agp.c revision 1.24 1 1.24 thorpej /* $NetBSD: agp.c,v 1.24 2003/01/31 00:07:39 thorpej Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.24 thorpej __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.24 2003/01/31 00:07:39 thorpej Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.1 fvdl
81 1.1 fvdl #include <uvm/uvm_extern.h>
82 1.1 fvdl
83 1.1 fvdl #include <dev/pci/pcireg.h>
84 1.1 fvdl #include <dev/pci/pcivar.h>
85 1.1 fvdl #include <dev/pci/agpvar.h>
86 1.1 fvdl #include <dev/pci/agpreg.h>
87 1.1 fvdl #include <dev/pci/pcidevs.h>
88 1.1 fvdl
89 1.1 fvdl #include <machine/bus.h>
90 1.1 fvdl
91 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
92 1.1 fvdl /* XXXfvdl get rid of this one. */
93 1.1 fvdl
94 1.1 fvdl extern struct cfdriver agp_cd;
95 1.17 gehenna
96 1.17 gehenna dev_type_open(agpopen);
97 1.17 gehenna dev_type_close(agpclose);
98 1.17 gehenna dev_type_ioctl(agpioctl);
99 1.17 gehenna dev_type_mmap(agpmmap);
100 1.17 gehenna
101 1.17 gehenna const struct cdevsw agp_cdevsw = {
102 1.17 gehenna agpopen, agpclose, noread, nowrite, agpioctl,
103 1.22 jdolecek nostop, notty, nopoll, agpmmap, nokqfilter,
104 1.17 gehenna };
105 1.1 fvdl
106 1.1 fvdl int agpmatch(struct device *, struct cfdata *, void *);
107 1.1 fvdl void agpattach(struct device *, struct device *, void *);
108 1.1 fvdl
109 1.20 thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
110 1.21 thorpej agpmatch, agpattach, NULL, NULL);
111 1.1 fvdl
112 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
113 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
114 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
115 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
116 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
117 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
118 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
119 1.1 fvdl
120 1.7 thorpej #include "agp_ali.h"
121 1.7 thorpej #include "agp_amd.h"
122 1.7 thorpej #include "agp_i810.h"
123 1.7 thorpej #include "agp_intel.h"
124 1.7 thorpej #include "agp_sis.h"
125 1.7 thorpej #include "agp_via.h"
126 1.7 thorpej
127 1.5 thorpej const struct agp_product {
128 1.5 thorpej uint32_t ap_vendor;
129 1.5 thorpej uint32_t ap_product;
130 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
131 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
132 1.5 thorpej } agp_products[] = {
133 1.7 thorpej #if NAGP_ALI > 0
134 1.5 thorpej { PCI_VENDOR_ALI, -1,
135 1.5 thorpej NULL, agp_ali_attach },
136 1.7 thorpej #endif
137 1.5 thorpej
138 1.7 thorpej #if NAGP_AMD > 0
139 1.5 thorpej { PCI_VENDOR_AMD, -1,
140 1.5 thorpej agp_amd_match, agp_amd_attach },
141 1.7 thorpej #endif
142 1.5 thorpej
143 1.7 thorpej #if NAGP_I810 > 0
144 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
145 1.5 thorpej NULL, agp_i810_attach },
146 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
147 1.5 thorpej NULL, agp_i810_attach },
148 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
149 1.5 thorpej NULL, agp_i810_attach },
150 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
151 1.5 thorpej NULL, agp_i810_attach },
152 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
153 1.13 augustss NULL, agp_i810_attach },
154 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
155 1.11 fvdl NULL, agp_i810_attach },
156 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
157 1.23 scw NULL, agp_i810_attach },
158 1.7 thorpej #endif
159 1.5 thorpej
160 1.7 thorpej #if NAGP_INTEL > 0
161 1.5 thorpej { PCI_VENDOR_INTEL, -1,
162 1.5 thorpej NULL, agp_intel_attach },
163 1.7 thorpej #endif
164 1.5 thorpej
165 1.7 thorpej #if NAGP_SIS > 0
166 1.5 thorpej { PCI_VENDOR_SIS, -1,
167 1.5 thorpej NULL, agp_sis_attach },
168 1.7 thorpej #endif
169 1.5 thorpej
170 1.7 thorpej #if NAGP_VIA > 0
171 1.5 thorpej { PCI_VENDOR_VIATECH, -1,
172 1.5 thorpej NULL, agp_via_attach },
173 1.7 thorpej #endif
174 1.5 thorpej
175 1.5 thorpej { 0, 0,
176 1.5 thorpej NULL, NULL },
177 1.5 thorpej };
178 1.5 thorpej
179 1.5 thorpej static const struct agp_product *
180 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
181 1.5 thorpej {
182 1.5 thorpej const struct agp_product *ap;
183 1.5 thorpej
184 1.5 thorpej /* First find the vendor. */
185 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
186 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
187 1.5 thorpej break;
188 1.5 thorpej }
189 1.5 thorpej
190 1.5 thorpej if (ap->ap_attach == NULL)
191 1.5 thorpej return (NULL);
192 1.5 thorpej
193 1.5 thorpej /* Now find the product within the vendor's domain. */
194 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
195 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
196 1.5 thorpej /* Ran out of this vendor's section of the table. */
197 1.5 thorpej return (NULL);
198 1.5 thorpej }
199 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
200 1.5 thorpej /* Exact match. */
201 1.5 thorpej break;
202 1.5 thorpej }
203 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
204 1.5 thorpej /* Wildcard match. */
205 1.5 thorpej break;
206 1.5 thorpej }
207 1.5 thorpej }
208 1.5 thorpej
209 1.5 thorpej if (ap->ap_attach == NULL)
210 1.5 thorpej return (NULL);
211 1.5 thorpej
212 1.5 thorpej /* Now let the product-specific driver filter the match. */
213 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
214 1.5 thorpej return (NULL);
215 1.5 thorpej
216 1.5 thorpej return (ap);
217 1.5 thorpej }
218 1.5 thorpej
219 1.1 fvdl int
220 1.1 fvdl agpmatch(struct device *parent, struct cfdata *match, void *aux)
221 1.1 fvdl {
222 1.5 thorpej struct agpbus_attach_args *apa = aux;
223 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
224 1.1 fvdl
225 1.5 thorpej if (strcmp(apa->apa_busname, "agp") != 0)
226 1.5 thorpej return (0);
227 1.5 thorpej
228 1.5 thorpej if (agp_lookup(pa) == NULL)
229 1.5 thorpej return (0);
230 1.1 fvdl
231 1.5 thorpej return (1);
232 1.1 fvdl }
233 1.1 fvdl
234 1.1 fvdl static int agp_max[][2] = {
235 1.1 fvdl {0, 0},
236 1.1 fvdl {32, 4},
237 1.1 fvdl {64, 28},
238 1.1 fvdl {128, 96},
239 1.1 fvdl {256, 204},
240 1.1 fvdl {512, 440},
241 1.1 fvdl {1024, 942},
242 1.1 fvdl {2048, 1920},
243 1.1 fvdl {4096, 3932}
244 1.1 fvdl };
245 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
246 1.1 fvdl
247 1.1 fvdl void
248 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
249 1.1 fvdl {
250 1.5 thorpej struct agpbus_attach_args *apa = aux;
251 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
252 1.1 fvdl struct agp_softc *sc = (void *)self;
253 1.5 thorpej const struct agp_product *ap;
254 1.1 fvdl int memsize, i, ret;
255 1.1 fvdl
256 1.5 thorpej ap = agp_lookup(pa);
257 1.5 thorpej if (ap == NULL) {
258 1.5 thorpej printf("\n");
259 1.5 thorpej panic("agpattach: impossible");
260 1.5 thorpej }
261 1.1 fvdl
262 1.24 thorpej aprint_naive(": AGP controller\n");
263 1.24 thorpej
264 1.1 fvdl sc->as_dmat = pa->pa_dmat;
265 1.1 fvdl sc->as_pc = pa->pa_pc;
266 1.1 fvdl sc->as_tag = pa->pa_tag;
267 1.1 fvdl sc->as_id = pa->pa_id;
268 1.1 fvdl
269 1.1 fvdl /*
270 1.1 fvdl * Work out an upper bound for agp memory allocation. This
271 1.1 fvdl * uses a heurisitc table from the Linux driver.
272 1.1 fvdl */
273 1.1 fvdl memsize = ptoa(physmem) >> 20;
274 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
275 1.1 fvdl if (memsize <= agp_max[i][0])
276 1.1 fvdl break;
277 1.1 fvdl }
278 1.1 fvdl if (i == agp_max_size)
279 1.1 fvdl i = agp_max_size - 1;
280 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
281 1.1 fvdl
282 1.1 fvdl /*
283 1.1 fvdl * The lock is used to prevent re-entry to
284 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
285 1.1 fvdl */
286 1.1 fvdl lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
287 1.1 fvdl
288 1.1 fvdl TAILQ_INIT(&sc->as_memory);
289 1.1 fvdl
290 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
291 1.1 fvdl if (ret == 0)
292 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
293 1.1 fvdl (unsigned long)sc->as_apaddr,
294 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
295 1.1 fvdl else
296 1.1 fvdl sc->as_chipc = NULL;
297 1.1 fvdl }
298 1.1 fvdl int
299 1.1 fvdl agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
300 1.1 fvdl {
301 1.1 fvdl /*
302 1.18 nathanw * Find the aperture. Don't map it (yet), this would
303 1.11 fvdl * eat KVA.
304 1.1 fvdl */
305 1.11 fvdl if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE,
306 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
307 1.11 fvdl &sc->as_apflags) != 0)
308 1.1 fvdl return ENXIO;
309 1.8 drochner
310 1.11 fvdl sc->as_apt = pa->pa_memt;
311 1.11 fvdl
312 1.1 fvdl return 0;
313 1.1 fvdl }
314 1.1 fvdl
315 1.1 fvdl struct agp_gatt *
316 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
317 1.1 fvdl {
318 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
319 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
320 1.1 fvdl struct agp_gatt *gatt;
321 1.1 fvdl int dummyseg;
322 1.1 fvdl
323 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
324 1.1 fvdl if (!gatt)
325 1.1 fvdl return NULL;
326 1.1 fvdl gatt->ag_entries = entries;
327 1.1 fvdl
328 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
329 1.1 fvdl 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
330 1.1 fvdl &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
331 1.1 fvdl return NULL;
332 1.1 fvdl
333 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
334 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
335 1.1 fvdl agp_flush_cache();
336 1.1 fvdl
337 1.1 fvdl return gatt;
338 1.1 fvdl }
339 1.1 fvdl
340 1.1 fvdl void
341 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
342 1.1 fvdl {
343 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
344 1.1 fvdl (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
345 1.1 fvdl free(gatt, M_AGP);
346 1.1 fvdl }
347 1.1 fvdl
348 1.1 fvdl
349 1.1 fvdl int
350 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
351 1.1 fvdl {
352 1.1 fvdl lockmgr(&sc->as_lock, LK_DRAIN, 0);
353 1.1 fvdl agp_flush_cache();
354 1.1 fvdl return 0;
355 1.1 fvdl }
356 1.1 fvdl
357 1.1 fvdl static int
358 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
359 1.1 fvdl {
360 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
361 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
362 1.1 fvdl return 1;
363 1.1 fvdl
364 1.1 fvdl return 0;
365 1.1 fvdl }
366 1.1 fvdl
367 1.1 fvdl int
368 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
369 1.1 fvdl {
370 1.1 fvdl struct pci_attach_args pa;
371 1.1 fvdl pcireg_t tstatus, mstatus;
372 1.1 fvdl pcireg_t command;
373 1.1 fvdl int rq, sba, fw, rate, capoff;
374 1.1 fvdl
375 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
376 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
377 1.1 fvdl &capoff, NULL) == 0) {
378 1.1 fvdl printf("%s: can't find display\n", sc->as_dev.dv_xname);
379 1.1 fvdl return ENXIO;
380 1.1 fvdl }
381 1.1 fvdl
382 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
383 1.1 fvdl sc->as_capoff + AGP_STATUS);
384 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
385 1.1 fvdl capoff + AGP_STATUS);
386 1.1 fvdl
387 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
388 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
389 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
390 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
391 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
392 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
393 1.1 fvdl
394 1.1 fvdl /* Set SBA if all three can deal with SBA */
395 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
396 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
397 1.1 fvdl & AGP_MODE_GET_SBA(mode));
398 1.1 fvdl
399 1.1 fvdl /* Similar for FW */
400 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
401 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
402 1.1 fvdl & AGP_MODE_GET_FW(mode));
403 1.1 fvdl
404 1.1 fvdl /* Figure out the max rate */
405 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
406 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
407 1.1 fvdl & AGP_MODE_GET_RATE(mode));
408 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
409 1.1 fvdl rate = AGP_MODE_RATE_4x;
410 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
411 1.1 fvdl rate = AGP_MODE_RATE_2x;
412 1.1 fvdl else
413 1.1 fvdl rate = AGP_MODE_RATE_1x;
414 1.1 fvdl
415 1.1 fvdl /* Construct the new mode word and tell the hardware */
416 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
417 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
418 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
419 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
420 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
421 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
422 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
423 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
424 1.1 fvdl
425 1.1 fvdl return 0;
426 1.1 fvdl }
427 1.1 fvdl
428 1.1 fvdl struct agp_memory *
429 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
430 1.1 fvdl {
431 1.1 fvdl struct agp_memory *mem;
432 1.1 fvdl
433 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
434 1.1 fvdl return 0;
435 1.1 fvdl
436 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
437 1.1 fvdl return 0;
438 1.1 fvdl
439 1.1 fvdl if (type != 0) {
440 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
441 1.1 fvdl type);
442 1.1 fvdl return 0;
443 1.1 fvdl }
444 1.1 fvdl
445 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
446 1.1 fvdl if (mem == NULL)
447 1.1 fvdl return NULL;
448 1.1 fvdl
449 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
450 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
451 1.1 fvdl free(mem, M_AGP);
452 1.1 fvdl return NULL;
453 1.1 fvdl }
454 1.1 fvdl
455 1.1 fvdl mem->am_id = sc->as_nextid++;
456 1.1 fvdl mem->am_size = size;
457 1.1 fvdl mem->am_type = 0;
458 1.1 fvdl mem->am_physical = 0;
459 1.1 fvdl mem->am_offset = 0;
460 1.1 fvdl mem->am_is_bound = 0;
461 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
462 1.1 fvdl sc->as_allocated += size;
463 1.1 fvdl
464 1.1 fvdl return mem;
465 1.1 fvdl }
466 1.1 fvdl
467 1.1 fvdl int
468 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
469 1.1 fvdl {
470 1.1 fvdl if (mem->am_is_bound)
471 1.1 fvdl return EBUSY;
472 1.1 fvdl
473 1.1 fvdl sc->as_allocated -= mem->am_size;
474 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
475 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
476 1.1 fvdl free(mem, M_AGP);
477 1.1 fvdl return 0;
478 1.1 fvdl }
479 1.1 fvdl
480 1.1 fvdl int
481 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
482 1.1 fvdl off_t offset)
483 1.1 fvdl {
484 1.1 fvdl off_t i, k;
485 1.1 fvdl bus_size_t done, j;
486 1.1 fvdl int error;
487 1.1 fvdl bus_dma_segment_t *segs, *seg;
488 1.1 fvdl bus_addr_t pa;
489 1.1 fvdl int contigpages, nseg;
490 1.1 fvdl
491 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
492 1.1 fvdl
493 1.1 fvdl if (mem->am_is_bound) {
494 1.1 fvdl printf("%s: memory already bound\n", sc->as_dev.dv_xname);
495 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
496 1.1 fvdl return EINVAL;
497 1.1 fvdl }
498 1.1 fvdl
499 1.1 fvdl if (offset < 0
500 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
501 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
502 1.1 fvdl printf("%s: binding memory at bad offset %#lx\n",
503 1.1 fvdl sc->as_dev.dv_xname, (unsigned long) offset);
504 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
505 1.1 fvdl return EINVAL;
506 1.1 fvdl }
507 1.1 fvdl
508 1.1 fvdl /*
509 1.1 fvdl * XXXfvdl
510 1.1 fvdl * The memory here needs to be directly accessable from the
511 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
512 1.1 fvdl * However, it need not be contiguous, since individual pages
513 1.1 fvdl * are translated using the GATT.
514 1.1 fvdl *
515 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
516 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
517 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
518 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
519 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
520 1.1 fvdl * a bus_dma_segment per page would be overkill.
521 1.1 fvdl */
522 1.1 fvdl
523 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
524 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
525 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
526 1.16 drochner if (segs == NULL) {
527 1.16 drochner lockmgr(&sc->as_lock, LK_RELEASE, 0);
528 1.10 thorpej return ENOMEM;
529 1.16 drochner }
530 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
531 1.4 drochner segs, nseg, &mem->am_nseg,
532 1.15 drochner contigpages > 1 ?
533 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
534 1.4 drochner free(segs, M_AGP);
535 1.1 fvdl continue;
536 1.4 drochner }
537 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
538 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
539 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
540 1.4 drochner free(segs, M_AGP);
541 1.1 fvdl continue;
542 1.1 fvdl }
543 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
544 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
545 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
546 1.1 fvdl mem->am_size);
547 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
548 1.4 drochner free(segs, M_AGP);
549 1.1 fvdl continue;
550 1.1 fvdl }
551 1.1 fvdl mem->am_dmaseg = segs;
552 1.1 fvdl break;
553 1.1 fvdl }
554 1.1 fvdl
555 1.1 fvdl if (contigpages == 0) {
556 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
557 1.1 fvdl return ENOMEM;
558 1.1 fvdl }
559 1.1 fvdl
560 1.1 fvdl
561 1.1 fvdl /*
562 1.1 fvdl * Bind the individual pages and flush the chipset's
563 1.1 fvdl * TLB.
564 1.1 fvdl */
565 1.1 fvdl done = 0;
566 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
567 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
568 1.1 fvdl /*
569 1.1 fvdl * Install entries in the GATT, making sure that if
570 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
571 1.1 fvdl * aligned to PAGE_SIZE, we don't modify too many GATT
572 1.1 fvdl * entries.
573 1.1 fvdl */
574 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
575 1.1 fvdl j += AGP_PAGE_SIZE) {
576 1.1 fvdl pa = seg->ds_addr + j;
577 1.3 drochner AGP_DPF("binding offset %#lx to pa %#lx\n",
578 1.3 drochner (unsigned long)(offset + done + j),
579 1.3 drochner (unsigned long)pa);
580 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
581 1.1 fvdl if (error) {
582 1.1 fvdl /*
583 1.1 fvdl * Bail out. Reverse all the mappings
584 1.1 fvdl * and unwire the pages.
585 1.1 fvdl */
586 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
587 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
588 1.1 fvdl
589 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
590 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
591 1.4 drochner mem->am_size);
592 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
593 1.4 drochner mem->am_nseg);
594 1.4 drochner free(mem->am_dmaseg, M_AGP);
595 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
596 1.1 fvdl return error;
597 1.1 fvdl }
598 1.1 fvdl }
599 1.1 fvdl done += seg->ds_len;
600 1.1 fvdl }
601 1.1 fvdl
602 1.1 fvdl /*
603 1.1 fvdl * Flush the cpu cache since we are providing a new mapping
604 1.1 fvdl * for these pages.
605 1.1 fvdl */
606 1.1 fvdl agp_flush_cache();
607 1.1 fvdl
608 1.1 fvdl /*
609 1.1 fvdl * Make sure the chipset gets the new mappings.
610 1.1 fvdl */
611 1.1 fvdl AGP_FLUSH_TLB(sc);
612 1.1 fvdl
613 1.1 fvdl mem->am_offset = offset;
614 1.1 fvdl mem->am_is_bound = 1;
615 1.1 fvdl
616 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
617 1.1 fvdl
618 1.1 fvdl return 0;
619 1.1 fvdl }
620 1.1 fvdl
621 1.1 fvdl int
622 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
623 1.1 fvdl {
624 1.1 fvdl int i;
625 1.1 fvdl
626 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
627 1.1 fvdl
628 1.1 fvdl if (!mem->am_is_bound) {
629 1.1 fvdl printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
630 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
631 1.1 fvdl return EINVAL;
632 1.1 fvdl }
633 1.1 fvdl
634 1.1 fvdl
635 1.1 fvdl /*
636 1.1 fvdl * Unbind the individual pages and flush the chipset's
637 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
638 1.1 fvdl */
639 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
640 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
641 1.1 fvdl
642 1.1 fvdl agp_flush_cache();
643 1.1 fvdl AGP_FLUSH_TLB(sc);
644 1.1 fvdl
645 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
646 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
647 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
648 1.1 fvdl
649 1.1 fvdl free(mem->am_dmaseg, M_AGP);
650 1.1 fvdl
651 1.1 fvdl mem->am_offset = 0;
652 1.1 fvdl mem->am_is_bound = 0;
653 1.1 fvdl
654 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
655 1.1 fvdl
656 1.1 fvdl return 0;
657 1.1 fvdl }
658 1.1 fvdl
659 1.1 fvdl /* Helper functions for implementing user/kernel api */
660 1.1 fvdl
661 1.1 fvdl static int
662 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
663 1.1 fvdl {
664 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
665 1.1 fvdl return EBUSY;
666 1.1 fvdl sc->as_state = state;
667 1.1 fvdl
668 1.1 fvdl return 0;
669 1.1 fvdl }
670 1.1 fvdl
671 1.1 fvdl static int
672 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
673 1.1 fvdl {
674 1.1 fvdl struct agp_memory *mem;
675 1.1 fvdl
676 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
677 1.1 fvdl return 0;
678 1.1 fvdl
679 1.1 fvdl if (sc->as_state != state)
680 1.1 fvdl return EBUSY;
681 1.1 fvdl
682 1.1 fvdl /*
683 1.16 drochner * Clear out outstanding aperture mappings.
684 1.16 drochner * (should not be necessary, done by caller)
685 1.1 fvdl */
686 1.4 drochner TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
687 1.4 drochner if (mem->am_is_bound) {
688 1.4 drochner printf("agp_release_helper: mem %d is bound\n",
689 1.4 drochner mem->am_id);
690 1.1 fvdl AGP_UNBIND_MEMORY(sc, mem);
691 1.4 drochner }
692 1.1 fvdl }
693 1.1 fvdl
694 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
695 1.1 fvdl return 0;
696 1.1 fvdl }
697 1.1 fvdl
698 1.1 fvdl static struct agp_memory *
699 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
700 1.1 fvdl {
701 1.1 fvdl struct agp_memory *mem;
702 1.1 fvdl
703 1.1 fvdl AGP_DPF("searching for memory block %d\n", id);
704 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
705 1.1 fvdl AGP_DPF("considering memory block %d\n", mem->am_id);
706 1.1 fvdl if (mem->am_id == id)
707 1.1 fvdl return mem;
708 1.1 fvdl }
709 1.1 fvdl return 0;
710 1.1 fvdl }
711 1.1 fvdl
712 1.1 fvdl /* Implementation of the userland ioctl api */
713 1.1 fvdl
714 1.1 fvdl static int
715 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
716 1.1 fvdl {
717 1.1 fvdl memset(info, 0, sizeof *info);
718 1.1 fvdl info->bridge_id = sc->as_id;
719 1.3 drochner if (sc->as_capoff != 0)
720 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
721 1.3 drochner sc->as_capoff + AGP_STATUS);
722 1.3 drochner else
723 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
724 1.1 fvdl info->aper_base = sc->as_apaddr;
725 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
726 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
727 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
728 1.1 fvdl
729 1.1 fvdl return 0;
730 1.1 fvdl }
731 1.1 fvdl
732 1.1 fvdl static int
733 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
734 1.1 fvdl {
735 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
736 1.1 fvdl }
737 1.1 fvdl
738 1.1 fvdl static int
739 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
740 1.1 fvdl {
741 1.1 fvdl struct agp_memory *mem;
742 1.1 fvdl
743 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
744 1.1 fvdl alloc->type,
745 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
746 1.1 fvdl if (mem) {
747 1.1 fvdl alloc->key = mem->am_id;
748 1.1 fvdl alloc->physical = mem->am_physical;
749 1.1 fvdl return 0;
750 1.1 fvdl } else {
751 1.1 fvdl return ENOMEM;
752 1.1 fvdl }
753 1.1 fvdl }
754 1.1 fvdl
755 1.1 fvdl static int
756 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
757 1.1 fvdl {
758 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
759 1.1 fvdl
760 1.1 fvdl if (mem) {
761 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
762 1.1 fvdl return 0;
763 1.1 fvdl } else {
764 1.1 fvdl return ENOENT;
765 1.1 fvdl }
766 1.1 fvdl }
767 1.1 fvdl
768 1.1 fvdl static int
769 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
770 1.1 fvdl {
771 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
772 1.1 fvdl
773 1.1 fvdl if (!mem)
774 1.1 fvdl return ENOENT;
775 1.1 fvdl
776 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
777 1.1 fvdl }
778 1.1 fvdl
779 1.1 fvdl static int
780 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
781 1.1 fvdl {
782 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
783 1.1 fvdl
784 1.1 fvdl if (!mem)
785 1.1 fvdl return ENOENT;
786 1.1 fvdl
787 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
788 1.1 fvdl }
789 1.1 fvdl
790 1.1 fvdl int
791 1.1 fvdl agpopen(dev_t dev, int oflags, int devtype, struct proc *p)
792 1.1 fvdl {
793 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
794 1.9 thorpej
795 1.9 thorpej if (sc == NULL)
796 1.9 thorpej return ENXIO;
797 1.1 fvdl
798 1.1 fvdl if (sc->as_chipc == NULL)
799 1.1 fvdl return ENXIO;
800 1.1 fvdl
801 1.1 fvdl if (!sc->as_isopen)
802 1.1 fvdl sc->as_isopen = 1;
803 1.1 fvdl else
804 1.1 fvdl return EBUSY;
805 1.1 fvdl
806 1.1 fvdl return 0;
807 1.1 fvdl }
808 1.1 fvdl
809 1.1 fvdl int
810 1.1 fvdl agpclose(dev_t dev, int fflag, int devtype, struct proc *p)
811 1.1 fvdl {
812 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
813 1.16 drochner struct agp_memory *mem;
814 1.1 fvdl
815 1.1 fvdl /*
816 1.1 fvdl * Clear the GATT and force release on last close
817 1.1 fvdl */
818 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
819 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
820 1.16 drochner if (mem->am_is_bound) {
821 1.16 drochner printf("agpclose: mem %d is bound\n",
822 1.16 drochner mem->am_id);
823 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
824 1.16 drochner }
825 1.16 drochner /*
826 1.16 drochner * XXX it is not documented, but if the protocol allows
827 1.16 drochner * allocate->acquire->bind, it would be possible that
828 1.16 drochner * memory ranges are allocated by the kernel here,
829 1.16 drochner * which we shouldn't free. We'd have to keep track of
830 1.16 drochner * the memory range's owner.
831 1.16 drochner * The kernel API is unsed yet, so we get away with
832 1.16 drochner * freeing all.
833 1.16 drochner */
834 1.16 drochner AGP_FREE_MEMORY(sc, mem);
835 1.16 drochner }
836 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
837 1.16 drochner }
838 1.1 fvdl sc->as_isopen = 0;
839 1.1 fvdl
840 1.1 fvdl return 0;
841 1.1 fvdl }
842 1.1 fvdl
843 1.1 fvdl int
844 1.1 fvdl agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
845 1.1 fvdl {
846 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
847 1.1 fvdl
848 1.1 fvdl if (sc == NULL)
849 1.1 fvdl return ENODEV;
850 1.1 fvdl
851 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
852 1.1 fvdl return EPERM;
853 1.1 fvdl
854 1.1 fvdl switch (cmd) {
855 1.1 fvdl case AGPIOC_INFO:
856 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
857 1.1 fvdl
858 1.1 fvdl case AGPIOC_ACQUIRE:
859 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
860 1.1 fvdl
861 1.1 fvdl case AGPIOC_RELEASE:
862 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
863 1.1 fvdl
864 1.1 fvdl case AGPIOC_SETUP:
865 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
866 1.1 fvdl
867 1.1 fvdl case AGPIOC_ALLOCATE:
868 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
869 1.1 fvdl
870 1.1 fvdl case AGPIOC_DEALLOCATE:
871 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
872 1.1 fvdl
873 1.1 fvdl case AGPIOC_BIND:
874 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
875 1.1 fvdl
876 1.1 fvdl case AGPIOC_UNBIND:
877 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
878 1.1 fvdl
879 1.1 fvdl }
880 1.1 fvdl
881 1.1 fvdl return EINVAL;
882 1.1 fvdl }
883 1.1 fvdl
884 1.1 fvdl paddr_t
885 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
886 1.1 fvdl {
887 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
888 1.1 fvdl
889 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
890 1.1 fvdl return -1;
891 1.6 thorpej
892 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
893 1.6 thorpej BUS_SPACE_MAP_LINEAR));
894 1.1 fvdl }
895 1.1 fvdl
896 1.1 fvdl /* Implementation of the kernel api */
897 1.1 fvdl
898 1.1 fvdl void *
899 1.1 fvdl agp_find_device(int unit)
900 1.1 fvdl {
901 1.1 fvdl return device_lookup(&agp_cd, unit);
902 1.1 fvdl }
903 1.1 fvdl
904 1.1 fvdl enum agp_acquire_state
905 1.1 fvdl agp_state(void *devcookie)
906 1.1 fvdl {
907 1.1 fvdl struct agp_softc *sc = devcookie;
908 1.1 fvdl return sc->as_state;
909 1.1 fvdl }
910 1.1 fvdl
911 1.1 fvdl void
912 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
913 1.1 fvdl {
914 1.1 fvdl struct agp_softc *sc = devcookie;
915 1.1 fvdl
916 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
917 1.1 fvdl sc->as_capoff + AGP_STATUS);
918 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
919 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
920 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
921 1.1 fvdl info->ai_memory_used = sc->as_allocated;
922 1.1 fvdl }
923 1.1 fvdl
924 1.1 fvdl int
925 1.1 fvdl agp_acquire(void *dev)
926 1.1 fvdl {
927 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
928 1.1 fvdl }
929 1.1 fvdl
930 1.1 fvdl int
931 1.1 fvdl agp_release(void *dev)
932 1.1 fvdl {
933 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
934 1.1 fvdl }
935 1.1 fvdl
936 1.1 fvdl int
937 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
938 1.1 fvdl {
939 1.1 fvdl struct agp_softc *sc = dev;
940 1.1 fvdl
941 1.1 fvdl return AGP_ENABLE(sc, mode);
942 1.1 fvdl }
943 1.1 fvdl
944 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
945 1.1 fvdl {
946 1.1 fvdl struct agp_softc *sc = dev;
947 1.1 fvdl
948 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
949 1.1 fvdl }
950 1.1 fvdl
951 1.1 fvdl void agp_free_memory(void *dev, void *handle)
952 1.1 fvdl {
953 1.1 fvdl struct agp_softc *sc = dev;
954 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
955 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
956 1.1 fvdl }
957 1.1 fvdl
958 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
959 1.1 fvdl {
960 1.1 fvdl struct agp_softc *sc = dev;
961 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
962 1.1 fvdl
963 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
964 1.1 fvdl }
965 1.1 fvdl
966 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
967 1.1 fvdl {
968 1.1 fvdl struct agp_softc *sc = dev;
969 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
970 1.1 fvdl
971 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
972 1.1 fvdl }
973 1.1 fvdl
974 1.1 fvdl void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
975 1.1 fvdl {
976 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
977 1.1 fvdl
978 1.1 fvdl mi->ami_size = mem->am_size;
979 1.1 fvdl mi->ami_physical = mem->am_physical;
980 1.1 fvdl mi->ami_offset = mem->am_offset;
981 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
982 1.1 fvdl }
983 1.1 fvdl
984 1.1 fvdl int
985 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
986 1.1 fvdl bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
987 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
988 1.1 fvdl
989 1.1 fvdl {
990 1.1 fvdl int error, level = 0;
991 1.1 fvdl
992 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
993 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
994 1.1 fvdl goto out;
995 1.1 fvdl level++;
996 1.1 fvdl
997 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
998 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
999 1.1 fvdl goto out;
1000 1.1 fvdl level++;
1001 1.1 fvdl
1002 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1003 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1004 1.1 fvdl goto out;
1005 1.1 fvdl level++;
1006 1.1 fvdl
1007 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1008 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1009 1.1 fvdl goto out;
1010 1.1 fvdl
1011 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1012 1.1 fvdl
1013 1.1 fvdl return 0;
1014 1.1 fvdl out:
1015 1.1 fvdl switch (level) {
1016 1.1 fvdl case 3:
1017 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1018 1.1 fvdl /* FALLTHROUGH */
1019 1.1 fvdl case 2:
1020 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1021 1.1 fvdl /* FALLTHROUGH */
1022 1.1 fvdl case 1:
1023 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1024 1.1 fvdl break;
1025 1.1 fvdl default:
1026 1.1 fvdl break;
1027 1.1 fvdl }
1028 1.1 fvdl
1029 1.1 fvdl return error;
1030 1.1 fvdl }
1031 1.1 fvdl
1032 1.1 fvdl void
1033 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1034 1.1 fvdl caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1035 1.1 fvdl {
1036 1.1 fvdl
1037 1.1 fvdl bus_dmamap_unload(tag, map);
1038 1.1 fvdl bus_dmamap_destroy(tag, map);
1039 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1040 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1041 1.1 fvdl }
1042