agp.c revision 1.63 1 1.63 christos /* $NetBSD: agp.c,v 1.63 2008/11/08 17:26:28 christos Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.63 christos __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.63 2008/11/08 17:26:28 christos Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <uvm/uvm_extern.h>
83 1.1 fvdl
84 1.1 fvdl #include <dev/pci/pcireg.h>
85 1.1 fvdl #include <dev/pci/pcivar.h>
86 1.1 fvdl #include <dev/pci/agpvar.h>
87 1.1 fvdl #include <dev/pci/agpreg.h>
88 1.1 fvdl #include <dev/pci/pcidevs.h>
89 1.1 fvdl
90 1.49 ad #include <sys/bus.h>
91 1.25 thorpej
92 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 1.1 fvdl
94 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
95 1.1 fvdl /* XXXfvdl get rid of this one. */
96 1.1 fvdl
97 1.1 fvdl extern struct cfdriver agp_cd;
98 1.17 gehenna
99 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
100 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
101 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
103 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
104 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
106 1.55 dyoung static bool agp_resume(device_t PMF_FN_PROTO);
107 1.1 fvdl
108 1.7 thorpej #include "agp_ali.h"
109 1.7 thorpej #include "agp_amd.h"
110 1.7 thorpej #include "agp_i810.h"
111 1.7 thorpej #include "agp_intel.h"
112 1.7 thorpej #include "agp_sis.h"
113 1.7 thorpej #include "agp_via.h"
114 1.47 kiyohara #include "agp_amd64.h"
115 1.7 thorpej
116 1.5 thorpej const struct agp_product {
117 1.5 thorpej uint32_t ap_vendor;
118 1.5 thorpej uint32_t ap_product;
119 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
120 1.59 freza int (*ap_attach)(device_t, device_t, void *);
121 1.5 thorpej } agp_products[] = {
122 1.57 njoly #if NAGP_AMD64 > 0
123 1.57 njoly { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 1.57 njoly agp_amd64_match, agp_amd64_attach },
125 1.57 njoly #endif
126 1.57 njoly
127 1.7 thorpej #if NAGP_ALI > 0
128 1.5 thorpej { PCI_VENDOR_ALI, -1,
129 1.5 thorpej NULL, agp_ali_attach },
130 1.7 thorpej #endif
131 1.5 thorpej
132 1.51 joerg #if NAGP_AMD64 > 0
133 1.51 joerg { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 1.51 joerg agp_amd64_match, agp_amd64_attach },
135 1.51 joerg #endif
136 1.51 joerg
137 1.7 thorpej #if NAGP_AMD > 0
138 1.5 thorpej { PCI_VENDOR_AMD, -1,
139 1.5 thorpej agp_amd_match, agp_amd_attach },
140 1.7 thorpej #endif
141 1.5 thorpej
142 1.7 thorpej #if NAGP_I810 > 0
143 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 1.5 thorpej NULL, agp_i810_attach },
145 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 1.5 thorpej NULL, agp_i810_attach },
147 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 1.5 thorpej NULL, agp_i810_attach },
149 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 1.5 thorpej NULL, agp_i810_attach },
151 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 1.13 augustss NULL, agp_i810_attach },
153 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 1.11 fvdl NULL, agp_i810_attach },
155 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 1.29 hannken NULL, agp_i810_attach },
157 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 1.31 tron NULL, agp_i810_attach },
159 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 1.23 scw NULL, agp_i810_attach },
161 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 1.37 christos NULL, agp_i810_attach },
163 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 1.37 christos NULL, agp_i810_attach },
165 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 1.39 simonb NULL, agp_i810_attach },
167 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 1.39 simonb NULL, agp_i810_attach },
169 1.61 tnn { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 1.61 tnn NULL, agp_i810_attach },
171 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 1.48 markd NULL, agp_i810_attach },
173 1.51 joerg { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 1.51 joerg NULL, agp_i810_attach },
175 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 1.50 jnemeth NULL, agp_i810_attach },
177 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 1.52 markd NULL, agp_i810_attach },
179 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 1.52 markd NULL, agp_i810_attach },
181 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 1.52 markd NULL, agp_i810_attach },
183 1.63 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
184 1.63 christos NULL, agp_i810_attach },
185 1.60 matthias { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
186 1.60 matthias NULL, agp_i810_attach },
187 1.7 thorpej #endif
188 1.5 thorpej
189 1.7 thorpej #if NAGP_INTEL > 0
190 1.5 thorpej { PCI_VENDOR_INTEL, -1,
191 1.5 thorpej NULL, agp_intel_attach },
192 1.7 thorpej #endif
193 1.5 thorpej
194 1.51 joerg #if NAGP_AMD64 > 0
195 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
196 1.51 joerg agp_amd64_match, agp_amd64_attach },
197 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
198 1.51 joerg agp_amd64_match, agp_amd64_attach },
199 1.7 thorpej #endif
200 1.5 thorpej
201 1.47 kiyohara #if NAGP_AMD64 > 0
202 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
203 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
204 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
205 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
206 1.51 joerg #endif
207 1.51 joerg
208 1.51 joerg #if NAGP_SIS > 0
209 1.51 joerg { PCI_VENDOR_SIS, -1,
210 1.51 joerg NULL, agp_sis_attach },
211 1.51 joerg #endif
212 1.51 joerg
213 1.51 joerg #if NAGP_AMD64 > 0
214 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
215 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
216 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
217 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
218 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
219 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
220 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
221 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
222 1.47 kiyohara #endif
223 1.47 kiyohara
224 1.51 joerg #if NAGP_VIA > 0
225 1.51 joerg { PCI_VENDOR_VIATECH, -1,
226 1.51 joerg NULL, agp_via_attach },
227 1.51 joerg #endif
228 1.51 joerg
229 1.5 thorpej { 0, 0,
230 1.5 thorpej NULL, NULL },
231 1.5 thorpej };
232 1.5 thorpej
233 1.5 thorpej static const struct agp_product *
234 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
235 1.5 thorpej {
236 1.5 thorpej const struct agp_product *ap;
237 1.5 thorpej
238 1.5 thorpej /* First find the vendor. */
239 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
240 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
241 1.5 thorpej break;
242 1.5 thorpej }
243 1.5 thorpej
244 1.5 thorpej if (ap->ap_attach == NULL)
245 1.5 thorpej return (NULL);
246 1.5 thorpej
247 1.5 thorpej /* Now find the product within the vendor's domain. */
248 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
249 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
250 1.5 thorpej /* Ran out of this vendor's section of the table. */
251 1.5 thorpej return (NULL);
252 1.5 thorpej }
253 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
254 1.5 thorpej /* Exact match. */
255 1.5 thorpej break;
256 1.5 thorpej }
257 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
258 1.5 thorpej /* Wildcard match. */
259 1.5 thorpej break;
260 1.5 thorpej }
261 1.5 thorpej }
262 1.5 thorpej
263 1.5 thorpej if (ap->ap_attach == NULL)
264 1.5 thorpej return (NULL);
265 1.5 thorpej
266 1.5 thorpej /* Now let the product-specific driver filter the match. */
267 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
268 1.5 thorpej return (NULL);
269 1.5 thorpej
270 1.5 thorpej return (ap);
271 1.5 thorpej }
272 1.5 thorpej
273 1.35 thorpej static int
274 1.59 freza agpmatch(device_t parent, cfdata_t match, void *aux)
275 1.1 fvdl {
276 1.5 thorpej struct agpbus_attach_args *apa = aux;
277 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
278 1.1 fvdl
279 1.5 thorpej if (agp_lookup(pa) == NULL)
280 1.5 thorpej return (0);
281 1.1 fvdl
282 1.5 thorpej return (1);
283 1.1 fvdl }
284 1.1 fvdl
285 1.35 thorpej static const int agp_max[][2] = {
286 1.1 fvdl {0, 0},
287 1.1 fvdl {32, 4},
288 1.1 fvdl {64, 28},
289 1.1 fvdl {128, 96},
290 1.1 fvdl {256, 204},
291 1.1 fvdl {512, 440},
292 1.1 fvdl {1024, 942},
293 1.1 fvdl {2048, 1920},
294 1.1 fvdl {4096, 3932}
295 1.1 fvdl };
296 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
297 1.1 fvdl
298 1.35 thorpej static void
299 1.59 freza agpattach(device_t parent, device_t self, void *aux)
300 1.1 fvdl {
301 1.5 thorpej struct agpbus_attach_args *apa = aux;
302 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
303 1.59 freza struct agp_softc *sc = device_private(self);
304 1.5 thorpej const struct agp_product *ap;
305 1.1 fvdl int memsize, i, ret;
306 1.1 fvdl
307 1.5 thorpej ap = agp_lookup(pa);
308 1.59 freza KASSERT(ap != NULL);
309 1.1 fvdl
310 1.24 thorpej aprint_naive(": AGP controller\n");
311 1.24 thorpej
312 1.59 freza sc->as_dev = self;
313 1.1 fvdl sc->as_dmat = pa->pa_dmat;
314 1.1 fvdl sc->as_pc = pa->pa_pc;
315 1.1 fvdl sc->as_tag = pa->pa_tag;
316 1.1 fvdl sc->as_id = pa->pa_id;
317 1.1 fvdl
318 1.1 fvdl /*
319 1.1 fvdl * Work out an upper bound for agp memory allocation. This
320 1.59 freza * uses a heuristic table from the Linux driver.
321 1.1 fvdl */
322 1.1 fvdl memsize = ptoa(physmem) >> 20;
323 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
324 1.1 fvdl if (memsize <= agp_max[i][0])
325 1.1 fvdl break;
326 1.1 fvdl }
327 1.1 fvdl if (i == agp_max_size)
328 1.1 fvdl i = agp_max_size - 1;
329 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
330 1.1 fvdl
331 1.1 fvdl /*
332 1.46 xtraeme * The mutex is used to prevent re-entry to
333 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
334 1.1 fvdl */
335 1.53 ad mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
336 1.1 fvdl
337 1.1 fvdl TAILQ_INIT(&sc->as_memory);
338 1.1 fvdl
339 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
340 1.1 fvdl if (ret == 0)
341 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
342 1.1 fvdl (unsigned long)sc->as_apaddr,
343 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
344 1.1 fvdl else
345 1.1 fvdl sc->as_chipc = NULL;
346 1.54 jmcneill
347 1.54 jmcneill if (!device_pmf_is_registered(self)) {
348 1.54 jmcneill if (!pmf_device_register(self, NULL, agp_resume))
349 1.59 freza aprint_error_dev(self, "couldn't establish power "
350 1.59 freza "handler\n");
351 1.54 jmcneill }
352 1.1 fvdl }
353 1.30 tron
354 1.59 freza CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
355 1.35 thorpej agpmatch, agpattach, NULL, NULL);
356 1.35 thorpej
357 1.1 fvdl int
358 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
359 1.1 fvdl {
360 1.1 fvdl /*
361 1.18 nathanw * Find the aperture. Don't map it (yet), this would
362 1.11 fvdl * eat KVA.
363 1.1 fvdl */
364 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
365 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
366 1.11 fvdl &sc->as_apflags) != 0)
367 1.1 fvdl return ENXIO;
368 1.8 drochner
369 1.11 fvdl sc->as_apt = pa->pa_memt;
370 1.11 fvdl
371 1.1 fvdl return 0;
372 1.1 fvdl }
373 1.1 fvdl
374 1.1 fvdl struct agp_gatt *
375 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
376 1.1 fvdl {
377 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
378 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
379 1.1 fvdl struct agp_gatt *gatt;
380 1.45 christos void *virtual;
381 1.1 fvdl int dummyseg;
382 1.1 fvdl
383 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
384 1.1 fvdl if (!gatt)
385 1.1 fvdl return NULL;
386 1.1 fvdl gatt->ag_entries = entries;
387 1.1 fvdl
388 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
389 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
390 1.62 christos &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
391 1.62 christos free(gatt, M_AGP);
392 1.1 fvdl return NULL;
393 1.62 christos }
394 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
395 1.1 fvdl
396 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
397 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
398 1.1 fvdl agp_flush_cache();
399 1.1 fvdl
400 1.1 fvdl return gatt;
401 1.1 fvdl }
402 1.1 fvdl
403 1.1 fvdl void
404 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
405 1.1 fvdl {
406 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
407 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
408 1.1 fvdl free(gatt, M_AGP);
409 1.1 fvdl }
410 1.1 fvdl
411 1.1 fvdl
412 1.1 fvdl int
413 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
414 1.1 fvdl {
415 1.46 xtraeme mutex_destroy(&sc->as_mtx);
416 1.1 fvdl agp_flush_cache();
417 1.1 fvdl return 0;
418 1.1 fvdl }
419 1.1 fvdl
420 1.1 fvdl static int
421 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
422 1.1 fvdl {
423 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
424 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
425 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
426 1.26 tron NULL, NULL))
427 1.1 fvdl return 1;
428 1.1 fvdl
429 1.1 fvdl return 0;
430 1.1 fvdl }
431 1.1 fvdl
432 1.1 fvdl int
433 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
434 1.1 fvdl {
435 1.1 fvdl struct pci_attach_args pa;
436 1.1 fvdl pcireg_t tstatus, mstatus;
437 1.1 fvdl pcireg_t command;
438 1.1 fvdl int rq, sba, fw, rate, capoff;
439 1.1 fvdl
440 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
441 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
442 1.1 fvdl &capoff, NULL) == 0) {
443 1.59 freza aprint_error_dev(sc->as_dev, "can't find display\n");
444 1.1 fvdl return ENXIO;
445 1.1 fvdl }
446 1.1 fvdl
447 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
448 1.1 fvdl sc->as_capoff + AGP_STATUS);
449 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
450 1.1 fvdl capoff + AGP_STATUS);
451 1.1 fvdl
452 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
453 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
454 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
455 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
456 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
457 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
458 1.1 fvdl
459 1.1 fvdl /* Set SBA if all three can deal with SBA */
460 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
461 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
462 1.1 fvdl & AGP_MODE_GET_SBA(mode));
463 1.1 fvdl
464 1.1 fvdl /* Similar for FW */
465 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
466 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
467 1.1 fvdl & AGP_MODE_GET_FW(mode));
468 1.1 fvdl
469 1.1 fvdl /* Figure out the max rate */
470 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
471 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
472 1.1 fvdl & AGP_MODE_GET_RATE(mode));
473 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
474 1.1 fvdl rate = AGP_MODE_RATE_4x;
475 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
476 1.1 fvdl rate = AGP_MODE_RATE_2x;
477 1.1 fvdl else
478 1.1 fvdl rate = AGP_MODE_RATE_1x;
479 1.1 fvdl
480 1.1 fvdl /* Construct the new mode word and tell the hardware */
481 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
482 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
483 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
484 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
485 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
486 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
487 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
488 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
489 1.1 fvdl
490 1.1 fvdl return 0;
491 1.1 fvdl }
492 1.1 fvdl
493 1.1 fvdl struct agp_memory *
494 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
495 1.1 fvdl {
496 1.1 fvdl struct agp_memory *mem;
497 1.1 fvdl
498 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
499 1.1 fvdl return 0;
500 1.1 fvdl
501 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
502 1.1 fvdl return 0;
503 1.1 fvdl
504 1.1 fvdl if (type != 0) {
505 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
506 1.1 fvdl type);
507 1.1 fvdl return 0;
508 1.1 fvdl }
509 1.1 fvdl
510 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
511 1.1 fvdl if (mem == NULL)
512 1.1 fvdl return NULL;
513 1.1 fvdl
514 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
515 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
516 1.1 fvdl free(mem, M_AGP);
517 1.1 fvdl return NULL;
518 1.1 fvdl }
519 1.1 fvdl
520 1.1 fvdl mem->am_id = sc->as_nextid++;
521 1.1 fvdl mem->am_size = size;
522 1.1 fvdl mem->am_type = 0;
523 1.1 fvdl mem->am_physical = 0;
524 1.1 fvdl mem->am_offset = 0;
525 1.1 fvdl mem->am_is_bound = 0;
526 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
527 1.1 fvdl sc->as_allocated += size;
528 1.1 fvdl
529 1.1 fvdl return mem;
530 1.1 fvdl }
531 1.1 fvdl
532 1.1 fvdl int
533 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
534 1.1 fvdl {
535 1.1 fvdl if (mem->am_is_bound)
536 1.1 fvdl return EBUSY;
537 1.1 fvdl
538 1.1 fvdl sc->as_allocated -= mem->am_size;
539 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
540 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
541 1.1 fvdl free(mem, M_AGP);
542 1.1 fvdl return 0;
543 1.1 fvdl }
544 1.1 fvdl
545 1.1 fvdl int
546 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
547 1.1 fvdl off_t offset)
548 1.1 fvdl {
549 1.1 fvdl off_t i, k;
550 1.1 fvdl bus_size_t done, j;
551 1.1 fvdl int error;
552 1.1 fvdl bus_dma_segment_t *segs, *seg;
553 1.1 fvdl bus_addr_t pa;
554 1.1 fvdl int contigpages, nseg;
555 1.1 fvdl
556 1.46 xtraeme mutex_enter(&sc->as_mtx);
557 1.1 fvdl
558 1.1 fvdl if (mem->am_is_bound) {
559 1.59 freza aprint_error_dev(sc->as_dev, "memory already bound\n");
560 1.46 xtraeme mutex_exit(&sc->as_mtx);
561 1.1 fvdl return EINVAL;
562 1.1 fvdl }
563 1.34 perry
564 1.1 fvdl if (offset < 0
565 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
566 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
567 1.59 freza aprint_error_dev(sc->as_dev,
568 1.59 freza "binding memory at bad offset %#lx\n",
569 1.56 cegger (unsigned long) offset);
570 1.46 xtraeme mutex_exit(&sc->as_mtx);
571 1.1 fvdl return EINVAL;
572 1.1 fvdl }
573 1.1 fvdl
574 1.1 fvdl /*
575 1.1 fvdl * XXXfvdl
576 1.1 fvdl * The memory here needs to be directly accessable from the
577 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
578 1.1 fvdl * However, it need not be contiguous, since individual pages
579 1.1 fvdl * are translated using the GATT.
580 1.1 fvdl *
581 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
582 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
583 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
584 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
585 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
586 1.1 fvdl * a bus_dma_segment per page would be overkill.
587 1.1 fvdl */
588 1.1 fvdl
589 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
590 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
591 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
592 1.16 drochner if (segs == NULL) {
593 1.46 xtraeme mutex_exit(&sc->as_mtx);
594 1.10 thorpej return ENOMEM;
595 1.16 drochner }
596 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
597 1.4 drochner segs, nseg, &mem->am_nseg,
598 1.15 drochner contigpages > 1 ?
599 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
600 1.4 drochner free(segs, M_AGP);
601 1.1 fvdl continue;
602 1.4 drochner }
603 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
604 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
605 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
606 1.4 drochner free(segs, M_AGP);
607 1.1 fvdl continue;
608 1.1 fvdl }
609 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
610 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
611 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
612 1.1 fvdl mem->am_size);
613 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
614 1.4 drochner free(segs, M_AGP);
615 1.1 fvdl continue;
616 1.1 fvdl }
617 1.1 fvdl mem->am_dmaseg = segs;
618 1.1 fvdl break;
619 1.1 fvdl }
620 1.1 fvdl
621 1.1 fvdl if (contigpages == 0) {
622 1.46 xtraeme mutex_exit(&sc->as_mtx);
623 1.1 fvdl return ENOMEM;
624 1.1 fvdl }
625 1.1 fvdl
626 1.1 fvdl
627 1.1 fvdl /*
628 1.1 fvdl * Bind the individual pages and flush the chipset's
629 1.1 fvdl * TLB.
630 1.1 fvdl */
631 1.1 fvdl done = 0;
632 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
633 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
634 1.1 fvdl /*
635 1.1 fvdl * Install entries in the GATT, making sure that if
636 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
637 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
638 1.1 fvdl * entries.
639 1.1 fvdl */
640 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
641 1.1 fvdl j += AGP_PAGE_SIZE) {
642 1.1 fvdl pa = seg->ds_addr + j;
643 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
644 1.3 drochner (unsigned long)(offset + done + j),
645 1.40 christos (unsigned long)pa));
646 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
647 1.1 fvdl if (error) {
648 1.1 fvdl /*
649 1.1 fvdl * Bail out. Reverse all the mappings
650 1.1 fvdl * and unwire the pages.
651 1.1 fvdl */
652 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
653 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
654 1.1 fvdl
655 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
656 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
657 1.4 drochner mem->am_size);
658 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
659 1.4 drochner mem->am_nseg);
660 1.4 drochner free(mem->am_dmaseg, M_AGP);
661 1.46 xtraeme mutex_exit(&sc->as_mtx);
662 1.1 fvdl return error;
663 1.1 fvdl }
664 1.1 fvdl }
665 1.1 fvdl done += seg->ds_len;
666 1.1 fvdl }
667 1.1 fvdl
668 1.1 fvdl /*
669 1.32 wiz * Flush the CPU cache since we are providing a new mapping
670 1.1 fvdl * for these pages.
671 1.1 fvdl */
672 1.1 fvdl agp_flush_cache();
673 1.1 fvdl
674 1.1 fvdl /*
675 1.1 fvdl * Make sure the chipset gets the new mappings.
676 1.1 fvdl */
677 1.1 fvdl AGP_FLUSH_TLB(sc);
678 1.1 fvdl
679 1.1 fvdl mem->am_offset = offset;
680 1.1 fvdl mem->am_is_bound = 1;
681 1.1 fvdl
682 1.46 xtraeme mutex_exit(&sc->as_mtx);
683 1.1 fvdl
684 1.1 fvdl return 0;
685 1.1 fvdl }
686 1.1 fvdl
687 1.1 fvdl int
688 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
689 1.1 fvdl {
690 1.1 fvdl int i;
691 1.1 fvdl
692 1.46 xtraeme mutex_enter(&sc->as_mtx);
693 1.1 fvdl
694 1.1 fvdl if (!mem->am_is_bound) {
695 1.59 freza aprint_error_dev(sc->as_dev, "memory is not bound\n");
696 1.46 xtraeme mutex_exit(&sc->as_mtx);
697 1.1 fvdl return EINVAL;
698 1.1 fvdl }
699 1.1 fvdl
700 1.1 fvdl
701 1.1 fvdl /*
702 1.1 fvdl * Unbind the individual pages and flush the chipset's
703 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
704 1.1 fvdl */
705 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
706 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
707 1.34 perry
708 1.1 fvdl agp_flush_cache();
709 1.1 fvdl AGP_FLUSH_TLB(sc);
710 1.1 fvdl
711 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
712 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
713 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
714 1.1 fvdl
715 1.1 fvdl free(mem->am_dmaseg, M_AGP);
716 1.1 fvdl
717 1.1 fvdl mem->am_offset = 0;
718 1.1 fvdl mem->am_is_bound = 0;
719 1.1 fvdl
720 1.46 xtraeme mutex_exit(&sc->as_mtx);
721 1.1 fvdl
722 1.1 fvdl return 0;
723 1.1 fvdl }
724 1.1 fvdl
725 1.1 fvdl /* Helper functions for implementing user/kernel api */
726 1.1 fvdl
727 1.1 fvdl static int
728 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
729 1.1 fvdl {
730 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
731 1.1 fvdl return EBUSY;
732 1.1 fvdl sc->as_state = state;
733 1.1 fvdl
734 1.1 fvdl return 0;
735 1.1 fvdl }
736 1.1 fvdl
737 1.1 fvdl static int
738 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
739 1.1 fvdl {
740 1.1 fvdl
741 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
742 1.1 fvdl return 0;
743 1.1 fvdl
744 1.1 fvdl if (sc->as_state != state)
745 1.1 fvdl return EBUSY;
746 1.1 fvdl
747 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
748 1.1 fvdl return 0;
749 1.1 fvdl }
750 1.1 fvdl
751 1.1 fvdl static struct agp_memory *
752 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
753 1.1 fvdl {
754 1.1 fvdl struct agp_memory *mem;
755 1.1 fvdl
756 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
757 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
758 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
759 1.1 fvdl if (mem->am_id == id)
760 1.1 fvdl return mem;
761 1.1 fvdl }
762 1.1 fvdl return 0;
763 1.1 fvdl }
764 1.1 fvdl
765 1.1 fvdl /* Implementation of the userland ioctl api */
766 1.1 fvdl
767 1.1 fvdl static int
768 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
769 1.1 fvdl {
770 1.1 fvdl memset(info, 0, sizeof *info);
771 1.1 fvdl info->bridge_id = sc->as_id;
772 1.3 drochner if (sc->as_capoff != 0)
773 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
774 1.3 drochner sc->as_capoff + AGP_STATUS);
775 1.3 drochner else
776 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
777 1.1 fvdl info->aper_base = sc->as_apaddr;
778 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
779 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
780 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
781 1.1 fvdl
782 1.1 fvdl return 0;
783 1.1 fvdl }
784 1.1 fvdl
785 1.1 fvdl static int
786 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
787 1.1 fvdl {
788 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
789 1.1 fvdl }
790 1.1 fvdl
791 1.1 fvdl static int
792 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
793 1.1 fvdl {
794 1.1 fvdl struct agp_memory *mem;
795 1.1 fvdl
796 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
797 1.1 fvdl alloc->type,
798 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
799 1.1 fvdl if (mem) {
800 1.1 fvdl alloc->key = mem->am_id;
801 1.1 fvdl alloc->physical = mem->am_physical;
802 1.1 fvdl return 0;
803 1.1 fvdl } else {
804 1.1 fvdl return ENOMEM;
805 1.1 fvdl }
806 1.1 fvdl }
807 1.1 fvdl
808 1.1 fvdl static int
809 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
810 1.1 fvdl {
811 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
812 1.1 fvdl
813 1.1 fvdl if (mem) {
814 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
815 1.1 fvdl return 0;
816 1.1 fvdl } else {
817 1.1 fvdl return ENOENT;
818 1.1 fvdl }
819 1.1 fvdl }
820 1.1 fvdl
821 1.1 fvdl static int
822 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
823 1.1 fvdl {
824 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
825 1.1 fvdl
826 1.1 fvdl if (!mem)
827 1.1 fvdl return ENOENT;
828 1.1 fvdl
829 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
830 1.1 fvdl }
831 1.1 fvdl
832 1.1 fvdl static int
833 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
834 1.1 fvdl {
835 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
836 1.1 fvdl
837 1.1 fvdl if (!mem)
838 1.1 fvdl return ENOENT;
839 1.1 fvdl
840 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
841 1.1 fvdl }
842 1.1 fvdl
843 1.35 thorpej static int
844 1.59 freza agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
845 1.1 fvdl {
846 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
847 1.9 thorpej
848 1.9 thorpej if (sc == NULL)
849 1.9 thorpej return ENXIO;
850 1.1 fvdl
851 1.1 fvdl if (sc->as_chipc == NULL)
852 1.1 fvdl return ENXIO;
853 1.1 fvdl
854 1.1 fvdl if (!sc->as_isopen)
855 1.1 fvdl sc->as_isopen = 1;
856 1.1 fvdl else
857 1.1 fvdl return EBUSY;
858 1.1 fvdl
859 1.1 fvdl return 0;
860 1.1 fvdl }
861 1.1 fvdl
862 1.35 thorpej static int
863 1.59 freza agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
864 1.1 fvdl {
865 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
866 1.16 drochner struct agp_memory *mem;
867 1.1 fvdl
868 1.59 freza if (sc == NULL)
869 1.59 freza return ENODEV;
870 1.59 freza
871 1.1 fvdl /*
872 1.1 fvdl * Clear the GATT and force release on last close
873 1.1 fvdl */
874 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
875 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
876 1.16 drochner if (mem->am_is_bound) {
877 1.16 drochner printf("agpclose: mem %d is bound\n",
878 1.16 drochner mem->am_id);
879 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
880 1.16 drochner }
881 1.16 drochner /*
882 1.16 drochner * XXX it is not documented, but if the protocol allows
883 1.16 drochner * allocate->acquire->bind, it would be possible that
884 1.16 drochner * memory ranges are allocated by the kernel here,
885 1.16 drochner * which we shouldn't free. We'd have to keep track of
886 1.16 drochner * the memory range's owner.
887 1.16 drochner * The kernel API is unsed yet, so we get away with
888 1.16 drochner * freeing all.
889 1.16 drochner */
890 1.16 drochner AGP_FREE_MEMORY(sc, mem);
891 1.16 drochner }
892 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
893 1.16 drochner }
894 1.1 fvdl sc->as_isopen = 0;
895 1.1 fvdl
896 1.1 fvdl return 0;
897 1.1 fvdl }
898 1.1 fvdl
899 1.35 thorpej static int
900 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
901 1.1 fvdl {
902 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
903 1.1 fvdl
904 1.1 fvdl if (sc == NULL)
905 1.1 fvdl return ENODEV;
906 1.1 fvdl
907 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
908 1.1 fvdl return EPERM;
909 1.1 fvdl
910 1.1 fvdl switch (cmd) {
911 1.1 fvdl case AGPIOC_INFO:
912 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
913 1.1 fvdl
914 1.1 fvdl case AGPIOC_ACQUIRE:
915 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
916 1.1 fvdl
917 1.1 fvdl case AGPIOC_RELEASE:
918 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
919 1.1 fvdl
920 1.1 fvdl case AGPIOC_SETUP:
921 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
922 1.1 fvdl
923 1.1 fvdl case AGPIOC_ALLOCATE:
924 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
925 1.1 fvdl
926 1.1 fvdl case AGPIOC_DEALLOCATE:
927 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
928 1.1 fvdl
929 1.1 fvdl case AGPIOC_BIND:
930 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
931 1.1 fvdl
932 1.1 fvdl case AGPIOC_UNBIND:
933 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
934 1.1 fvdl
935 1.1 fvdl }
936 1.1 fvdl
937 1.1 fvdl return EINVAL;
938 1.1 fvdl }
939 1.1 fvdl
940 1.35 thorpej static paddr_t
941 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
942 1.1 fvdl {
943 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
944 1.1 fvdl
945 1.59 freza if (sc == NULL)
946 1.59 freza return ENODEV;
947 1.59 freza
948 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
949 1.1 fvdl return -1;
950 1.6 thorpej
951 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
952 1.6 thorpej BUS_SPACE_MAP_LINEAR));
953 1.1 fvdl }
954 1.1 fvdl
955 1.35 thorpej const struct cdevsw agp_cdevsw = {
956 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
957 1.59 freza nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
958 1.35 thorpej };
959 1.35 thorpej
960 1.1 fvdl /* Implementation of the kernel api */
961 1.1 fvdl
962 1.1 fvdl void *
963 1.1 fvdl agp_find_device(int unit)
964 1.1 fvdl {
965 1.59 freza return device_lookup_private(&agp_cd, unit);
966 1.1 fvdl }
967 1.1 fvdl
968 1.1 fvdl enum agp_acquire_state
969 1.1 fvdl agp_state(void *devcookie)
970 1.1 fvdl {
971 1.1 fvdl struct agp_softc *sc = devcookie;
972 1.59 freza
973 1.1 fvdl return sc->as_state;
974 1.1 fvdl }
975 1.1 fvdl
976 1.1 fvdl void
977 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
978 1.1 fvdl {
979 1.1 fvdl struct agp_softc *sc = devcookie;
980 1.1 fvdl
981 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
982 1.1 fvdl sc->as_capoff + AGP_STATUS);
983 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
984 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
985 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
986 1.1 fvdl info->ai_memory_used = sc->as_allocated;
987 1.1 fvdl }
988 1.1 fvdl
989 1.1 fvdl int
990 1.1 fvdl agp_acquire(void *dev)
991 1.1 fvdl {
992 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
993 1.1 fvdl }
994 1.1 fvdl
995 1.1 fvdl int
996 1.1 fvdl agp_release(void *dev)
997 1.1 fvdl {
998 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
999 1.1 fvdl }
1000 1.1 fvdl
1001 1.1 fvdl int
1002 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
1003 1.1 fvdl {
1004 1.1 fvdl struct agp_softc *sc = dev;
1005 1.1 fvdl
1006 1.1 fvdl return AGP_ENABLE(sc, mode);
1007 1.1 fvdl }
1008 1.1 fvdl
1009 1.59 freza void *
1010 1.59 freza agp_alloc_memory(void *dev, int type, vsize_t bytes)
1011 1.1 fvdl {
1012 1.1 fvdl struct agp_softc *sc = dev;
1013 1.1 fvdl
1014 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1015 1.1 fvdl }
1016 1.1 fvdl
1017 1.59 freza void
1018 1.59 freza agp_free_memory(void *dev, void *handle)
1019 1.1 fvdl {
1020 1.1 fvdl struct agp_softc *sc = dev;
1021 1.59 freza struct agp_memory *mem = handle;
1022 1.59 freza
1023 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
1024 1.1 fvdl }
1025 1.1 fvdl
1026 1.59 freza int
1027 1.59 freza agp_bind_memory(void *dev, void *handle, off_t offset)
1028 1.1 fvdl {
1029 1.1 fvdl struct agp_softc *sc = dev;
1030 1.59 freza struct agp_memory *mem = handle;
1031 1.1 fvdl
1032 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
1033 1.1 fvdl }
1034 1.1 fvdl
1035 1.59 freza int
1036 1.59 freza agp_unbind_memory(void *dev, void *handle)
1037 1.1 fvdl {
1038 1.1 fvdl struct agp_softc *sc = dev;
1039 1.59 freza struct agp_memory *mem = handle;
1040 1.1 fvdl
1041 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
1042 1.1 fvdl }
1043 1.1 fvdl
1044 1.59 freza void
1045 1.59 freza agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1046 1.1 fvdl {
1047 1.59 freza struct agp_memory *mem = handle;
1048 1.1 fvdl
1049 1.1 fvdl mi->ami_size = mem->am_size;
1050 1.1 fvdl mi->ami_physical = mem->am_physical;
1051 1.1 fvdl mi->ami_offset = mem->am_offset;
1052 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1053 1.1 fvdl }
1054 1.1 fvdl
1055 1.1 fvdl int
1056 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1057 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1058 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1059 1.1 fvdl
1060 1.1 fvdl {
1061 1.1 fvdl int error, level = 0;
1062 1.1 fvdl
1063 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1064 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1065 1.1 fvdl goto out;
1066 1.1 fvdl level++;
1067 1.1 fvdl
1068 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1069 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1070 1.1 fvdl goto out;
1071 1.1 fvdl level++;
1072 1.1 fvdl
1073 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1074 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1075 1.1 fvdl goto out;
1076 1.1 fvdl level++;
1077 1.1 fvdl
1078 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1079 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1080 1.1 fvdl goto out;
1081 1.1 fvdl
1082 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1083 1.1 fvdl
1084 1.1 fvdl return 0;
1085 1.1 fvdl out:
1086 1.1 fvdl switch (level) {
1087 1.1 fvdl case 3:
1088 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1089 1.1 fvdl /* FALLTHROUGH */
1090 1.1 fvdl case 2:
1091 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1092 1.1 fvdl /* FALLTHROUGH */
1093 1.1 fvdl case 1:
1094 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1095 1.1 fvdl break;
1096 1.1 fvdl default:
1097 1.1 fvdl break;
1098 1.1 fvdl }
1099 1.1 fvdl
1100 1.1 fvdl return error;
1101 1.1 fvdl }
1102 1.1 fvdl
1103 1.1 fvdl void
1104 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1105 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1106 1.1 fvdl {
1107 1.1 fvdl bus_dmamap_unload(tag, map);
1108 1.1 fvdl bus_dmamap_destroy(tag, map);
1109 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1110 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1111 1.1 fvdl }
1112 1.54 jmcneill
1113 1.54 jmcneill static bool
1114 1.55 dyoung agp_resume(device_t dv PMF_FN_ARGS)
1115 1.54 jmcneill {
1116 1.54 jmcneill agp_flush_cache();
1117 1.54 jmcneill
1118 1.54 jmcneill return true;
1119 1.54 jmcneill }
1120