Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.57
      1  1.57     njoly /*	$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $	*/
      2   1.1      fvdl 
      3   1.1      fvdl /*-
      4   1.1      fvdl  * Copyright (c) 2000 Doug Rabson
      5   1.1      fvdl  * All rights reserved.
      6   1.1      fvdl  *
      7   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      8   1.1      fvdl  * modification, are permitted provided that the following conditions
      9   1.1      fvdl  * are met:
     10   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     11   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     12   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     15   1.1      fvdl  *
     16   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      fvdl  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      fvdl  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      fvdl  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      fvdl  * SUCH DAMAGE.
     27   1.1      fvdl  *
     28   1.1      fvdl  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29   1.1      fvdl  */
     30   1.1      fvdl 
     31   1.1      fvdl /*
     32   1.1      fvdl  * Copyright (c) 2001 Wasabi Systems, Inc.
     33   1.1      fvdl  * All rights reserved.
     34   1.1      fvdl  *
     35   1.1      fvdl  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36   1.1      fvdl  *
     37   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
     38   1.1      fvdl  * modification, are permitted provided that the following conditions
     39   1.1      fvdl  * are met:
     40   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     41   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     42   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     43   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     44   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     45   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     46   1.1      fvdl  *    must display the following acknowledgement:
     47   1.1      fvdl  *      This product includes software developed for the NetBSD Project by
     48   1.1      fvdl  *      Wasabi Systems, Inc.
     49   1.1      fvdl  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50   1.1      fvdl  *    or promote products derived from this software without specific prior
     51   1.1      fvdl  *    written permission.
     52   1.1      fvdl  *
     53   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55   1.1      fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56   1.1      fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63   1.1      fvdl  * POSSIBILITY OF SUCH DAMAGE.
     64   1.1      fvdl  */
     65   1.1      fvdl 
     66  1.12     lukem 
     67  1.12     lukem #include <sys/cdefs.h>
     68  1.57     njoly __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $");
     69   1.1      fvdl 
     70   1.1      fvdl #include <sys/param.h>
     71   1.1      fvdl #include <sys/systm.h>
     72   1.1      fvdl #include <sys/malloc.h>
     73   1.1      fvdl #include <sys/kernel.h>
     74   1.1      fvdl #include <sys/device.h>
     75   1.1      fvdl #include <sys/conf.h>
     76   1.1      fvdl #include <sys/ioctl.h>
     77   1.1      fvdl #include <sys/fcntl.h>
     78   1.1      fvdl #include <sys/agpio.h>
     79   1.1      fvdl #include <sys/proc.h>
     80  1.46   xtraeme #include <sys/mutex.h>
     81   1.1      fvdl 
     82   1.1      fvdl #include <uvm/uvm_extern.h>
     83   1.1      fvdl 
     84   1.1      fvdl #include <dev/pci/pcireg.h>
     85   1.1      fvdl #include <dev/pci/pcivar.h>
     86   1.1      fvdl #include <dev/pci/agpvar.h>
     87   1.1      fvdl #include <dev/pci/agpreg.h>
     88   1.1      fvdl #include <dev/pci/pcidevs.h>
     89   1.1      fvdl 
     90  1.49        ad #include <sys/bus.h>
     91  1.25   thorpej 
     92  1.25   thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93   1.1      fvdl 
     94   1.1      fvdl /* Helper functions for implementing chipset mini drivers. */
     95   1.1      fvdl /* XXXfvdl get rid of this one. */
     96   1.1      fvdl 
     97   1.1      fvdl extern struct cfdriver agp_cd;
     98  1.17   gehenna 
     99   1.1      fvdl static int agp_info_user(struct agp_softc *, agp_info *);
    100   1.1      fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
    101   1.1      fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102   1.1      fvdl static int agp_deallocate_user(struct agp_softc *, int);
    103   1.1      fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
    104   1.1      fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105   1.1      fvdl static int agpdev_match(struct pci_attach_args *);
    106  1.55    dyoung static bool agp_resume(device_t PMF_FN_PROTO);
    107   1.1      fvdl 
    108   1.7   thorpej #include "agp_ali.h"
    109   1.7   thorpej #include "agp_amd.h"
    110   1.7   thorpej #include "agp_i810.h"
    111   1.7   thorpej #include "agp_intel.h"
    112   1.7   thorpej #include "agp_sis.h"
    113   1.7   thorpej #include "agp_via.h"
    114  1.47  kiyohara #include "agp_amd64.h"
    115   1.7   thorpej 
    116   1.5   thorpej const struct agp_product {
    117   1.5   thorpej 	uint32_t	ap_vendor;
    118   1.5   thorpej 	uint32_t	ap_product;
    119   1.5   thorpej 	int		(*ap_match)(const struct pci_attach_args *);
    120   1.5   thorpej 	int		(*ap_attach)(struct device *, struct device *, void *);
    121   1.5   thorpej } agp_products[] = {
    122  1.57     njoly #if NAGP_AMD64 > 0
    123  1.57     njoly 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    124  1.57     njoly 	  agp_amd64_match,	agp_amd64_attach },
    125  1.57     njoly #endif
    126  1.57     njoly 
    127   1.7   thorpej #if NAGP_ALI > 0
    128   1.5   thorpej 	{ PCI_VENDOR_ALI,	-1,
    129   1.5   thorpej 	  NULL,			agp_ali_attach },
    130   1.7   thorpej #endif
    131   1.5   thorpej 
    132  1.51     joerg #if NAGP_AMD64 > 0
    133  1.51     joerg 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    134  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    135  1.51     joerg #endif
    136  1.51     joerg 
    137   1.7   thorpej #if NAGP_AMD > 0
    138   1.5   thorpej 	{ PCI_VENDOR_AMD,	-1,
    139   1.5   thorpej 	  agp_amd_match,	agp_amd_attach },
    140   1.7   thorpej #endif
    141   1.5   thorpej 
    142   1.7   thorpej #if NAGP_I810 > 0
    143   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    144   1.5   thorpej 	  NULL,			agp_i810_attach },
    145   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    146   1.5   thorpej 	  NULL,			agp_i810_attach },
    147   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    148   1.5   thorpej 	  NULL,			agp_i810_attach },
    149   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    150   1.5   thorpej 	  NULL,			agp_i810_attach },
    151  1.11      fvdl 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    152  1.13  augustss 	  NULL,			agp_i810_attach },
    153  1.13  augustss 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    154  1.11      fvdl 	  NULL,			agp_i810_attach },
    155  1.23       scw 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    156  1.29   hannken 	  NULL,			agp_i810_attach },
    157  1.29   hannken 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    158  1.31      tron 	  NULL,			agp_i810_attach },
    159  1.31      tron 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    160  1.23       scw 	  NULL,			agp_i810_attach },
    161  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    162  1.37  christos 	  NULL,			agp_i810_attach },
    163  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    164  1.37  christos 	  NULL,			agp_i810_attach },
    165  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    166  1.39    simonb 	  NULL,			agp_i810_attach },
    167  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    168  1.39    simonb 	  NULL,			agp_i810_attach },
    169  1.48     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    170  1.48     markd 	  NULL,			agp_i810_attach },
    171  1.51     joerg 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    172  1.51     joerg 	  NULL,			agp_i810_attach },
    173  1.50   jnemeth 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    174  1.50   jnemeth 	  NULL,			agp_i810_attach },
    175  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    176  1.52     markd 	  NULL,			agp_i810_attach },
    177  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    178  1.52     markd 	  NULL,			agp_i810_attach },
    179  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    180  1.52     markd 	  NULL,			agp_i810_attach },
    181   1.7   thorpej #endif
    182   1.5   thorpej 
    183   1.7   thorpej #if NAGP_INTEL > 0
    184   1.5   thorpej 	{ PCI_VENDOR_INTEL,	-1,
    185   1.5   thorpej 	  NULL,			agp_intel_attach },
    186   1.7   thorpej #endif
    187   1.5   thorpej 
    188  1.51     joerg #if NAGP_AMD64 > 0
    189  1.51     joerg 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    190  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    191  1.51     joerg 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    192  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    193   1.7   thorpej #endif
    194   1.5   thorpej 
    195  1.47  kiyohara #if NAGP_AMD64 > 0
    196  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    197  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    198  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    199  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    200  1.51     joerg #endif
    201  1.51     joerg 
    202  1.51     joerg #if NAGP_SIS > 0
    203  1.51     joerg 	{ PCI_VENDOR_SIS,	-1,
    204  1.51     joerg 	  NULL,			agp_sis_attach },
    205  1.51     joerg #endif
    206  1.51     joerg 
    207  1.51     joerg #if NAGP_AMD64 > 0
    208  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    209  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    210  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    211  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    212  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    213  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    214  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    215  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    216  1.47  kiyohara #endif
    217  1.47  kiyohara 
    218  1.51     joerg #if NAGP_VIA > 0
    219  1.51     joerg 	{ PCI_VENDOR_VIATECH,	-1,
    220  1.51     joerg 	  NULL,			agp_via_attach },
    221  1.51     joerg #endif
    222  1.51     joerg 
    223   1.5   thorpej 	{ 0,			0,
    224   1.5   thorpej 	  NULL,			NULL },
    225   1.5   thorpej };
    226   1.5   thorpej 
    227   1.5   thorpej static const struct agp_product *
    228   1.5   thorpej agp_lookup(const struct pci_attach_args *pa)
    229   1.5   thorpej {
    230   1.5   thorpej 	const struct agp_product *ap;
    231   1.5   thorpej 
    232   1.5   thorpej 	/* First find the vendor. */
    233   1.5   thorpej 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    234   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    235   1.5   thorpej 			break;
    236   1.5   thorpej 	}
    237   1.5   thorpej 
    238   1.5   thorpej 	if (ap->ap_attach == NULL)
    239   1.5   thorpej 		return (NULL);
    240   1.5   thorpej 
    241   1.5   thorpej 	/* Now find the product within the vendor's domain. */
    242   1.5   thorpej 	for (; ap->ap_attach != NULL; ap++) {
    243   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    244   1.5   thorpej 			/* Ran out of this vendor's section of the table. */
    245   1.5   thorpej 			return (NULL);
    246   1.5   thorpej 		}
    247   1.5   thorpej 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    248   1.5   thorpej 			/* Exact match. */
    249   1.5   thorpej 			break;
    250   1.5   thorpej 		}
    251   1.5   thorpej 		if (ap->ap_product == (uint32_t) -1) {
    252   1.5   thorpej 			/* Wildcard match. */
    253   1.5   thorpej 			break;
    254   1.5   thorpej 		}
    255   1.5   thorpej 	}
    256   1.5   thorpej 
    257   1.5   thorpej 	if (ap->ap_attach == NULL)
    258   1.5   thorpej 		return (NULL);
    259   1.5   thorpej 
    260   1.5   thorpej 	/* Now let the product-specific driver filter the match. */
    261   1.5   thorpej 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    262   1.5   thorpej 		return (NULL);
    263   1.5   thorpej 
    264   1.5   thorpej 	return (ap);
    265   1.5   thorpej }
    266   1.5   thorpej 
    267  1.35   thorpej static int
    268  1.43  christos agpmatch(struct device *parent, struct cfdata *match,
    269  1.42  christos     void *aux)
    270   1.1      fvdl {
    271   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    272   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    273   1.1      fvdl 
    274   1.5   thorpej 	if (agp_lookup(pa) == NULL)
    275   1.5   thorpej 		return (0);
    276   1.1      fvdl 
    277   1.5   thorpej 	return (1);
    278   1.1      fvdl }
    279   1.1      fvdl 
    280  1.35   thorpej static const int agp_max[][2] = {
    281   1.1      fvdl 	{0,	0},
    282   1.1      fvdl 	{32,	4},
    283   1.1      fvdl 	{64,	28},
    284   1.1      fvdl 	{128,	96},
    285   1.1      fvdl 	{256,	204},
    286   1.1      fvdl 	{512,	440},
    287   1.1      fvdl 	{1024,	942},
    288   1.1      fvdl 	{2048,	1920},
    289   1.1      fvdl 	{4096,	3932}
    290   1.1      fvdl };
    291   1.1      fvdl #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    292   1.1      fvdl 
    293  1.35   thorpej static void
    294   1.1      fvdl agpattach(struct device *parent, struct device *self, void *aux)
    295   1.1      fvdl {
    296   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    297   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    298   1.1      fvdl 	struct agp_softc *sc = (void *)self;
    299   1.5   thorpej 	const struct agp_product *ap;
    300   1.1      fvdl 	int memsize, i, ret;
    301   1.1      fvdl 
    302   1.5   thorpej 	ap = agp_lookup(pa);
    303   1.5   thorpej 	if (ap == NULL) {
    304   1.5   thorpej 		printf("\n");
    305   1.5   thorpej 		panic("agpattach: impossible");
    306   1.5   thorpej 	}
    307   1.1      fvdl 
    308  1.24   thorpej 	aprint_naive(": AGP controller\n");
    309  1.24   thorpej 
    310   1.1      fvdl 	sc->as_dmat = pa->pa_dmat;
    311   1.1      fvdl 	sc->as_pc = pa->pa_pc;
    312   1.1      fvdl 	sc->as_tag = pa->pa_tag;
    313   1.1      fvdl 	sc->as_id = pa->pa_id;
    314   1.1      fvdl 
    315   1.1      fvdl 	/*
    316   1.1      fvdl 	 * Work out an upper bound for agp memory allocation. This
    317   1.1      fvdl 	 * uses a heurisitc table from the Linux driver.
    318   1.1      fvdl 	 */
    319   1.1      fvdl 	memsize = ptoa(physmem) >> 20;
    320   1.1      fvdl 	for (i = 0; i < agp_max_size; i++) {
    321   1.1      fvdl 		if (memsize <= agp_max[i][0])
    322   1.1      fvdl 			break;
    323   1.1      fvdl 	}
    324   1.1      fvdl 	if (i == agp_max_size)
    325   1.1      fvdl 		i = agp_max_size - 1;
    326   1.1      fvdl 	sc->as_maxmem = agp_max[i][1] << 20U;
    327   1.1      fvdl 
    328   1.1      fvdl 	/*
    329  1.46   xtraeme 	 * The mutex is used to prevent re-entry to
    330   1.1      fvdl 	 * agp_generic_bind_memory() since that function can sleep.
    331   1.1      fvdl 	 */
    332  1.53        ad 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    333   1.1      fvdl 
    334   1.1      fvdl 	TAILQ_INIT(&sc->as_memory);
    335   1.1      fvdl 
    336   1.5   thorpej 	ret = (*ap->ap_attach)(parent, self, pa);
    337   1.1      fvdl 	if (ret == 0)
    338  1.24   thorpej 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    339   1.1      fvdl 		    (unsigned long)sc->as_apaddr,
    340   1.1      fvdl 		    (unsigned long)AGP_GET_APERTURE(sc));
    341   1.1      fvdl 	else
    342   1.1      fvdl 		sc->as_chipc = NULL;
    343  1.54  jmcneill 
    344  1.54  jmcneill 	if (!device_pmf_is_registered(self)) {
    345  1.54  jmcneill 		if (!pmf_device_register(self, NULL, agp_resume))
    346  1.54  jmcneill 			aprint_error_dev(self, "couldn't establish power handler\n");
    347  1.54  jmcneill 	}
    348   1.1      fvdl }
    349  1.30      tron 
    350  1.35   thorpej CFATTACH_DECL(agp, sizeof(struct agp_softc),
    351  1.35   thorpej     agpmatch, agpattach, NULL, NULL);
    352  1.35   thorpej 
    353   1.1      fvdl int
    354  1.37  christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    355   1.1      fvdl {
    356   1.1      fvdl 	/*
    357  1.18   nathanw 	 * Find the aperture. Don't map it (yet), this would
    358  1.11      fvdl 	 * eat KVA.
    359   1.1      fvdl 	 */
    360  1.37  christos 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    361  1.11      fvdl 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    362  1.11      fvdl 	    &sc->as_apflags) != 0)
    363   1.1      fvdl 		return ENXIO;
    364   1.8  drochner 
    365  1.11      fvdl 	sc->as_apt = pa->pa_memt;
    366  1.11      fvdl 
    367   1.1      fvdl 	return 0;
    368   1.1      fvdl }
    369   1.1      fvdl 
    370   1.1      fvdl struct agp_gatt *
    371   1.1      fvdl agp_alloc_gatt(struct agp_softc *sc)
    372   1.1      fvdl {
    373   1.1      fvdl 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    374   1.1      fvdl 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    375   1.1      fvdl 	struct agp_gatt *gatt;
    376  1.45  christos 	void *virtual;
    377   1.1      fvdl 	int dummyseg;
    378   1.1      fvdl 
    379   1.1      fvdl 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    380   1.1      fvdl 	if (!gatt)
    381   1.1      fvdl 		return NULL;
    382   1.1      fvdl 	gatt->ag_entries = entries;
    383   1.1      fvdl 
    384   1.1      fvdl 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    385  1.38      tron 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    386  1.38      tron 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    387   1.1      fvdl 		return NULL;
    388  1.38      tron 	gatt->ag_virtual = (uint32_t *)virtual;
    389   1.1      fvdl 
    390   1.1      fvdl 	gatt->ag_size = entries * sizeof(u_int32_t);
    391   1.1      fvdl 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    392   1.1      fvdl 	agp_flush_cache();
    393   1.1      fvdl 
    394   1.1      fvdl 	return gatt;
    395   1.1      fvdl }
    396   1.1      fvdl 
    397   1.1      fvdl void
    398   1.1      fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    399   1.1      fvdl {
    400   1.1      fvdl 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    401  1.45  christos 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    402   1.1      fvdl 	free(gatt, M_AGP);
    403   1.1      fvdl }
    404   1.1      fvdl 
    405   1.1      fvdl 
    406   1.1      fvdl int
    407   1.1      fvdl agp_generic_detach(struct agp_softc *sc)
    408   1.1      fvdl {
    409  1.46   xtraeme 	mutex_destroy(&sc->as_mtx);
    410   1.1      fvdl 	agp_flush_cache();
    411   1.1      fvdl 	return 0;
    412   1.1      fvdl }
    413   1.1      fvdl 
    414   1.1      fvdl static int
    415   1.1      fvdl agpdev_match(struct pci_attach_args *pa)
    416   1.1      fvdl {
    417   1.1      fvdl 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    418   1.1      fvdl 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    419  1.26      tron 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    420  1.26      tron 		    NULL, NULL))
    421   1.1      fvdl 		return 1;
    422   1.1      fvdl 
    423   1.1      fvdl 	return 0;
    424   1.1      fvdl }
    425   1.1      fvdl 
    426   1.1      fvdl int
    427   1.1      fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    428   1.1      fvdl {
    429   1.1      fvdl 	struct pci_attach_args pa;
    430   1.1      fvdl 	pcireg_t tstatus, mstatus;
    431   1.1      fvdl 	pcireg_t command;
    432   1.1      fvdl 	int rq, sba, fw, rate, capoff;
    433   1.1      fvdl 
    434   1.1      fvdl 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    435   1.1      fvdl 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    436   1.1      fvdl 	     &capoff, NULL) == 0) {
    437  1.56    cegger 		aprint_error_dev(&sc->as_dev, "can't find display\n");
    438   1.1      fvdl 		return ENXIO;
    439   1.1      fvdl 	}
    440   1.1      fvdl 
    441   1.1      fvdl 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    442   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
    443   1.1      fvdl 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    444   1.1      fvdl 	    capoff + AGP_STATUS);
    445   1.1      fvdl 
    446   1.1      fvdl 	/* Set RQ to the min of mode, tstatus and mstatus */
    447   1.1      fvdl 	rq = AGP_MODE_GET_RQ(mode);
    448   1.1      fvdl 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    449   1.1      fvdl 		rq = AGP_MODE_GET_RQ(tstatus);
    450   1.1      fvdl 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    451   1.1      fvdl 		rq = AGP_MODE_GET_RQ(mstatus);
    452   1.1      fvdl 
    453   1.1      fvdl 	/* Set SBA if all three can deal with SBA */
    454   1.1      fvdl 	sba = (AGP_MODE_GET_SBA(tstatus)
    455   1.1      fvdl 	       & AGP_MODE_GET_SBA(mstatus)
    456   1.1      fvdl 	       & AGP_MODE_GET_SBA(mode));
    457   1.1      fvdl 
    458   1.1      fvdl 	/* Similar for FW */
    459   1.1      fvdl 	fw = (AGP_MODE_GET_FW(tstatus)
    460   1.1      fvdl 	       & AGP_MODE_GET_FW(mstatus)
    461   1.1      fvdl 	       & AGP_MODE_GET_FW(mode));
    462   1.1      fvdl 
    463   1.1      fvdl 	/* Figure out the max rate */
    464   1.1      fvdl 	rate = (AGP_MODE_GET_RATE(tstatus)
    465   1.1      fvdl 		& AGP_MODE_GET_RATE(mstatus)
    466   1.1      fvdl 		& AGP_MODE_GET_RATE(mode));
    467   1.1      fvdl 	if (rate & AGP_MODE_RATE_4x)
    468   1.1      fvdl 		rate = AGP_MODE_RATE_4x;
    469   1.1      fvdl 	else if (rate & AGP_MODE_RATE_2x)
    470   1.1      fvdl 		rate = AGP_MODE_RATE_2x;
    471   1.1      fvdl 	else
    472   1.1      fvdl 		rate = AGP_MODE_RATE_1x;
    473   1.1      fvdl 
    474   1.1      fvdl 	/* Construct the new mode word and tell the hardware */
    475   1.1      fvdl 	command = AGP_MODE_SET_RQ(0, rq);
    476   1.1      fvdl 	command = AGP_MODE_SET_SBA(command, sba);
    477   1.1      fvdl 	command = AGP_MODE_SET_FW(command, fw);
    478   1.1      fvdl 	command = AGP_MODE_SET_RATE(command, rate);
    479   1.1      fvdl 	command = AGP_MODE_SET_AGP(command, 1);
    480   1.1      fvdl 	pci_conf_write(sc->as_pc, sc->as_tag,
    481   1.1      fvdl 	    sc->as_capoff + AGP_COMMAND, command);
    482   1.1      fvdl 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    483   1.1      fvdl 
    484   1.1      fvdl 	return 0;
    485   1.1      fvdl }
    486   1.1      fvdl 
    487   1.1      fvdl struct agp_memory *
    488   1.1      fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    489   1.1      fvdl {
    490   1.1      fvdl 	struct agp_memory *mem;
    491   1.1      fvdl 
    492   1.1      fvdl 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    493   1.1      fvdl 		return 0;
    494   1.1      fvdl 
    495   1.1      fvdl 	if (sc->as_allocated + size > sc->as_maxmem)
    496   1.1      fvdl 		return 0;
    497   1.1      fvdl 
    498   1.1      fvdl 	if (type != 0) {
    499   1.1      fvdl 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    500   1.1      fvdl 		       type);
    501   1.1      fvdl 		return 0;
    502   1.1      fvdl 	}
    503   1.1      fvdl 
    504   1.1      fvdl 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    505   1.1      fvdl 	if (mem == NULL)
    506   1.1      fvdl 		return NULL;
    507   1.1      fvdl 
    508   1.3  drochner 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    509   1.3  drochner 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    510   1.1      fvdl 		free(mem, M_AGP);
    511   1.1      fvdl 		return NULL;
    512   1.1      fvdl 	}
    513   1.1      fvdl 
    514   1.1      fvdl 	mem->am_id = sc->as_nextid++;
    515   1.1      fvdl 	mem->am_size = size;
    516   1.1      fvdl 	mem->am_type = 0;
    517   1.1      fvdl 	mem->am_physical = 0;
    518   1.1      fvdl 	mem->am_offset = 0;
    519   1.1      fvdl 	mem->am_is_bound = 0;
    520   1.1      fvdl 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    521   1.1      fvdl 	sc->as_allocated += size;
    522   1.1      fvdl 
    523   1.1      fvdl 	return mem;
    524   1.1      fvdl }
    525   1.1      fvdl 
    526   1.1      fvdl int
    527   1.1      fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    528   1.1      fvdl {
    529   1.1      fvdl 	if (mem->am_is_bound)
    530   1.1      fvdl 		return EBUSY;
    531   1.1      fvdl 
    532   1.1      fvdl 	sc->as_allocated -= mem->am_size;
    533   1.1      fvdl 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    534   1.1      fvdl 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    535   1.1      fvdl 	free(mem, M_AGP);
    536   1.1      fvdl 	return 0;
    537   1.1      fvdl }
    538   1.1      fvdl 
    539   1.1      fvdl int
    540   1.1      fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    541   1.1      fvdl 			off_t offset)
    542   1.1      fvdl {
    543   1.1      fvdl 	off_t i, k;
    544   1.1      fvdl 	bus_size_t done, j;
    545   1.1      fvdl 	int error;
    546   1.1      fvdl 	bus_dma_segment_t *segs, *seg;
    547   1.1      fvdl 	bus_addr_t pa;
    548   1.1      fvdl 	int contigpages, nseg;
    549   1.1      fvdl 
    550  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    551   1.1      fvdl 
    552   1.1      fvdl 	if (mem->am_is_bound) {
    553  1.56    cegger 		aprint_error_dev(&sc->as_dev, "memory already bound\n");
    554  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    555   1.1      fvdl 		return EINVAL;
    556   1.1      fvdl 	}
    557  1.34     perry 
    558   1.1      fvdl 	if (offset < 0
    559   1.1      fvdl 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    560   1.1      fvdl 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    561  1.56    cegger 		aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n",
    562  1.56    cegger 			      (unsigned long) offset);
    563  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    564   1.1      fvdl 		return EINVAL;
    565   1.1      fvdl 	}
    566   1.1      fvdl 
    567   1.1      fvdl 	/*
    568   1.1      fvdl 	 * XXXfvdl
    569   1.1      fvdl 	 * The memory here needs to be directly accessable from the
    570   1.1      fvdl 	 * AGP video card, so it should be allocated using bus_dma.
    571   1.1      fvdl 	 * However, it need not be contiguous, since individual pages
    572   1.1      fvdl 	 * are translated using the GATT.
    573   1.1      fvdl 	 *
    574   1.1      fvdl 	 * Using a large chunk of contiguous memory may get in the way
    575   1.1      fvdl 	 * of other subsystems that may need one, so we try to be friendly
    576   1.1      fvdl 	 * and ask for allocation in chunks of a minimum of 8 pages
    577   1.1      fvdl 	 * of contiguous memory on average, falling back to 4, 2 and 1
    578   1.1      fvdl 	 * if really needed. Larger chunks are preferred, since allocating
    579   1.1      fvdl 	 * a bus_dma_segment per page would be overkill.
    580   1.1      fvdl 	 */
    581   1.1      fvdl 
    582   1.1      fvdl 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    583   1.1      fvdl 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    584   1.3  drochner 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    585  1.16  drochner 		if (segs == NULL) {
    586  1.46   xtraeme 			mutex_exit(&sc->as_mtx);
    587  1.10   thorpej 			return ENOMEM;
    588  1.16  drochner 		}
    589   1.1      fvdl 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    590   1.4  drochner 				     segs, nseg, &mem->am_nseg,
    591  1.15  drochner 				     contigpages > 1 ?
    592  1.15  drochner 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    593   1.4  drochner 			free(segs, M_AGP);
    594   1.1      fvdl 			continue;
    595   1.4  drochner 		}
    596   1.1      fvdl 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    597   1.1      fvdl 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    598   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    599   1.4  drochner 			free(segs, M_AGP);
    600   1.1      fvdl 			continue;
    601   1.1      fvdl 		}
    602   1.1      fvdl 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    603   1.1      fvdl 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    604  1.34     perry 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    605   1.1      fvdl 			    mem->am_size);
    606   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    607   1.4  drochner 			free(segs, M_AGP);
    608   1.1      fvdl 			continue;
    609   1.1      fvdl 		}
    610   1.1      fvdl 		mem->am_dmaseg = segs;
    611   1.1      fvdl 		break;
    612   1.1      fvdl 	}
    613   1.1      fvdl 
    614   1.1      fvdl 	if (contigpages == 0) {
    615  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    616   1.1      fvdl 		return ENOMEM;
    617   1.1      fvdl 	}
    618   1.1      fvdl 
    619   1.1      fvdl 
    620   1.1      fvdl 	/*
    621   1.1      fvdl 	 * Bind the individual pages and flush the chipset's
    622   1.1      fvdl 	 * TLB.
    623   1.1      fvdl 	 */
    624   1.1      fvdl 	done = 0;
    625   1.1      fvdl 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    626   1.1      fvdl 		seg = &mem->am_dmamap->dm_segs[i];
    627   1.1      fvdl 		/*
    628   1.1      fvdl 		 * Install entries in the GATT, making sure that if
    629   1.1      fvdl 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    630  1.34     perry 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    631   1.1      fvdl 		 * entries.
    632   1.1      fvdl 		 */
    633   1.1      fvdl 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    634   1.1      fvdl 		     j += AGP_PAGE_SIZE) {
    635   1.1      fvdl 			pa = seg->ds_addr + j;
    636  1.40  christos 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    637   1.3  drochner 				(unsigned long)(offset + done + j),
    638  1.40  christos 				(unsigned long)pa));
    639   1.1      fvdl 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    640   1.1      fvdl 			if (error) {
    641   1.1      fvdl 				/*
    642   1.1      fvdl 				 * Bail out. Reverse all the mappings
    643   1.1      fvdl 				 * and unwire the pages.
    644   1.1      fvdl 				 */
    645   1.1      fvdl 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    646   1.1      fvdl 					AGP_UNBIND_PAGE(sc, offset + k);
    647   1.1      fvdl 
    648   1.4  drochner 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    649   1.4  drochner 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    650   1.4  drochner 						 mem->am_size);
    651   1.4  drochner 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    652   1.4  drochner 						mem->am_nseg);
    653   1.4  drochner 				free(mem->am_dmaseg, M_AGP);
    654  1.46   xtraeme 				mutex_exit(&sc->as_mtx);
    655   1.1      fvdl 				return error;
    656   1.1      fvdl 			}
    657   1.1      fvdl 		}
    658   1.1      fvdl 		done += seg->ds_len;
    659   1.1      fvdl 	}
    660   1.1      fvdl 
    661   1.1      fvdl 	/*
    662  1.32       wiz 	 * Flush the CPU cache since we are providing a new mapping
    663   1.1      fvdl 	 * for these pages.
    664   1.1      fvdl 	 */
    665   1.1      fvdl 	agp_flush_cache();
    666   1.1      fvdl 
    667   1.1      fvdl 	/*
    668   1.1      fvdl 	 * Make sure the chipset gets the new mappings.
    669   1.1      fvdl 	 */
    670   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    671   1.1      fvdl 
    672   1.1      fvdl 	mem->am_offset = offset;
    673   1.1      fvdl 	mem->am_is_bound = 1;
    674   1.1      fvdl 
    675  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    676   1.1      fvdl 
    677   1.1      fvdl 	return 0;
    678   1.1      fvdl }
    679   1.1      fvdl 
    680   1.1      fvdl int
    681   1.1      fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    682   1.1      fvdl {
    683   1.1      fvdl 	int i;
    684   1.1      fvdl 
    685  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    686   1.1      fvdl 
    687   1.1      fvdl 	if (!mem->am_is_bound) {
    688  1.56    cegger 		aprint_error_dev(&sc->as_dev, "memory is not bound\n");
    689  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    690   1.1      fvdl 		return EINVAL;
    691   1.1      fvdl 	}
    692   1.1      fvdl 
    693   1.1      fvdl 
    694   1.1      fvdl 	/*
    695   1.1      fvdl 	 * Unbind the individual pages and flush the chipset's
    696   1.1      fvdl 	 * TLB. Unwire the pages so they can be swapped.
    697   1.1      fvdl 	 */
    698   1.1      fvdl 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    699   1.1      fvdl 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    700  1.34     perry 
    701   1.1      fvdl 	agp_flush_cache();
    702   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    703   1.1      fvdl 
    704   1.1      fvdl 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    705   1.1      fvdl 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    706   1.1      fvdl 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    707   1.1      fvdl 
    708   1.1      fvdl 	free(mem->am_dmaseg, M_AGP);
    709   1.1      fvdl 
    710   1.1      fvdl 	mem->am_offset = 0;
    711   1.1      fvdl 	mem->am_is_bound = 0;
    712   1.1      fvdl 
    713  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    714   1.1      fvdl 
    715   1.1      fvdl 	return 0;
    716   1.1      fvdl }
    717   1.1      fvdl 
    718   1.1      fvdl /* Helper functions for implementing user/kernel api */
    719   1.1      fvdl 
    720   1.1      fvdl static int
    721   1.1      fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    722   1.1      fvdl {
    723   1.1      fvdl 	if (sc->as_state != AGP_ACQUIRE_FREE)
    724   1.1      fvdl 		return EBUSY;
    725   1.1      fvdl 	sc->as_state = state;
    726   1.1      fvdl 
    727   1.1      fvdl 	return 0;
    728   1.1      fvdl }
    729   1.1      fvdl 
    730   1.1      fvdl static int
    731   1.1      fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    732   1.1      fvdl {
    733   1.1      fvdl 
    734   1.1      fvdl 	if (sc->as_state == AGP_ACQUIRE_FREE)
    735   1.1      fvdl 		return 0;
    736   1.1      fvdl 
    737   1.1      fvdl 	if (sc->as_state != state)
    738   1.1      fvdl 		return EBUSY;
    739   1.1      fvdl 
    740   1.1      fvdl 	sc->as_state = AGP_ACQUIRE_FREE;
    741   1.1      fvdl 	return 0;
    742   1.1      fvdl }
    743   1.1      fvdl 
    744   1.1      fvdl static struct agp_memory *
    745   1.1      fvdl agp_find_memory(struct agp_softc *sc, int id)
    746   1.1      fvdl {
    747   1.1      fvdl 	struct agp_memory *mem;
    748   1.1      fvdl 
    749  1.40  christos 	AGP_DPF(("searching for memory block %d\n", id));
    750   1.1      fvdl 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    751  1.40  christos 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    752   1.1      fvdl 		if (mem->am_id == id)
    753   1.1      fvdl 			return mem;
    754   1.1      fvdl 	}
    755   1.1      fvdl 	return 0;
    756   1.1      fvdl }
    757   1.1      fvdl 
    758   1.1      fvdl /* Implementation of the userland ioctl api */
    759   1.1      fvdl 
    760   1.1      fvdl static int
    761   1.1      fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
    762   1.1      fvdl {
    763   1.1      fvdl 	memset(info, 0, sizeof *info);
    764   1.1      fvdl 	info->bridge_id = sc->as_id;
    765   1.3  drochner 	if (sc->as_capoff != 0)
    766   1.3  drochner 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    767   1.3  drochner 					       sc->as_capoff + AGP_STATUS);
    768   1.3  drochner 	else
    769   1.3  drochner 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    770   1.1      fvdl 	info->aper_base = sc->as_apaddr;
    771   1.1      fvdl 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    772   1.1      fvdl 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    773   1.1      fvdl 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    774   1.1      fvdl 
    775   1.1      fvdl 	return 0;
    776   1.1      fvdl }
    777   1.1      fvdl 
    778   1.1      fvdl static int
    779   1.1      fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    780   1.1      fvdl {
    781   1.1      fvdl 	return AGP_ENABLE(sc, setup->agp_mode);
    782   1.1      fvdl }
    783   1.1      fvdl 
    784   1.1      fvdl static int
    785   1.1      fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    786   1.1      fvdl {
    787   1.1      fvdl 	struct agp_memory *mem;
    788   1.1      fvdl 
    789   1.1      fvdl 	mem = AGP_ALLOC_MEMORY(sc,
    790   1.1      fvdl 			       alloc->type,
    791   1.1      fvdl 			       alloc->pg_count << AGP_PAGE_SHIFT);
    792   1.1      fvdl 	if (mem) {
    793   1.1      fvdl 		alloc->key = mem->am_id;
    794   1.1      fvdl 		alloc->physical = mem->am_physical;
    795   1.1      fvdl 		return 0;
    796   1.1      fvdl 	} else {
    797   1.1      fvdl 		return ENOMEM;
    798   1.1      fvdl 	}
    799   1.1      fvdl }
    800   1.1      fvdl 
    801   1.1      fvdl static int
    802   1.1      fvdl agp_deallocate_user(struct agp_softc *sc, int id)
    803   1.1      fvdl {
    804   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, id);
    805   1.1      fvdl 
    806   1.1      fvdl 	if (mem) {
    807   1.1      fvdl 		AGP_FREE_MEMORY(sc, mem);
    808   1.1      fvdl 		return 0;
    809   1.1      fvdl 	} else {
    810   1.1      fvdl 		return ENOENT;
    811   1.1      fvdl 	}
    812   1.1      fvdl }
    813   1.1      fvdl 
    814   1.1      fvdl static int
    815   1.1      fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    816   1.1      fvdl {
    817   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    818   1.1      fvdl 
    819   1.1      fvdl 	if (!mem)
    820   1.1      fvdl 		return ENOENT;
    821   1.1      fvdl 
    822   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    823   1.1      fvdl }
    824   1.1      fvdl 
    825   1.1      fvdl static int
    826   1.1      fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    827   1.1      fvdl {
    828   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    829   1.1      fvdl 
    830   1.1      fvdl 	if (!mem)
    831   1.1      fvdl 		return ENOENT;
    832   1.1      fvdl 
    833   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
    834   1.1      fvdl }
    835   1.1      fvdl 
    836  1.35   thorpej static int
    837  1.43  christos agpopen(dev_t dev, int oflags, int devtype,
    838  1.43  christos     struct lwp *l)
    839   1.1      fvdl {
    840   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    841   1.9   thorpej 
    842   1.9   thorpej 	if (sc == NULL)
    843   1.9   thorpej 		return ENXIO;
    844   1.1      fvdl 
    845   1.1      fvdl 	if (sc->as_chipc == NULL)
    846   1.1      fvdl 		return ENXIO;
    847   1.1      fvdl 
    848   1.1      fvdl 	if (!sc->as_isopen)
    849   1.1      fvdl 		sc->as_isopen = 1;
    850   1.1      fvdl 	else
    851   1.1      fvdl 		return EBUSY;
    852   1.1      fvdl 
    853   1.1      fvdl 	return 0;
    854   1.1      fvdl }
    855   1.1      fvdl 
    856  1.35   thorpej static int
    857  1.43  christos agpclose(dev_t dev, int fflag, int devtype,
    858  1.43  christos     struct lwp *l)
    859   1.1      fvdl {
    860   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    861  1.16  drochner 	struct agp_memory *mem;
    862   1.1      fvdl 
    863   1.1      fvdl 	/*
    864   1.1      fvdl 	 * Clear the GATT and force release on last close
    865   1.1      fvdl 	 */
    866  1.16  drochner 	if (sc->as_state == AGP_ACQUIRE_USER) {
    867  1.16  drochner 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    868  1.16  drochner 			if (mem->am_is_bound) {
    869  1.16  drochner 				printf("agpclose: mem %d is bound\n",
    870  1.16  drochner 				       mem->am_id);
    871  1.16  drochner 				AGP_UNBIND_MEMORY(sc, mem);
    872  1.16  drochner 			}
    873  1.16  drochner 			/*
    874  1.16  drochner 			 * XXX it is not documented, but if the protocol allows
    875  1.16  drochner 			 * allocate->acquire->bind, it would be possible that
    876  1.16  drochner 			 * memory ranges are allocated by the kernel here,
    877  1.16  drochner 			 * which we shouldn't free. We'd have to keep track of
    878  1.16  drochner 			 * the memory range's owner.
    879  1.16  drochner 			 * The kernel API is unsed yet, so we get away with
    880  1.16  drochner 			 * freeing all.
    881  1.16  drochner 			 */
    882  1.16  drochner 			AGP_FREE_MEMORY(sc, mem);
    883  1.16  drochner 		}
    884   1.1      fvdl 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    885  1.16  drochner 	}
    886   1.1      fvdl 	sc->as_isopen = 0;
    887   1.1      fvdl 
    888   1.1      fvdl 	return 0;
    889   1.1      fvdl }
    890   1.1      fvdl 
    891  1.35   thorpej static int
    892  1.45  christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    893   1.1      fvdl {
    894   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    895   1.1      fvdl 
    896   1.1      fvdl 	if (sc == NULL)
    897   1.1      fvdl 		return ENODEV;
    898   1.1      fvdl 
    899   1.1      fvdl 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    900   1.1      fvdl 		return EPERM;
    901   1.1      fvdl 
    902   1.1      fvdl 	switch (cmd) {
    903   1.1      fvdl 	case AGPIOC_INFO:
    904   1.1      fvdl 		return agp_info_user(sc, (agp_info *) data);
    905   1.1      fvdl 
    906   1.1      fvdl 	case AGPIOC_ACQUIRE:
    907   1.1      fvdl 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    908   1.1      fvdl 
    909   1.1      fvdl 	case AGPIOC_RELEASE:
    910   1.1      fvdl 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    911   1.1      fvdl 
    912   1.1      fvdl 	case AGPIOC_SETUP:
    913   1.1      fvdl 		return agp_setup_user(sc, (agp_setup *)data);
    914   1.1      fvdl 
    915   1.1      fvdl 	case AGPIOC_ALLOCATE:
    916   1.1      fvdl 		return agp_allocate_user(sc, (agp_allocate *)data);
    917   1.1      fvdl 
    918   1.1      fvdl 	case AGPIOC_DEALLOCATE:
    919   1.1      fvdl 		return agp_deallocate_user(sc, *(int *) data);
    920   1.1      fvdl 
    921   1.1      fvdl 	case AGPIOC_BIND:
    922   1.1      fvdl 		return agp_bind_user(sc, (agp_bind *)data);
    923   1.1      fvdl 
    924   1.1      fvdl 	case AGPIOC_UNBIND:
    925   1.1      fvdl 		return agp_unbind_user(sc, (agp_unbind *)data);
    926   1.1      fvdl 
    927   1.1      fvdl 	}
    928   1.1      fvdl 
    929   1.1      fvdl 	return EINVAL;
    930   1.1      fvdl }
    931   1.1      fvdl 
    932  1.35   thorpej static paddr_t
    933   1.1      fvdl agpmmap(dev_t dev, off_t offset, int prot)
    934   1.1      fvdl {
    935   1.1      fvdl 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    936   1.1      fvdl 
    937   1.1      fvdl 	if (offset > AGP_GET_APERTURE(sc))
    938   1.1      fvdl 		return -1;
    939   1.6   thorpej 
    940   1.6   thorpej 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    941   1.6   thorpej 	    BUS_SPACE_MAP_LINEAR));
    942   1.1      fvdl }
    943   1.1      fvdl 
    944  1.35   thorpej const struct cdevsw agp_cdevsw = {
    945  1.35   thorpej 	agpopen, agpclose, noread, nowrite, agpioctl,
    946  1.41  christos 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    947  1.35   thorpej };
    948  1.35   thorpej 
    949   1.1      fvdl /* Implementation of the kernel api */
    950   1.1      fvdl 
    951   1.1      fvdl void *
    952   1.1      fvdl agp_find_device(int unit)
    953   1.1      fvdl {
    954   1.1      fvdl 	return device_lookup(&agp_cd, unit);
    955   1.1      fvdl }
    956   1.1      fvdl 
    957   1.1      fvdl enum agp_acquire_state
    958   1.1      fvdl agp_state(void *devcookie)
    959   1.1      fvdl {
    960   1.1      fvdl 	struct agp_softc *sc = devcookie;
    961   1.1      fvdl 	return sc->as_state;
    962   1.1      fvdl }
    963   1.1      fvdl 
    964   1.1      fvdl void
    965   1.1      fvdl agp_get_info(void *devcookie, struct agp_info *info)
    966   1.1      fvdl {
    967   1.1      fvdl 	struct agp_softc *sc = devcookie;
    968   1.1      fvdl 
    969   1.1      fvdl 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    970   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
    971   1.1      fvdl 	info->ai_aperture_base = sc->as_apaddr;
    972   1.1      fvdl 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    973   1.1      fvdl 	info->ai_memory_allowed = sc->as_maxmem;
    974   1.1      fvdl 	info->ai_memory_used = sc->as_allocated;
    975   1.1      fvdl }
    976   1.1      fvdl 
    977   1.1      fvdl int
    978   1.1      fvdl agp_acquire(void *dev)
    979   1.1      fvdl {
    980   1.1      fvdl 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    981   1.1      fvdl }
    982   1.1      fvdl 
    983   1.1      fvdl int
    984   1.1      fvdl agp_release(void *dev)
    985   1.1      fvdl {
    986   1.1      fvdl 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    987   1.1      fvdl }
    988   1.1      fvdl 
    989   1.1      fvdl int
    990   1.1      fvdl agp_enable(void *dev, u_int32_t mode)
    991   1.1      fvdl {
    992   1.1      fvdl 	struct agp_softc *sc = dev;
    993   1.1      fvdl 
    994   1.1      fvdl 	return AGP_ENABLE(sc, mode);
    995   1.1      fvdl }
    996   1.1      fvdl 
    997   1.1      fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    998   1.1      fvdl {
    999   1.1      fvdl 	struct agp_softc *sc = dev;
   1000   1.1      fvdl 
   1001   1.1      fvdl 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1002   1.1      fvdl }
   1003   1.1      fvdl 
   1004   1.1      fvdl void agp_free_memory(void *dev, void *handle)
   1005   1.1      fvdl {
   1006   1.1      fvdl 	struct agp_softc *sc = dev;
   1007   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
   1008   1.1      fvdl 	AGP_FREE_MEMORY(sc, mem);
   1009   1.1      fvdl }
   1010   1.1      fvdl 
   1011   1.1      fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
   1012   1.1      fvdl {
   1013   1.1      fvdl 	struct agp_softc *sc = dev;
   1014   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
   1015   1.1      fvdl 
   1016   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, offset);
   1017   1.1      fvdl }
   1018   1.1      fvdl 
   1019   1.1      fvdl int agp_unbind_memory(void *dev, void *handle)
   1020   1.1      fvdl {
   1021   1.1      fvdl 	struct agp_softc *sc = dev;
   1022   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
   1023   1.1      fvdl 
   1024   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
   1025   1.1      fvdl }
   1026   1.1      fvdl 
   1027  1.43  christos void agp_memory_info(void *dev, void *handle,
   1028  1.42  christos     struct agp_memory_info *mi)
   1029   1.1      fvdl {
   1030   1.1      fvdl 	struct agp_memory *mem = (struct agp_memory *) handle;
   1031   1.1      fvdl 
   1032   1.1      fvdl 	mi->ami_size = mem->am_size;
   1033   1.1      fvdl 	mi->ami_physical = mem->am_physical;
   1034   1.1      fvdl 	mi->ami_offset = mem->am_offset;
   1035   1.1      fvdl 	mi->ami_is_bound = mem->am_is_bound;
   1036   1.1      fvdl }
   1037   1.1      fvdl 
   1038   1.1      fvdl int
   1039   1.1      fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1040  1.45  christos 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1041   1.1      fvdl 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1042   1.1      fvdl 
   1043   1.1      fvdl {
   1044   1.1      fvdl 	int error, level = 0;
   1045   1.1      fvdl 
   1046   1.1      fvdl 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1047   1.1      fvdl 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1048   1.1      fvdl 		goto out;
   1049   1.1      fvdl 	level++;
   1050   1.1      fvdl 
   1051   1.1      fvdl 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1052   1.1      fvdl 			BUS_DMA_NOWAIT | flags)) != 0)
   1053   1.1      fvdl 		goto out;
   1054   1.1      fvdl 	level++;
   1055   1.1      fvdl 
   1056   1.3  drochner 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1057   1.1      fvdl 			BUS_DMA_NOWAIT, mapp)) != 0)
   1058   1.1      fvdl 		goto out;
   1059   1.1      fvdl 	level++;
   1060   1.1      fvdl 
   1061   1.1      fvdl 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1062   1.1      fvdl 			BUS_DMA_NOWAIT)) != 0)
   1063   1.1      fvdl 		goto out;
   1064   1.1      fvdl 
   1065   1.1      fvdl 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1066   1.1      fvdl 
   1067   1.1      fvdl 	return 0;
   1068   1.1      fvdl out:
   1069   1.1      fvdl 	switch (level) {
   1070   1.1      fvdl 	case 3:
   1071   1.1      fvdl 		bus_dmamap_destroy(tag, *mapp);
   1072   1.1      fvdl 		/* FALLTHROUGH */
   1073   1.1      fvdl 	case 2:
   1074   1.1      fvdl 		bus_dmamem_unmap(tag, *vaddr, size);
   1075   1.1      fvdl 		/* FALLTHROUGH */
   1076   1.1      fvdl 	case 1:
   1077   1.1      fvdl 		bus_dmamem_free(tag, seg, *rseg);
   1078   1.1      fvdl 		break;
   1079   1.1      fvdl 	default:
   1080   1.1      fvdl 		break;
   1081   1.1      fvdl 	}
   1082   1.1      fvdl 
   1083   1.1      fvdl 	return error;
   1084   1.1      fvdl }
   1085   1.1      fvdl 
   1086   1.1      fvdl void
   1087   1.1      fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1088  1.45  christos 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1089   1.1      fvdl {
   1090   1.1      fvdl 
   1091   1.1      fvdl 	bus_dmamap_unload(tag, map);
   1092   1.1      fvdl 	bus_dmamap_destroy(tag, map);
   1093   1.1      fvdl 	bus_dmamem_unmap(tag, vaddr, size);
   1094   1.1      fvdl 	bus_dmamem_free(tag, seg, nseg);
   1095   1.1      fvdl }
   1096  1.54  jmcneill 
   1097  1.54  jmcneill static bool
   1098  1.55    dyoung agp_resume(device_t dv PMF_FN_ARGS)
   1099  1.54  jmcneill {
   1100  1.54  jmcneill 	agp_flush_cache();
   1101  1.54  jmcneill 
   1102  1.54  jmcneill 	return true;
   1103  1.54  jmcneill }
   1104