 struct nvmm_vcpu_exit *exit)
2225 {
2226 struct nvmm_comm_page *comm = vcpu->comm;
2227 struct vmx_machdata *machdata = mach->machdata;
2228 struct vmx_cpudata *cpudata = vcpu->cpudata;
2229 struct vpid_desc vpid_desc;
2230 struct cpu_info *ci;
2231 uint64_t exitcode;
2232 uint64_t intstate;
2233 uint64_t machgen;
2234 int hcpu, ret;
2235 bool launched;
2236
2237 vmx_vmcs_enter(vcpu);
2238
2239 vmx_vcpu_state_commit(vcpu);
2240 comm->state_cached = 0;
2241
2242 if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2243 vmx_vmcs_leave(vcpu);
2244 return EINVAL;
2245 }
2246
2247 ci = curcpu();
2248 hcpu = cpu_number();
2249 launched = cpudata->vmcs_launched;
2250
2251 vmx_gtlb_catchup(vcpu, hcpu);
2252 vmx_htlb_catchup(vcpu, hcpu);
2253
2254 if (vcpu->hcpu_last != hcpu) {
2255 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2256 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2257 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2258 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2259 cpudata->gtsc_want_update = true;
2260 vcpu->hcpu_last = hcpu;
2261 }
2262
2263 vmx_vcpu_guest_dbregs_enter(vcpu);
2264 vmx_vcpu_guest_misc_enter(vcpu);
2265
2266 while (1) {
2267 if (cpudata->gtlb_want_flush) {
2268 vpid_desc.vpid = cpudata->asid;
2269 vpid_desc.addr = 0;
2270 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2271 cpudata->gtlb_want_flush = false;
2272 }
2273
2274 if (__predict_false(cpudata->gtsc_want_update)) {
2275 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
2276 cpudata->gtsc_want_update = false;
2277 }
2278
2279 vmx_vcpu_guest_fpu_enter(vcpu);
2280 vmx_cli();
2281 machgen = vmx_htlb_flush(machdata, cpudata);
2282 lcr2(cpudata->gcr2);
2283 if (launched) {
2284 ret = vmx_vmresume(cpudata->gprs);
2285 } else {
2286 ret = vmx_vmlaunch(cpudata->gprs);
2287 }
2288 cpudata->gcr2 = rcr2();
2289 vmx_htlb_flush_ack(cpudata, machgen);
2290 vmx_sti();
2291 vmx_vcpu_guest_fpu_leave(vcpu);
2292
2293 if (__predict_false(ret != 0)) {
2294 vmx_exit_invalid(exit, -1);
2295 break;
2296 }
2297 vmx_exit_evt(cpudata);
2298
2299 launched = true;
2300
2301 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2302 exitcode &= __BITS(15,0);
2303
2304 switch (exitcode) {
2305 case VMCS_EXITCODE_EXC_NMI:
2306 vmx_exit_exc_nmi(mach, vcpu, exit);
2307 break;
2308 case VMCS_EXITCODE_EXT_INT:
2309 exit->reason = NVMM_VCPU_EXIT_NONE;
2310 break;
2311 case VMCS_EXITCODE_CPUID:
2312 vmx_exit_cpuid(mach, vcpu, exit);
2313 break;
2314 case VMCS_EXITCODE_HLT:
2315 vmx_exit_hlt(mach, vcpu, exit);
2316 break;
2317 case VMCS_EXITCODE_CR:
2318 vmx_exit_cr(mach, vcpu, exit);
2319 break;
2320 case VMCS_EXITCODE_IO:
2321 vmx_exit_io(mach, vcpu, exit);
2322 break;
2323 case VMCS_EXITCODE_RDMSR:
2324 vmx_exit_rdmsr(mach, vcpu, exit);
2325 break;
2326 case VMCS_EXITCODE_WRMSR:
2327 vmx_exit_wrmsr(mach, vcpu, exit);
2328 break;
2329 case VMCS_EXITCODE_SHUTDOWN:
2330 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2331 break;
2332 case VMCS_EXITCODE_MONITOR:
2333 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2334 break;
2335 case VMCS_EXITCODE_MWAIT:
2336 vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2337 break;
2338 case VMCS_EXITCODE_XSETBV:
2339 vmx_exit_xsetbv(mach, vcpu, exit);
2340 break;
2341 case VMCS_EXITCODE_RDPMC:
2342 case VMCS_EXITCODE_RDTSCP:
2343 case VMCS_EXITCODE_INVVPID:
2344 case VMCS_EXITCODE_INVEPT:
2345 case VMCS_EXITCODE_VMCALL:
2346 case VMCS_EXITCODE_VMCLEAR:
2347 case VMCS_EXITCODE_VMLAUNCH:
2348 case VMCS_EXITCODE_VMPTRLD:
2349 case VMCS_EXITCODE_VMPTRST:
2350 case VMCS_EXITCODE_VMREAD:
2351 case VMCS_EXITCODE_VMRESUME:
2352 case VMCS_EXITCODE_VMWRITE:
2353 case VMCS_EXITCODE_VMXOFF:
2354 case VMCS_EXITCODE_VMXON:
2355 vmx_inject_ud(vcpu);
2356 exit->reason = NVMM_VCPU_EXIT_NONE;
2357 break;
2358 case VMCS_EXITCODE_EPT_VIOLATION:
2359 vmx_exit_epf(mach, vcpu, exit);
2360 break;
2361 case VMCS_EXITCODE_INT_WINDOW:
2362 vmx_event_waitexit_disable(vcpu, false);
2363 exit->reason = NVMM_VCPU_EXIT_INT_READY;
2364 break;
2365 case VMCS_EXITCODE_NMI_WINDOW:
2366 vmx_event_waitexit_disable(vcpu, true);
2367 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2368 break;
2369 default:
2370 vmx_exit_invalid(exit, exitcode);
2371 break;
2372 }
2373
2374 /* If no reason to return to userland, keep rolling. */
2375 if (nvmm_return_needed(vcpu, exit)) {
2376 break;
2377 }
2378 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2379 break;
2380 }
2381 }
2382
2383 cpudata->vmcs_launched = launched;
2384
2385 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2386
2387 vmx_vcpu_guest_misc_leave(vcpu);
2388 vmx_vcpu_guest_dbregs_leave(vcpu);
2389
2390 exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2391 exit->exitstate.cr8 = cpudata->gcr8;
2392 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2393 exit->exitstate.int_shadow =
2394 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2395 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2396 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2397 exit->exitstate.evt_pending = cpudata->evt_pending;
2398
2399 vmx_vmcs_leave(vcpu);
2400
2401 return 0;
2402 }
2403
2404 /* -------------------------------------------------------------------------- */
2405
2406 static int
2407 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2408 {
2409 struct pglist pglist;
2410 paddr_t _pa;
2411 vaddr_t _va;
2412 size_t i;
2413 int ret;
2414
2415 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2416 &pglist, 1, 0);
2417 if (ret != 0)
2418 return ENOMEM;
2419 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2420 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2421 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2422 if (_va == 0)
2423 goto error;
2424
2425 for (i = 0; i < npages; i++) {
2426 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2427 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2428 }
2429 pmap_update(pmap_kernel());
2430
2431 memset((void *)_va, 0, npages * PAGE_SIZE);
2432
2433 *pa = _pa;
2434 *va = _va;
2435 return 0;
2436
2437 error:
2438 for (i = 0; i < npages; i++) {
2439 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2440 }
2441 return ENOMEM;
2442 }
2443
2444 static void
2445 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2446 {
2447 size_t i;
2448
2449 pmap_kremove(va, npages * PAGE_SIZE);
2450 pmap_update(pmap_kernel());
2451 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2452 for (i = 0; i < npages; i++) {
2453 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2454 }
2455 }
2456
2457 /* -------------------------------------------------------------------------- */
2458
2459 static void
2460 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2461 {
2462 uint64_t byte;
2463 uint8_t bitoff;
2464
2465 if (msr < 0x00002000) {
2466 /* Range 1 */
2467 byte = ((msr - 0x00000000) / 8) + 0;
2468 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2469 /* Range 2 */
2470 byte = ((msr - 0xC0000000) / 8) + 1024;
2471 } else {
2472 panic("%s: wrong range", __func__);
2473 }
2474
2475 bitoff = (msr & 0x7);
2476
2477 if (read) {
2478 bitmap[byte] &= ~__BIT(bitoff);
2479 }
2480 if (write) {
2481 bitmap[2048 + byte] &= ~__BIT(bitoff);
2482 }
2483 }
2484
2485 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2486 #define VMX_SEG_ATTRIB_S __BIT(4)
2487 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2488 #define VMX_SEG_ATTRIB_P __BIT(7)
2489 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2490 #define VMX_SEG_ATTRIB_L __BIT(13)
2491 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2492 #define VMX_SEG_ATTRIB_G __BIT(15)
2493 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2494
2495 static void
2496 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2497 {
2498 uint64_t attrib;
2499
2500 attrib =
2501 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2502 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2503 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2504 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2505 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2506 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2507 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2508 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2509 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2510
2511 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2512 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2513 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2514 }
2515 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2516 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2517 }
2518
2519 static void
2520 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2521 {
2522 uint64_t selector = 0, attrib = 0, base, limit;
2523
2524 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2525 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2526 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2527 }
2528 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2529 base = vmx_vmread(vmx_guest_segs[idx].base);
2530
2531 segs[idx].selector = selector;
2532 segs[idx].limit = limit;
2533 segs[idx].base = base;
2534 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2535 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2536 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2537 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2538 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2539 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2540 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2541 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2542 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2543 segs[idx].attrib.p = 0;
2544 }
2545 }
2546
2547 static inline bool
2548 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2549 {
2550 uint64_t cr0, cr3, cr4, efer;
2551
2552 if (flags & NVMM_X64_STATE_CRS) {
2553 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2554 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2555 return true;
2556 }
2557 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2558 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2559 return true;
2560 }
2561 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2562 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2563 return true;
2564 }
2565 }
2566
2567 if (flags & NVMM_X64_STATE_MSRS) {
2568 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2569 if ((efer ^
2570 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2571 return true;
2572 }
2573 }
2574
2575 return false;
2576 }
2577
2578 static void
2579 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2580 {
2581 struct nvmm_comm_page *comm = vcpu->comm;
2582 const struct nvmm_x64_state *state = &comm->state;
2583 struct vmx_cpudata *cpudata = vcpu->cpudata;
2584 struct fxsave *fpustate;
2585 uint64_t ctls1, intstate;
2586 uint64_t flags;
2587
2588 flags = comm->state_wanted;
2589
2590 vmx_vmcs_enter(vcpu);
2591
2592 if (vmx_state_tlb_flush(state, flags)) {
2593 cpudata->gtlb_want_flush = true;
2594 }
2595
2596 if (flags & NVMM_X64_STATE_SEGS) {
2597 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2598 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2599 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2600 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2601 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2602 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2603 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2604 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2605 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2606 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2607 }
2608
2609 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2610 if (flags & NVMM_X64_STATE_GPRS) {
2611 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2612
2613 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2614 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2615 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2616 }
2617
2618 if (flags & NVMM_X64_STATE_CRS) {
2619 /*
2620 * CR0_ET must be 1 both in the shadow and the real register.
2621 * CR0_NE must be 1 in the real register.
2622 * CR0_NW and CR0_CD must be 0 in the real register.
2623 */
2624 vmx_vmwrite(VMCS_CR0_SHADOW,
2625 (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
2626 CR0_ET);
2627 vmx_vmwrite(VMCS_GUEST_CR0,
2628 (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
2629 CR0_ET | CR0_NE);
2630
2631 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2632
2633 /* XXX We are not handling PDPTE here. */
2634 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
2635
2636 /* CR4_VMXE is mandatory. */
2637 vmx_vmwrite(VMCS_GUEST_CR4,
2638 (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2639
2640 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2641
2642 if (vmx_xcr0_mask != 0) {
2643 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2644 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2645 cpudata->gxcr0 &= vmx_xcr0_mask;
2646 cpudata->gxcr0 |= XCR0_X87;
2647 }
2648 }
2649
2650 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2651 if (flags & NVMM_X64_STATE_DRS) {
2652 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2653
2654 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2655 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2656 }
2657
2658 if (flags & NVMM_X64_STATE_MSRS) {
2659 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2660 state->msrs[NVMM_X64_MSR_STAR];
2661 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2662 state->msrs[NVMM_X64_MSR_LSTAR];
2663 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2664 state->msrs[NVMM_X64_MSR_CSTAR];
2665 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2666 state->msrs[NVMM_X64_MSR_SFMASK];
2667 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2668 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2669
2670 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2671 state->msrs[NVMM_X64_MSR_EFER]);
2672 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2673 state->msrs[NVMM_X64_MSR_PAT]);
2674 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2675 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2676 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2677 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2678 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2679 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2680
2681 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2682 cpudata->gtsc_want_update = true;
2683
2684 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2685 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2686 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2687 ctls1 |= ENTRY_CTLS_LONG_MODE;
2688 } else {
2689 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2690 }
2691 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2692 }
2693
2694 if (flags & NVMM_X64_STATE_INTR) {
2695 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2696 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2697 if (state->intr.int_shadow) {
2698 intstate |= INT_STATE_MOVSS;
2699 }
2700 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2701
2702 if (state->intr.int_window_exiting) {
2703 vmx_event_waitexit_enable(vcpu, false);
2704 } else {
2705 vmx_event_waitexit_disable(vcpu, false);
2706 }
2707
2708 if (state->intr.nmi_window_exiting) {
2709 vmx_event_waitexit_enable(vcpu, true);
2710 } else {
2711 vmx_event_waitexit_disable(vcpu, true);
2712 }
2713 }
2714
2715 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2716 if (flags & NVMM_X64_STATE_FPU) {
2717 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2718 sizeof(state->fpu));
2719
2720 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2721 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2722 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2723
2724 if (vmx_xcr0_mask != 0) {
2725 /* Reset XSTATE_BV, to force a reload. */
2726 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2727 }
2728 }
2729
2730 vmx_vmcs_leave(vcpu);
2731
2732 comm->state_wanted = 0;
2733 comm->state_cached |= flags;
2734 }
2735
2736 static void
2737 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2738 {
2739 struct nvmm_comm_page *comm = vcpu->comm;
2740 struct nvmm_x64_state *state = &comm->state;
2741 struct vmx_cpudata *cpudata = vcpu->cpudata;
2742 uint64_t intstate, flags;
2743
2744 flags = comm->state_wanted;
2745
2746 vmx_vmcs_enter(vcpu);
2747
2748 if (flags & NVMM_X64_STATE_SEGS) {
2749 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2750 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2751 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2752 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2753 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2754 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2755 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2756 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2757 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2758 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2759 }
2760
2761 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2762 if (flags & NVMM_X64_STATE_GPRS) {
2763 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2764
2765 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2766 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2767 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2768 }
2769
2770 if (flags & NVMM_X64_STATE_CRS) {
2771 state->crs[NVMM_X64_CR_CR0] =
2772 (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
2773 (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
2774 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2775 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2776 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2777 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2778 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2779
2780 /* Hide VMXE. */
2781 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2782 }
2783
2784 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2785 if (flags & NVMM_X64_STATE_DRS) {
2786 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2787
2788 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2789 }
2790
2791 if (flags & NVMM_X64_STATE_MSRS) {
2792 state->msrs[NVMM_X64_MSR_STAR] =
2793 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2794 state->msrs[NVMM_X64_MSR_LSTAR] =
2795 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2796 state->msrs[NVMM_X64_MSR_CSTAR] =
2797 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2798 state->msrs[NVMM_X64_MSR_SFMASK] =
2799 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2800 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2801 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2802 state->msrs[NVMM_X64_MSR_EFER] =
2803 vmx_vmread(VMCS_GUEST_IA32_EFER);
2804 state->msrs[NVMM_X64_MSR_PAT] =
2805 vmx_vmread(VMCS_GUEST_IA32_PAT);
2806 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2807 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2808 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2809 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2810 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2811 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2812 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2813 }
2814
2815 if (flags & NVMM_X64_STATE_INTR) {
2816 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2817 state->intr.int_shadow =
2818 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2819 state->intr.int_window_exiting = cpudata->int_window_exit;
2820 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2821 state->intr.evt_pending = cpudata->evt_pending;
2822 }
2823
2824 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2825 if (flags & NVMM_X64_STATE_FPU) {
2826 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2827 sizeof(state->fpu));
2828 }
2829
2830 vmx_vmcs_leave(vcpu);
2831
2832 comm->state_wanted = 0;
2833 comm->state_cached |= flags;
2834 }
2835
2836 static void
2837 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2838 {
2839 vcpu->comm->state_wanted = flags;
2840 vmx_vcpu_getstate(vcpu);
2841 }
2842
2843 static void
2844 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2845 {
2846 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2847 vcpu->comm->state_commit = 0;
2848 vmx_vcpu_setstate(vcpu);
2849 }
2850
2851 /* -------------------------------------------------------------------------- */
2852
2853 static void
2854 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2855 {
2856 struct vmx_cpudata *cpudata = vcpu->cpudata;
2857 size_t i, oct, bit;
2858
2859 mutex_enter(&vmx_asidlock);
2860
2861 for (i = 0; i < vmx_maxasid; i++) {
2862 oct = i / 8;
2863 bit = i % 8;
2864
2865 if (vmx_asidmap[oct] & __BIT(bit)) {
2866 continue;
2867 }
2868
2869 cpudata->asid = i;
2870
2871 vmx_asidmap[oct] |= __BIT(bit);
2872 vmx_vmwrite(VMCS_VPID, i);
2873 mutex_exit(&vmx_asidlock);
2874 return;
2875 }
2876
2877 mutex_exit(&vmx_asidlock);
2878
2879 panic("%s: impossible", __func__);
2880 }
2881
2882 static void
2883 vmx_asid_free(struct nvmm_cpu *vcpu)
2884 {
2885 size_t oct, bit;
2886 uint64_t asid;
2887
2888 asid = vmx_vmread(VMCS_VPID);
2889
2890 oct = asid / 8;
2891 bit = asid % 8;
2892
2893 mutex_enter(&vmx_asidlock);
2894 vmx_asidmap[oct] &= ~__BIT(bit);
2895 mutex_exit(&vmx_asidlock);
2896 }
2897
2898 static void
2899 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2900 {
2901 struct vmx_cpudata *cpudata = vcpu->cpudata;
2902 struct vmcs *vmcs = cpudata->vmcs;
2903 struct msr_entry *gmsr = cpudata->gmsr;
2904 extern uint8_t vmx_resume_rip;
2905 uint64_t rev, eptp;
2906
2907 rev = vmx_get_revision();
2908
2909 memset(vmcs, 0, VMCS_SIZE);
2910 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2911 vmcs->abort = 0;
2912
2913 vmx_vmcs_enter(vcpu);
2914
2915 /* No link pointer. */
2916 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2917
2918 /* Install the CTLSs. */
2919 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2920 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2921 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2922 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2923 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2924
2925 /* Allow direct access to certain MSRs. */
2926 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2927 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2928 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2929 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2930 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2931 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2932 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2933 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2934 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2935 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2936 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2937 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2938 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2939 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2940
2941 /*
2942 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2943 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2944 */
2945 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2946 gmsr[VMX_MSRLIST_STAR].val = 0;
2947 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2948 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2949 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2950 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2951 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2952 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2953 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2954 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2955 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2956 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2957 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2958 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2959 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2960 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2961
2962 /* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
2963 vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
2964
2965 /* Force unsupported CR4 fields to zero. */
2966 vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
2967 vmx_vmwrite(VMCS_CR4_SHADOW, 0);
2968
2969 /* Set the Host state for resuming. */
2970 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2971 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2972 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2973 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2974 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2975 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2976 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2977 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2978 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2979 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2980 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2981 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2982 vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
2983
2984 /* Generate ASID. */
2985 vmx_asid_alloc(vcpu);
2986
2987 /* Enable Extended Paging, 4-Level. */
2988 eptp =
2989 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2990 __SHIFTIN(4-1, EPTP_WALKLEN) |
2991 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2992 mach->vm->vm_map.pmap->pm_pdirpa[0];
2993 vmx_vmwrite(VMCS_EPTP, eptp);
2994
2995 /* Init IA32_MISC_ENABLE. */
2996 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2997 cpudata->gmsr_misc_enable &=
2998 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2999 cpudata->gmsr_misc_enable |=
3000 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
3001
3002 /* Init XSAVE header. */
3003 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
3004 cpudata->gfpu.xsh_xcomp_bv = 0;
3005
3006 /* These MSRs are static. */
3007 cpudata->star = rdmsr(MSR_STAR);
3008 cpudata->lstar = rdmsr(MSR_LSTAR);
3009 cpudata->cstar = rdmsr(MSR_CSTAR);
3010 cpudata->sfmask = rdmsr(MSR_SFMASK);
3011
3012 /* Install the RESET state. */
3013 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
3014 sizeof(nvmm_x86_reset_state));
3015 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
3016 vcpu->comm->state_cached = 0;
3017 vmx_vcpu_setstate(vcpu);
3018
3019 vmx_vmcs_leave(vcpu);
3020 }
3021
3022 static int
3023 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3024 {
3025 struct vmx_cpudata *cpudata;
3026 int error;
3027
3028 /* Allocate the VMX cpudata. */
3029 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
3030 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
3031 UVM_KMF_WIRED|UVM_KMF_ZERO);
3032 vcpu->cpudata = cpudata;
3033
3034 /* VMCS */
3035 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
3036 VMCS_NPAGES);
3037 if (error)
3038 goto error;
3039
3040 /* MSR Bitmap */
3041 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
3042 MSRBM_NPAGES);
3043 if (error)
3044 goto error;
3045
3046 /* Guest MSR List */
3047 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
3048 if (error)
3049 goto error;
3050
3051 kcpuset_create(&cpudata->htlb_want_flush, true);
3052
3053 /* Init the VCPU info. */
3054 vmx_vcpu_init(mach, vcpu);
3055
3056 return 0;
3057
3058 error:
3059 if (cpudata->vmcs_pa) {
3060 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3061 VMCS_NPAGES);
3062 }
3063 if (cpudata->msrbm_pa) {
3064 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3065 MSRBM_NPAGES);
3066 }
3067 if (cpudata->gmsr_pa) {
3068 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3069 }
3070
3071 kmem_free(cpudata, sizeof(*cpudata));
3072 return error;
3073 }
3074
3075 static void
3076 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3077 {
3078 struct vmx_cpudata *cpudata = vcpu->cpudata;
3079
3080 vmx_vmcs_enter(vcpu);
3081 vmx_asid_free(vcpu);
3082 vmx_vmcs_destroy(vcpu);
3083
3084 kcpuset_destroy(cpudata->htlb_want_flush);
3085
3086 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
3087 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
3088 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3089 uvm_km_free(kernel_map, (vaddr_t)cpudata,
3090 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3091 }
3092
3093 /* -------------------------------------------------------------------------- */
3094
3095 static int
3096 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3097 {
3098 struct nvmm_vcpu_conf_cpuid *cpuid = data;
3099 size_t i;
3100
3101 if (__predict_false(cpuid->mask && cpuid->exit)) {
3102 return EINVAL;
3103 }
3104 if (__predict_false(cpuid->mask &&
3105 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3106 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3107 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3108 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3109 return EINVAL;
3110 }
3111
3112 /* If unset, delete, to restore the default behavior. */
3113 if (!cpuid->mask && !cpuid->exit) {
3114 for (i = 0; i < VMX_NCPUIDS; i++) {
3115 if (!cpudata->cpuidpresent[i]) {
3116 continue;
3117 }
3118 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3119 cpudata->cpuidpresent[i] = false;
3120 }
3121 }
3122 return 0;
3123 }
3124
3125 /* If already here, replace. */
3126 for (i = 0; i < VMX_NCPUIDS; i++) {
3127 if (!cpudata->cpuidpresent[i]) {
3128 continue;
3129 }
3130 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3131 memcpy(&cpudata->cpuid[i], cpuid,
3132 sizeof(struct nvmm_vcpu_conf_cpuid));
3133 return 0;
3134 }
3135 }
3136
3137 /* Not here, insert. */
3138 for (i = 0; i < VMX_NCPUIDS; i++) {
3139 if (!cpudata->cpuidpresent[i]) {
3140 cpudata->cpuidpresent[i] = true;
3141 memcpy(&cpudata->cpuid[i], cpuid,
3142 sizeof(struct nvmm_vcpu_conf_cpuid));
3143 return 0;
3144 }
3145 }
3146
3147 return ENOBUFS;
3148 }
3149
3150 static int
3151 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3152 {
3153 struct nvmm_vcpu_conf_tpr *tpr = data;
3154
3155 memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3156 return 0;
3157 }
3158
3159 static int
3160 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3161 {
3162 struct vmx_cpudata *cpudata = vcpu->cpudata;
3163
3164 switch (op) {
3165 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3166 return vmx_vcpu_configure_cpuid(cpudata, data);
3167 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3168 return vmx_vcpu_configure_tpr(cpudata, data);
3169 default:
3170 return EINVAL;
3171 }
3172 }
3173
3174 static void
3175 vmx_vcpu_suspend(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3176 {
3177 struct vmx_cpudata *cpudata = vcpu->cpudata;
3178 struct cpu_info *vmcs_ci;
3179
3180 KASSERT(cpudata->vmcs_refcnt == 0);
3181
3182 vmcs_ci = cpudata->vmcs_ci;
3183 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
3184
3185 kpreempt_disable();
3186 if (vmcs_ci == NULL) {
3187 /* VMCS is inactive, nothing to do. */
3188 } else if (vmcs_ci != curcpu()) {
3189 /* VMCS is active on a remote CPU; clear it there. */
3190 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
3191 } else {
3192 /* VMCS is active on this CPU; clear it here. */
3193 vmx_vmclear(&cpudata->vmcs_pa);
3194 }
3195 kpreempt_enable();
3196 }
3197
3198 static void
3199 vmx_vcpu_resume(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3200 {
3201 struct vmx_cpudata *cpudata = vcpu->cpudata;
3202
3203 KASSERT(cpudata->vmcs_refcnt == 0);
3204
3205 /* Mark VMCS as inactive. */
3206 cpudata->vmcs_ci = NULL;
3207 }
3208
3209 /* -------------------------------------------------------------------------- */
3210
3211 static void
3212 vmx_tlb_flush(struct pmap *pm)
3213 {
3214 struct nvmm_machine *mach = pm->pm_data;
3215 struct vmx_machdata *machdata = mach->machdata;
3216
3217 atomic_inc_64(&machdata->mach_htlb_gen);
3218
3219 /* Generates IPIs, which cause #VMEXITs. */
3220 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3221 }
3222
3223 static void
3224 vmx_machine_create(struct nvmm_machine *mach)
3225 {
3226 struct pmap *pmap = mach->vm->vm_map.pmap;
3227 struct vmx_machdata *machdata;
3228
3229 /* Convert to EPT. */
3230 pmap_ept_transform(pmap);
3231
3232 /* Fill in pmap info. */
3233 pmap->pm_data = (void *)mach;
3234 pmap->pm_tlb_flush = vmx_tlb_flush;
3235
3236 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3237 mach->machdata = machdata;
3238
3239 /* Start with an hTLB flush everywhere. */
3240 machdata->mach_htlb_gen = 1;
3241 }
3242
3243 static void
3244 vmx_machine_destroy(struct nvmm_machine *mach)
3245 {
3246 struct vmx_machdata *machdata = mach->machdata;
3247
3248 kmem_free(machdata, sizeof(struct vmx_machdata));
3249 }
3250
3251 static int
3252 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3253 {
3254 panic("%s: impossible", __func__);
3255 }
3256
3257 /* -------------------------------------------------------------------------- */
3258
3259 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3260 ((msrval & __BIT(32 + bitoff)) != 0)
3261 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3262 ((msrval & __BIT(bitoff)) == 0)
3263
3264 static int
3265 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3266 {
3267 uint64_t basic, val, true_val;
3268 bool has_true;
3269 size_t i;
3270
3271 basic = rdmsr(MSR_IA32_VMX_BASIC);
3272 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3273
3274 val = rdmsr(msr_ctls);
3275 if (has_true) {
3276 true_val = rdmsr(msr_true_ctls);
3277 } else {
3278 true_val = val;
3279 }
3280
3281 for (i = 0; i < 32; i++) {
3282 if (!(set_one & __BIT(i))) {
3283 continue;
3284 }
3285 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3286 return -1;
3287 }
3288 }
3289
3290 return 0;
3291 }
3292
3293 static int
3294 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3295 uint64_t set_one, uint64_t set_zero, uint64_t *res)
3296 {
3297 uint64_t basic, val, true_val;
3298 bool one_allowed, zero_allowed, has_true;
3299 size_t i;
3300
3301 basic = rdmsr(MSR_IA32_VMX_BASIC);
3302 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3303
3304 val = rdmsr(msr_ctls);
3305 if (has_true) {
3306 true_val = rdmsr(msr_true_ctls);
3307 } else {
3308 true_val = val;
3309 }
3310
3311 for (i = 0; i < 32; i++) {
3312 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3313 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3314
3315 if (zero_allowed && !one_allowed) {
3316 if (set_one & __BIT(i))
3317 return -1;
3318 *res &= ~__BIT(i);
3319 } else if (one_allowed && !zero_allowed) {
3320 if (set_zero & __BIT(i))
3321 return -1;
3322 *res |= __BIT(i);
3323 } else {
3324 if (set_zero & __BIT(i)) {
3325 *res &= ~__BIT(i);
3326 } else if (set_one & __BIT(i)) {
3327 *res |= __BIT(i);
3328 } else if (!has_true) {
3329 *res &= ~__BIT(i);
3330 } else if (CTLS_ZERO_ALLOWED(val, i)) {
3331 *res &= ~__BIT(i);
3332 } else if (CTLS_ONE_ALLOWED(val, i)) {
3333 *res |= __BIT(i);
3334 } else {
3335 return -1;
3336 }
3337 }
3338 }
3339
3340 return 0;
3341 }
3342
3343 static bool
3344 vmx_ident(void)
3345 {
3346 uint64_t msr;
3347 int ret;
3348
3349 if (!(cpu_feature[1] & CPUID2_VMX)) {
3350 return false;
3351 }
3352
3353 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3354 if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3355 (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3356 printf("NVMM: VMX disabled in BIOS\n");
3357 return false;
3358 }
3359
3360 msr = rdmsr(MSR_IA32_VMX_BASIC);
3361 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3362 printf("NVMM: I/O reporting not supported\n");
3363 return false;
3364 }
3365 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3366 printf("NVMM: WB memory not supported\n");
3367 return false;
3368 }
3369
3370 /* PG and PE are reported, even if Unrestricted Guests is supported. */
3371 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3372 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3373 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3374 if (ret == -1) {
3375 printf("NVMM: CR0 requirements not satisfied\n");
3376 return false;
3377 }
3378
3379 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3380 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3381 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3382 if (ret == -1) {
3383 printf("NVMM: CR4 requirements not satisfied\n");
3384 return false;
3385 }
3386
3387 /* Init the CTLSs right now, and check for errors. */
3388 ret = vmx_init_ctls(
3389 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3390 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3391 &vmx_pinbased_ctls);
3392 if (ret == -1) {
3393 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3394 return false;
3395 }
3396 ret = vmx_init_ctls(
3397 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3398 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3399 &vmx_procbased_ctls);
3400 if (ret == -1) {
3401 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3402 return false;
3403 }
3404 ret = vmx_init_ctls(
3405 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3406 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3407 &vmx_procbased_ctls2);
3408 if (ret == -1) {
3409 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3410 return false;
3411 }
3412 ret = vmx_check_ctls(
3413 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3414 PROC_CTLS2_INVPCID_ENABLE);
3415 if (ret != -1) {
3416 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3417 }
3418 ret = vmx_init_ctls(
3419 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3420 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3421 &vmx_entry_ctls);
3422 if (ret == -1) {
3423 printf("NVMM: entry-ctls requirements not satisfied\n");
3424 return false;
3425 }
3426 ret = vmx_init_ctls(
3427 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3428 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3429 &vmx_exit_ctls);
3430 if (ret == -1) {
3431 printf("NVMM: exit-ctls requirements not satisfied\n");
3432 return false;
3433 }
3434
3435 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3436 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3437 printf("NVMM: 4-level page tree not supported\n");
3438 return false;
3439 }
3440 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3441 printf("NVMM: INVEPT not supported\n");
3442 return false;
3443 }
3444 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3445 printf("NVMM: INVVPID not supported\n");
3446 return false;
3447 }
3448 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3449 pmap_ept_has_ad = true;
3450 } else {
3451 pmap_ept_has_ad = false;
3452 }
3453 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3454 printf("NVMM: EPT UC/WB memory types not supported\n");
3455 return false;
3456 }
3457
3458 return true;
3459 }
3460
3461 static void
3462 vmx_init_asid(uint32_t maxasid)
3463 {
3464 size_t allocsz;
3465
3466 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3467
3468 vmx_maxasid = maxasid;
3469 allocsz = roundup(maxasid, 8) / 8;
3470 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3471
3472 /* ASID 0 is reserved for the host. */
3473 vmx_asidmap[0] |= __BIT(0);
3474 }
3475
3476 static void
3477 vmx_change_cpu(void *arg1, void *arg2)
3478 {
3479 struct cpu_info *ci = curcpu();
3480 bool enable = arg1 != NULL;
3481 uint64_t msr, cr4;
3482
3483 if (enable) {
3484 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3485 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3486 /* Lock now, with VMX-outside-SMX enabled. */
3487 wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3488 IA32_FEATURE_CONTROL_LOCK |
3489 IA32_FEATURE_CONTROL_OUT_SMX);
3490 }
3491 }
3492
3493 if (!enable) {
3494 vmx_vmxoff();
3495 }
3496
3497 cr4 = rcr4();
3498 if (enable) {
3499 cr4 |= CR4_VMXE;
3500 } else {
3501 cr4 &= ~CR4_VMXE;
3502 }
3503 lcr4(cr4);
3504
3505 if (enable) {
3506 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
3507 }
3508 }
3509
3510 static void
3511 vmx_init_l1tf(void)
3512 {
3513 u_int descs[4];
3514 uint64_t msr;
3515
3516 if (cpuid_level < 7) {
3517 return;
3518 }
3519
3520 x86_cpuid(7, descs);
3521
3522 if (descs[3] & CPUID_SEF_ARCH_CAP) {
3523 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3524 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3525 /* No mitigation needed. */
3526 return;
3527 }
3528 }
3529
3530 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3531 /* Enable hardware mitigation. */
3532 vmx_msrlist_entry_nmsr += 1;
3533 }
3534 }
3535
3536 static void
3537 vmx_suspend_interrupt(void)
3538 {
3539
3540 /*
3541 * Generates IPIs, which cause #VMEXITs. No other purpose for
3542 * the TLB business; the #VMEXIT triggered by IPI is the only
3543 * effect that matters here.
3544 */
3545 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3546 }
3547
3548 static void
3549 vmx_suspend(void)
3550 {
3551 uint64_t xc;
3552
3553 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3554 xc_wait(xc);
3555 }
3556
3557 static void
3558 vmx_resume(void)
3559 {
3560 uint64_t xc;
3561
3562 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3563 xc_wait(xc);
3564 }
3565
3566 static void
3567 vmx_init(void)
3568 {
3569 CPU_INFO_ITERATOR cii;
3570 struct cpu_info *ci;
3571 uint64_t msr;
3572 struct vmxon *vmxon;
3573 uint32_t revision;
3574 u_int descs[4];
3575 paddr_t pa;
3576 vaddr_t va;
3577 int error;
3578
3579 /* Init the ASID bitmap (VPID). */
3580 vmx_init_asid(VPID_MAX);
3581
3582 /* Init the XCR0 mask. */
3583 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3584
3585 /* Init the max basic CPUID leaf. */
3586 vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3587
3588 /* Init the max extended CPUID leaf. */
3589 x86_cpuid(0x80000000, descs);
3590 vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
3591
3592 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3593 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3594 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3595 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3596 } else {
3597 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3598 }
3599 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3600 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3601 } else {
3602 vmx_ept_flush_op = VMX_INVEPT_ALL;
3603 }
3604 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3605 vmx_eptp_type = EPTP_TYPE_WB;
3606 } else {
3607 vmx_eptp_type = EPTP_TYPE_UC;
3608 }
3609
3610 /* Init the L1TF mitigation. */
3611 vmx_init_l1tf();
3612
3613 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3614 revision = vmx_get_revision();
3615
3616 for (CPU_INFO_FOREACH(cii, ci)) {
3617 error = vmx_memalloc(&pa, &va, 1);
3618 if (error) {
3619 panic("%s: out of memory", __func__);
3620 }
3621 vmxoncpu[cpu_index(ci)].pa = pa;
3622 vmxoncpu[cpu_index(ci)].va = va;
3623
3624 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3625 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3626 }
3627
3628 vmx_resume();
3629 }
3630
3631 static void
3632 vmx_fini_asid(void)
3633 {
3634 size_t allocsz;
3635
3636 allocsz = roundup(vmx_maxasid, 8) / 8;
3637 kmem_free(vmx_asidmap, allocsz);
3638
3639 mutex_destroy(&vmx_asidlock);
3640 }
3641
3642 static void
3643 vmx_fini(void)
3644 {
3645 size_t i;
3646
3647 vmx_suspend();
3648
3649 for (i = 0; i < MAXCPUS; i++) {
3650 if (vmxoncpu[i].pa != 0)
3651 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3652 }
3653
3654 vmx_fini_asid();
3655 }
3656
3657 static void
3658 vmx_capability(struct nvmm_capability *cap)
3659 {
3660 cap->arch.mach_conf_support = 0;
3661 cap->arch.vcpu_conf_support =
3662 NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3663 NVMM_CAP_ARCH_VCPU_CONF_TPR;
3664 cap->arch.xcr0_mask = vmx_xcr0_mask;
3665 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3666 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3667 }
3668
3669 const struct nvmm_impl nvmm_x86_vmx = {
3670 .name = "x86-vmx",
3671 .ident = vmx_ident,
3672 .init = vmx_init,
3673 .fini = vmx_fini,
3674 .suspend_interrupt = vmx_suspend_interrupt,
3675 .suspend = vmx_suspend,
3676 .resume = vmx_resume,
3677 .capability = vmx_capability,
3678 .mach_conf_max = NVMM_X86_MACH_NCONF,
3679 .mach_conf_sizes = NULL,
3680 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3681 .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3682 .state_size = sizeof(struct nvmm_x64_state),
3683 .machine_create = vmx_machine_create,
3684 .machine_destroy = vmx_machine_destroy,
3685 .machine_configure = vmx_machine_configure,
3686 .vcpu_create = vmx_vcpu_create,
3687 .vcpu_destroy = vmx_vcpu_destroy,
3688 .vcpu_configure = vmx_vcpu_configure,
3689 .vcpu_setstate = vmx_vcpu_setstate,
3690 .vcpu_getstate = vmx_vcpu_getstate,
3691 .vcpu_inject = vmx_vcpu_inject,
3692 .vcpu_run = vmx_vcpu_run,
3693 .vcpu_suspend = vmx_vcpu_suspend,
3694 .vcpu_resume = vmx_vcpu_resume,
3695 };
3696