agp.c revision 1.56 1 1.56 cegger /* $NetBSD: agp.c,v 1.56 2008/04/10 19:13:36 cegger Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.56 cegger __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.56 2008/04/10 19:13:36 cegger Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <uvm/uvm_extern.h>
83 1.1 fvdl
84 1.1 fvdl #include <dev/pci/pcireg.h>
85 1.1 fvdl #include <dev/pci/pcivar.h>
86 1.1 fvdl #include <dev/pci/agpvar.h>
87 1.1 fvdl #include <dev/pci/agpreg.h>
88 1.1 fvdl #include <dev/pci/pcidevs.h>
89 1.1 fvdl
90 1.49 ad #include <sys/bus.h>
91 1.25 thorpej
92 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 1.1 fvdl
94 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
95 1.1 fvdl /* XXXfvdl get rid of this one. */
96 1.1 fvdl
97 1.1 fvdl extern struct cfdriver agp_cd;
98 1.17 gehenna
99 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
100 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
101 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
103 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
104 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
106 1.55 dyoung static bool agp_resume(device_t PMF_FN_PROTO);
107 1.1 fvdl
108 1.7 thorpej #include "agp_ali.h"
109 1.7 thorpej #include "agp_amd.h"
110 1.7 thorpej #include "agp_i810.h"
111 1.7 thorpej #include "agp_intel.h"
112 1.7 thorpej #include "agp_sis.h"
113 1.7 thorpej #include "agp_via.h"
114 1.47 kiyohara #include "agp_amd64.h"
115 1.7 thorpej
116 1.5 thorpej const struct agp_product {
117 1.5 thorpej uint32_t ap_vendor;
118 1.5 thorpej uint32_t ap_product;
119 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
120 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
121 1.5 thorpej } agp_products[] = {
122 1.7 thorpej #if NAGP_ALI > 0
123 1.5 thorpej { PCI_VENDOR_ALI, -1,
124 1.5 thorpej NULL, agp_ali_attach },
125 1.7 thorpej #endif
126 1.5 thorpej
127 1.51 joerg #if NAGP_AMD64 > 0
128 1.51 joerg { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
129 1.51 joerg agp_amd64_match, agp_amd64_attach },
130 1.51 joerg #endif
131 1.51 joerg
132 1.7 thorpej #if NAGP_AMD > 0
133 1.5 thorpej { PCI_VENDOR_AMD, -1,
134 1.5 thorpej agp_amd_match, agp_amd_attach },
135 1.7 thorpej #endif
136 1.5 thorpej
137 1.7 thorpej #if NAGP_I810 > 0
138 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
139 1.5 thorpej NULL, agp_i810_attach },
140 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
141 1.5 thorpej NULL, agp_i810_attach },
142 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
143 1.5 thorpej NULL, agp_i810_attach },
144 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
145 1.5 thorpej NULL, agp_i810_attach },
146 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
147 1.13 augustss NULL, agp_i810_attach },
148 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
149 1.11 fvdl NULL, agp_i810_attach },
150 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
151 1.29 hannken NULL, agp_i810_attach },
152 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
153 1.31 tron NULL, agp_i810_attach },
154 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
155 1.23 scw NULL, agp_i810_attach },
156 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
157 1.37 christos NULL, agp_i810_attach },
158 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
159 1.37 christos NULL, agp_i810_attach },
160 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
161 1.39 simonb NULL, agp_i810_attach },
162 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
163 1.39 simonb NULL, agp_i810_attach },
164 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
165 1.48 markd NULL, agp_i810_attach },
166 1.51 joerg { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
167 1.51 joerg NULL, agp_i810_attach },
168 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
169 1.50 jnemeth NULL, agp_i810_attach },
170 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
171 1.52 markd NULL, agp_i810_attach },
172 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
173 1.52 markd NULL, agp_i810_attach },
174 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
175 1.52 markd NULL, agp_i810_attach },
176 1.7 thorpej #endif
177 1.5 thorpej
178 1.7 thorpej #if NAGP_INTEL > 0
179 1.5 thorpej { PCI_VENDOR_INTEL, -1,
180 1.5 thorpej NULL, agp_intel_attach },
181 1.7 thorpej #endif
182 1.5 thorpej
183 1.51 joerg #if NAGP_AMD64 > 0
184 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
185 1.51 joerg agp_amd64_match, agp_amd64_attach },
186 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
187 1.51 joerg agp_amd64_match, agp_amd64_attach },
188 1.7 thorpej #endif
189 1.5 thorpej
190 1.47 kiyohara #if NAGP_AMD64 > 0
191 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
192 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
193 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
194 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
195 1.51 joerg #endif
196 1.51 joerg
197 1.51 joerg #if NAGP_SIS > 0
198 1.51 joerg { PCI_VENDOR_SIS, -1,
199 1.51 joerg NULL, agp_sis_attach },
200 1.51 joerg #endif
201 1.51 joerg
202 1.51 joerg #if NAGP_AMD64 > 0
203 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
204 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
205 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
206 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
207 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
208 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
209 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
210 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
211 1.47 kiyohara #endif
212 1.47 kiyohara
213 1.51 joerg #if NAGP_VIA > 0
214 1.51 joerg { PCI_VENDOR_VIATECH, -1,
215 1.51 joerg NULL, agp_via_attach },
216 1.51 joerg #endif
217 1.51 joerg
218 1.5 thorpej { 0, 0,
219 1.5 thorpej NULL, NULL },
220 1.5 thorpej };
221 1.5 thorpej
222 1.5 thorpej static const struct agp_product *
223 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
224 1.5 thorpej {
225 1.5 thorpej const struct agp_product *ap;
226 1.5 thorpej
227 1.5 thorpej /* First find the vendor. */
228 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
229 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
230 1.5 thorpej break;
231 1.5 thorpej }
232 1.5 thorpej
233 1.5 thorpej if (ap->ap_attach == NULL)
234 1.5 thorpej return (NULL);
235 1.5 thorpej
236 1.5 thorpej /* Now find the product within the vendor's domain. */
237 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
238 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
239 1.5 thorpej /* Ran out of this vendor's section of the table. */
240 1.5 thorpej return (NULL);
241 1.5 thorpej }
242 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
243 1.5 thorpej /* Exact match. */
244 1.5 thorpej break;
245 1.5 thorpej }
246 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
247 1.5 thorpej /* Wildcard match. */
248 1.5 thorpej break;
249 1.5 thorpej }
250 1.5 thorpej }
251 1.5 thorpej
252 1.5 thorpej if (ap->ap_attach == NULL)
253 1.5 thorpej return (NULL);
254 1.5 thorpej
255 1.5 thorpej /* Now let the product-specific driver filter the match. */
256 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
257 1.5 thorpej return (NULL);
258 1.5 thorpej
259 1.5 thorpej return (ap);
260 1.5 thorpej }
261 1.5 thorpej
262 1.35 thorpej static int
263 1.43 christos agpmatch(struct device *parent, struct cfdata *match,
264 1.42 christos void *aux)
265 1.1 fvdl {
266 1.5 thorpej struct agpbus_attach_args *apa = aux;
267 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
268 1.1 fvdl
269 1.5 thorpej if (agp_lookup(pa) == NULL)
270 1.5 thorpej return (0);
271 1.1 fvdl
272 1.5 thorpej return (1);
273 1.1 fvdl }
274 1.1 fvdl
275 1.35 thorpej static const int agp_max[][2] = {
276 1.1 fvdl {0, 0},
277 1.1 fvdl {32, 4},
278 1.1 fvdl {64, 28},
279 1.1 fvdl {128, 96},
280 1.1 fvdl {256, 204},
281 1.1 fvdl {512, 440},
282 1.1 fvdl {1024, 942},
283 1.1 fvdl {2048, 1920},
284 1.1 fvdl {4096, 3932}
285 1.1 fvdl };
286 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
287 1.1 fvdl
288 1.35 thorpej static void
289 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
290 1.1 fvdl {
291 1.5 thorpej struct agpbus_attach_args *apa = aux;
292 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
293 1.1 fvdl struct agp_softc *sc = (void *)self;
294 1.5 thorpej const struct agp_product *ap;
295 1.1 fvdl int memsize, i, ret;
296 1.1 fvdl
297 1.5 thorpej ap = agp_lookup(pa);
298 1.5 thorpej if (ap == NULL) {
299 1.5 thorpej printf("\n");
300 1.5 thorpej panic("agpattach: impossible");
301 1.5 thorpej }
302 1.1 fvdl
303 1.24 thorpej aprint_naive(": AGP controller\n");
304 1.24 thorpej
305 1.1 fvdl sc->as_dmat = pa->pa_dmat;
306 1.1 fvdl sc->as_pc = pa->pa_pc;
307 1.1 fvdl sc->as_tag = pa->pa_tag;
308 1.1 fvdl sc->as_id = pa->pa_id;
309 1.1 fvdl
310 1.1 fvdl /*
311 1.1 fvdl * Work out an upper bound for agp memory allocation. This
312 1.1 fvdl * uses a heurisitc table from the Linux driver.
313 1.1 fvdl */
314 1.1 fvdl memsize = ptoa(physmem) >> 20;
315 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
316 1.1 fvdl if (memsize <= agp_max[i][0])
317 1.1 fvdl break;
318 1.1 fvdl }
319 1.1 fvdl if (i == agp_max_size)
320 1.1 fvdl i = agp_max_size - 1;
321 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
322 1.1 fvdl
323 1.1 fvdl /*
324 1.46 xtraeme * The mutex is used to prevent re-entry to
325 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
326 1.1 fvdl */
327 1.53 ad mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
328 1.1 fvdl
329 1.1 fvdl TAILQ_INIT(&sc->as_memory);
330 1.1 fvdl
331 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
332 1.1 fvdl if (ret == 0)
333 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
334 1.1 fvdl (unsigned long)sc->as_apaddr,
335 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
336 1.1 fvdl else
337 1.1 fvdl sc->as_chipc = NULL;
338 1.54 jmcneill
339 1.54 jmcneill if (!device_pmf_is_registered(self)) {
340 1.54 jmcneill if (!pmf_device_register(self, NULL, agp_resume))
341 1.54 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
342 1.54 jmcneill }
343 1.1 fvdl }
344 1.30 tron
345 1.35 thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
346 1.35 thorpej agpmatch, agpattach, NULL, NULL);
347 1.35 thorpej
348 1.1 fvdl int
349 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
350 1.1 fvdl {
351 1.1 fvdl /*
352 1.18 nathanw * Find the aperture. Don't map it (yet), this would
353 1.11 fvdl * eat KVA.
354 1.1 fvdl */
355 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
356 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
357 1.11 fvdl &sc->as_apflags) != 0)
358 1.1 fvdl return ENXIO;
359 1.8 drochner
360 1.11 fvdl sc->as_apt = pa->pa_memt;
361 1.11 fvdl
362 1.1 fvdl return 0;
363 1.1 fvdl }
364 1.1 fvdl
365 1.1 fvdl struct agp_gatt *
366 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
367 1.1 fvdl {
368 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
369 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
370 1.1 fvdl struct agp_gatt *gatt;
371 1.45 christos void *virtual;
372 1.1 fvdl int dummyseg;
373 1.1 fvdl
374 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
375 1.1 fvdl if (!gatt)
376 1.1 fvdl return NULL;
377 1.1 fvdl gatt->ag_entries = entries;
378 1.1 fvdl
379 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
380 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
381 1.38 tron &gatt->ag_dmaseg, 1, &dummyseg) != 0)
382 1.1 fvdl return NULL;
383 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
384 1.1 fvdl
385 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
386 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
387 1.1 fvdl agp_flush_cache();
388 1.1 fvdl
389 1.1 fvdl return gatt;
390 1.1 fvdl }
391 1.1 fvdl
392 1.1 fvdl void
393 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
394 1.1 fvdl {
395 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
396 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
397 1.1 fvdl free(gatt, M_AGP);
398 1.1 fvdl }
399 1.1 fvdl
400 1.1 fvdl
401 1.1 fvdl int
402 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
403 1.1 fvdl {
404 1.46 xtraeme mutex_destroy(&sc->as_mtx);
405 1.1 fvdl agp_flush_cache();
406 1.1 fvdl return 0;
407 1.1 fvdl }
408 1.1 fvdl
409 1.1 fvdl static int
410 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
411 1.1 fvdl {
412 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
413 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
414 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
415 1.26 tron NULL, NULL))
416 1.1 fvdl return 1;
417 1.1 fvdl
418 1.1 fvdl return 0;
419 1.1 fvdl }
420 1.1 fvdl
421 1.1 fvdl int
422 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
423 1.1 fvdl {
424 1.1 fvdl struct pci_attach_args pa;
425 1.1 fvdl pcireg_t tstatus, mstatus;
426 1.1 fvdl pcireg_t command;
427 1.1 fvdl int rq, sba, fw, rate, capoff;
428 1.1 fvdl
429 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
430 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
431 1.1 fvdl &capoff, NULL) == 0) {
432 1.56 cegger aprint_error_dev(&sc->as_dev, "can't find display\n");
433 1.1 fvdl return ENXIO;
434 1.1 fvdl }
435 1.1 fvdl
436 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
437 1.1 fvdl sc->as_capoff + AGP_STATUS);
438 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
439 1.1 fvdl capoff + AGP_STATUS);
440 1.1 fvdl
441 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
442 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
443 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
444 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
445 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
446 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
447 1.1 fvdl
448 1.1 fvdl /* Set SBA if all three can deal with SBA */
449 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
450 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
451 1.1 fvdl & AGP_MODE_GET_SBA(mode));
452 1.1 fvdl
453 1.1 fvdl /* Similar for FW */
454 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
455 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
456 1.1 fvdl & AGP_MODE_GET_FW(mode));
457 1.1 fvdl
458 1.1 fvdl /* Figure out the max rate */
459 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
460 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
461 1.1 fvdl & AGP_MODE_GET_RATE(mode));
462 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
463 1.1 fvdl rate = AGP_MODE_RATE_4x;
464 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
465 1.1 fvdl rate = AGP_MODE_RATE_2x;
466 1.1 fvdl else
467 1.1 fvdl rate = AGP_MODE_RATE_1x;
468 1.1 fvdl
469 1.1 fvdl /* Construct the new mode word and tell the hardware */
470 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
471 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
472 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
473 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
474 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
475 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
476 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
477 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
478 1.1 fvdl
479 1.1 fvdl return 0;
480 1.1 fvdl }
481 1.1 fvdl
482 1.1 fvdl struct agp_memory *
483 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
484 1.1 fvdl {
485 1.1 fvdl struct agp_memory *mem;
486 1.1 fvdl
487 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
488 1.1 fvdl return 0;
489 1.1 fvdl
490 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
491 1.1 fvdl return 0;
492 1.1 fvdl
493 1.1 fvdl if (type != 0) {
494 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
495 1.1 fvdl type);
496 1.1 fvdl return 0;
497 1.1 fvdl }
498 1.1 fvdl
499 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
500 1.1 fvdl if (mem == NULL)
501 1.1 fvdl return NULL;
502 1.1 fvdl
503 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
504 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
505 1.1 fvdl free(mem, M_AGP);
506 1.1 fvdl return NULL;
507 1.1 fvdl }
508 1.1 fvdl
509 1.1 fvdl mem->am_id = sc->as_nextid++;
510 1.1 fvdl mem->am_size = size;
511 1.1 fvdl mem->am_type = 0;
512 1.1 fvdl mem->am_physical = 0;
513 1.1 fvdl mem->am_offset = 0;
514 1.1 fvdl mem->am_is_bound = 0;
515 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
516 1.1 fvdl sc->as_allocated += size;
517 1.1 fvdl
518 1.1 fvdl return mem;
519 1.1 fvdl }
520 1.1 fvdl
521 1.1 fvdl int
522 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
523 1.1 fvdl {
524 1.1 fvdl if (mem->am_is_bound)
525 1.1 fvdl return EBUSY;
526 1.1 fvdl
527 1.1 fvdl sc->as_allocated -= mem->am_size;
528 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
529 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
530 1.1 fvdl free(mem, M_AGP);
531 1.1 fvdl return 0;
532 1.1 fvdl }
533 1.1 fvdl
534 1.1 fvdl int
535 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
536 1.1 fvdl off_t offset)
537 1.1 fvdl {
538 1.1 fvdl off_t i, k;
539 1.1 fvdl bus_size_t done, j;
540 1.1 fvdl int error;
541 1.1 fvdl bus_dma_segment_t *segs, *seg;
542 1.1 fvdl bus_addr_t pa;
543 1.1 fvdl int contigpages, nseg;
544 1.1 fvdl
545 1.46 xtraeme mutex_enter(&sc->as_mtx);
546 1.1 fvdl
547 1.1 fvdl if (mem->am_is_bound) {
548 1.56 cegger aprint_error_dev(&sc->as_dev, "memory already bound\n");
549 1.46 xtraeme mutex_exit(&sc->as_mtx);
550 1.1 fvdl return EINVAL;
551 1.1 fvdl }
552 1.34 perry
553 1.1 fvdl if (offset < 0
554 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
555 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
556 1.56 cegger aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n",
557 1.56 cegger (unsigned long) offset);
558 1.46 xtraeme mutex_exit(&sc->as_mtx);
559 1.1 fvdl return EINVAL;
560 1.1 fvdl }
561 1.1 fvdl
562 1.1 fvdl /*
563 1.1 fvdl * XXXfvdl
564 1.1 fvdl * The memory here needs to be directly accessable from the
565 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
566 1.1 fvdl * However, it need not be contiguous, since individual pages
567 1.1 fvdl * are translated using the GATT.
568 1.1 fvdl *
569 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
570 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
571 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
572 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
573 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
574 1.1 fvdl * a bus_dma_segment per page would be overkill.
575 1.1 fvdl */
576 1.1 fvdl
577 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
578 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
579 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
580 1.16 drochner if (segs == NULL) {
581 1.46 xtraeme mutex_exit(&sc->as_mtx);
582 1.10 thorpej return ENOMEM;
583 1.16 drochner }
584 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
585 1.4 drochner segs, nseg, &mem->am_nseg,
586 1.15 drochner contigpages > 1 ?
587 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
588 1.4 drochner free(segs, M_AGP);
589 1.1 fvdl continue;
590 1.4 drochner }
591 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
592 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
593 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
594 1.4 drochner free(segs, M_AGP);
595 1.1 fvdl continue;
596 1.1 fvdl }
597 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
598 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
599 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
600 1.1 fvdl mem->am_size);
601 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
602 1.4 drochner free(segs, M_AGP);
603 1.1 fvdl continue;
604 1.1 fvdl }
605 1.1 fvdl mem->am_dmaseg = segs;
606 1.1 fvdl break;
607 1.1 fvdl }
608 1.1 fvdl
609 1.1 fvdl if (contigpages == 0) {
610 1.46 xtraeme mutex_exit(&sc->as_mtx);
611 1.1 fvdl return ENOMEM;
612 1.1 fvdl }
613 1.1 fvdl
614 1.1 fvdl
615 1.1 fvdl /*
616 1.1 fvdl * Bind the individual pages and flush the chipset's
617 1.1 fvdl * TLB.
618 1.1 fvdl */
619 1.1 fvdl done = 0;
620 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
621 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
622 1.1 fvdl /*
623 1.1 fvdl * Install entries in the GATT, making sure that if
624 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
625 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
626 1.1 fvdl * entries.
627 1.1 fvdl */
628 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
629 1.1 fvdl j += AGP_PAGE_SIZE) {
630 1.1 fvdl pa = seg->ds_addr + j;
631 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
632 1.3 drochner (unsigned long)(offset + done + j),
633 1.40 christos (unsigned long)pa));
634 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
635 1.1 fvdl if (error) {
636 1.1 fvdl /*
637 1.1 fvdl * Bail out. Reverse all the mappings
638 1.1 fvdl * and unwire the pages.
639 1.1 fvdl */
640 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
641 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
642 1.1 fvdl
643 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
644 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
645 1.4 drochner mem->am_size);
646 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
647 1.4 drochner mem->am_nseg);
648 1.4 drochner free(mem->am_dmaseg, M_AGP);
649 1.46 xtraeme mutex_exit(&sc->as_mtx);
650 1.1 fvdl return error;
651 1.1 fvdl }
652 1.1 fvdl }
653 1.1 fvdl done += seg->ds_len;
654 1.1 fvdl }
655 1.1 fvdl
656 1.1 fvdl /*
657 1.32 wiz * Flush the CPU cache since we are providing a new mapping
658 1.1 fvdl * for these pages.
659 1.1 fvdl */
660 1.1 fvdl agp_flush_cache();
661 1.1 fvdl
662 1.1 fvdl /*
663 1.1 fvdl * Make sure the chipset gets the new mappings.
664 1.1 fvdl */
665 1.1 fvdl AGP_FLUSH_TLB(sc);
666 1.1 fvdl
667 1.1 fvdl mem->am_offset = offset;
668 1.1 fvdl mem->am_is_bound = 1;
669 1.1 fvdl
670 1.46 xtraeme mutex_exit(&sc->as_mtx);
671 1.1 fvdl
672 1.1 fvdl return 0;
673 1.1 fvdl }
674 1.1 fvdl
675 1.1 fvdl int
676 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
677 1.1 fvdl {
678 1.1 fvdl int i;
679 1.1 fvdl
680 1.46 xtraeme mutex_enter(&sc->as_mtx);
681 1.1 fvdl
682 1.1 fvdl if (!mem->am_is_bound) {
683 1.56 cegger aprint_error_dev(&sc->as_dev, "memory is not bound\n");
684 1.46 xtraeme mutex_exit(&sc->as_mtx);
685 1.1 fvdl return EINVAL;
686 1.1 fvdl }
687 1.1 fvdl
688 1.1 fvdl
689 1.1 fvdl /*
690 1.1 fvdl * Unbind the individual pages and flush the chipset's
691 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
692 1.1 fvdl */
693 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
694 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
695 1.34 perry
696 1.1 fvdl agp_flush_cache();
697 1.1 fvdl AGP_FLUSH_TLB(sc);
698 1.1 fvdl
699 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
700 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
701 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
702 1.1 fvdl
703 1.1 fvdl free(mem->am_dmaseg, M_AGP);
704 1.1 fvdl
705 1.1 fvdl mem->am_offset = 0;
706 1.1 fvdl mem->am_is_bound = 0;
707 1.1 fvdl
708 1.46 xtraeme mutex_exit(&sc->as_mtx);
709 1.1 fvdl
710 1.1 fvdl return 0;
711 1.1 fvdl }
712 1.1 fvdl
713 1.1 fvdl /* Helper functions for implementing user/kernel api */
714 1.1 fvdl
715 1.1 fvdl static int
716 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
717 1.1 fvdl {
718 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
719 1.1 fvdl return EBUSY;
720 1.1 fvdl sc->as_state = state;
721 1.1 fvdl
722 1.1 fvdl return 0;
723 1.1 fvdl }
724 1.1 fvdl
725 1.1 fvdl static int
726 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
727 1.1 fvdl {
728 1.1 fvdl
729 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
730 1.1 fvdl return 0;
731 1.1 fvdl
732 1.1 fvdl if (sc->as_state != state)
733 1.1 fvdl return EBUSY;
734 1.1 fvdl
735 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
736 1.1 fvdl return 0;
737 1.1 fvdl }
738 1.1 fvdl
739 1.1 fvdl static struct agp_memory *
740 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
741 1.1 fvdl {
742 1.1 fvdl struct agp_memory *mem;
743 1.1 fvdl
744 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
745 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
746 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
747 1.1 fvdl if (mem->am_id == id)
748 1.1 fvdl return mem;
749 1.1 fvdl }
750 1.1 fvdl return 0;
751 1.1 fvdl }
752 1.1 fvdl
753 1.1 fvdl /* Implementation of the userland ioctl api */
754 1.1 fvdl
755 1.1 fvdl static int
756 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
757 1.1 fvdl {
758 1.1 fvdl memset(info, 0, sizeof *info);
759 1.1 fvdl info->bridge_id = sc->as_id;
760 1.3 drochner if (sc->as_capoff != 0)
761 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
762 1.3 drochner sc->as_capoff + AGP_STATUS);
763 1.3 drochner else
764 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
765 1.1 fvdl info->aper_base = sc->as_apaddr;
766 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
767 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
768 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
769 1.1 fvdl
770 1.1 fvdl return 0;
771 1.1 fvdl }
772 1.1 fvdl
773 1.1 fvdl static int
774 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
775 1.1 fvdl {
776 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
777 1.1 fvdl }
778 1.1 fvdl
779 1.1 fvdl static int
780 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
781 1.1 fvdl {
782 1.1 fvdl struct agp_memory *mem;
783 1.1 fvdl
784 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
785 1.1 fvdl alloc->type,
786 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
787 1.1 fvdl if (mem) {
788 1.1 fvdl alloc->key = mem->am_id;
789 1.1 fvdl alloc->physical = mem->am_physical;
790 1.1 fvdl return 0;
791 1.1 fvdl } else {
792 1.1 fvdl return ENOMEM;
793 1.1 fvdl }
794 1.1 fvdl }
795 1.1 fvdl
796 1.1 fvdl static int
797 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
798 1.1 fvdl {
799 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
800 1.1 fvdl
801 1.1 fvdl if (mem) {
802 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
803 1.1 fvdl return 0;
804 1.1 fvdl } else {
805 1.1 fvdl return ENOENT;
806 1.1 fvdl }
807 1.1 fvdl }
808 1.1 fvdl
809 1.1 fvdl static int
810 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
811 1.1 fvdl {
812 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
813 1.1 fvdl
814 1.1 fvdl if (!mem)
815 1.1 fvdl return ENOENT;
816 1.1 fvdl
817 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
818 1.1 fvdl }
819 1.1 fvdl
820 1.1 fvdl static int
821 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
822 1.1 fvdl {
823 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
824 1.1 fvdl
825 1.1 fvdl if (!mem)
826 1.1 fvdl return ENOENT;
827 1.1 fvdl
828 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
829 1.1 fvdl }
830 1.1 fvdl
831 1.35 thorpej static int
832 1.43 christos agpopen(dev_t dev, int oflags, int devtype,
833 1.43 christos struct lwp *l)
834 1.1 fvdl {
835 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
836 1.9 thorpej
837 1.9 thorpej if (sc == NULL)
838 1.9 thorpej return ENXIO;
839 1.1 fvdl
840 1.1 fvdl if (sc->as_chipc == NULL)
841 1.1 fvdl return ENXIO;
842 1.1 fvdl
843 1.1 fvdl if (!sc->as_isopen)
844 1.1 fvdl sc->as_isopen = 1;
845 1.1 fvdl else
846 1.1 fvdl return EBUSY;
847 1.1 fvdl
848 1.1 fvdl return 0;
849 1.1 fvdl }
850 1.1 fvdl
851 1.35 thorpej static int
852 1.43 christos agpclose(dev_t dev, int fflag, int devtype,
853 1.43 christos struct lwp *l)
854 1.1 fvdl {
855 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
856 1.16 drochner struct agp_memory *mem;
857 1.1 fvdl
858 1.1 fvdl /*
859 1.1 fvdl * Clear the GATT and force release on last close
860 1.1 fvdl */
861 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
862 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
863 1.16 drochner if (mem->am_is_bound) {
864 1.16 drochner printf("agpclose: mem %d is bound\n",
865 1.16 drochner mem->am_id);
866 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
867 1.16 drochner }
868 1.16 drochner /*
869 1.16 drochner * XXX it is not documented, but if the protocol allows
870 1.16 drochner * allocate->acquire->bind, it would be possible that
871 1.16 drochner * memory ranges are allocated by the kernel here,
872 1.16 drochner * which we shouldn't free. We'd have to keep track of
873 1.16 drochner * the memory range's owner.
874 1.16 drochner * The kernel API is unsed yet, so we get away with
875 1.16 drochner * freeing all.
876 1.16 drochner */
877 1.16 drochner AGP_FREE_MEMORY(sc, mem);
878 1.16 drochner }
879 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
880 1.16 drochner }
881 1.1 fvdl sc->as_isopen = 0;
882 1.1 fvdl
883 1.1 fvdl return 0;
884 1.1 fvdl }
885 1.1 fvdl
886 1.35 thorpej static int
887 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
888 1.1 fvdl {
889 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
890 1.1 fvdl
891 1.1 fvdl if (sc == NULL)
892 1.1 fvdl return ENODEV;
893 1.1 fvdl
894 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
895 1.1 fvdl return EPERM;
896 1.1 fvdl
897 1.1 fvdl switch (cmd) {
898 1.1 fvdl case AGPIOC_INFO:
899 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
900 1.1 fvdl
901 1.1 fvdl case AGPIOC_ACQUIRE:
902 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
903 1.1 fvdl
904 1.1 fvdl case AGPIOC_RELEASE:
905 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
906 1.1 fvdl
907 1.1 fvdl case AGPIOC_SETUP:
908 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
909 1.1 fvdl
910 1.1 fvdl case AGPIOC_ALLOCATE:
911 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
912 1.1 fvdl
913 1.1 fvdl case AGPIOC_DEALLOCATE:
914 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
915 1.1 fvdl
916 1.1 fvdl case AGPIOC_BIND:
917 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
918 1.1 fvdl
919 1.1 fvdl case AGPIOC_UNBIND:
920 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
921 1.1 fvdl
922 1.1 fvdl }
923 1.1 fvdl
924 1.1 fvdl return EINVAL;
925 1.1 fvdl }
926 1.1 fvdl
927 1.35 thorpej static paddr_t
928 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
929 1.1 fvdl {
930 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
931 1.1 fvdl
932 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
933 1.1 fvdl return -1;
934 1.6 thorpej
935 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
936 1.6 thorpej BUS_SPACE_MAP_LINEAR));
937 1.1 fvdl }
938 1.1 fvdl
939 1.35 thorpej const struct cdevsw agp_cdevsw = {
940 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
941 1.41 christos nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
942 1.35 thorpej };
943 1.35 thorpej
944 1.1 fvdl /* Implementation of the kernel api */
945 1.1 fvdl
946 1.1 fvdl void *
947 1.1 fvdl agp_find_device(int unit)
948 1.1 fvdl {
949 1.1 fvdl return device_lookup(&agp_cd, unit);
950 1.1 fvdl }
951 1.1 fvdl
952 1.1 fvdl enum agp_acquire_state
953 1.1 fvdl agp_state(void *devcookie)
954 1.1 fvdl {
955 1.1 fvdl struct agp_softc *sc = devcookie;
956 1.1 fvdl return sc->as_state;
957 1.1 fvdl }
958 1.1 fvdl
959 1.1 fvdl void
960 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
961 1.1 fvdl {
962 1.1 fvdl struct agp_softc *sc = devcookie;
963 1.1 fvdl
964 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
965 1.1 fvdl sc->as_capoff + AGP_STATUS);
966 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
967 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
968 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
969 1.1 fvdl info->ai_memory_used = sc->as_allocated;
970 1.1 fvdl }
971 1.1 fvdl
972 1.1 fvdl int
973 1.1 fvdl agp_acquire(void *dev)
974 1.1 fvdl {
975 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
976 1.1 fvdl }
977 1.1 fvdl
978 1.1 fvdl int
979 1.1 fvdl agp_release(void *dev)
980 1.1 fvdl {
981 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
982 1.1 fvdl }
983 1.1 fvdl
984 1.1 fvdl int
985 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
986 1.1 fvdl {
987 1.1 fvdl struct agp_softc *sc = dev;
988 1.1 fvdl
989 1.1 fvdl return AGP_ENABLE(sc, mode);
990 1.1 fvdl }
991 1.1 fvdl
992 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
993 1.1 fvdl {
994 1.1 fvdl struct agp_softc *sc = dev;
995 1.1 fvdl
996 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
997 1.1 fvdl }
998 1.1 fvdl
999 1.1 fvdl void agp_free_memory(void *dev, void *handle)
1000 1.1 fvdl {
1001 1.1 fvdl struct agp_softc *sc = dev;
1002 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1003 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
1004 1.1 fvdl }
1005 1.1 fvdl
1006 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
1007 1.1 fvdl {
1008 1.1 fvdl struct agp_softc *sc = dev;
1009 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1010 1.1 fvdl
1011 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
1012 1.1 fvdl }
1013 1.1 fvdl
1014 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
1015 1.1 fvdl {
1016 1.1 fvdl struct agp_softc *sc = dev;
1017 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1018 1.1 fvdl
1019 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
1020 1.1 fvdl }
1021 1.1 fvdl
1022 1.43 christos void agp_memory_info(void *dev, void *handle,
1023 1.42 christos struct agp_memory_info *mi)
1024 1.1 fvdl {
1025 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
1026 1.1 fvdl
1027 1.1 fvdl mi->ami_size = mem->am_size;
1028 1.1 fvdl mi->ami_physical = mem->am_physical;
1029 1.1 fvdl mi->ami_offset = mem->am_offset;
1030 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1031 1.1 fvdl }
1032 1.1 fvdl
1033 1.1 fvdl int
1034 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1035 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1036 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1037 1.1 fvdl
1038 1.1 fvdl {
1039 1.1 fvdl int error, level = 0;
1040 1.1 fvdl
1041 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1042 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1043 1.1 fvdl goto out;
1044 1.1 fvdl level++;
1045 1.1 fvdl
1046 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1047 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1048 1.1 fvdl goto out;
1049 1.1 fvdl level++;
1050 1.1 fvdl
1051 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1052 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1053 1.1 fvdl goto out;
1054 1.1 fvdl level++;
1055 1.1 fvdl
1056 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1057 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1058 1.1 fvdl goto out;
1059 1.1 fvdl
1060 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1061 1.1 fvdl
1062 1.1 fvdl return 0;
1063 1.1 fvdl out:
1064 1.1 fvdl switch (level) {
1065 1.1 fvdl case 3:
1066 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1067 1.1 fvdl /* FALLTHROUGH */
1068 1.1 fvdl case 2:
1069 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1070 1.1 fvdl /* FALLTHROUGH */
1071 1.1 fvdl case 1:
1072 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1073 1.1 fvdl break;
1074 1.1 fvdl default:
1075 1.1 fvdl break;
1076 1.1 fvdl }
1077 1.1 fvdl
1078 1.1 fvdl return error;
1079 1.1 fvdl }
1080 1.1 fvdl
1081 1.1 fvdl void
1082 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1083 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1084 1.1 fvdl {
1085 1.1 fvdl
1086 1.1 fvdl bus_dmamap_unload(tag, map);
1087 1.1 fvdl bus_dmamap_destroy(tag, map);
1088 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1089 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1090 1.1 fvdl }
1091 1.54 jmcneill
1092 1.54 jmcneill static bool
1093 1.55 dyoung agp_resume(device_t dv PMF_FN_ARGS)
1094 1.54 jmcneill {
1095 1.54 jmcneill agp_flush_cache();
1096 1.54 jmcneill
1097 1.54 jmcneill return true;
1098 1.54 jmcneill }
1099