Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.49
      1  1.49        ad /*	$NetBSD: agp.c,v 1.49 2007/10/19 12:00:38 ad Exp $	*/
      2   1.1      fvdl 
      3   1.1      fvdl /*-
      4   1.1      fvdl  * Copyright (c) 2000 Doug Rabson
      5   1.1      fvdl  * All rights reserved.
      6   1.1      fvdl  *
      7   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      8   1.1      fvdl  * modification, are permitted provided that the following conditions
      9   1.1      fvdl  * are met:
     10   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     11   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     12   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     15   1.1      fvdl  *
     16   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      fvdl  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      fvdl  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      fvdl  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      fvdl  * SUCH DAMAGE.
     27   1.1      fvdl  *
     28   1.1      fvdl  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29   1.1      fvdl  */
     30   1.1      fvdl 
     31   1.1      fvdl /*
     32   1.1      fvdl  * Copyright (c) 2001 Wasabi Systems, Inc.
     33   1.1      fvdl  * All rights reserved.
     34   1.1      fvdl  *
     35   1.1      fvdl  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36   1.1      fvdl  *
     37   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
     38   1.1      fvdl  * modification, are permitted provided that the following conditions
     39   1.1      fvdl  * are met:
     40   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     41   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     42   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     43   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     44   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     45   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     46   1.1      fvdl  *    must display the following acknowledgement:
     47   1.1      fvdl  *      This product includes software developed for the NetBSD Project by
     48   1.1      fvdl  *      Wasabi Systems, Inc.
     49   1.1      fvdl  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50   1.1      fvdl  *    or promote products derived from this software without specific prior
     51   1.1      fvdl  *    written permission.
     52   1.1      fvdl  *
     53   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55   1.1      fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56   1.1      fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63   1.1      fvdl  * POSSIBILITY OF SUCH DAMAGE.
     64   1.1      fvdl  */
     65   1.1      fvdl 
     66  1.12     lukem 
     67  1.12     lukem #include <sys/cdefs.h>
     68  1.49        ad __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.49 2007/10/19 12:00:38 ad Exp $");
     69   1.1      fvdl 
     70   1.1      fvdl #include <sys/param.h>
     71   1.1      fvdl #include <sys/systm.h>
     72   1.1      fvdl #include <sys/malloc.h>
     73   1.1      fvdl #include <sys/kernel.h>
     74   1.1      fvdl #include <sys/device.h>
     75   1.1      fvdl #include <sys/conf.h>
     76   1.1      fvdl #include <sys/ioctl.h>
     77   1.1      fvdl #include <sys/fcntl.h>
     78   1.1      fvdl #include <sys/agpio.h>
     79   1.1      fvdl #include <sys/proc.h>
     80  1.46   xtraeme #include <sys/mutex.h>
     81   1.1      fvdl 
     82   1.1      fvdl #include <uvm/uvm_extern.h>
     83   1.1      fvdl 
     84   1.1      fvdl #include <dev/pci/pcireg.h>
     85   1.1      fvdl #include <dev/pci/pcivar.h>
     86   1.1      fvdl #include <dev/pci/agpvar.h>
     87   1.1      fvdl #include <dev/pci/agpreg.h>
     88   1.1      fvdl #include <dev/pci/pcidevs.h>
     89   1.1      fvdl 
     90  1.49        ad #include <sys/bus.h>
     91  1.25   thorpej 
     92  1.25   thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93   1.1      fvdl 
     94   1.1      fvdl /* Helper functions for implementing chipset mini drivers. */
     95   1.1      fvdl /* XXXfvdl get rid of this one. */
     96   1.1      fvdl 
     97   1.1      fvdl extern struct cfdriver agp_cd;
     98  1.17   gehenna 
     99   1.1      fvdl static int agp_info_user(struct agp_softc *, agp_info *);
    100   1.1      fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
    101   1.1      fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102   1.1      fvdl static int agp_deallocate_user(struct agp_softc *, int);
    103   1.1      fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
    104   1.1      fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105   1.1      fvdl static int agpdev_match(struct pci_attach_args *);
    106   1.1      fvdl 
    107   1.7   thorpej #include "agp_ali.h"
    108   1.7   thorpej #include "agp_amd.h"
    109   1.7   thorpej #include "agp_i810.h"
    110   1.7   thorpej #include "agp_intel.h"
    111   1.7   thorpej #include "agp_sis.h"
    112   1.7   thorpej #include "agp_via.h"
    113  1.47  kiyohara #include "agp_amd64.h"
    114   1.7   thorpej 
    115   1.5   thorpej const struct agp_product {
    116   1.5   thorpej 	uint32_t	ap_vendor;
    117   1.5   thorpej 	uint32_t	ap_product;
    118   1.5   thorpej 	int		(*ap_match)(const struct pci_attach_args *);
    119   1.5   thorpej 	int		(*ap_attach)(struct device *, struct device *, void *);
    120   1.5   thorpej } agp_products[] = {
    121   1.7   thorpej #if NAGP_ALI > 0
    122   1.5   thorpej 	{ PCI_VENDOR_ALI,	-1,
    123   1.5   thorpej 	  NULL,			agp_ali_attach },
    124   1.7   thorpej #endif
    125   1.5   thorpej 
    126   1.7   thorpej #if NAGP_AMD > 0
    127   1.5   thorpej 	{ PCI_VENDOR_AMD,	-1,
    128   1.5   thorpej 	  agp_amd_match,	agp_amd_attach },
    129   1.7   thorpej #endif
    130   1.5   thorpej 
    131   1.7   thorpej #if NAGP_I810 > 0
    132   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    133   1.5   thorpej 	  NULL,			agp_i810_attach },
    134   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    135   1.5   thorpej 	  NULL,			agp_i810_attach },
    136   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    137   1.5   thorpej 	  NULL,			agp_i810_attach },
    138   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    139   1.5   thorpej 	  NULL,			agp_i810_attach },
    140  1.11      fvdl 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    141  1.13  augustss 	  NULL,			agp_i810_attach },
    142  1.13  augustss 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    143  1.11      fvdl 	  NULL,			agp_i810_attach },
    144  1.23       scw 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    145  1.29   hannken 	  NULL,			agp_i810_attach },
    146  1.29   hannken 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    147  1.31      tron 	  NULL,			agp_i810_attach },
    148  1.31      tron 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    149  1.23       scw 	  NULL,			agp_i810_attach },
    150  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    151  1.37  christos 	  NULL,			agp_i810_attach },
    152  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    153  1.37  christos 	  NULL,			agp_i810_attach },
    154  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    155  1.39    simonb 	  NULL,			agp_i810_attach },
    156  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    157  1.39    simonb 	  NULL,			agp_i810_attach },
    158  1.48     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    159  1.48     markd 	  NULL,			agp_i810_attach },
    160   1.7   thorpej #endif
    161   1.5   thorpej 
    162   1.7   thorpej #if NAGP_INTEL > 0
    163   1.5   thorpej 	{ PCI_VENDOR_INTEL,	-1,
    164   1.5   thorpej 	  NULL,			agp_intel_attach },
    165   1.7   thorpej #endif
    166   1.5   thorpej 
    167   1.7   thorpej #if NAGP_SIS > 0
    168   1.5   thorpej 	{ PCI_VENDOR_SIS,	-1,
    169   1.5   thorpej 	  NULL,			agp_sis_attach },
    170   1.7   thorpej #endif
    171   1.5   thorpej 
    172   1.7   thorpej #if NAGP_VIA > 0
    173   1.5   thorpej 	{ PCI_VENDOR_VIATECH,	-1,
    174   1.5   thorpej 	  NULL,			agp_via_attach },
    175   1.7   thorpej #endif
    176   1.5   thorpej 
    177  1.47  kiyohara #if NAGP_AMD64 > 0
    178  1.47  kiyohara 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    179  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    180  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    181  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    182  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    183  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    184  1.47  kiyohara 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    185  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    186  1.47  kiyohara 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    187  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    188  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    189  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    190  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    191  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    192  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    193  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    194  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    195  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    196  1.47  kiyohara #endif
    197  1.47  kiyohara 
    198   1.5   thorpej 	{ 0,			0,
    199   1.5   thorpej 	  NULL,			NULL },
    200   1.5   thorpej };
    201   1.5   thorpej 
    202   1.5   thorpej static const struct agp_product *
    203   1.5   thorpej agp_lookup(const struct pci_attach_args *pa)
    204   1.5   thorpej {
    205   1.5   thorpej 	const struct agp_product *ap;
    206   1.5   thorpej 
    207   1.5   thorpej 	/* First find the vendor. */
    208   1.5   thorpej 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    209   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    210   1.5   thorpej 			break;
    211   1.5   thorpej 	}
    212   1.5   thorpej 
    213   1.5   thorpej 	if (ap->ap_attach == NULL)
    214   1.5   thorpej 		return (NULL);
    215   1.5   thorpej 
    216   1.5   thorpej 	/* Now find the product within the vendor's domain. */
    217   1.5   thorpej 	for (; ap->ap_attach != NULL; ap++) {
    218   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    219   1.5   thorpej 			/* Ran out of this vendor's section of the table. */
    220   1.5   thorpej 			return (NULL);
    221   1.5   thorpej 		}
    222   1.5   thorpej 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    223   1.5   thorpej 			/* Exact match. */
    224   1.5   thorpej 			break;
    225   1.5   thorpej 		}
    226   1.5   thorpej 		if (ap->ap_product == (uint32_t) -1) {
    227   1.5   thorpej 			/* Wildcard match. */
    228   1.5   thorpej 			break;
    229   1.5   thorpej 		}
    230   1.5   thorpej 	}
    231   1.5   thorpej 
    232   1.5   thorpej 	if (ap->ap_attach == NULL)
    233   1.5   thorpej 		return (NULL);
    234   1.5   thorpej 
    235   1.5   thorpej 	/* Now let the product-specific driver filter the match. */
    236   1.5   thorpej 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    237   1.5   thorpej 		return (NULL);
    238   1.5   thorpej 
    239   1.5   thorpej 	return (ap);
    240   1.5   thorpej }
    241   1.5   thorpej 
    242  1.35   thorpej static int
    243  1.43  christos agpmatch(struct device *parent, struct cfdata *match,
    244  1.42  christos     void *aux)
    245   1.1      fvdl {
    246   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    247   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    248   1.1      fvdl 
    249   1.5   thorpej 	if (agp_lookup(pa) == NULL)
    250   1.5   thorpej 		return (0);
    251   1.1      fvdl 
    252   1.5   thorpej 	return (1);
    253   1.1      fvdl }
    254   1.1      fvdl 
    255  1.35   thorpej static const int agp_max[][2] = {
    256   1.1      fvdl 	{0,	0},
    257   1.1      fvdl 	{32,	4},
    258   1.1      fvdl 	{64,	28},
    259   1.1      fvdl 	{128,	96},
    260   1.1      fvdl 	{256,	204},
    261   1.1      fvdl 	{512,	440},
    262   1.1      fvdl 	{1024,	942},
    263   1.1      fvdl 	{2048,	1920},
    264   1.1      fvdl 	{4096,	3932}
    265   1.1      fvdl };
    266   1.1      fvdl #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    267   1.1      fvdl 
    268  1.35   thorpej static void
    269   1.1      fvdl agpattach(struct device *parent, struct device *self, void *aux)
    270   1.1      fvdl {
    271   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    272   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    273   1.1      fvdl 	struct agp_softc *sc = (void *)self;
    274   1.5   thorpej 	const struct agp_product *ap;
    275   1.1      fvdl 	int memsize, i, ret;
    276   1.1      fvdl 
    277   1.5   thorpej 	ap = agp_lookup(pa);
    278   1.5   thorpej 	if (ap == NULL) {
    279   1.5   thorpej 		printf("\n");
    280   1.5   thorpej 		panic("agpattach: impossible");
    281   1.5   thorpej 	}
    282   1.1      fvdl 
    283  1.24   thorpej 	aprint_naive(": AGP controller\n");
    284  1.24   thorpej 
    285   1.1      fvdl 	sc->as_dmat = pa->pa_dmat;
    286   1.1      fvdl 	sc->as_pc = pa->pa_pc;
    287   1.1      fvdl 	sc->as_tag = pa->pa_tag;
    288   1.1      fvdl 	sc->as_id = pa->pa_id;
    289   1.1      fvdl 
    290   1.1      fvdl 	/*
    291   1.1      fvdl 	 * Work out an upper bound for agp memory allocation. This
    292   1.1      fvdl 	 * uses a heurisitc table from the Linux driver.
    293   1.1      fvdl 	 */
    294   1.1      fvdl 	memsize = ptoa(physmem) >> 20;
    295   1.1      fvdl 	for (i = 0; i < agp_max_size; i++) {
    296   1.1      fvdl 		if (memsize <= agp_max[i][0])
    297   1.1      fvdl 			break;
    298   1.1      fvdl 	}
    299   1.1      fvdl 	if (i == agp_max_size)
    300   1.1      fvdl 		i = agp_max_size - 1;
    301   1.1      fvdl 	sc->as_maxmem = agp_max[i][1] << 20U;
    302   1.1      fvdl 
    303   1.1      fvdl 	/*
    304  1.46   xtraeme 	 * The mutex is used to prevent re-entry to
    305   1.1      fvdl 	 * agp_generic_bind_memory() since that function can sleep.
    306   1.1      fvdl 	 */
    307  1.46   xtraeme 	mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
    308   1.1      fvdl 
    309   1.1      fvdl 	TAILQ_INIT(&sc->as_memory);
    310   1.1      fvdl 
    311   1.5   thorpej 	ret = (*ap->ap_attach)(parent, self, pa);
    312   1.1      fvdl 	if (ret == 0)
    313  1.24   thorpej 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    314   1.1      fvdl 		    (unsigned long)sc->as_apaddr,
    315   1.1      fvdl 		    (unsigned long)AGP_GET_APERTURE(sc));
    316   1.1      fvdl 	else
    317   1.1      fvdl 		sc->as_chipc = NULL;
    318   1.1      fvdl }
    319  1.30      tron 
    320  1.35   thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
    321  1.35   thorpej     agpmatch, agpattach, NULL, NULL);
    322  1.35   thorpej 
    323   1.1      fvdl int
    324  1.37  christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    325   1.1      fvdl {
    326   1.1      fvdl 	/*
    327  1.18   nathanw 	 * Find the aperture. Don't map it (yet), this would
    328  1.11      fvdl 	 * eat KVA.
    329   1.1      fvdl 	 */
    330  1.37  christos 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    331  1.11      fvdl 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    332  1.11      fvdl 	    &sc->as_apflags) != 0)
    333   1.1      fvdl 		return ENXIO;
    334   1.8  drochner 
    335  1.11      fvdl 	sc->as_apt = pa->pa_memt;
    336  1.11      fvdl 
    337   1.1      fvdl 	return 0;
    338   1.1      fvdl }
    339   1.1      fvdl 
    340   1.1      fvdl struct agp_gatt *
    341   1.1      fvdl agp_alloc_gatt(struct agp_softc *sc)
    342   1.1      fvdl {
    343   1.1      fvdl 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    344   1.1      fvdl 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    345   1.1      fvdl 	struct agp_gatt *gatt;
    346  1.45  christos 	void *virtual;
    347   1.1      fvdl 	int dummyseg;
    348   1.1      fvdl 
    349   1.1      fvdl 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    350   1.1      fvdl 	if (!gatt)
    351   1.1      fvdl 		return NULL;
    352   1.1      fvdl 	gatt->ag_entries = entries;
    353   1.1      fvdl 
    354   1.1      fvdl 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    355  1.38      tron 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    356  1.38      tron 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    357   1.1      fvdl 		return NULL;
    358  1.38      tron 	gatt->ag_virtual = (uint32_t *)virtual;
    359   1.1      fvdl 
    360   1.1      fvdl 	gatt->ag_size = entries * sizeof(u_int32_t);
    361   1.1      fvdl 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    362   1.1      fvdl 	agp_flush_cache();
    363   1.1      fvdl 
    364   1.1      fvdl 	return gatt;
    365   1.1      fvdl }
    366   1.1      fvdl 
    367   1.1      fvdl void
    368   1.1      fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    369   1.1      fvdl {
    370   1.1      fvdl 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    371  1.45  christos 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    372   1.1      fvdl 	free(gatt, M_AGP);
    373   1.1      fvdl }
    374   1.1      fvdl 
    375   1.1      fvdl 
    376   1.1      fvdl int
    377   1.1      fvdl agp_generic_detach(struct agp_softc *sc)
    378   1.1      fvdl {
    379  1.46   xtraeme 	mutex_destroy(&sc->as_mtx);
    380   1.1      fvdl 	agp_flush_cache();
    381   1.1      fvdl 	return 0;
    382   1.1      fvdl }
    383   1.1      fvdl 
    384   1.1      fvdl static int
    385   1.1      fvdl agpdev_match(struct pci_attach_args *pa)
    386   1.1      fvdl {
    387   1.1      fvdl 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    388   1.1      fvdl 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    389  1.26      tron 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    390  1.26      tron 		    NULL, NULL))
    391   1.1      fvdl 		return 1;
    392   1.1      fvdl 
    393   1.1      fvdl 	return 0;
    394   1.1      fvdl }
    395   1.1      fvdl 
    396   1.1      fvdl int
    397   1.1      fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    398   1.1      fvdl {
    399   1.1      fvdl 	struct pci_attach_args pa;
    400   1.1      fvdl 	pcireg_t tstatus, mstatus;
    401   1.1      fvdl 	pcireg_t command;
    402   1.1      fvdl 	int rq, sba, fw, rate, capoff;
    403   1.1      fvdl 
    404   1.1      fvdl 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    405   1.1      fvdl 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    406   1.1      fvdl 	     &capoff, NULL) == 0) {
    407   1.1      fvdl 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    408   1.1      fvdl 		return ENXIO;
    409   1.1      fvdl 	}
    410   1.1      fvdl 
    411   1.1      fvdl 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    412   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
    413   1.1      fvdl 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    414   1.1      fvdl 	    capoff + AGP_STATUS);
    415   1.1      fvdl 
    416   1.1      fvdl 	/* Set RQ to the min of mode, tstatus and mstatus */
    417   1.1      fvdl 	rq = AGP_MODE_GET_RQ(mode);
    418   1.1      fvdl 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    419   1.1      fvdl 		rq = AGP_MODE_GET_RQ(tstatus);
    420   1.1      fvdl 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    421   1.1      fvdl 		rq = AGP_MODE_GET_RQ(mstatus);
    422   1.1      fvdl 
    423   1.1      fvdl 	/* Set SBA if all three can deal with SBA */
    424   1.1      fvdl 	sba = (AGP_MODE_GET_SBA(tstatus)
    425   1.1      fvdl 	       & AGP_MODE_GET_SBA(mstatus)
    426   1.1      fvdl 	       & AGP_MODE_GET_SBA(mode));
    427   1.1      fvdl 
    428   1.1      fvdl 	/* Similar for FW */
    429   1.1      fvdl 	fw = (AGP_MODE_GET_FW(tstatus)
    430   1.1      fvdl 	       & AGP_MODE_GET_FW(mstatus)
    431   1.1      fvdl 	       & AGP_MODE_GET_FW(mode));
    432   1.1      fvdl 
    433   1.1      fvdl 	/* Figure out the max rate */
    434   1.1      fvdl 	rate = (AGP_MODE_GET_RATE(tstatus)
    435   1.1      fvdl 		& AGP_MODE_GET_RATE(mstatus)
    436   1.1      fvdl 		& AGP_MODE_GET_RATE(mode));
    437   1.1      fvdl 	if (rate & AGP_MODE_RATE_4x)
    438   1.1      fvdl 		rate = AGP_MODE_RATE_4x;
    439   1.1      fvdl 	else if (rate & AGP_MODE_RATE_2x)
    440   1.1      fvdl 		rate = AGP_MODE_RATE_2x;
    441   1.1      fvdl 	else
    442   1.1      fvdl 		rate = AGP_MODE_RATE_1x;
    443   1.1      fvdl 
    444   1.1      fvdl 	/* Construct the new mode word and tell the hardware */
    445   1.1      fvdl 	command = AGP_MODE_SET_RQ(0, rq);
    446   1.1      fvdl 	command = AGP_MODE_SET_SBA(command, sba);
    447   1.1      fvdl 	command = AGP_MODE_SET_FW(command, fw);
    448   1.1      fvdl 	command = AGP_MODE_SET_RATE(command, rate);
    449   1.1      fvdl 	command = AGP_MODE_SET_AGP(command, 1);
    450   1.1      fvdl 	pci_conf_write(sc->as_pc, sc->as_tag,
    451   1.1      fvdl 	    sc->as_capoff + AGP_COMMAND, command);
    452   1.1      fvdl 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    453   1.1      fvdl 
    454   1.1      fvdl 	return 0;
    455   1.1      fvdl }
    456   1.1      fvdl 
    457   1.1      fvdl struct agp_memory *
    458   1.1      fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    459   1.1      fvdl {
    460   1.1      fvdl 	struct agp_memory *mem;
    461   1.1      fvdl 
    462   1.1      fvdl 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    463   1.1      fvdl 		return 0;
    464   1.1      fvdl 
    465   1.1      fvdl 	if (sc->as_allocated + size > sc->as_maxmem)
    466   1.1      fvdl 		return 0;
    467   1.1      fvdl 
    468   1.1      fvdl 	if (type != 0) {
    469   1.1      fvdl 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    470   1.1      fvdl 		       type);
    471   1.1      fvdl 		return 0;
    472   1.1      fvdl 	}
    473   1.1      fvdl 
    474   1.1      fvdl 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    475   1.1      fvdl 	if (mem == NULL)
    476   1.1      fvdl 		return NULL;
    477   1.1      fvdl 
    478   1.3  drochner 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    479   1.3  drochner 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    480   1.1      fvdl 		free(mem, M_AGP);
    481   1.1      fvdl 		return NULL;
    482   1.1      fvdl 	}
    483   1.1      fvdl 
    484   1.1      fvdl 	mem->am_id = sc->as_nextid++;
    485   1.1      fvdl 	mem->am_size = size;
    486   1.1      fvdl 	mem->am_type = 0;
    487   1.1      fvdl 	mem->am_physical = 0;
    488   1.1      fvdl 	mem->am_offset = 0;
    489   1.1      fvdl 	mem->am_is_bound = 0;
    490   1.1      fvdl 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    491   1.1      fvdl 	sc->as_allocated += size;
    492   1.1      fvdl 
    493   1.1      fvdl 	return mem;
    494   1.1      fvdl }
    495   1.1      fvdl 
    496   1.1      fvdl int
    497   1.1      fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    498   1.1      fvdl {
    499   1.1      fvdl 	if (mem->am_is_bound)
    500   1.1      fvdl 		return EBUSY;
    501   1.1      fvdl 
    502   1.1      fvdl 	sc->as_allocated -= mem->am_size;
    503   1.1      fvdl 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    504   1.1      fvdl 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    505   1.1      fvdl 	free(mem, M_AGP);
    506   1.1      fvdl 	return 0;
    507   1.1      fvdl }
    508   1.1      fvdl 
    509   1.1      fvdl int
    510   1.1      fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    511   1.1      fvdl 			off_t offset)
    512   1.1      fvdl {
    513   1.1      fvdl 	off_t i, k;
    514   1.1      fvdl 	bus_size_t done, j;
    515   1.1      fvdl 	int error;
    516   1.1      fvdl 	bus_dma_segment_t *segs, *seg;
    517   1.1      fvdl 	bus_addr_t pa;
    518   1.1      fvdl 	int contigpages, nseg;
    519   1.1      fvdl 
    520  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    521   1.1      fvdl 
    522   1.1      fvdl 	if (mem->am_is_bound) {
    523   1.1      fvdl 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    524  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    525   1.1      fvdl 		return EINVAL;
    526   1.1      fvdl 	}
    527  1.34     perry 
    528   1.1      fvdl 	if (offset < 0
    529   1.1      fvdl 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    530   1.1      fvdl 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    531   1.1      fvdl 		printf("%s: binding memory at bad offset %#lx\n",
    532   1.1      fvdl 			      sc->as_dev.dv_xname, (unsigned long) offset);
    533  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    534   1.1      fvdl 		return EINVAL;
    535   1.1      fvdl 	}
    536   1.1      fvdl 
    537   1.1      fvdl 	/*
    538   1.1      fvdl 	 * XXXfvdl
    539   1.1      fvdl 	 * The memory here needs to be directly accessable from the
    540   1.1      fvdl 	 * AGP video card, so it should be allocated using bus_dma.
    541   1.1      fvdl 	 * However, it need not be contiguous, since individual pages
    542   1.1      fvdl 	 * are translated using the GATT.
    543   1.1      fvdl 	 *
    544   1.1      fvdl 	 * Using a large chunk of contiguous memory may get in the way
    545   1.1      fvdl 	 * of other subsystems that may need one, so we try to be friendly
    546   1.1      fvdl 	 * and ask for allocation in chunks of a minimum of 8 pages
    547   1.1      fvdl 	 * of contiguous memory on average, falling back to 4, 2 and 1
    548   1.1      fvdl 	 * if really needed. Larger chunks are preferred, since allocating
    549   1.1      fvdl 	 * a bus_dma_segment per page would be overkill.
    550   1.1      fvdl 	 */
    551   1.1      fvdl 
    552   1.1      fvdl 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    553   1.1      fvdl 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    554   1.3  drochner 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    555  1.16  drochner 		if (segs == NULL) {
    556  1.46   xtraeme 			mutex_exit(&sc->as_mtx);
    557  1.10   thorpej 			return ENOMEM;
    558  1.16  drochner 		}
    559   1.1      fvdl 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    560   1.4  drochner 				     segs, nseg, &mem->am_nseg,
    561  1.15  drochner 				     contigpages > 1 ?
    562  1.15  drochner 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    563   1.4  drochner 			free(segs, M_AGP);
    564   1.1      fvdl 			continue;
    565   1.4  drochner 		}
    566   1.1      fvdl 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    567   1.1      fvdl 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    568   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    569   1.4  drochner 			free(segs, M_AGP);
    570   1.1      fvdl 			continue;
    571   1.1      fvdl 		}
    572   1.1      fvdl 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    573   1.1      fvdl 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    574  1.34     perry 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    575   1.1      fvdl 			    mem->am_size);
    576   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    577   1.4  drochner 			free(segs, M_AGP);
    578   1.1      fvdl 			continue;
    579   1.1      fvdl 		}
    580   1.1      fvdl 		mem->am_dmaseg = segs;
    581   1.1      fvdl 		break;
    582   1.1      fvdl 	}
    583   1.1      fvdl 
    584   1.1      fvdl 	if (contigpages == 0) {
    585  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    586   1.1      fvdl 		return ENOMEM;
    587   1.1      fvdl 	}
    588   1.1      fvdl 
    589   1.1      fvdl 
    590   1.1      fvdl 	/*
    591   1.1      fvdl 	 * Bind the individual pages and flush the chipset's
    592   1.1      fvdl 	 * TLB.
    593   1.1      fvdl 	 */
    594   1.1      fvdl 	done = 0;
    595   1.1      fvdl 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    596   1.1      fvdl 		seg = &mem->am_dmamap->dm_segs[i];
    597   1.1      fvdl 		/*
    598   1.1      fvdl 		 * Install entries in the GATT, making sure that if
    599   1.1      fvdl 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    600  1.34     perry 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    601   1.1      fvdl 		 * entries.
    602   1.1      fvdl 		 */
    603   1.1      fvdl 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    604   1.1      fvdl 		     j += AGP_PAGE_SIZE) {
    605   1.1      fvdl 			pa = seg->ds_addr + j;
    606  1.40  christos 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    607   1.3  drochner 				(unsigned long)(offset + done + j),
    608  1.40  christos 				(unsigned long)pa));
    609   1.1      fvdl 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    610   1.1      fvdl 			if (error) {
    611   1.1      fvdl 				/*
    612   1.1      fvdl 				 * Bail out. Reverse all the mappings
    613   1.1      fvdl 				 * and unwire the pages.
    614   1.1      fvdl 				 */
    615   1.1      fvdl 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    616   1.1      fvdl 					AGP_UNBIND_PAGE(sc, offset + k);
    617   1.1      fvdl 
    618   1.4  drochner 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    619   1.4  drochner 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    620   1.4  drochner 						 mem->am_size);
    621   1.4  drochner 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    622   1.4  drochner 						mem->am_nseg);
    623   1.4  drochner 				free(mem->am_dmaseg, M_AGP);
    624  1.46   xtraeme 				mutex_exit(&sc->as_mtx);
    625   1.1      fvdl 				return error;
    626   1.1      fvdl 			}
    627   1.1      fvdl 		}
    628   1.1      fvdl 		done += seg->ds_len;
    629   1.1      fvdl 	}
    630   1.1      fvdl 
    631   1.1      fvdl 	/*
    632  1.32       wiz 	 * Flush the CPU cache since we are providing a new mapping
    633   1.1      fvdl 	 * for these pages.
    634   1.1      fvdl 	 */
    635   1.1      fvdl 	agp_flush_cache();
    636   1.1      fvdl 
    637   1.1      fvdl 	/*
    638   1.1      fvdl 	 * Make sure the chipset gets the new mappings.
    639   1.1      fvdl 	 */
    640   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    641   1.1      fvdl 
    642   1.1      fvdl 	mem->am_offset = offset;
    643   1.1      fvdl 	mem->am_is_bound = 1;
    644   1.1      fvdl 
    645  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    646   1.1      fvdl 
    647   1.1      fvdl 	return 0;
    648   1.1      fvdl }
    649   1.1      fvdl 
    650   1.1      fvdl int
    651   1.1      fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    652   1.1      fvdl {
    653   1.1      fvdl 	int i;
    654   1.1      fvdl 
    655  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    656   1.1      fvdl 
    657   1.1      fvdl 	if (!mem->am_is_bound) {
    658   1.1      fvdl 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    659  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    660   1.1      fvdl 		return EINVAL;
    661   1.1      fvdl 	}
    662   1.1      fvdl 
    663   1.1      fvdl 
    664   1.1      fvdl 	/*
    665   1.1      fvdl 	 * Unbind the individual pages and flush the chipset's
    666   1.1      fvdl 	 * TLB. Unwire the pages so they can be swapped.
    667   1.1      fvdl 	 */
    668   1.1      fvdl 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    669   1.1      fvdl 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    670  1.34     perry 
    671   1.1      fvdl 	agp_flush_cache();
    672   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    673   1.1      fvdl 
    674   1.1      fvdl 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    675   1.1      fvdl 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    676   1.1      fvdl 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    677   1.1      fvdl 
    678   1.1      fvdl 	free(mem->am_dmaseg, M_AGP);
    679   1.1      fvdl 
    680   1.1      fvdl 	mem->am_offset = 0;
    681   1.1      fvdl 	mem->am_is_bound = 0;
    682   1.1      fvdl 
    683  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    684   1.1      fvdl 
    685   1.1      fvdl 	return 0;
    686   1.1      fvdl }
    687   1.1      fvdl 
    688   1.1      fvdl /* Helper functions for implementing user/kernel api */
    689   1.1      fvdl 
    690   1.1      fvdl static int
    691   1.1      fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    692   1.1      fvdl {
    693   1.1      fvdl 	if (sc->as_state != AGP_ACQUIRE_FREE)
    694   1.1      fvdl 		return EBUSY;
    695   1.1      fvdl 	sc->as_state = state;
    696   1.1      fvdl 
    697   1.1      fvdl 	return 0;
    698   1.1      fvdl }
    699   1.1      fvdl 
    700   1.1      fvdl static int
    701   1.1      fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    702   1.1      fvdl {
    703   1.1      fvdl 
    704   1.1      fvdl 	if (sc->as_state == AGP_ACQUIRE_FREE)
    705   1.1      fvdl 		return 0;
    706   1.1      fvdl 
    707   1.1      fvdl 	if (sc->as_state != state)
    708   1.1      fvdl 		return EBUSY;
    709   1.1      fvdl 
    710   1.1      fvdl 	sc->as_state = AGP_ACQUIRE_FREE;
    711   1.1      fvdl 	return 0;
    712   1.1      fvdl }
    713   1.1      fvdl 
    714   1.1      fvdl static struct agp_memory *
    715   1.1      fvdl agp_find_memory(struct agp_softc *sc, int id)
    716   1.1      fvdl {
    717   1.1      fvdl 	struct agp_memory *mem;
    718   1.1      fvdl 
    719  1.40  christos 	AGP_DPF(("searching for memory block %d\n", id));
    720   1.1      fvdl 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    721  1.40  christos 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    722   1.1      fvdl 		if (mem->am_id == id)
    723   1.1      fvdl 			return mem;
    724   1.1      fvdl 	}
    725   1.1      fvdl 	return 0;
    726   1.1      fvdl }
    727   1.1      fvdl 
    728   1.1      fvdl /* Implementation of the userland ioctl api */
    729   1.1      fvdl 
    730   1.1      fvdl static int
    731   1.1      fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
    732   1.1      fvdl {
    733   1.1      fvdl 	memset(info, 0, sizeof *info);
    734   1.1      fvdl 	info->bridge_id = sc->as_id;
    735   1.3  drochner 	if (sc->as_capoff != 0)
    736   1.3  drochner 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    737   1.3  drochner 					       sc->as_capoff + AGP_STATUS);
    738   1.3  drochner 	else
    739   1.3  drochner 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    740   1.1      fvdl 	info->aper_base = sc->as_apaddr;
    741   1.1      fvdl 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    742   1.1      fvdl 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    743   1.1      fvdl 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    744   1.1      fvdl 
    745   1.1      fvdl 	return 0;
    746   1.1      fvdl }
    747   1.1      fvdl 
    748   1.1      fvdl static int
    749   1.1      fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    750   1.1      fvdl {
    751   1.1      fvdl 	return AGP_ENABLE(sc, setup->agp_mode);
    752   1.1      fvdl }
    753   1.1      fvdl 
    754   1.1      fvdl static int
    755   1.1      fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    756   1.1      fvdl {
    757   1.1      fvdl 	struct agp_memory *mem;
    758   1.1      fvdl 
    759   1.1      fvdl 	mem = AGP_ALLOC_MEMORY(sc,
    760   1.1      fvdl 			       alloc->type,
    761   1.1      fvdl 			       alloc->pg_count << AGP_PAGE_SHIFT);
    762   1.1      fvdl 	if (mem) {
    763   1.1      fvdl 		alloc->key = mem->am_id;
    764   1.1      fvdl 		alloc->physical = mem->am_physical;
    765   1.1      fvdl 		return 0;
    766   1.1      fvdl 	} else {
    767   1.1      fvdl 		return ENOMEM;
    768   1.1      fvdl 	}
    769   1.1      fvdl }
    770   1.1      fvdl 
    771   1.1      fvdl static int
    772   1.1      fvdl agp_deallocate_user(struct agp_softc *sc, int id)
    773   1.1      fvdl {
    774   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, id);
    775   1.1      fvdl 
    776   1.1      fvdl 	if (mem) {
    777   1.1      fvdl 		AGP_FREE_MEMORY(sc, mem);
    778   1.1      fvdl 		return 0;
    779   1.1      fvdl 	} else {
    780   1.1      fvdl 		return ENOENT;
    781   1.1      fvdl 	}
    782   1.1      fvdl }
    783   1.1      fvdl 
    784   1.1      fvdl static int
    785   1.1      fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    786   1.1      fvdl {
    787   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    788   1.1      fvdl 
    789   1.1      fvdl 	if (!mem)
    790   1.1      fvdl 		return ENOENT;
    791   1.1      fvdl 
    792   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    793   1.1      fvdl }
    794   1.1      fvdl 
    795   1.1      fvdl static int
    796   1.1      fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    797   1.1      fvdl {
    798   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    799   1.1      fvdl 
    800   1.1      fvdl 	if (!mem)
    801   1.1      fvdl 		return ENOENT;
    802   1.1      fvdl 
    803   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
    804   1.1      fvdl }
    805   1.1      fvdl 
    806  1.35   thorpej static int
    807  1.43  christos agpopen(dev_t dev, int oflags, int devtype,
    808  1.43  christos     struct lwp *l)
    809   1.1      fvdl {
    810   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    811   1.9   thorpej 
    812   1.9   thorpej 	if (sc == NULL)
    813   1.9   thorpej 		return ENXIO;
    814   1.1      fvdl 
    815   1.1      fvdl 	if (sc->as_chipc == NULL)
    816   1.1      fvdl 		return ENXIO;
    817   1.1      fvdl 
    818   1.1      fvdl 	if (!sc->as_isopen)
    819   1.1      fvdl 		sc->as_isopen = 1;
    820   1.1      fvdl 	else
    821   1.1      fvdl 		return EBUSY;
    822   1.1      fvdl 
    823   1.1      fvdl 	return 0;
    824   1.1      fvdl }
    825   1.1      fvdl 
    826  1.35   thorpej static int
    827  1.43  christos agpclose(dev_t dev, int fflag, int devtype,
    828  1.43  christos     struct lwp *l)
    829   1.1      fvdl {
    830   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    831  1.16  drochner 	struct agp_memory *mem;
    832   1.1      fvdl 
    833   1.1      fvdl 	/*
    834   1.1      fvdl 	 * Clear the GATT and force release on last close
    835   1.1      fvdl 	 */
    836  1.16  drochner 	if (sc->as_state == AGP_ACQUIRE_USER) {
    837  1.16  drochner 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    838  1.16  drochner 			if (mem->am_is_bound) {
    839  1.16  drochner 				printf("agpclose: mem %d is bound\n",
    840  1.16  drochner 				       mem->am_id);
    841  1.16  drochner 				AGP_UNBIND_MEMORY(sc, mem);
    842  1.16  drochner 			}
    843  1.16  drochner 			/*
    844  1.16  drochner 			 * XXX it is not documented, but if the protocol allows
    845  1.16  drochner 			 * allocate->acquire->bind, it would be possible that
    846  1.16  drochner 			 * memory ranges are allocated by the kernel here,
    847  1.16  drochner 			 * which we shouldn't free. We'd have to keep track of
    848  1.16  drochner 			 * the memory range's owner.
    849  1.16  drochner 			 * The kernel API is unsed yet, so we get away with
    850  1.16  drochner 			 * freeing all.
    851  1.16  drochner 			 */
    852  1.16  drochner 			AGP_FREE_MEMORY(sc, mem);
    853  1.16  drochner 		}
    854   1.1      fvdl 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    855  1.16  drochner 	}
    856   1.1      fvdl 	sc->as_isopen = 0;
    857   1.1      fvdl 
    858   1.1      fvdl 	return 0;
    859   1.1      fvdl }
    860   1.1      fvdl 
    861  1.35   thorpej static int
    862  1.45  christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    863   1.1      fvdl {
    864   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    865   1.1      fvdl 
    866   1.1      fvdl 	if (sc == NULL)
    867   1.1      fvdl 		return ENODEV;
    868   1.1      fvdl 
    869   1.1      fvdl 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    870   1.1      fvdl 		return EPERM;
    871   1.1      fvdl 
    872   1.1      fvdl 	switch (cmd) {
    873   1.1      fvdl 	case AGPIOC_INFO:
    874   1.1      fvdl 		return agp_info_user(sc, (agp_info *) data);
    875   1.1      fvdl 
    876   1.1      fvdl 	case AGPIOC_ACQUIRE:
    877   1.1      fvdl 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    878   1.1      fvdl 
    879   1.1      fvdl 	case AGPIOC_RELEASE:
    880   1.1      fvdl 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    881   1.1      fvdl 
    882   1.1      fvdl 	case AGPIOC_SETUP:
    883   1.1      fvdl 		return agp_setup_user(sc, (agp_setup *)data);
    884   1.1      fvdl 
    885   1.1      fvdl 	case AGPIOC_ALLOCATE:
    886   1.1      fvdl 		return agp_allocate_user(sc, (agp_allocate *)data);
    887   1.1      fvdl 
    888   1.1      fvdl 	case AGPIOC_DEALLOCATE:
    889   1.1      fvdl 		return agp_deallocate_user(sc, *(int *) data);
    890   1.1      fvdl 
    891   1.1      fvdl 	case AGPIOC_BIND:
    892   1.1      fvdl 		return agp_bind_user(sc, (agp_bind *)data);
    893   1.1      fvdl 
    894   1.1      fvdl 	case AGPIOC_UNBIND:
    895   1.1      fvdl 		return agp_unbind_user(sc, (agp_unbind *)data);
    896   1.1      fvdl 
    897   1.1      fvdl 	}
    898   1.1      fvdl 
    899   1.1      fvdl 	return EINVAL;
    900   1.1      fvdl }
    901   1.1      fvdl 
    902  1.35   thorpej static paddr_t
    903   1.1      fvdl agpmmap(dev_t dev, off_t offset, int prot)
    904   1.1      fvdl {
    905   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    906   1.1      fvdl 
    907   1.1      fvdl 	if (offset > AGP_GET_APERTURE(sc))
    908   1.1      fvdl 		return -1;
    909   1.6   thorpej 
    910   1.6   thorpej 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    911   1.6   thorpej 	    BUS_SPACE_MAP_LINEAR));
    912   1.1      fvdl }
    913   1.1      fvdl 
    914  1.35   thorpej const struct cdevsw agp_cdevsw = {
    915  1.35   thorpej 	agpopen, agpclose, noread, nowrite, agpioctl,
    916  1.41  christos 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    917  1.35   thorpej };
    918  1.35   thorpej 
    919   1.1      fvdl /* Implementation of the kernel api */
    920   1.1      fvdl 
    921   1.1      fvdl void *
    922   1.1      fvdl agp_find_device(int unit)
    923   1.1      fvdl {
    924   1.1      fvdl 	return device_lookup(&agp_cd, unit);
    925   1.1      fvdl }
    926   1.1      fvdl 
    927   1.1      fvdl enum agp_acquire_state
    928   1.1      fvdl agp_state(void *devcookie)
    929   1.1      fvdl {
    930   1.1      fvdl 	struct agp_softc *sc = devcookie;
    931   1.1      fvdl 	return sc->as_state;
    932   1.1      fvdl }
    933   1.1      fvdl 
    934   1.1      fvdl void
    935   1.1      fvdl agp_get_info(void *devcookie, struct agp_info *info)
    936   1.1      fvdl {
    937   1.1      fvdl 	struct agp_softc *sc = devcookie;
    938   1.1      fvdl 
    939   1.1      fvdl 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    940   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
    941   1.1      fvdl 	info->ai_aperture_base = sc->as_apaddr;
    942   1.1      fvdl 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    943   1.1      fvdl 	info->ai_memory_allowed = sc->as_maxmem;
    944   1.1      fvdl 	info->ai_memory_used = sc->as_allocated;
    945   1.1      fvdl }
    946   1.1      fvdl 
    947   1.1      fvdl int
    948   1.1      fvdl agp_acquire(void *dev)
    949   1.1      fvdl {
    950   1.1      fvdl 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    951   1.1      fvdl }
    952   1.1      fvdl 
    953   1.1      fvdl int
    954   1.1      fvdl agp_release(void *dev)
    955   1.1      fvdl {
    956   1.1      fvdl 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    957   1.1      fvdl }
    958   1.1      fvdl 
    959   1.1      fvdl int
    960   1.1      fvdl agp_enable(void *dev, u_int32_t mode)
    961   1.1      fvdl {
    962   1.1      fvdl 	struct agp_softc *sc = dev;
    963   1.1      fvdl 
    964   1.1      fvdl 	return AGP_ENABLE(sc, mode);
    965   1.1      fvdl }
    966   1.1      fvdl 
    967   1.1      fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    968   1.1      fvdl {
    969   1.1      fvdl 	struct agp_softc *sc = dev;
    970   1.1      fvdl 
    971   1.1      fvdl 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    972   1.1      fvdl }
    973   1.1      fvdl 
    974   1.1      fvdl void agp_free_memory(void *dev, void *handle)
    975   1.1      fvdl {
    976   1.1      fvdl 	struct agp_softc *sc = dev;
    977   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
    978   1.1      fvdl 	AGP_FREE_MEMORY(sc, mem);
    979   1.1      fvdl }
    980   1.1      fvdl 
    981   1.1      fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
    982   1.1      fvdl {
    983   1.1      fvdl 	struct agp_softc *sc = dev;
    984   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
    985   1.1      fvdl 
    986   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, offset);
    987   1.1      fvdl }
    988   1.1      fvdl 
    989   1.1      fvdl int agp_unbind_memory(void *dev, void *handle)
    990   1.1      fvdl {
    991   1.1      fvdl 	struct agp_softc *sc = dev;
    992   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
    993   1.1      fvdl 
    994   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
    995   1.1      fvdl }
    996   1.1      fvdl 
    997  1.43  christos void agp_memory_info(void *dev, void *handle,
    998  1.42  christos     struct agp_memory_info *mi)
    999   1.1      fvdl {
   1000   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
   1001   1.1      fvdl 
   1002   1.1      fvdl 	mi->ami_size = mem->am_size;
   1003   1.1      fvdl 	mi->ami_physical = mem->am_physical;
   1004   1.1      fvdl 	mi->ami_offset = mem->am_offset;
   1005   1.1      fvdl 	mi->ami_is_bound = mem->am_is_bound;
   1006   1.1      fvdl }
   1007   1.1      fvdl 
   1008   1.1      fvdl int
   1009   1.1      fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1010  1.45  christos 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1011   1.1      fvdl 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1012   1.1      fvdl 
   1013   1.1      fvdl {
   1014   1.1      fvdl 	int error, level = 0;
   1015   1.1      fvdl 
   1016   1.1      fvdl 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1017   1.1      fvdl 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1018   1.1      fvdl 		goto out;
   1019   1.1      fvdl 	level++;
   1020   1.1      fvdl 
   1021   1.1      fvdl 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1022   1.1      fvdl 			BUS_DMA_NOWAIT | flags)) != 0)
   1023   1.1      fvdl 		goto out;
   1024   1.1      fvdl 	level++;
   1025   1.1      fvdl 
   1026   1.3  drochner 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1027   1.1      fvdl 			BUS_DMA_NOWAIT, mapp)) != 0)
   1028   1.1      fvdl 		goto out;
   1029   1.1      fvdl 	level++;
   1030   1.1      fvdl 
   1031   1.1      fvdl 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1032   1.1      fvdl 			BUS_DMA_NOWAIT)) != 0)
   1033   1.1      fvdl 		goto out;
   1034   1.1      fvdl 
   1035   1.1      fvdl 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1036   1.1      fvdl 
   1037   1.1      fvdl 	return 0;
   1038   1.1      fvdl out:
   1039   1.1      fvdl 	switch (level) {
   1040   1.1      fvdl 	case 3:
   1041   1.1      fvdl 		bus_dmamap_destroy(tag, *mapp);
   1042   1.1      fvdl 		/* FALLTHROUGH */
   1043   1.1      fvdl 	case 2:
   1044   1.1      fvdl 		bus_dmamem_unmap(tag, *vaddr, size);
   1045   1.1      fvdl 		/* FALLTHROUGH */
   1046   1.1      fvdl 	case 1:
   1047   1.1      fvdl 		bus_dmamem_free(tag, seg, *rseg);
   1048   1.1      fvdl 		break;
   1049   1.1      fvdl 	default:
   1050   1.1      fvdl 		break;
   1051   1.1      fvdl 	}
   1052   1.1      fvdl 
   1053   1.1      fvdl 	return error;
   1054   1.1      fvdl }
   1055   1.1      fvdl 
   1056   1.1      fvdl void
   1057   1.1      fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1058  1.45  christos 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1059   1.1      fvdl {
   1060   1.1      fvdl 
   1061   1.1      fvdl 	bus_dmamap_unload(tag, map);
   1062   1.1      fvdl 	bus_dmamap_destroy(tag, map);
   1063   1.1      fvdl 	bus_dmamem_unmap(tag, vaddr, size);
   1064   1.1      fvdl 	bus_dmamem_free(tag, seg, nseg);
   1065   1.1      fvdl }
   1066