agp.c revision 1.50 1 1.50 jnemeth /* $NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.50 jnemeth __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <uvm/uvm_extern.h>
83 1.1 fvdl
84 1.1 fvdl #include <dev/pci/pcireg.h>
85 1.1 fvdl #include <dev/pci/pcivar.h>
86 1.1 fvdl #include <dev/pci/agpvar.h>
87 1.1 fvdl #include <dev/pci/agpreg.h>
88 1.1 fvdl #include <dev/pci/pcidevs.h>
89 1.1 fvdl
90 1.49 ad #include <sys/bus.h>
91 1.25 thorpej
92 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 1.1 fvdl
94 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
95 1.1 fvdl /* XXXfvdl get rid of this one. */
96 1.1 fvdl
97 1.1 fvdl extern struct cfdriver agp_cd;
98 1.17 gehenna
99 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
100 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
101 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
103 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
104 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
106 1.1 fvdl
107 1.7 thorpej #include "agp_ali.h"
108 1.7 thorpej #include "agp_amd.h"
109 1.7 thorpej #include "agp_i810.h"
110 1.7 thorpej #include "agp_intel.h"
111 1.7 thorpej #include "agp_sis.h"
112 1.7 thorpej #include "agp_via.h"
113 1.47 kiyohara #include "agp_amd64.h"
114 1.7 thorpej
115 1.5 thorpej const struct agp_product {
116 1.5 thorpej uint32_t ap_vendor;
117 1.5 thorpej uint32_t ap_product;
118 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
119 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
120 1.5 thorpej } agp_products[] = {
121 1.7 thorpej #if NAGP_ALI > 0
122 1.5 thorpej { PCI_VENDOR_ALI, -1,
123 1.5 thorpej NULL, agp_ali_attach },
124 1.7 thorpej #endif
125 1.5 thorpej
126 1.7 thorpej #if NAGP_AMD > 0
127 1.5 thorpej { PCI_VENDOR_AMD, -1,
128 1.5 thorpej agp_amd_match, agp_amd_attach },
129 1.7 thorpej #endif
130 1.5 thorpej
131 1.7 thorpej #if NAGP_I810 > 0
132 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
133 1.5 thorpej NULL, agp_i810_attach },
134 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
135 1.5 thorpej NULL, agp_i810_attach },
136 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
137 1.5 thorpej NULL, agp_i810_attach },
138 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
139 1.5 thorpej NULL, agp_i810_attach },
140 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
141 1.13 augustss NULL, agp_i810_attach },
142 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
143 1.11 fvdl NULL, agp_i810_attach },
144 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
145 1.29 hannken NULL, agp_i810_attach },
146 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
147 1.31 tron NULL, agp_i810_attach },
148 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
149 1.23 scw NULL, agp_i810_attach },
150 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
151 1.37 christos NULL, agp_i810_attach },
152 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
153 1.37 christos NULL, agp_i810_attach },
154 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
155 1.39 simonb NULL, agp_i810_attach },
156 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
157 1.39 simonb NULL, agp_i810_attach },
158 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
159 1.48 markd NULL, agp_i810_attach },
160 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
161 1.50 jnemeth NULL, agp_i810_attach },
162 1.7 thorpej #endif
163 1.5 thorpej
164 1.7 thorpej #if NAGP_INTEL > 0
165 1.5 thorpej { PCI_VENDOR_INTEL, -1,
166 1.5 thorpej NULL, agp_intel_attach },
167 1.7 thorpej #endif
168 1.5 thorpej
169 1.7 thorpej #if NAGP_SIS > 0
170 1.5 thorpej { PCI_VENDOR_SIS, -1,
171 1.5 thorpej NULL, agp_sis_attach },
172 1.7 thorpej #endif
173 1.5 thorpej
174 1.7 thorpej #if NAGP_VIA > 0
175 1.5 thorpej { PCI_VENDOR_VIATECH, -1,
176 1.5 thorpej NULL, agp_via_attach },
177 1.7 thorpej #endif
178 1.5 thorpej
179 1.47 kiyohara #if NAGP_AMD64 > 0
180 1.47 kiyohara { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
181 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
182 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
183 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
184 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
185 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
186 1.47 kiyohara { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
187 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
188 1.47 kiyohara { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
189 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
190 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
191 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
192 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
193 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
194 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
195 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
196 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
197 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
198 1.47 kiyohara #endif
199 1.47 kiyohara
200 1.5 thorpej { 0, 0,
201 1.5 thorpej NULL, NULL },
202 1.5 thorpej };
203 1.5 thorpej
204 1.5 thorpej static const struct agp_product *
205 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
206 1.5 thorpej {
207 1.5 thorpej const struct agp_product *ap;
208 1.5 thorpej
209 1.5 thorpej /* First find the vendor. */
210 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
211 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
212 1.5 thorpej break;
213 1.5 thorpej }
214 1.5 thorpej
215 1.5 thorpej if (ap->ap_attach == NULL)
216 1.5 thorpej return (NULL);
217 1.5 thorpej
218 1.5 thorpej /* Now find the product within the vendor's domain. */
219 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
220 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
221 1.5 thorpej /* Ran out of this vendor's section of the table. */
222 1.5 thorpej return (NULL);
223 1.5 thorpej }
224 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
225 1.5 thorpej /* Exact match. */
226 1.5 thorpej break;
227 1.5 thorpej }
228 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
229 1.5 thorpej /* Wildcard match. */
230 1.5 thorpej break;
231 1.5 thorpej }
232 1.5 thorpej }
233 1.5 thorpej
234 1.5 thorpej if (ap->ap_attach == NULL)
235 1.5 thorpej return (NULL);
236 1.5 thorpej
237 1.5 thorpej /* Now let the product-specific driver filter the match. */
238 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
239 1.5 thorpej return (NULL);
240 1.5 thorpej
241 1.5 thorpej return (ap);
242 1.5 thorpej }
243 1.5 thorpej
244 1.35 thorpej static int
245 1.43 christos agpmatch(struct device *parent, struct cfdata *match,
246 1.42 christos void *aux)
247 1.1 fvdl {
248 1.5 thorpej struct agpbus_attach_args *apa = aux;
249 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
250 1.1 fvdl
251 1.5 thorpej if (agp_lookup(pa) == NULL)
252 1.5 thorpej return (0);
253 1.1 fvdl
254 1.5 thorpej return (1);
255 1.1 fvdl }
256 1.1 fvdl
257 1.35 thorpej static const int agp_max[][2] = {
258 1.1 fvdl {0, 0},
259 1.1 fvdl {32, 4},
260 1.1 fvdl {64, 28},
261 1.1 fvdl {128, 96},
262 1.1 fvdl {256, 204},
263 1.1 fvdl {512, 440},
264 1.1 fvdl {1024, 942},
265 1.1 fvdl {2048, 1920},
266 1.1 fvdl {4096, 3932}
267 1.1 fvdl };
268 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
269 1.1 fvdl
270 1.35 thorpej static void
271 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
272 1.1 fvdl {
273 1.5 thorpej struct agpbus_attach_args *apa = aux;
274 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
275 1.1 fvdl struct agp_softc *sc = (void *)self;
276 1.5 thorpej const struct agp_product *ap;
277 1.1 fvdl int memsize, i, ret;
278 1.1 fvdl
279 1.5 thorpej ap = agp_lookup(pa);
280 1.5 thorpej if (ap == NULL) {
281 1.5 thorpej printf("\n");
282 1.5 thorpej panic("agpattach: impossible");
283 1.5 thorpej }
284 1.1 fvdl
285 1.24 thorpej aprint_naive(": AGP controller\n");
286 1.24 thorpej
287 1.1 fvdl sc->as_dmat = pa->pa_dmat;
288 1.1 fvdl sc->as_pc = pa->pa_pc;
289 1.1 fvdl sc->as_tag = pa->pa_tag;
290 1.1 fvdl sc->as_id = pa->pa_id;
291 1.1 fvdl
292 1.1 fvdl /*
293 1.1 fvdl * Work out an upper bound for agp memory allocation. This
294 1.1 fvdl * uses a heurisitc table from the Linux driver.
295 1.1 fvdl */
296 1.1 fvdl memsize = ptoa(physmem) >> 20;
297 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
298 1.1 fvdl if (memsize <= agp_max[i][0])
299 1.1 fvdl break;
300 1.1 fvdl }
301 1.1 fvdl if (i == agp_max_size)
302 1.1 fvdl i = agp_max_size - 1;
303 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
304 1.1 fvdl
305 1.1 fvdl /*
306 1.46 xtraeme * The mutex is used to prevent re-entry to
307 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
308 1.1 fvdl */
309 1.46 xtraeme mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
310 1.1 fvdl
311 1.1 fvdl TAILQ_INIT(&sc->as_memory);
312 1.1 fvdl
313 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
314 1.1 fvdl if (ret == 0)
315 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
316 1.1 fvdl (unsigned long)sc->as_apaddr,
317 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
318 1.1 fvdl else
319 1.1 fvdl sc->as_chipc = NULL;
320 1.1 fvdl }
321 1.30 tron
322 1.35 thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
323 1.35 thorpej agpmatch, agpattach, NULL, NULL);
324 1.35 thorpej
325 1.1 fvdl int
326 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
327 1.1 fvdl {
328 1.1 fvdl /*
329 1.18 nathanw * Find the aperture. Don't map it (yet), this would
330 1.11 fvdl * eat KVA.
331 1.1 fvdl */
332 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
333 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
334 1.11 fvdl &sc->as_apflags) != 0)
335 1.1 fvdl return ENXIO;
336 1.8 drochner
337 1.11 fvdl sc->as_apt = pa->pa_memt;
338 1.11 fvdl
339 1.1 fvdl return 0;
340 1.1 fvdl }
341 1.1 fvdl
342 1.1 fvdl struct agp_gatt *
343 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
344 1.1 fvdl {
345 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
346 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
347 1.1 fvdl struct agp_gatt *gatt;
348 1.45 christos void *virtual;
349 1.1 fvdl int dummyseg;
350 1.1 fvdl
351 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
352 1.1 fvdl if (!gatt)
353 1.1 fvdl return NULL;
354 1.1 fvdl gatt->ag_entries = entries;
355 1.1 fvdl
356 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
357 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
358 1.38 tron &gatt->ag_dmaseg, 1, &dummyseg) != 0)
359 1.1 fvdl return NULL;
360 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
361 1.1 fvdl
362 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
363 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
364 1.1 fvdl agp_flush_cache();
365 1.1 fvdl
366 1.1 fvdl return gatt;
367 1.1 fvdl }
368 1.1 fvdl
369 1.1 fvdl void
370 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
371 1.1 fvdl {
372 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
373 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
374 1.1 fvdl free(gatt, M_AGP);
375 1.1 fvdl }
376 1.1 fvdl
377 1.1 fvdl
378 1.1 fvdl int
379 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
380 1.1 fvdl {
381 1.46 xtraeme mutex_destroy(&sc->as_mtx);
382 1.1 fvdl agp_flush_cache();
383 1.1 fvdl return 0;
384 1.1 fvdl }
385 1.1 fvdl
386 1.1 fvdl static int
387 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
388 1.1 fvdl {
389 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
390 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
391 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
392 1.26 tron NULL, NULL))
393 1.1 fvdl return 1;
394 1.1 fvdl
395 1.1 fvdl return 0;
396 1.1 fvdl }
397 1.1 fvdl
398 1.1 fvdl int
399 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
400 1.1 fvdl {
401 1.1 fvdl struct pci_attach_args pa;
402 1.1 fvdl pcireg_t tstatus, mstatus;
403 1.1 fvdl pcireg_t command;
404 1.1 fvdl int rq, sba, fw, rate, capoff;
405 1.1 fvdl
406 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
407 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
408 1.1 fvdl &capoff, NULL) == 0) {
409 1.1 fvdl printf("%s: can't find display\n", sc->as_dev.dv_xname);
410 1.1 fvdl return ENXIO;
411 1.1 fvdl }
412 1.1 fvdl
413 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
414 1.1 fvdl sc->as_capoff + AGP_STATUS);
415 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
416 1.1 fvdl capoff + AGP_STATUS);
417 1.1 fvdl
418 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
419 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
420 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
421 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
422 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
423 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
424 1.1 fvdl
425 1.1 fvdl /* Set SBA if all three can deal with SBA */
426 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
427 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
428 1.1 fvdl & AGP_MODE_GET_SBA(mode));
429 1.1 fvdl
430 1.1 fvdl /* Similar for FW */
431 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
432 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
433 1.1 fvdl & AGP_MODE_GET_FW(mode));
434 1.1 fvdl
435 1.1 fvdl /* Figure out the max rate */
436 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
437 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
438 1.1 fvdl & AGP_MODE_GET_RATE(mode));
439 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
440 1.1 fvdl rate = AGP_MODE_RATE_4x;
441 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
442 1.1 fvdl rate = AGP_MODE_RATE_2x;
443 1.1 fvdl else
444 1.1 fvdl rate = AGP_MODE_RATE_1x;
445 1.1 fvdl
446 1.1 fvdl /* Construct the new mode word and tell the hardware */
447 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
448 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
449 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
450 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
451 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
452 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
453 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
454 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
455 1.1 fvdl
456 1.1 fvdl return 0;
457 1.1 fvdl }
458 1.1 fvdl
459 1.1 fvdl struct agp_memory *
460 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
461 1.1 fvdl {
462 1.1 fvdl struct agp_memory *mem;
463 1.1 fvdl
464 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
465 1.1 fvdl return 0;
466 1.1 fvdl
467 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
468 1.1 fvdl return 0;
469 1.1 fvdl
470 1.1 fvdl if (type != 0) {
471 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
472 1.1 fvdl type);
473 1.1 fvdl return 0;
474 1.1 fvdl }
475 1.1 fvdl
476 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
477 1.1 fvdl if (mem == NULL)
478 1.1 fvdl return NULL;
479 1.1 fvdl
480 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
481 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
482 1.1 fvdl free(mem, M_AGP);
483 1.1 fvdl return NULL;
484 1.1 fvdl }
485 1.1 fvdl
486 1.1 fvdl mem->am_id = sc->as_nextid++;
487 1.1 fvdl mem->am_size = size;
488 1.1 fvdl mem->am_type = 0;
489 1.1 fvdl mem->am_physical = 0;
490 1.1 fvdl mem->am_offset = 0;
491 1.1 fvdl mem->am_is_bound = 0;
492 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
493 1.1 fvdl sc->as_allocated += size;
494 1.1 fvdl
495 1.1 fvdl return mem;
496 1.1 fvdl }
497 1.1 fvdl
498 1.1 fvdl int
499 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
500 1.1 fvdl {
501 1.1 fvdl if (mem->am_is_bound)
502 1.1 fvdl return EBUSY;
503 1.1 fvdl
504 1.1 fvdl sc->as_allocated -= mem->am_size;
505 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
506 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
507 1.1 fvdl free(mem, M_AGP);
508 1.1 fvdl return 0;
509 1.1 fvdl }
510 1.1 fvdl
511 1.1 fvdl int
512 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
513 1.1 fvdl off_t offset)
514 1.1 fvdl {
515 1.1 fvdl off_t i, k;
516 1.1 fvdl bus_size_t done, j;
517 1.1 fvdl int error;
518 1.1 fvdl bus_dma_segment_t *segs, *seg;
519 1.1 fvdl bus_addr_t pa;
520 1.1 fvdl int contigpages, nseg;
521 1.1 fvdl
522 1.46 xtraeme mutex_enter(&sc->as_mtx);
523 1.1 fvdl
524 1.1 fvdl if (mem->am_is_bound) {
525 1.1 fvdl printf("%s: memory already bound\n", sc->as_dev.dv_xname);
526 1.46 xtraeme mutex_exit(&sc->as_mtx);
527 1.1 fvdl return EINVAL;
528 1.1 fvdl }
529 1.34 perry
530 1.1 fvdl if (offset < 0
531 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
532 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
533 1.1 fvdl printf("%s: binding memory at bad offset %#lx\n",
534 1.1 fvdl sc->as_dev.dv_xname, (unsigned long) offset);
535 1.46 xtraeme mutex_exit(&sc->as_mtx);
536 1.1 fvdl return EINVAL;
537 1.1 fvdl }
538 1.1 fvdl
539 1.1 fvdl /*
540 1.1 fvdl * XXXfvdl
541 1.1 fvdl * The memory here needs to be directly accessable from the
542 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
543 1.1 fvdl * However, it need not be contiguous, since individual pages
544 1.1 fvdl * are translated using the GATT.
545 1.1 fvdl *
546 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
547 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
548 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
549 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
550 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
551 1.1 fvdl * a bus_dma_segment per page would be overkill.
552 1.1 fvdl */
553 1.1 fvdl
554 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
555 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
556 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
557 1.16 drochner if (segs == NULL) {
558 1.46 xtraeme mutex_exit(&sc->as_mtx);
559 1.10 thorpej return ENOMEM;
560 1.16 drochner }
561 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
562 1.4 drochner segs, nseg, &mem->am_nseg,
563 1.15 drochner contigpages > 1 ?
564 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
565 1.4 drochner free(segs, M_AGP);
566 1.1 fvdl continue;
567 1.4 drochner }
568 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
569 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
570 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
571 1.4 drochner free(segs, M_AGP);
572 1.1 fvdl continue;
573 1.1 fvdl }
574 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
575 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
576 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
577 1.1 fvdl mem->am_size);
578 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
579 1.4 drochner free(segs, M_AGP);
580 1.1 fvdl continue;
581 1.1 fvdl }
582 1.1 fvdl mem->am_dmaseg = segs;
583 1.1 fvdl break;
584 1.1 fvdl }
585 1.1 fvdl
586 1.1 fvdl if (contigpages == 0) {
587 1.46 xtraeme mutex_exit(&sc->as_mtx);
588 1.1 fvdl return ENOMEM;
589 1.1 fvdl }
590 1.1 fvdl
591 1.1 fvdl
592 1.1 fvdl /*
593 1.1 fvdl * Bind the individual pages and flush the chipset's
594 1.1 fvdl * TLB.
595 1.1 fvdl */
596 1.1 fvdl done = 0;
597 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
598 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
599 1.1 fvdl /*
600 1.1 fvdl * Install entries in the GATT, making sure that if
601 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
602 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
603 1.1 fvdl * entries.
604 1.1 fvdl */
605 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
606 1.1 fvdl j += AGP_PAGE_SIZE) {
607 1.1 fvdl pa = seg->ds_addr + j;
608 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
609 1.3 drochner (unsigned long)(offset + done + j),
610 1.40 christos (unsigned long)pa));
611 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
612 1.1 fvdl if (error) {
613 1.1 fvdl /*
614 1.1 fvdl * Bail out. Reverse all the mappings
615 1.1 fvdl * and unwire the pages.
616 1.1 fvdl */
617 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
618 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
619 1.1 fvdl
620 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
621 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
622 1.4 drochner mem->am_size);
623 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
624 1.4 drochner mem->am_nseg);
625 1.4 drochner free(mem->am_dmaseg, M_AGP);
626 1.46 xtraeme mutex_exit(&sc->as_mtx);
627 1.1 fvdl return error;
628 1.1 fvdl }
629 1.1 fvdl }
630 1.1 fvdl done += seg->ds_len;
631 1.1 fvdl }
632 1.1 fvdl
633 1.1 fvdl /*
634 1.32 wiz * Flush the CPU cache since we are providing a new mapping
635 1.1 fvdl * for these pages.
636 1.1 fvdl */
637 1.1 fvdl agp_flush_cache();
638 1.1 fvdl
639 1.1 fvdl /*
640 1.1 fvdl * Make sure the chipset gets the new mappings.
641 1.1 fvdl */
642 1.1 fvdl AGP_FLUSH_TLB(sc);
643 1.1 fvdl
644 1.1 fvdl mem->am_offset = offset;
645 1.1 fvdl mem->am_is_bound = 1;
646 1.1 fvdl
647 1.46 xtraeme mutex_exit(&sc->as_mtx);
648 1.1 fvdl
649 1.1 fvdl return 0;
650 1.1 fvdl }
651 1.1 fvdl
652 1.1 fvdl int
653 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
654 1.1 fvdl {
655 1.1 fvdl int i;
656 1.1 fvdl
657 1.46 xtraeme mutex_enter(&sc->as_mtx);
658 1.1 fvdl
659 1.1 fvdl if (!mem->am_is_bound) {
660 1.1 fvdl printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
661 1.46 xtraeme mutex_exit(&sc->as_mtx);
662 1.1 fvdl return EINVAL;
663 1.1 fvdl }
664 1.1 fvdl
665 1.1 fvdl
666 1.1 fvdl /*
667 1.1 fvdl * Unbind the individual pages and flush the chipset's
668 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
669 1.1 fvdl */
670 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
671 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
672 1.34 perry
673 1.1 fvdl agp_flush_cache();
674 1.1 fvdl AGP_FLUSH_TLB(sc);
675 1.1 fvdl
676 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
677 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
678 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
679 1.1 fvdl
680 1.1 fvdl free(mem->am_dmaseg, M_AGP);
681 1.1 fvdl
682 1.1 fvdl mem->am_offset = 0;
683 1.1 fvdl mem->am_is_bound = 0;
684 1.1 fvdl
685 1.46 xtraeme mutex_exit(&sc->as_mtx);
686 1.1 fvdl
687 1.1 fvdl return 0;
688 1.1 fvdl }
689 1.1 fvdl
690 1.1 fvdl /* Helper functions for implementing user/kernel api */
691 1.1 fvdl
692 1.1 fvdl static int
693 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
694 1.1 fvdl {
695 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
696 1.1 fvdl return EBUSY;
697 1.1 fvdl sc->as_state = state;
698 1.1 fvdl
699 1.1 fvdl return 0;
700 1.1 fvdl }
701 1.1 fvdl
702 1.1 fvdl static int
703 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
704 1.1 fvdl {
705 1.1 fvdl
706 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
707 1.1 fvdl return 0;
708 1.1 fvdl
709 1.1 fvdl if (sc->as_state != state)
710 1.1 fvdl return EBUSY;
711 1.1 fvdl
712 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
713 1.1 fvdl return 0;
714 1.1 fvdl }
715 1.1 fvdl
716 1.1 fvdl static struct agp_memory *
717 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
718 1.1 fvdl {
719 1.1 fvdl struct agp_memory *mem;
720 1.1 fvdl
721 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
722 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
723 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
724 1.1 fvdl if (mem->am_id == id)
725 1.1 fvdl return mem;
726 1.1 fvdl }
727 1.1 fvdl return 0;
728 1.1 fvdl }
729 1.1 fvdl
730 1.1 fvdl /* Implementation of the userland ioctl api */
731 1.1 fvdl
732 1.1 fvdl static int
733 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
734 1.1 fvdl {
735 1.1 fvdl memset(info, 0, sizeof *info);
736 1.1 fvdl info->bridge_id = sc->as_id;
737 1.3 drochner if (sc->as_capoff != 0)
738 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
739 1.3 drochner sc->as_capoff + AGP_STATUS);
740 1.3 drochner else
741 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
742 1.1 fvdl info->aper_base = sc->as_apaddr;
743 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
744 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
745 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
746 1.1 fvdl
747 1.1 fvdl return 0;
748 1.1 fvdl }
749 1.1 fvdl
750 1.1 fvdl static int
751 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
752 1.1 fvdl {
753 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
754 1.1 fvdl }
755 1.1 fvdl
756 1.1 fvdl static int
757 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
758 1.1 fvdl {
759 1.1 fvdl struct agp_memory *mem;
760 1.1 fvdl
761 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
762 1.1 fvdl alloc->type,
763 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
764 1.1 fvdl if (mem) {
765 1.1 fvdl alloc->key = mem->am_id;
766 1.1 fvdl alloc->physical = mem->am_physical;
767 1.1 fvdl return 0;
768 1.1 fvdl } else {
769 1.1 fvdl return ENOMEM;
770 1.1 fvdl }
771 1.1 fvdl }
772 1.1 fvdl
773 1.1 fvdl static int
774 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
775 1.1 fvdl {
776 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
777 1.1 fvdl
778 1.1 fvdl if (mem) {
779 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
780 1.1 fvdl return 0;
781 1.1 fvdl } else {
782 1.1 fvdl return ENOENT;
783 1.1 fvdl }
784 1.1 fvdl }
785 1.1 fvdl
786 1.1 fvdl static int
787 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
788 1.1 fvdl {
789 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
790 1.1 fvdl
791 1.1 fvdl if (!mem)
792 1.1 fvdl return ENOENT;
793 1.1 fvdl
794 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
795 1.1 fvdl }
796 1.1 fvdl
797 1.1 fvdl static int
798 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
799 1.1 fvdl {
800 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
801 1.1 fvdl
802 1.1 fvdl if (!mem)
803 1.1 fvdl return ENOENT;
804 1.1 fvdl
805 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
806 1.1 fvdl }
807 1.1 fvdl
808 1.35 thorpej static int
809 1.43 christos agpopen(dev_t dev, int oflags, int devtype,
810 1.43 christos struct lwp *l)
811 1.1 fvdl {
812 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
813 1.9 thorpej
814 1.9 thorpej if (sc == NULL)
815 1.9 thorpej return ENXIO;
816 1.1 fvdl
817 1.1 fvdl if (sc->as_chipc == NULL)
818 1.1 fvdl return ENXIO;
819 1.1 fvdl
820 1.1 fvdl if (!sc->as_isopen)
821 1.1 fvdl sc->as_isopen = 1;
822 1.1 fvdl else
823 1.1 fvdl return EBUSY;
824 1.1 fvdl
825 1.1 fvdl return 0;
826 1.1 fvdl }
827 1.1 fvdl
828 1.35 thorpej static int
829 1.43 christos agpclose(dev_t dev, int fflag, int devtype,
830 1.43 christos struct lwp *l)
831 1.1 fvdl {
832 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
833 1.16 drochner struct agp_memory *mem;
834 1.1 fvdl
835 1.1 fvdl /*
836 1.1 fvdl * Clear the GATT and force release on last close
837 1.1 fvdl */
838 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
839 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
840 1.16 drochner if (mem->am_is_bound) {
841 1.16 drochner printf("agpclose: mem %d is bound\n",
842 1.16 drochner mem->am_id);
843 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
844 1.16 drochner }
845 1.16 drochner /*
846 1.16 drochner * XXX it is not documented, but if the protocol allows
847 1.16 drochner * allocate->acquire->bind, it would be possible that
848 1.16 drochner * memory ranges are allocated by the kernel here,
849 1.16 drochner * which we shouldn't free. We'd have to keep track of
850 1.16 drochner * the memory range's owner.
851 1.16 drochner * The kernel API is unsed yet, so we get away with
852 1.16 drochner * freeing all.
853 1.16 drochner */
854 1.16 drochner AGP_FREE_MEMORY(sc, mem);
855 1.16 drochner }
856 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
857 1.16 drochner }
858 1.1 fvdl sc->as_isopen = 0;
859 1.1 fvdl
860 1.1 fvdl return 0;
861 1.1 fvdl }
862 1.1 fvdl
863 1.35 thorpej static int
864 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
865 1.1 fvdl {
866 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
867 1.1 fvdl
868 1.1 fvdl if (sc == NULL)
869 1.1 fvdl return ENODEV;
870 1.1 fvdl
871 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
872 1.1 fvdl return EPERM;
873 1.1 fvdl
874 1.1 fvdl switch (cmd) {
875 1.1 fvdl case AGPIOC_INFO:
876 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
877 1.1 fvdl
878 1.1 fvdl case AGPIOC_ACQUIRE:
879 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
880 1.1 fvdl
881 1.1 fvdl case AGPIOC_RELEASE:
882 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
883 1.1 fvdl
884 1.1 fvdl case AGPIOC_SETUP:
885 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
886 1.1 fvdl
887 1.1 fvdl case AGPIOC_ALLOCATE:
888 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
889 1.1 fvdl
890 1.1 fvdl case AGPIOC_DEALLOCATE:
891 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
892 1.1 fvdl
893 1.1 fvdl case AGPIOC_BIND:
894 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
895 1.1 fvdl
896 1.1 fvdl case AGPIOC_UNBIND:
897 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
898 1.1 fvdl
899 1.1 fvdl }
900 1.1 fvdl
901 1.1 fvdl return EINVAL;
902 1.1 fvdl }
903 1.1 fvdl
904 1.35 thorpej static paddr_t
905 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
906 1.1 fvdl {
907 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
908 1.1 fvdl
909 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
910 1.1 fvdl return -1;
911 1.6 thorpej
912 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
913 1.6 thorpej BUS_SPACE_MAP_LINEAR));
914 1.1 fvdl }
915 1.1 fvdl
916 1.35 thorpej const struct cdevsw agp_cdevsw = {
917 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
918 1.41 christos nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
919 1.35 thorpej };
920 1.35 thorpej
921 1.1 fvdl /* Implementation of the kernel api */
922 1.1 fvdl
923 1.1 fvdl void *
924 1.1 fvdl agp_find_device(int unit)
925 1.1 fvdl {
926 1.1 fvdl return device_lookup(&agp_cd, unit);
927 1.1 fvdl }
928 1.1 fvdl
929 1.1 fvdl enum agp_acquire_state
930 1.1 fvdl agp_state(void *devcookie)
931 1.1 fvdl {
932 1.1 fvdl struct agp_softc *sc = devcookie;
933 1.1 fvdl return sc->as_state;
934 1.1 fvdl }
935 1.1 fvdl
936 1.1 fvdl void
937 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
938 1.1 fvdl {
939 1.1 fvdl struct agp_softc *sc = devcookie;
940 1.1 fvdl
941 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
942 1.1 fvdl sc->as_capoff + AGP_STATUS);
943 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
944 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
945 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
946 1.1 fvdl info->ai_memory_used = sc->as_allocated;
947 1.1 fvdl }
948 1.1 fvdl
949 1.1 fvdl int
950 1.1 fvdl agp_acquire(void *dev)
951 1.1 fvdl {
952 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
953 1.1 fvdl }
954 1.1 fvdl
955 1.1 fvdl int
956 1.1 fvdl agp_release(void *dev)
957 1.1 fvdl {
958 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
959 1.1 fvdl }
960 1.1 fvdl
961 1.1 fvdl int
962 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
963 1.1 fvdl {
964 1.1 fvdl struct agp_softc *sc = dev;
965 1.1 fvdl
966 1.1 fvdl return AGP_ENABLE(sc, mode);
967 1.1 fvdl }
968 1.1 fvdl
969 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
970 1.1 fvdl {
971 1.1 fvdl struct agp_softc *sc = dev;
972 1.1 fvdl
973 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
974 1.1 fvdl }
975 1.1 fvdl
976 1.1 fvdl void agp_free_memory(void *dev, void *handle)
977 1.1 fvdl {
978 1.1 fvdl struct agp_softc *sc = dev;
979 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
980 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
981 1.1 fvdl }
982 1.1 fvdl
983 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
984 1.1 fvdl {
985 1.1 fvdl struct agp_softc *sc = dev;
986 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
987 1.1 fvdl
988 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
989 1.1 fvdl }
990 1.1 fvdl
991 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
992 1.1 fvdl {
993 1.1 fvdl struct agp_softc *sc = dev;
994 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
995 1.1 fvdl
996 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
997 1.1 fvdl }
998 1.1 fvdl
999 1.43 christos void agp_memory_info(void *dev, void *handle,
1000 1.42 christos struct agp_memory_info *mi)
1001 1.1 fvdl {
1002 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1003 1.1 fvdl
1004 1.1 fvdl mi->ami_size = mem->am_size;
1005 1.1 fvdl mi->ami_physical = mem->am_physical;
1006 1.1 fvdl mi->ami_offset = mem->am_offset;
1007 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1008 1.1 fvdl }
1009 1.1 fvdl
1010 1.1 fvdl int
1011 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1012 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1013 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1014 1.1 fvdl
1015 1.1 fvdl {
1016 1.1 fvdl int error, level = 0;
1017 1.1 fvdl
1018 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1019 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1020 1.1 fvdl goto out;
1021 1.1 fvdl level++;
1022 1.1 fvdl
1023 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1024 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1025 1.1 fvdl goto out;
1026 1.1 fvdl level++;
1027 1.1 fvdl
1028 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1029 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1030 1.1 fvdl goto out;
1031 1.1 fvdl level++;
1032 1.1 fvdl
1033 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1034 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1035 1.1 fvdl goto out;
1036 1.1 fvdl
1037 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1038 1.1 fvdl
1039 1.1 fvdl return 0;
1040 1.1 fvdl out:
1041 1.1 fvdl switch (level) {
1042 1.1 fvdl case 3:
1043 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1044 1.1 fvdl /* FALLTHROUGH */
1045 1.1 fvdl case 2:
1046 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1047 1.1 fvdl /* FALLTHROUGH */
1048 1.1 fvdl case 1:
1049 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1050 1.1 fvdl break;
1051 1.1 fvdl default:
1052 1.1 fvdl break;
1053 1.1 fvdl }
1054 1.1 fvdl
1055 1.1 fvdl return error;
1056 1.1 fvdl }
1057 1.1 fvdl
1058 1.1 fvdl void
1059 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1060 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1061 1.1 fvdl {
1062 1.1 fvdl
1063 1.1 fvdl bus_dmamap_unload(tag, map);
1064 1.1 fvdl bus_dmamap_destroy(tag, map);
1065 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1066 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1067 1.1 fvdl }
1068