agp.c revision 1.49 1 1.49 ad /* $NetBSD: agp.c,v 1.49 2007/10/19 12:00:38 ad Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.49 ad __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.49 2007/10/19 12:00:38 ad Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <uvm/uvm_extern.h>
83 1.1 fvdl
84 1.1 fvdl #include <dev/pci/pcireg.h>
85 1.1 fvdl #include <dev/pci/pcivar.h>
86 1.1 fvdl #include <dev/pci/agpvar.h>
87 1.1 fvdl #include <dev/pci/agpreg.h>
88 1.1 fvdl #include <dev/pci/pcidevs.h>
89 1.1 fvdl
90 1.49 ad #include <sys/bus.h>
91 1.25 thorpej
92 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 1.1 fvdl
94 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
95 1.1 fvdl /* XXXfvdl get rid of this one. */
96 1.1 fvdl
97 1.1 fvdl extern struct cfdriver agp_cd;
98 1.17 gehenna
99 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
100 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
101 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
103 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
104 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
106 1.1 fvdl
107 1.7 thorpej #include "agp_ali.h"
108 1.7 thorpej #include "agp_amd.h"
109 1.7 thorpej #include "agp_i810.h"
110 1.7 thorpej #include "agp_intel.h"
111 1.7 thorpej #include "agp_sis.h"
112 1.7 thorpej #include "agp_via.h"
113 1.47 kiyohara #include "agp_amd64.h"
114 1.7 thorpej
115 1.5 thorpej const struct agp_product {
116 1.5 thorpej uint32_t ap_vendor;
117 1.5 thorpej uint32_t ap_product;
118 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
119 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
120 1.5 thorpej } agp_products[] = {
121 1.7 thorpej #if NAGP_ALI > 0
122 1.5 thorpej { PCI_VENDOR_ALI, -1,
123 1.5 thorpej NULL, agp_ali_attach },
124 1.7 thorpej #endif
125 1.5 thorpej
126 1.7 thorpej #if NAGP_AMD > 0
127 1.5 thorpej { PCI_VENDOR_AMD, -1,
128 1.5 thorpej agp_amd_match, agp_amd_attach },
129 1.7 thorpej #endif
130 1.5 thorpej
131 1.7 thorpej #if NAGP_I810 > 0
132 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
133 1.5 thorpej NULL, agp_i810_attach },
134 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
135 1.5 thorpej NULL, agp_i810_attach },
136 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
137 1.5 thorpej NULL, agp_i810_attach },
138 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
139 1.5 thorpej NULL, agp_i810_attach },
140 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
141 1.13 augustss NULL, agp_i810_attach },
142 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
143 1.11 fvdl NULL, agp_i810_attach },
144 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
145 1.29 hannken NULL, agp_i810_attach },
146 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
147 1.31 tron NULL, agp_i810_attach },
148 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
149 1.23 scw NULL, agp_i810_attach },
150 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
151 1.37 christos NULL, agp_i810_attach },
152 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
153 1.37 christos NULL, agp_i810_attach },
154 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
155 1.39 simonb NULL, agp_i810_attach },
156 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
157 1.39 simonb NULL, agp_i810_attach },
158 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
159 1.48 markd NULL, agp_i810_attach },
160 1.7 thorpej #endif
161 1.5 thorpej
162 1.7 thorpej #if NAGP_INTEL > 0
163 1.5 thorpej { PCI_VENDOR_INTEL, -1,
164 1.5 thorpej NULL, agp_intel_attach },
165 1.7 thorpej #endif
166 1.5 thorpej
167 1.7 thorpej #if NAGP_SIS > 0
168 1.5 thorpej { PCI_VENDOR_SIS, -1,
169 1.5 thorpej NULL, agp_sis_attach },
170 1.7 thorpej #endif
171 1.5 thorpej
172 1.7 thorpej #if NAGP_VIA > 0
173 1.5 thorpej { PCI_VENDOR_VIATECH, -1,
174 1.5 thorpej NULL, agp_via_attach },
175 1.7 thorpej #endif
176 1.5 thorpej
177 1.47 kiyohara #if NAGP_AMD64 > 0
178 1.47 kiyohara { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
179 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
180 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
181 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
182 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
183 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
184 1.47 kiyohara { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
185 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
186 1.47 kiyohara { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
187 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
188 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
189 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
190 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
191 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
192 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
193 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
194 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
195 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
196 1.47 kiyohara #endif
197 1.47 kiyohara
198 1.5 thorpej { 0, 0,
199 1.5 thorpej NULL, NULL },
200 1.5 thorpej };
201 1.5 thorpej
202 1.5 thorpej static const struct agp_product *
203 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
204 1.5 thorpej {
205 1.5 thorpej const struct agp_product *ap;
206 1.5 thorpej
207 1.5 thorpej /* First find the vendor. */
208 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
209 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
210 1.5 thorpej break;
211 1.5 thorpej }
212 1.5 thorpej
213 1.5 thorpej if (ap->ap_attach == NULL)
214 1.5 thorpej return (NULL);
215 1.5 thorpej
216 1.5 thorpej /* Now find the product within the vendor's domain. */
217 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
218 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
219 1.5 thorpej /* Ran out of this vendor's section of the table. */
220 1.5 thorpej return (NULL);
221 1.5 thorpej }
222 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
223 1.5 thorpej /* Exact match. */
224 1.5 thorpej break;
225 1.5 thorpej }
226 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
227 1.5 thorpej /* Wildcard match. */
228 1.5 thorpej break;
229 1.5 thorpej }
230 1.5 thorpej }
231 1.5 thorpej
232 1.5 thorpej if (ap->ap_attach == NULL)
233 1.5 thorpej return (NULL);
234 1.5 thorpej
235 1.5 thorpej /* Now let the product-specific driver filter the match. */
236 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
237 1.5 thorpej return (NULL);
238 1.5 thorpej
239 1.5 thorpej return (ap);
240 1.5 thorpej }
241 1.5 thorpej
242 1.35 thorpej static int
243 1.43 christos agpmatch(struct device *parent, struct cfdata *match,
244 1.42 christos void *aux)
245 1.1 fvdl {
246 1.5 thorpej struct agpbus_attach_args *apa = aux;
247 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
248 1.1 fvdl
249 1.5 thorpej if (agp_lookup(pa) == NULL)
250 1.5 thorpej return (0);
251 1.1 fvdl
252 1.5 thorpej return (1);
253 1.1 fvdl }
254 1.1 fvdl
255 1.35 thorpej static const int agp_max[][2] = {
256 1.1 fvdl {0, 0},
257 1.1 fvdl {32, 4},
258 1.1 fvdl {64, 28},
259 1.1 fvdl {128, 96},
260 1.1 fvdl {256, 204},
261 1.1 fvdl {512, 440},
262 1.1 fvdl {1024, 942},
263 1.1 fvdl {2048, 1920},
264 1.1 fvdl {4096, 3932}
265 1.1 fvdl };
266 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
267 1.1 fvdl
268 1.35 thorpej static void
269 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
270 1.1 fvdl {
271 1.5 thorpej struct agpbus_attach_args *apa = aux;
272 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
273 1.1 fvdl struct agp_softc *sc = (void *)self;
274 1.5 thorpej const struct agp_product *ap;
275 1.1 fvdl int memsize, i, ret;
276 1.1 fvdl
277 1.5 thorpej ap = agp_lookup(pa);
278 1.5 thorpej if (ap == NULL) {
279 1.5 thorpej printf("\n");
280 1.5 thorpej panic("agpattach: impossible");
281 1.5 thorpej }
282 1.1 fvdl
283 1.24 thorpej aprint_naive(": AGP controller\n");
284 1.24 thorpej
285 1.1 fvdl sc->as_dmat = pa->pa_dmat;
286 1.1 fvdl sc->as_pc = pa->pa_pc;
287 1.1 fvdl sc->as_tag = pa->pa_tag;
288 1.1 fvdl sc->as_id = pa->pa_id;
289 1.1 fvdl
290 1.1 fvdl /*
291 1.1 fvdl * Work out an upper bound for agp memory allocation. This
292 1.1 fvdl * uses a heurisitc table from the Linux driver.
293 1.1 fvdl */
294 1.1 fvdl memsize = ptoa(physmem) >> 20;
295 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
296 1.1 fvdl if (memsize <= agp_max[i][0])
297 1.1 fvdl break;
298 1.1 fvdl }
299 1.1 fvdl if (i == agp_max_size)
300 1.1 fvdl i = agp_max_size - 1;
301 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
302 1.1 fvdl
303 1.1 fvdl /*
304 1.46 xtraeme * The mutex is used to prevent re-entry to
305 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
306 1.1 fvdl */
307 1.46 xtraeme mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
308 1.1 fvdl
309 1.1 fvdl TAILQ_INIT(&sc->as_memory);
310 1.1 fvdl
311 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
312 1.1 fvdl if (ret == 0)
313 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
314 1.1 fvdl (unsigned long)sc->as_apaddr,
315 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
316 1.1 fvdl else
317 1.1 fvdl sc->as_chipc = NULL;
318 1.1 fvdl }
319 1.30 tron
320 1.35 thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
321 1.35 thorpej agpmatch, agpattach, NULL, NULL);
322 1.35 thorpej
323 1.1 fvdl int
324 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
325 1.1 fvdl {
326 1.1 fvdl /*
327 1.18 nathanw * Find the aperture. Don't map it (yet), this would
328 1.11 fvdl * eat KVA.
329 1.1 fvdl */
330 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
331 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
332 1.11 fvdl &sc->as_apflags) != 0)
333 1.1 fvdl return ENXIO;
334 1.8 drochner
335 1.11 fvdl sc->as_apt = pa->pa_memt;
336 1.11 fvdl
337 1.1 fvdl return 0;
338 1.1 fvdl }
339 1.1 fvdl
340 1.1 fvdl struct agp_gatt *
341 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
342 1.1 fvdl {
343 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
344 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
345 1.1 fvdl struct agp_gatt *gatt;
346 1.45 christos void *virtual;
347 1.1 fvdl int dummyseg;
348 1.1 fvdl
349 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
350 1.1 fvdl if (!gatt)
351 1.1 fvdl return NULL;
352 1.1 fvdl gatt->ag_entries = entries;
353 1.1 fvdl
354 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
355 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
356 1.38 tron &gatt->ag_dmaseg, 1, &dummyseg) != 0)
357 1.1 fvdl return NULL;
358 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
359 1.1 fvdl
360 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
361 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
362 1.1 fvdl agp_flush_cache();
363 1.1 fvdl
364 1.1 fvdl return gatt;
365 1.1 fvdl }
366 1.1 fvdl
367 1.1 fvdl void
368 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
369 1.1 fvdl {
370 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
371 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
372 1.1 fvdl free(gatt, M_AGP);
373 1.1 fvdl }
374 1.1 fvdl
375 1.1 fvdl
376 1.1 fvdl int
377 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
378 1.1 fvdl {
379 1.46 xtraeme mutex_destroy(&sc->as_mtx);
380 1.1 fvdl agp_flush_cache();
381 1.1 fvdl return 0;
382 1.1 fvdl }
383 1.1 fvdl
384 1.1 fvdl static int
385 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
386 1.1 fvdl {
387 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
388 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
389 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
390 1.26 tron NULL, NULL))
391 1.1 fvdl return 1;
392 1.1 fvdl
393 1.1 fvdl return 0;
394 1.1 fvdl }
395 1.1 fvdl
396 1.1 fvdl int
397 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
398 1.1 fvdl {
399 1.1 fvdl struct pci_attach_args pa;
400 1.1 fvdl pcireg_t tstatus, mstatus;
401 1.1 fvdl pcireg_t command;
402 1.1 fvdl int rq, sba, fw, rate, capoff;
403 1.1 fvdl
404 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
405 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
406 1.1 fvdl &capoff, NULL) == 0) {
407 1.1 fvdl printf("%s: can't find display\n", sc->as_dev.dv_xname);
408 1.1 fvdl return ENXIO;
409 1.1 fvdl }
410 1.1 fvdl
411 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
412 1.1 fvdl sc->as_capoff + AGP_STATUS);
413 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
414 1.1 fvdl capoff + AGP_STATUS);
415 1.1 fvdl
416 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
417 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
418 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
419 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
420 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
421 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
422 1.1 fvdl
423 1.1 fvdl /* Set SBA if all three can deal with SBA */
424 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
425 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
426 1.1 fvdl & AGP_MODE_GET_SBA(mode));
427 1.1 fvdl
428 1.1 fvdl /* Similar for FW */
429 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
430 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
431 1.1 fvdl & AGP_MODE_GET_FW(mode));
432 1.1 fvdl
433 1.1 fvdl /* Figure out the max rate */
434 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
435 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
436 1.1 fvdl & AGP_MODE_GET_RATE(mode));
437 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
438 1.1 fvdl rate = AGP_MODE_RATE_4x;
439 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
440 1.1 fvdl rate = AGP_MODE_RATE_2x;
441 1.1 fvdl else
442 1.1 fvdl rate = AGP_MODE_RATE_1x;
443 1.1 fvdl
444 1.1 fvdl /* Construct the new mode word and tell the hardware */
445 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
446 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
447 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
448 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
449 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
450 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
451 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
452 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
453 1.1 fvdl
454 1.1 fvdl return 0;
455 1.1 fvdl }
456 1.1 fvdl
457 1.1 fvdl struct agp_memory *
458 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
459 1.1 fvdl {
460 1.1 fvdl struct agp_memory *mem;
461 1.1 fvdl
462 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
463 1.1 fvdl return 0;
464 1.1 fvdl
465 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
466 1.1 fvdl return 0;
467 1.1 fvdl
468 1.1 fvdl if (type != 0) {
469 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
470 1.1 fvdl type);
471 1.1 fvdl return 0;
472 1.1 fvdl }
473 1.1 fvdl
474 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
475 1.1 fvdl if (mem == NULL)
476 1.1 fvdl return NULL;
477 1.1 fvdl
478 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
479 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
480 1.1 fvdl free(mem, M_AGP);
481 1.1 fvdl return NULL;
482 1.1 fvdl }
483 1.1 fvdl
484 1.1 fvdl mem->am_id = sc->as_nextid++;
485 1.1 fvdl mem->am_size = size;
486 1.1 fvdl mem->am_type = 0;
487 1.1 fvdl mem->am_physical = 0;
488 1.1 fvdl mem->am_offset = 0;
489 1.1 fvdl mem->am_is_bound = 0;
490 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
491 1.1 fvdl sc->as_allocated += size;
492 1.1 fvdl
493 1.1 fvdl return mem;
494 1.1 fvdl }
495 1.1 fvdl
496 1.1 fvdl int
497 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
498 1.1 fvdl {
499 1.1 fvdl if (mem->am_is_bound)
500 1.1 fvdl return EBUSY;
501 1.1 fvdl
502 1.1 fvdl sc->as_allocated -= mem->am_size;
503 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
504 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
505 1.1 fvdl free(mem, M_AGP);
506 1.1 fvdl return 0;
507 1.1 fvdl }
508 1.1 fvdl
509 1.1 fvdl int
510 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
511 1.1 fvdl off_t offset)
512 1.1 fvdl {
513 1.1 fvdl off_t i, k;
514 1.1 fvdl bus_size_t done, j;
515 1.1 fvdl int error;
516 1.1 fvdl bus_dma_segment_t *segs, *seg;
517 1.1 fvdl bus_addr_t pa;
518 1.1 fvdl int contigpages, nseg;
519 1.1 fvdl
520 1.46 xtraeme mutex_enter(&sc->as_mtx);
521 1.1 fvdl
522 1.1 fvdl if (mem->am_is_bound) {
523 1.1 fvdl printf("%s: memory already bound\n", sc->as_dev.dv_xname);
524 1.46 xtraeme mutex_exit(&sc->as_mtx);
525 1.1 fvdl return EINVAL;
526 1.1 fvdl }
527 1.34 perry
528 1.1 fvdl if (offset < 0
529 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
530 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
531 1.1 fvdl printf("%s: binding memory at bad offset %#lx\n",
532 1.1 fvdl sc->as_dev.dv_xname, (unsigned long) offset);
533 1.46 xtraeme mutex_exit(&sc->as_mtx);
534 1.1 fvdl return EINVAL;
535 1.1 fvdl }
536 1.1 fvdl
537 1.1 fvdl /*
538 1.1 fvdl * XXXfvdl
539 1.1 fvdl * The memory here needs to be directly accessable from the
540 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
541 1.1 fvdl * However, it need not be contiguous, since individual pages
542 1.1 fvdl * are translated using the GATT.
543 1.1 fvdl *
544 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
545 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
546 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
547 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
548 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
549 1.1 fvdl * a bus_dma_segment per page would be overkill.
550 1.1 fvdl */
551 1.1 fvdl
552 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
553 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
554 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
555 1.16 drochner if (segs == NULL) {
556 1.46 xtraeme mutex_exit(&sc->as_mtx);
557 1.10 thorpej return ENOMEM;
558 1.16 drochner }
559 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
560 1.4 drochner segs, nseg, &mem->am_nseg,
561 1.15 drochner contigpages > 1 ?
562 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
563 1.4 drochner free(segs, M_AGP);
564 1.1 fvdl continue;
565 1.4 drochner }
566 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
567 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
568 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
569 1.4 drochner free(segs, M_AGP);
570 1.1 fvdl continue;
571 1.1 fvdl }
572 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
573 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
574 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
575 1.1 fvdl mem->am_size);
576 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
577 1.4 drochner free(segs, M_AGP);
578 1.1 fvdl continue;
579 1.1 fvdl }
580 1.1 fvdl mem->am_dmaseg = segs;
581 1.1 fvdl break;
582 1.1 fvdl }
583 1.1 fvdl
584 1.1 fvdl if (contigpages == 0) {
585 1.46 xtraeme mutex_exit(&sc->as_mtx);
586 1.1 fvdl return ENOMEM;
587 1.1 fvdl }
588 1.1 fvdl
589 1.1 fvdl
590 1.1 fvdl /*
591 1.1 fvdl * Bind the individual pages and flush the chipset's
592 1.1 fvdl * TLB.
593 1.1 fvdl */
594 1.1 fvdl done = 0;
595 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
596 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
597 1.1 fvdl /*
598 1.1 fvdl * Install entries in the GATT, making sure that if
599 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
600 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
601 1.1 fvdl * entries.
602 1.1 fvdl */
603 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
604 1.1 fvdl j += AGP_PAGE_SIZE) {
605 1.1 fvdl pa = seg->ds_addr + j;
606 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
607 1.3 drochner (unsigned long)(offset + done + j),
608 1.40 christos (unsigned long)pa));
609 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
610 1.1 fvdl if (error) {
611 1.1 fvdl /*
612 1.1 fvdl * Bail out. Reverse all the mappings
613 1.1 fvdl * and unwire the pages.
614 1.1 fvdl */
615 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
616 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
617 1.1 fvdl
618 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
619 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
620 1.4 drochner mem->am_size);
621 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
622 1.4 drochner mem->am_nseg);
623 1.4 drochner free(mem->am_dmaseg, M_AGP);
624 1.46 xtraeme mutex_exit(&sc->as_mtx);
625 1.1 fvdl return error;
626 1.1 fvdl }
627 1.1 fvdl }
628 1.1 fvdl done += seg->ds_len;
629 1.1 fvdl }
630 1.1 fvdl
631 1.1 fvdl /*
632 1.32 wiz * Flush the CPU cache since we are providing a new mapping
633 1.1 fvdl * for these pages.
634 1.1 fvdl */
635 1.1 fvdl agp_flush_cache();
636 1.1 fvdl
637 1.1 fvdl /*
638 1.1 fvdl * Make sure the chipset gets the new mappings.
639 1.1 fvdl */
640 1.1 fvdl AGP_FLUSH_TLB(sc);
641 1.1 fvdl
642 1.1 fvdl mem->am_offset = offset;
643 1.1 fvdl mem->am_is_bound = 1;
644 1.1 fvdl
645 1.46 xtraeme mutex_exit(&sc->as_mtx);
646 1.1 fvdl
647 1.1 fvdl return 0;
648 1.1 fvdl }
649 1.1 fvdl
650 1.1 fvdl int
651 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
652 1.1 fvdl {
653 1.1 fvdl int i;
654 1.1 fvdl
655 1.46 xtraeme mutex_enter(&sc->as_mtx);
656 1.1 fvdl
657 1.1 fvdl if (!mem->am_is_bound) {
658 1.1 fvdl printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
659 1.46 xtraeme mutex_exit(&sc->as_mtx);
660 1.1 fvdl return EINVAL;
661 1.1 fvdl }
662 1.1 fvdl
663 1.1 fvdl
664 1.1 fvdl /*
665 1.1 fvdl * Unbind the individual pages and flush the chipset's
666 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
667 1.1 fvdl */
668 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
669 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
670 1.34 perry
671 1.1 fvdl agp_flush_cache();
672 1.1 fvdl AGP_FLUSH_TLB(sc);
673 1.1 fvdl
674 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
675 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
676 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
677 1.1 fvdl
678 1.1 fvdl free(mem->am_dmaseg, M_AGP);
679 1.1 fvdl
680 1.1 fvdl mem->am_offset = 0;
681 1.1 fvdl mem->am_is_bound = 0;
682 1.1 fvdl
683 1.46 xtraeme mutex_exit(&sc->as_mtx);
684 1.1 fvdl
685 1.1 fvdl return 0;
686 1.1 fvdl }
687 1.1 fvdl
688 1.1 fvdl /* Helper functions for implementing user/kernel api */
689 1.1 fvdl
690 1.1 fvdl static int
691 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
692 1.1 fvdl {
693 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
694 1.1 fvdl return EBUSY;
695 1.1 fvdl sc->as_state = state;
696 1.1 fvdl
697 1.1 fvdl return 0;
698 1.1 fvdl }
699 1.1 fvdl
700 1.1 fvdl static int
701 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
702 1.1 fvdl {
703 1.1 fvdl
704 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
705 1.1 fvdl return 0;
706 1.1 fvdl
707 1.1 fvdl if (sc->as_state != state)
708 1.1 fvdl return EBUSY;
709 1.1 fvdl
710 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
711 1.1 fvdl return 0;
712 1.1 fvdl }
713 1.1 fvdl
714 1.1 fvdl static struct agp_memory *
715 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
716 1.1 fvdl {
717 1.1 fvdl struct agp_memory *mem;
718 1.1 fvdl
719 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
720 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
721 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
722 1.1 fvdl if (mem->am_id == id)
723 1.1 fvdl return mem;
724 1.1 fvdl }
725 1.1 fvdl return 0;
726 1.1 fvdl }
727 1.1 fvdl
728 1.1 fvdl /* Implementation of the userland ioctl api */
729 1.1 fvdl
730 1.1 fvdl static int
731 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
732 1.1 fvdl {
733 1.1 fvdl memset(info, 0, sizeof *info);
734 1.1 fvdl info->bridge_id = sc->as_id;
735 1.3 drochner if (sc->as_capoff != 0)
736 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
737 1.3 drochner sc->as_capoff + AGP_STATUS);
738 1.3 drochner else
739 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
740 1.1 fvdl info->aper_base = sc->as_apaddr;
741 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
742 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
743 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
744 1.1 fvdl
745 1.1 fvdl return 0;
746 1.1 fvdl }
747 1.1 fvdl
748 1.1 fvdl static int
749 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
750 1.1 fvdl {
751 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
752 1.1 fvdl }
753 1.1 fvdl
754 1.1 fvdl static int
755 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
756 1.1 fvdl {
757 1.1 fvdl struct agp_memory *mem;
758 1.1 fvdl
759 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
760 1.1 fvdl alloc->type,
761 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
762 1.1 fvdl if (mem) {
763 1.1 fvdl alloc->key = mem->am_id;
764 1.1 fvdl alloc->physical = mem->am_physical;
765 1.1 fvdl return 0;
766 1.1 fvdl } else {
767 1.1 fvdl return ENOMEM;
768 1.1 fvdl }
769 1.1 fvdl }
770 1.1 fvdl
771 1.1 fvdl static int
772 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
773 1.1 fvdl {
774 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
775 1.1 fvdl
776 1.1 fvdl if (mem) {
777 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
778 1.1 fvdl return 0;
779 1.1 fvdl } else {
780 1.1 fvdl return ENOENT;
781 1.1 fvdl }
782 1.1 fvdl }
783 1.1 fvdl
784 1.1 fvdl static int
785 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
786 1.1 fvdl {
787 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
788 1.1 fvdl
789 1.1 fvdl if (!mem)
790 1.1 fvdl return ENOENT;
791 1.1 fvdl
792 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
793 1.1 fvdl }
794 1.1 fvdl
795 1.1 fvdl static int
796 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
797 1.1 fvdl {
798 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
799 1.1 fvdl
800 1.1 fvdl if (!mem)
801 1.1 fvdl return ENOENT;
802 1.1 fvdl
803 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
804 1.1 fvdl }
805 1.1 fvdl
806 1.35 thorpej static int
807 1.43 christos agpopen(dev_t dev, int oflags, int devtype,
808 1.43 christos struct lwp *l)
809 1.1 fvdl {
810 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
811 1.9 thorpej
812 1.9 thorpej if (sc == NULL)
813 1.9 thorpej return ENXIO;
814 1.1 fvdl
815 1.1 fvdl if (sc->as_chipc == NULL)
816 1.1 fvdl return ENXIO;
817 1.1 fvdl
818 1.1 fvdl if (!sc->as_isopen)
819 1.1 fvdl sc->as_isopen = 1;
820 1.1 fvdl else
821 1.1 fvdl return EBUSY;
822 1.1 fvdl
823 1.1 fvdl return 0;
824 1.1 fvdl }
825 1.1 fvdl
826 1.35 thorpej static int
827 1.43 christos agpclose(dev_t dev, int fflag, int devtype,
828 1.43 christos struct lwp *l)
829 1.1 fvdl {
830 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
831 1.16 drochner struct agp_memory *mem;
832 1.1 fvdl
833 1.1 fvdl /*
834 1.1 fvdl * Clear the GATT and force release on last close
835 1.1 fvdl */
836 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
837 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
838 1.16 drochner if (mem->am_is_bound) {
839 1.16 drochner printf("agpclose: mem %d is bound\n",
840 1.16 drochner mem->am_id);
841 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
842 1.16 drochner }
843 1.16 drochner /*
844 1.16 drochner * XXX it is not documented, but if the protocol allows
845 1.16 drochner * allocate->acquire->bind, it would be possible that
846 1.16 drochner * memory ranges are allocated by the kernel here,
847 1.16 drochner * which we shouldn't free. We'd have to keep track of
848 1.16 drochner * the memory range's owner.
849 1.16 drochner * The kernel API is unsed yet, so we get away with
850 1.16 drochner * freeing all.
851 1.16 drochner */
852 1.16 drochner AGP_FREE_MEMORY(sc, mem);
853 1.16 drochner }
854 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
855 1.16 drochner }
856 1.1 fvdl sc->as_isopen = 0;
857 1.1 fvdl
858 1.1 fvdl return 0;
859 1.1 fvdl }
860 1.1 fvdl
861 1.35 thorpej static int
862 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
863 1.1 fvdl {
864 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
865 1.1 fvdl
866 1.1 fvdl if (sc == NULL)
867 1.1 fvdl return ENODEV;
868 1.1 fvdl
869 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
870 1.1 fvdl return EPERM;
871 1.1 fvdl
872 1.1 fvdl switch (cmd) {
873 1.1 fvdl case AGPIOC_INFO:
874 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
875 1.1 fvdl
876 1.1 fvdl case AGPIOC_ACQUIRE:
877 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
878 1.1 fvdl
879 1.1 fvdl case AGPIOC_RELEASE:
880 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
881 1.1 fvdl
882 1.1 fvdl case AGPIOC_SETUP:
883 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
884 1.1 fvdl
885 1.1 fvdl case AGPIOC_ALLOCATE:
886 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
887 1.1 fvdl
888 1.1 fvdl case AGPIOC_DEALLOCATE:
889 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
890 1.1 fvdl
891 1.1 fvdl case AGPIOC_BIND:
892 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
893 1.1 fvdl
894 1.1 fvdl case AGPIOC_UNBIND:
895 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
896 1.1 fvdl
897 1.1 fvdl }
898 1.1 fvdl
899 1.1 fvdl return EINVAL;
900 1.1 fvdl }
901 1.1 fvdl
902 1.35 thorpej static paddr_t
903 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
904 1.1 fvdl {
905 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
906 1.1 fvdl
907 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
908 1.1 fvdl return -1;
909 1.6 thorpej
910 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
911 1.6 thorpej BUS_SPACE_MAP_LINEAR));
912 1.1 fvdl }
913 1.1 fvdl
914 1.35 thorpej const struct cdevsw agp_cdevsw = {
915 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
916 1.41 christos nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
917 1.35 thorpej };
918 1.35 thorpej
919 1.1 fvdl /* Implementation of the kernel api */
920 1.1 fvdl
921 1.1 fvdl void *
922 1.1 fvdl agp_find_device(int unit)
923 1.1 fvdl {
924 1.1 fvdl return device_lookup(&agp_cd, unit);
925 1.1 fvdl }
926 1.1 fvdl
927 1.1 fvdl enum agp_acquire_state
928 1.1 fvdl agp_state(void *devcookie)
929 1.1 fvdl {
930 1.1 fvdl struct agp_softc *sc = devcookie;
931 1.1 fvdl return sc->as_state;
932 1.1 fvdl }
933 1.1 fvdl
934 1.1 fvdl void
935 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
936 1.1 fvdl {
937 1.1 fvdl struct agp_softc *sc = devcookie;
938 1.1 fvdl
939 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
940 1.1 fvdl sc->as_capoff + AGP_STATUS);
941 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
942 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
943 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
944 1.1 fvdl info->ai_memory_used = sc->as_allocated;
945 1.1 fvdl }
946 1.1 fvdl
947 1.1 fvdl int
948 1.1 fvdl agp_acquire(void *dev)
949 1.1 fvdl {
950 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
951 1.1 fvdl }
952 1.1 fvdl
953 1.1 fvdl int
954 1.1 fvdl agp_release(void *dev)
955 1.1 fvdl {
956 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
957 1.1 fvdl }
958 1.1 fvdl
959 1.1 fvdl int
960 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
961 1.1 fvdl {
962 1.1 fvdl struct agp_softc *sc = dev;
963 1.1 fvdl
964 1.1 fvdl return AGP_ENABLE(sc, mode);
965 1.1 fvdl }
966 1.1 fvdl
967 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
968 1.1 fvdl {
969 1.1 fvdl struct agp_softc *sc = dev;
970 1.1 fvdl
971 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
972 1.1 fvdl }
973 1.1 fvdl
974 1.1 fvdl void agp_free_memory(void *dev, void *handle)
975 1.1 fvdl {
976 1.1 fvdl struct agp_softc *sc = dev;
977 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
978 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
979 1.1 fvdl }
980 1.1 fvdl
981 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
982 1.1 fvdl {
983 1.1 fvdl struct agp_softc *sc = dev;
984 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
985 1.1 fvdl
986 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
987 1.1 fvdl }
988 1.1 fvdl
989 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
990 1.1 fvdl {
991 1.1 fvdl struct agp_softc *sc = dev;
992 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
993 1.1 fvdl
994 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
995 1.1 fvdl }
996 1.1 fvdl
997 1.43 christos void agp_memory_info(void *dev, void *handle,
998 1.42 christos struct agp_memory_info *mi)
999 1.1 fvdl {
1000 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1001 1.1 fvdl
1002 1.1 fvdl mi->ami_size = mem->am_size;
1003 1.1 fvdl mi->ami_physical = mem->am_physical;
1004 1.1 fvdl mi->ami_offset = mem->am_offset;
1005 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1006 1.1 fvdl }
1007 1.1 fvdl
1008 1.1 fvdl int
1009 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1010 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1011 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1012 1.1 fvdl
1013 1.1 fvdl {
1014 1.1 fvdl int error, level = 0;
1015 1.1 fvdl
1016 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1017 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1018 1.1 fvdl goto out;
1019 1.1 fvdl level++;
1020 1.1 fvdl
1021 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1022 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1023 1.1 fvdl goto out;
1024 1.1 fvdl level++;
1025 1.1 fvdl
1026 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1027 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1028 1.1 fvdl goto out;
1029 1.1 fvdl level++;
1030 1.1 fvdl
1031 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1032 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1033 1.1 fvdl goto out;
1034 1.1 fvdl
1035 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1036 1.1 fvdl
1037 1.1 fvdl return 0;
1038 1.1 fvdl out:
1039 1.1 fvdl switch (level) {
1040 1.1 fvdl case 3:
1041 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1042 1.1 fvdl /* FALLTHROUGH */
1043 1.1 fvdl case 2:
1044 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1045 1.1 fvdl /* FALLTHROUGH */
1046 1.1 fvdl case 1:
1047 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1048 1.1 fvdl break;
1049 1.1 fvdl default:
1050 1.1 fvdl break;
1051 1.1 fvdl }
1052 1.1 fvdl
1053 1.1 fvdl return error;
1054 1.1 fvdl }
1055 1.1 fvdl
1056 1.1 fvdl void
1057 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1058 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1059 1.1 fvdl {
1060 1.1 fvdl
1061 1.1 fvdl bus_dmamap_unload(tag, map);
1062 1.1 fvdl bus_dmamap_destroy(tag, map);
1063 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1064 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1065 1.1 fvdl }
1066