agp.c revision 1.40 1 1.40 christos /* $NetBSD: agp.c,v 1.40 2006/08/17 17:11:28 christos Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.40 christos __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.40 2006/08/17 17:11:28 christos Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.1 fvdl
81 1.1 fvdl #include <uvm/uvm_extern.h>
82 1.1 fvdl
83 1.1 fvdl #include <dev/pci/pcireg.h>
84 1.1 fvdl #include <dev/pci/pcivar.h>
85 1.1 fvdl #include <dev/pci/agpvar.h>
86 1.1 fvdl #include <dev/pci/agpreg.h>
87 1.1 fvdl #include <dev/pci/pcidevs.h>
88 1.1 fvdl
89 1.1 fvdl #include <machine/bus.h>
90 1.25 thorpej
91 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
92 1.1 fvdl
93 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
94 1.1 fvdl /* XXXfvdl get rid of this one. */
95 1.1 fvdl
96 1.1 fvdl extern struct cfdriver agp_cd;
97 1.17 gehenna
98 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
99 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
100 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
101 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
102 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
103 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
104 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
105 1.1 fvdl
106 1.7 thorpej #include "agp_ali.h"
107 1.7 thorpej #include "agp_amd.h"
108 1.7 thorpej #include "agp_i810.h"
109 1.7 thorpej #include "agp_intel.h"
110 1.7 thorpej #include "agp_sis.h"
111 1.7 thorpej #include "agp_via.h"
112 1.7 thorpej
113 1.5 thorpej const struct agp_product {
114 1.5 thorpej uint32_t ap_vendor;
115 1.5 thorpej uint32_t ap_product;
116 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
117 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
118 1.5 thorpej } agp_products[] = {
119 1.7 thorpej #if NAGP_ALI > 0
120 1.5 thorpej { PCI_VENDOR_ALI, -1,
121 1.5 thorpej NULL, agp_ali_attach },
122 1.7 thorpej #endif
123 1.5 thorpej
124 1.7 thorpej #if NAGP_AMD > 0
125 1.5 thorpej { PCI_VENDOR_AMD, -1,
126 1.5 thorpej agp_amd_match, agp_amd_attach },
127 1.7 thorpej #endif
128 1.5 thorpej
129 1.7 thorpej #if NAGP_I810 > 0
130 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
131 1.5 thorpej NULL, agp_i810_attach },
132 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
133 1.5 thorpej NULL, agp_i810_attach },
134 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
135 1.5 thorpej NULL, agp_i810_attach },
136 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
137 1.5 thorpej NULL, agp_i810_attach },
138 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
139 1.13 augustss NULL, agp_i810_attach },
140 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
141 1.11 fvdl NULL, agp_i810_attach },
142 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
143 1.29 hannken NULL, agp_i810_attach },
144 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
145 1.31 tron NULL, agp_i810_attach },
146 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
147 1.23 scw NULL, agp_i810_attach },
148 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
149 1.37 christos NULL, agp_i810_attach },
150 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
151 1.37 christos NULL, agp_i810_attach },
152 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
153 1.39 simonb NULL, agp_i810_attach },
154 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
155 1.39 simonb NULL, agp_i810_attach },
156 1.7 thorpej #endif
157 1.5 thorpej
158 1.7 thorpej #if NAGP_INTEL > 0
159 1.5 thorpej { PCI_VENDOR_INTEL, -1,
160 1.5 thorpej NULL, agp_intel_attach },
161 1.7 thorpej #endif
162 1.5 thorpej
163 1.7 thorpej #if NAGP_SIS > 0
164 1.5 thorpej { PCI_VENDOR_SIS, -1,
165 1.5 thorpej NULL, agp_sis_attach },
166 1.7 thorpej #endif
167 1.5 thorpej
168 1.7 thorpej #if NAGP_VIA > 0
169 1.5 thorpej { PCI_VENDOR_VIATECH, -1,
170 1.5 thorpej NULL, agp_via_attach },
171 1.7 thorpej #endif
172 1.5 thorpej
173 1.5 thorpej { 0, 0,
174 1.5 thorpej NULL, NULL },
175 1.5 thorpej };
176 1.5 thorpej
177 1.5 thorpej static const struct agp_product *
178 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
179 1.5 thorpej {
180 1.5 thorpej const struct agp_product *ap;
181 1.5 thorpej
182 1.5 thorpej /* First find the vendor. */
183 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
184 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
185 1.5 thorpej break;
186 1.5 thorpej }
187 1.5 thorpej
188 1.5 thorpej if (ap->ap_attach == NULL)
189 1.5 thorpej return (NULL);
190 1.5 thorpej
191 1.5 thorpej /* Now find the product within the vendor's domain. */
192 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
193 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
194 1.5 thorpej /* Ran out of this vendor's section of the table. */
195 1.5 thorpej return (NULL);
196 1.5 thorpej }
197 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
198 1.5 thorpej /* Exact match. */
199 1.5 thorpej break;
200 1.5 thorpej }
201 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
202 1.5 thorpej /* Wildcard match. */
203 1.5 thorpej break;
204 1.5 thorpej }
205 1.5 thorpej }
206 1.5 thorpej
207 1.5 thorpej if (ap->ap_attach == NULL)
208 1.5 thorpej return (NULL);
209 1.5 thorpej
210 1.5 thorpej /* Now let the product-specific driver filter the match. */
211 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
212 1.5 thorpej return (NULL);
213 1.5 thorpej
214 1.5 thorpej return (ap);
215 1.5 thorpej }
216 1.5 thorpej
217 1.35 thorpej static int
218 1.1 fvdl agpmatch(struct device *parent, struct cfdata *match, void *aux)
219 1.1 fvdl {
220 1.5 thorpej struct agpbus_attach_args *apa = aux;
221 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
222 1.1 fvdl
223 1.5 thorpej if (agp_lookup(pa) == NULL)
224 1.5 thorpej return (0);
225 1.1 fvdl
226 1.5 thorpej return (1);
227 1.1 fvdl }
228 1.1 fvdl
229 1.35 thorpej static const int agp_max[][2] = {
230 1.1 fvdl {0, 0},
231 1.1 fvdl {32, 4},
232 1.1 fvdl {64, 28},
233 1.1 fvdl {128, 96},
234 1.1 fvdl {256, 204},
235 1.1 fvdl {512, 440},
236 1.1 fvdl {1024, 942},
237 1.1 fvdl {2048, 1920},
238 1.1 fvdl {4096, 3932}
239 1.1 fvdl };
240 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
241 1.1 fvdl
242 1.35 thorpej static void
243 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
244 1.1 fvdl {
245 1.5 thorpej struct agpbus_attach_args *apa = aux;
246 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
247 1.1 fvdl struct agp_softc *sc = (void *)self;
248 1.5 thorpej const struct agp_product *ap;
249 1.1 fvdl int memsize, i, ret;
250 1.1 fvdl
251 1.5 thorpej ap = agp_lookup(pa);
252 1.5 thorpej if (ap == NULL) {
253 1.5 thorpej printf("\n");
254 1.5 thorpej panic("agpattach: impossible");
255 1.5 thorpej }
256 1.1 fvdl
257 1.24 thorpej aprint_naive(": AGP controller\n");
258 1.24 thorpej
259 1.1 fvdl sc->as_dmat = pa->pa_dmat;
260 1.1 fvdl sc->as_pc = pa->pa_pc;
261 1.1 fvdl sc->as_tag = pa->pa_tag;
262 1.1 fvdl sc->as_id = pa->pa_id;
263 1.1 fvdl
264 1.1 fvdl /*
265 1.1 fvdl * Work out an upper bound for agp memory allocation. This
266 1.1 fvdl * uses a heurisitc table from the Linux driver.
267 1.1 fvdl */
268 1.1 fvdl memsize = ptoa(physmem) >> 20;
269 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
270 1.1 fvdl if (memsize <= agp_max[i][0])
271 1.1 fvdl break;
272 1.1 fvdl }
273 1.1 fvdl if (i == agp_max_size)
274 1.1 fvdl i = agp_max_size - 1;
275 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
276 1.1 fvdl
277 1.1 fvdl /*
278 1.1 fvdl * The lock is used to prevent re-entry to
279 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
280 1.1 fvdl */
281 1.1 fvdl lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
282 1.1 fvdl
283 1.1 fvdl TAILQ_INIT(&sc->as_memory);
284 1.1 fvdl
285 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
286 1.1 fvdl if (ret == 0)
287 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
288 1.1 fvdl (unsigned long)sc->as_apaddr,
289 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
290 1.1 fvdl else
291 1.1 fvdl sc->as_chipc = NULL;
292 1.1 fvdl }
293 1.30 tron
294 1.35 thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
295 1.35 thorpej agpmatch, agpattach, NULL, NULL);
296 1.35 thorpej
297 1.1 fvdl int
298 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
299 1.1 fvdl {
300 1.1 fvdl /*
301 1.18 nathanw * Find the aperture. Don't map it (yet), this would
302 1.11 fvdl * eat KVA.
303 1.1 fvdl */
304 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
305 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
306 1.11 fvdl &sc->as_apflags) != 0)
307 1.1 fvdl return ENXIO;
308 1.8 drochner
309 1.11 fvdl sc->as_apt = pa->pa_memt;
310 1.11 fvdl
311 1.1 fvdl return 0;
312 1.1 fvdl }
313 1.1 fvdl
314 1.1 fvdl struct agp_gatt *
315 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
316 1.1 fvdl {
317 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
318 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
319 1.1 fvdl struct agp_gatt *gatt;
320 1.38 tron caddr_t virtual;
321 1.1 fvdl int dummyseg;
322 1.1 fvdl
323 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
324 1.1 fvdl if (!gatt)
325 1.1 fvdl return NULL;
326 1.1 fvdl gatt->ag_entries = entries;
327 1.1 fvdl
328 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
329 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
330 1.38 tron &gatt->ag_dmaseg, 1, &dummyseg) != 0)
331 1.1 fvdl return NULL;
332 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
333 1.1 fvdl
334 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
335 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
336 1.1 fvdl agp_flush_cache();
337 1.1 fvdl
338 1.1 fvdl return gatt;
339 1.1 fvdl }
340 1.1 fvdl
341 1.1 fvdl void
342 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
343 1.1 fvdl {
344 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
345 1.1 fvdl (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
346 1.1 fvdl free(gatt, M_AGP);
347 1.1 fvdl }
348 1.1 fvdl
349 1.1 fvdl
350 1.1 fvdl int
351 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
352 1.1 fvdl {
353 1.1 fvdl lockmgr(&sc->as_lock, LK_DRAIN, 0);
354 1.1 fvdl agp_flush_cache();
355 1.1 fvdl return 0;
356 1.1 fvdl }
357 1.1 fvdl
358 1.1 fvdl static int
359 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
360 1.1 fvdl {
361 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
362 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
363 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
364 1.26 tron NULL, NULL))
365 1.1 fvdl return 1;
366 1.1 fvdl
367 1.1 fvdl return 0;
368 1.1 fvdl }
369 1.1 fvdl
370 1.1 fvdl int
371 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
372 1.1 fvdl {
373 1.1 fvdl struct pci_attach_args pa;
374 1.1 fvdl pcireg_t tstatus, mstatus;
375 1.1 fvdl pcireg_t command;
376 1.1 fvdl int rq, sba, fw, rate, capoff;
377 1.1 fvdl
378 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
379 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
380 1.1 fvdl &capoff, NULL) == 0) {
381 1.1 fvdl printf("%s: can't find display\n", sc->as_dev.dv_xname);
382 1.1 fvdl return ENXIO;
383 1.1 fvdl }
384 1.1 fvdl
385 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
386 1.1 fvdl sc->as_capoff + AGP_STATUS);
387 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
388 1.1 fvdl capoff + AGP_STATUS);
389 1.1 fvdl
390 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
391 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
392 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
393 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
394 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
395 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
396 1.1 fvdl
397 1.1 fvdl /* Set SBA if all three can deal with SBA */
398 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
399 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
400 1.1 fvdl & AGP_MODE_GET_SBA(mode));
401 1.1 fvdl
402 1.1 fvdl /* Similar for FW */
403 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
404 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
405 1.1 fvdl & AGP_MODE_GET_FW(mode));
406 1.1 fvdl
407 1.1 fvdl /* Figure out the max rate */
408 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
409 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
410 1.1 fvdl & AGP_MODE_GET_RATE(mode));
411 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
412 1.1 fvdl rate = AGP_MODE_RATE_4x;
413 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
414 1.1 fvdl rate = AGP_MODE_RATE_2x;
415 1.1 fvdl else
416 1.1 fvdl rate = AGP_MODE_RATE_1x;
417 1.1 fvdl
418 1.1 fvdl /* Construct the new mode word and tell the hardware */
419 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
420 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
421 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
422 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
423 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
424 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
425 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
426 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
427 1.1 fvdl
428 1.1 fvdl return 0;
429 1.1 fvdl }
430 1.1 fvdl
431 1.1 fvdl struct agp_memory *
432 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
433 1.1 fvdl {
434 1.1 fvdl struct agp_memory *mem;
435 1.1 fvdl
436 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
437 1.1 fvdl return 0;
438 1.1 fvdl
439 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
440 1.1 fvdl return 0;
441 1.1 fvdl
442 1.1 fvdl if (type != 0) {
443 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
444 1.1 fvdl type);
445 1.1 fvdl return 0;
446 1.1 fvdl }
447 1.1 fvdl
448 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
449 1.1 fvdl if (mem == NULL)
450 1.1 fvdl return NULL;
451 1.1 fvdl
452 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
453 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
454 1.1 fvdl free(mem, M_AGP);
455 1.1 fvdl return NULL;
456 1.1 fvdl }
457 1.1 fvdl
458 1.1 fvdl mem->am_id = sc->as_nextid++;
459 1.1 fvdl mem->am_size = size;
460 1.1 fvdl mem->am_type = 0;
461 1.1 fvdl mem->am_physical = 0;
462 1.1 fvdl mem->am_offset = 0;
463 1.1 fvdl mem->am_is_bound = 0;
464 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
465 1.1 fvdl sc->as_allocated += size;
466 1.1 fvdl
467 1.1 fvdl return mem;
468 1.1 fvdl }
469 1.1 fvdl
470 1.1 fvdl int
471 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
472 1.1 fvdl {
473 1.1 fvdl if (mem->am_is_bound)
474 1.1 fvdl return EBUSY;
475 1.1 fvdl
476 1.1 fvdl sc->as_allocated -= mem->am_size;
477 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
478 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
479 1.1 fvdl free(mem, M_AGP);
480 1.1 fvdl return 0;
481 1.1 fvdl }
482 1.1 fvdl
483 1.1 fvdl int
484 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
485 1.1 fvdl off_t offset)
486 1.1 fvdl {
487 1.1 fvdl off_t i, k;
488 1.1 fvdl bus_size_t done, j;
489 1.1 fvdl int error;
490 1.1 fvdl bus_dma_segment_t *segs, *seg;
491 1.1 fvdl bus_addr_t pa;
492 1.1 fvdl int contigpages, nseg;
493 1.1 fvdl
494 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
495 1.1 fvdl
496 1.1 fvdl if (mem->am_is_bound) {
497 1.1 fvdl printf("%s: memory already bound\n", sc->as_dev.dv_xname);
498 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
499 1.1 fvdl return EINVAL;
500 1.1 fvdl }
501 1.34 perry
502 1.1 fvdl if (offset < 0
503 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
504 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
505 1.1 fvdl printf("%s: binding memory at bad offset %#lx\n",
506 1.1 fvdl sc->as_dev.dv_xname, (unsigned long) offset);
507 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
508 1.1 fvdl return EINVAL;
509 1.1 fvdl }
510 1.1 fvdl
511 1.1 fvdl /*
512 1.1 fvdl * XXXfvdl
513 1.1 fvdl * The memory here needs to be directly accessable from the
514 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
515 1.1 fvdl * However, it need not be contiguous, since individual pages
516 1.1 fvdl * are translated using the GATT.
517 1.1 fvdl *
518 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
519 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
520 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
521 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
522 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
523 1.1 fvdl * a bus_dma_segment per page would be overkill.
524 1.1 fvdl */
525 1.1 fvdl
526 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
527 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
528 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
529 1.16 drochner if (segs == NULL) {
530 1.16 drochner lockmgr(&sc->as_lock, LK_RELEASE, 0);
531 1.10 thorpej return ENOMEM;
532 1.16 drochner }
533 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
534 1.4 drochner segs, nseg, &mem->am_nseg,
535 1.15 drochner contigpages > 1 ?
536 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
537 1.4 drochner free(segs, M_AGP);
538 1.1 fvdl continue;
539 1.4 drochner }
540 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
541 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
542 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
543 1.4 drochner free(segs, M_AGP);
544 1.1 fvdl continue;
545 1.1 fvdl }
546 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
547 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
548 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
549 1.1 fvdl mem->am_size);
550 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
551 1.4 drochner free(segs, M_AGP);
552 1.1 fvdl continue;
553 1.1 fvdl }
554 1.1 fvdl mem->am_dmaseg = segs;
555 1.1 fvdl break;
556 1.1 fvdl }
557 1.1 fvdl
558 1.1 fvdl if (contigpages == 0) {
559 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
560 1.1 fvdl return ENOMEM;
561 1.1 fvdl }
562 1.1 fvdl
563 1.1 fvdl
564 1.1 fvdl /*
565 1.1 fvdl * Bind the individual pages and flush the chipset's
566 1.1 fvdl * TLB.
567 1.1 fvdl */
568 1.1 fvdl done = 0;
569 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
570 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
571 1.1 fvdl /*
572 1.1 fvdl * Install entries in the GATT, making sure that if
573 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
574 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
575 1.1 fvdl * entries.
576 1.1 fvdl */
577 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
578 1.1 fvdl j += AGP_PAGE_SIZE) {
579 1.1 fvdl pa = seg->ds_addr + j;
580 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
581 1.3 drochner (unsigned long)(offset + done + j),
582 1.40 christos (unsigned long)pa));
583 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
584 1.1 fvdl if (error) {
585 1.1 fvdl /*
586 1.1 fvdl * Bail out. Reverse all the mappings
587 1.1 fvdl * and unwire the pages.
588 1.1 fvdl */
589 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
590 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
591 1.1 fvdl
592 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
593 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
594 1.4 drochner mem->am_size);
595 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
596 1.4 drochner mem->am_nseg);
597 1.4 drochner free(mem->am_dmaseg, M_AGP);
598 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
599 1.1 fvdl return error;
600 1.1 fvdl }
601 1.1 fvdl }
602 1.1 fvdl done += seg->ds_len;
603 1.1 fvdl }
604 1.1 fvdl
605 1.1 fvdl /*
606 1.32 wiz * Flush the CPU cache since we are providing a new mapping
607 1.1 fvdl * for these pages.
608 1.1 fvdl */
609 1.1 fvdl agp_flush_cache();
610 1.1 fvdl
611 1.1 fvdl /*
612 1.1 fvdl * Make sure the chipset gets the new mappings.
613 1.1 fvdl */
614 1.1 fvdl AGP_FLUSH_TLB(sc);
615 1.1 fvdl
616 1.1 fvdl mem->am_offset = offset;
617 1.1 fvdl mem->am_is_bound = 1;
618 1.1 fvdl
619 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
620 1.1 fvdl
621 1.1 fvdl return 0;
622 1.1 fvdl }
623 1.1 fvdl
624 1.1 fvdl int
625 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
626 1.1 fvdl {
627 1.1 fvdl int i;
628 1.1 fvdl
629 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
630 1.1 fvdl
631 1.1 fvdl if (!mem->am_is_bound) {
632 1.1 fvdl printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
633 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
634 1.1 fvdl return EINVAL;
635 1.1 fvdl }
636 1.1 fvdl
637 1.1 fvdl
638 1.1 fvdl /*
639 1.1 fvdl * Unbind the individual pages and flush the chipset's
640 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
641 1.1 fvdl */
642 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
643 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
644 1.34 perry
645 1.1 fvdl agp_flush_cache();
646 1.1 fvdl AGP_FLUSH_TLB(sc);
647 1.1 fvdl
648 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
649 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
650 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
651 1.1 fvdl
652 1.1 fvdl free(mem->am_dmaseg, M_AGP);
653 1.1 fvdl
654 1.1 fvdl mem->am_offset = 0;
655 1.1 fvdl mem->am_is_bound = 0;
656 1.1 fvdl
657 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
658 1.1 fvdl
659 1.1 fvdl return 0;
660 1.1 fvdl }
661 1.1 fvdl
662 1.1 fvdl /* Helper functions for implementing user/kernel api */
663 1.1 fvdl
664 1.1 fvdl static int
665 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
666 1.1 fvdl {
667 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
668 1.1 fvdl return EBUSY;
669 1.1 fvdl sc->as_state = state;
670 1.1 fvdl
671 1.1 fvdl return 0;
672 1.1 fvdl }
673 1.1 fvdl
674 1.1 fvdl static int
675 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
676 1.1 fvdl {
677 1.1 fvdl struct agp_memory *mem;
678 1.1 fvdl
679 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
680 1.1 fvdl return 0;
681 1.1 fvdl
682 1.1 fvdl if (sc->as_state != state)
683 1.1 fvdl return EBUSY;
684 1.1 fvdl
685 1.1 fvdl /*
686 1.16 drochner * Clear out outstanding aperture mappings.
687 1.16 drochner * (should not be necessary, done by caller)
688 1.1 fvdl */
689 1.4 drochner TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
690 1.4 drochner if (mem->am_is_bound) {
691 1.4 drochner printf("agp_release_helper: mem %d is bound\n",
692 1.4 drochner mem->am_id);
693 1.1 fvdl AGP_UNBIND_MEMORY(sc, mem);
694 1.4 drochner }
695 1.1 fvdl }
696 1.1 fvdl
697 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
698 1.1 fvdl return 0;
699 1.1 fvdl }
700 1.1 fvdl
701 1.1 fvdl static struct agp_memory *
702 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
703 1.1 fvdl {
704 1.1 fvdl struct agp_memory *mem;
705 1.1 fvdl
706 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
707 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
708 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
709 1.1 fvdl if (mem->am_id == id)
710 1.1 fvdl return mem;
711 1.1 fvdl }
712 1.1 fvdl return 0;
713 1.1 fvdl }
714 1.1 fvdl
715 1.1 fvdl /* Implementation of the userland ioctl api */
716 1.1 fvdl
717 1.1 fvdl static int
718 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
719 1.1 fvdl {
720 1.1 fvdl memset(info, 0, sizeof *info);
721 1.1 fvdl info->bridge_id = sc->as_id;
722 1.3 drochner if (sc->as_capoff != 0)
723 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
724 1.3 drochner sc->as_capoff + AGP_STATUS);
725 1.3 drochner else
726 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
727 1.1 fvdl info->aper_base = sc->as_apaddr;
728 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
729 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
730 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
731 1.1 fvdl
732 1.1 fvdl return 0;
733 1.1 fvdl }
734 1.1 fvdl
735 1.1 fvdl static int
736 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
737 1.1 fvdl {
738 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
739 1.1 fvdl }
740 1.1 fvdl
741 1.1 fvdl static int
742 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
743 1.1 fvdl {
744 1.1 fvdl struct agp_memory *mem;
745 1.1 fvdl
746 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
747 1.1 fvdl alloc->type,
748 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
749 1.1 fvdl if (mem) {
750 1.1 fvdl alloc->key = mem->am_id;
751 1.1 fvdl alloc->physical = mem->am_physical;
752 1.1 fvdl return 0;
753 1.1 fvdl } else {
754 1.1 fvdl return ENOMEM;
755 1.1 fvdl }
756 1.1 fvdl }
757 1.1 fvdl
758 1.1 fvdl static int
759 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
760 1.1 fvdl {
761 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
762 1.1 fvdl
763 1.1 fvdl if (mem) {
764 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
765 1.1 fvdl return 0;
766 1.1 fvdl } else {
767 1.1 fvdl return ENOENT;
768 1.1 fvdl }
769 1.1 fvdl }
770 1.1 fvdl
771 1.1 fvdl static int
772 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
773 1.1 fvdl {
774 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
775 1.1 fvdl
776 1.1 fvdl if (!mem)
777 1.1 fvdl return ENOENT;
778 1.1 fvdl
779 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
780 1.1 fvdl }
781 1.1 fvdl
782 1.1 fvdl static int
783 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
784 1.1 fvdl {
785 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
786 1.1 fvdl
787 1.1 fvdl if (!mem)
788 1.1 fvdl return ENOENT;
789 1.1 fvdl
790 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
791 1.1 fvdl }
792 1.1 fvdl
793 1.35 thorpej static int
794 1.36 christos agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
795 1.1 fvdl {
796 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
797 1.9 thorpej
798 1.9 thorpej if (sc == NULL)
799 1.9 thorpej return ENXIO;
800 1.1 fvdl
801 1.1 fvdl if (sc->as_chipc == NULL)
802 1.1 fvdl return ENXIO;
803 1.1 fvdl
804 1.1 fvdl if (!sc->as_isopen)
805 1.1 fvdl sc->as_isopen = 1;
806 1.1 fvdl else
807 1.1 fvdl return EBUSY;
808 1.1 fvdl
809 1.1 fvdl return 0;
810 1.1 fvdl }
811 1.1 fvdl
812 1.35 thorpej static int
813 1.36 christos agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
814 1.1 fvdl {
815 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
816 1.16 drochner struct agp_memory *mem;
817 1.1 fvdl
818 1.1 fvdl /*
819 1.1 fvdl * Clear the GATT and force release on last close
820 1.1 fvdl */
821 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
822 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
823 1.16 drochner if (mem->am_is_bound) {
824 1.16 drochner printf("agpclose: mem %d is bound\n",
825 1.16 drochner mem->am_id);
826 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
827 1.16 drochner }
828 1.16 drochner /*
829 1.16 drochner * XXX it is not documented, but if the protocol allows
830 1.16 drochner * allocate->acquire->bind, it would be possible that
831 1.16 drochner * memory ranges are allocated by the kernel here,
832 1.16 drochner * which we shouldn't free. We'd have to keep track of
833 1.16 drochner * the memory range's owner.
834 1.16 drochner * The kernel API is unsed yet, so we get away with
835 1.16 drochner * freeing all.
836 1.16 drochner */
837 1.16 drochner AGP_FREE_MEMORY(sc, mem);
838 1.16 drochner }
839 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
840 1.16 drochner }
841 1.1 fvdl sc->as_isopen = 0;
842 1.1 fvdl
843 1.1 fvdl return 0;
844 1.1 fvdl }
845 1.1 fvdl
846 1.35 thorpej static int
847 1.36 christos agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct lwp *l)
848 1.1 fvdl {
849 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
850 1.1 fvdl
851 1.1 fvdl if (sc == NULL)
852 1.1 fvdl return ENODEV;
853 1.1 fvdl
854 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
855 1.1 fvdl return EPERM;
856 1.1 fvdl
857 1.1 fvdl switch (cmd) {
858 1.1 fvdl case AGPIOC_INFO:
859 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
860 1.1 fvdl
861 1.1 fvdl case AGPIOC_ACQUIRE:
862 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
863 1.1 fvdl
864 1.1 fvdl case AGPIOC_RELEASE:
865 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
866 1.1 fvdl
867 1.1 fvdl case AGPIOC_SETUP:
868 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
869 1.1 fvdl
870 1.1 fvdl case AGPIOC_ALLOCATE:
871 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
872 1.1 fvdl
873 1.1 fvdl case AGPIOC_DEALLOCATE:
874 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
875 1.1 fvdl
876 1.1 fvdl case AGPIOC_BIND:
877 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
878 1.1 fvdl
879 1.1 fvdl case AGPIOC_UNBIND:
880 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
881 1.1 fvdl
882 1.1 fvdl }
883 1.1 fvdl
884 1.1 fvdl return EINVAL;
885 1.1 fvdl }
886 1.1 fvdl
887 1.35 thorpej static paddr_t
888 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
889 1.1 fvdl {
890 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
891 1.1 fvdl
892 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
893 1.1 fvdl return -1;
894 1.6 thorpej
895 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
896 1.6 thorpej BUS_SPACE_MAP_LINEAR));
897 1.1 fvdl }
898 1.1 fvdl
899 1.35 thorpej const struct cdevsw agp_cdevsw = {
900 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
901 1.35 thorpej nostop, notty, nopoll, agpmmap, nokqfilter,
902 1.35 thorpej };
903 1.35 thorpej
904 1.1 fvdl /* Implementation of the kernel api */
905 1.1 fvdl
906 1.1 fvdl void *
907 1.1 fvdl agp_find_device(int unit)
908 1.1 fvdl {
909 1.1 fvdl return device_lookup(&agp_cd, unit);
910 1.1 fvdl }
911 1.1 fvdl
912 1.1 fvdl enum agp_acquire_state
913 1.1 fvdl agp_state(void *devcookie)
914 1.1 fvdl {
915 1.1 fvdl struct agp_softc *sc = devcookie;
916 1.1 fvdl return sc->as_state;
917 1.1 fvdl }
918 1.1 fvdl
919 1.1 fvdl void
920 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
921 1.1 fvdl {
922 1.1 fvdl struct agp_softc *sc = devcookie;
923 1.1 fvdl
924 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
925 1.1 fvdl sc->as_capoff + AGP_STATUS);
926 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
927 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
928 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
929 1.1 fvdl info->ai_memory_used = sc->as_allocated;
930 1.1 fvdl }
931 1.1 fvdl
932 1.1 fvdl int
933 1.1 fvdl agp_acquire(void *dev)
934 1.1 fvdl {
935 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
936 1.1 fvdl }
937 1.1 fvdl
938 1.1 fvdl int
939 1.1 fvdl agp_release(void *dev)
940 1.1 fvdl {
941 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
942 1.1 fvdl }
943 1.1 fvdl
944 1.1 fvdl int
945 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
946 1.1 fvdl {
947 1.1 fvdl struct agp_softc *sc = dev;
948 1.1 fvdl
949 1.1 fvdl return AGP_ENABLE(sc, mode);
950 1.1 fvdl }
951 1.1 fvdl
952 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
953 1.1 fvdl {
954 1.1 fvdl struct agp_softc *sc = dev;
955 1.1 fvdl
956 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
957 1.1 fvdl }
958 1.1 fvdl
959 1.1 fvdl void agp_free_memory(void *dev, void *handle)
960 1.1 fvdl {
961 1.1 fvdl struct agp_softc *sc = dev;
962 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
963 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
964 1.1 fvdl }
965 1.1 fvdl
966 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
967 1.1 fvdl {
968 1.1 fvdl struct agp_softc *sc = dev;
969 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
970 1.1 fvdl
971 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
972 1.1 fvdl }
973 1.1 fvdl
974 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
975 1.1 fvdl {
976 1.1 fvdl struct agp_softc *sc = dev;
977 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
978 1.1 fvdl
979 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
980 1.1 fvdl }
981 1.1 fvdl
982 1.1 fvdl void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
983 1.1 fvdl {
984 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
985 1.1 fvdl
986 1.1 fvdl mi->ami_size = mem->am_size;
987 1.1 fvdl mi->ami_physical = mem->am_physical;
988 1.1 fvdl mi->ami_offset = mem->am_offset;
989 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
990 1.1 fvdl }
991 1.1 fvdl
992 1.1 fvdl int
993 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
994 1.1 fvdl bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
995 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
996 1.1 fvdl
997 1.1 fvdl {
998 1.1 fvdl int error, level = 0;
999 1.1 fvdl
1000 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1001 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1002 1.1 fvdl goto out;
1003 1.1 fvdl level++;
1004 1.1 fvdl
1005 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1006 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1007 1.1 fvdl goto out;
1008 1.1 fvdl level++;
1009 1.1 fvdl
1010 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1011 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1012 1.1 fvdl goto out;
1013 1.1 fvdl level++;
1014 1.1 fvdl
1015 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1016 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1017 1.1 fvdl goto out;
1018 1.1 fvdl
1019 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1020 1.1 fvdl
1021 1.1 fvdl return 0;
1022 1.1 fvdl out:
1023 1.1 fvdl switch (level) {
1024 1.1 fvdl case 3:
1025 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1026 1.1 fvdl /* FALLTHROUGH */
1027 1.1 fvdl case 2:
1028 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1029 1.1 fvdl /* FALLTHROUGH */
1030 1.1 fvdl case 1:
1031 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1032 1.1 fvdl break;
1033 1.1 fvdl default:
1034 1.1 fvdl break;
1035 1.1 fvdl }
1036 1.1 fvdl
1037 1.1 fvdl return error;
1038 1.1 fvdl }
1039 1.1 fvdl
1040 1.1 fvdl void
1041 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1042 1.1 fvdl caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1043 1.1 fvdl {
1044 1.1 fvdl
1045 1.1 fvdl bus_dmamap_unload(tag, map);
1046 1.1 fvdl bus_dmamap_destroy(tag, map);
1047 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1048 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1049 1.1 fvdl }
1050