agp.c revision 1.64 1 1.64 christos /* $NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.64 christos __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <uvm/uvm_extern.h>
83 1.1 fvdl
84 1.1 fvdl #include <dev/pci/pcireg.h>
85 1.1 fvdl #include <dev/pci/pcivar.h>
86 1.1 fvdl #include <dev/pci/agpvar.h>
87 1.1 fvdl #include <dev/pci/agpreg.h>
88 1.1 fvdl #include <dev/pci/pcidevs.h>
89 1.1 fvdl
90 1.49 ad #include <sys/bus.h>
91 1.25 thorpej
92 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 1.1 fvdl
94 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
95 1.1 fvdl /* XXXfvdl get rid of this one. */
96 1.1 fvdl
97 1.1 fvdl extern struct cfdriver agp_cd;
98 1.17 gehenna
99 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
100 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
101 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
103 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
104 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
106 1.55 dyoung static bool agp_resume(device_t PMF_FN_PROTO);
107 1.1 fvdl
108 1.7 thorpej #include "agp_ali.h"
109 1.7 thorpej #include "agp_amd.h"
110 1.7 thorpej #include "agp_i810.h"
111 1.7 thorpej #include "agp_intel.h"
112 1.7 thorpej #include "agp_sis.h"
113 1.7 thorpej #include "agp_via.h"
114 1.47 kiyohara #include "agp_amd64.h"
115 1.7 thorpej
116 1.5 thorpej const struct agp_product {
117 1.5 thorpej uint32_t ap_vendor;
118 1.5 thorpej uint32_t ap_product;
119 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
120 1.59 freza int (*ap_attach)(device_t, device_t, void *);
121 1.5 thorpej } agp_products[] = {
122 1.57 njoly #if NAGP_AMD64 > 0
123 1.57 njoly { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 1.57 njoly agp_amd64_match, agp_amd64_attach },
125 1.57 njoly #endif
126 1.57 njoly
127 1.7 thorpej #if NAGP_ALI > 0
128 1.5 thorpej { PCI_VENDOR_ALI, -1,
129 1.5 thorpej NULL, agp_ali_attach },
130 1.7 thorpej #endif
131 1.5 thorpej
132 1.51 joerg #if NAGP_AMD64 > 0
133 1.51 joerg { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 1.51 joerg agp_amd64_match, agp_amd64_attach },
135 1.51 joerg #endif
136 1.51 joerg
137 1.7 thorpej #if NAGP_AMD > 0
138 1.5 thorpej { PCI_VENDOR_AMD, -1,
139 1.5 thorpej agp_amd_match, agp_amd_attach },
140 1.7 thorpej #endif
141 1.5 thorpej
142 1.7 thorpej #if NAGP_I810 > 0
143 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 1.5 thorpej NULL, agp_i810_attach },
145 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 1.5 thorpej NULL, agp_i810_attach },
147 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 1.5 thorpej NULL, agp_i810_attach },
149 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 1.5 thorpej NULL, agp_i810_attach },
151 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 1.13 augustss NULL, agp_i810_attach },
153 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 1.11 fvdl NULL, agp_i810_attach },
155 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 1.29 hannken NULL, agp_i810_attach },
157 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 1.31 tron NULL, agp_i810_attach },
159 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 1.23 scw NULL, agp_i810_attach },
161 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 1.37 christos NULL, agp_i810_attach },
163 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 1.37 christos NULL, agp_i810_attach },
165 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 1.39 simonb NULL, agp_i810_attach },
167 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 1.39 simonb NULL, agp_i810_attach },
169 1.61 tnn { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 1.61 tnn NULL, agp_i810_attach },
171 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 1.48 markd NULL, agp_i810_attach },
173 1.51 joerg { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 1.51 joerg NULL, agp_i810_attach },
175 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 1.50 jnemeth NULL, agp_i810_attach },
177 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 1.52 markd NULL, agp_i810_attach },
179 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 1.52 markd NULL, agp_i810_attach },
181 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 1.52 markd NULL, agp_i810_attach },
183 1.63 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
184 1.63 christos NULL, agp_i810_attach },
185 1.60 matthias { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
186 1.60 matthias NULL, agp_i810_attach },
187 1.64 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
188 1.64 christos NULL, agp_i810_attach },
189 1.7 thorpej #endif
190 1.5 thorpej
191 1.7 thorpej #if NAGP_INTEL > 0
192 1.5 thorpej { PCI_VENDOR_INTEL, -1,
193 1.5 thorpej NULL, agp_intel_attach },
194 1.7 thorpej #endif
195 1.5 thorpej
196 1.51 joerg #if NAGP_AMD64 > 0
197 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
198 1.51 joerg agp_amd64_match, agp_amd64_attach },
199 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
200 1.51 joerg agp_amd64_match, agp_amd64_attach },
201 1.7 thorpej #endif
202 1.5 thorpej
203 1.47 kiyohara #if NAGP_AMD64 > 0
204 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
205 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
206 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
207 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
208 1.51 joerg #endif
209 1.51 joerg
210 1.51 joerg #if NAGP_SIS > 0
211 1.51 joerg { PCI_VENDOR_SIS, -1,
212 1.51 joerg NULL, agp_sis_attach },
213 1.51 joerg #endif
214 1.51 joerg
215 1.51 joerg #if NAGP_AMD64 > 0
216 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
217 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
218 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
219 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
220 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
221 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
222 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
223 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
224 1.47 kiyohara #endif
225 1.47 kiyohara
226 1.51 joerg #if NAGP_VIA > 0
227 1.51 joerg { PCI_VENDOR_VIATECH, -1,
228 1.51 joerg NULL, agp_via_attach },
229 1.51 joerg #endif
230 1.51 joerg
231 1.5 thorpej { 0, 0,
232 1.5 thorpej NULL, NULL },
233 1.5 thorpej };
234 1.5 thorpej
235 1.5 thorpej static const struct agp_product *
236 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
237 1.5 thorpej {
238 1.5 thorpej const struct agp_product *ap;
239 1.5 thorpej
240 1.5 thorpej /* First find the vendor. */
241 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
242 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
243 1.5 thorpej break;
244 1.5 thorpej }
245 1.5 thorpej
246 1.5 thorpej if (ap->ap_attach == NULL)
247 1.5 thorpej return (NULL);
248 1.5 thorpej
249 1.5 thorpej /* Now find the product within the vendor's domain. */
250 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
251 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
252 1.5 thorpej /* Ran out of this vendor's section of the table. */
253 1.5 thorpej return (NULL);
254 1.5 thorpej }
255 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
256 1.5 thorpej /* Exact match. */
257 1.5 thorpej break;
258 1.5 thorpej }
259 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
260 1.5 thorpej /* Wildcard match. */
261 1.5 thorpej break;
262 1.5 thorpej }
263 1.5 thorpej }
264 1.5 thorpej
265 1.5 thorpej if (ap->ap_attach == NULL)
266 1.5 thorpej return (NULL);
267 1.5 thorpej
268 1.5 thorpej /* Now let the product-specific driver filter the match. */
269 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
270 1.5 thorpej return (NULL);
271 1.5 thorpej
272 1.5 thorpej return (ap);
273 1.5 thorpej }
274 1.5 thorpej
275 1.35 thorpej static int
276 1.59 freza agpmatch(device_t parent, cfdata_t match, void *aux)
277 1.1 fvdl {
278 1.5 thorpej struct agpbus_attach_args *apa = aux;
279 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
280 1.1 fvdl
281 1.5 thorpej if (agp_lookup(pa) == NULL)
282 1.5 thorpej return (0);
283 1.1 fvdl
284 1.5 thorpej return (1);
285 1.1 fvdl }
286 1.1 fvdl
287 1.35 thorpej static const int agp_max[][2] = {
288 1.1 fvdl {0, 0},
289 1.1 fvdl {32, 4},
290 1.1 fvdl {64, 28},
291 1.1 fvdl {128, 96},
292 1.1 fvdl {256, 204},
293 1.1 fvdl {512, 440},
294 1.1 fvdl {1024, 942},
295 1.1 fvdl {2048, 1920},
296 1.1 fvdl {4096, 3932}
297 1.1 fvdl };
298 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
299 1.1 fvdl
300 1.35 thorpej static void
301 1.59 freza agpattach(device_t parent, device_t self, void *aux)
302 1.1 fvdl {
303 1.5 thorpej struct agpbus_attach_args *apa = aux;
304 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
305 1.59 freza struct agp_softc *sc = device_private(self);
306 1.5 thorpej const struct agp_product *ap;
307 1.1 fvdl int memsize, i, ret;
308 1.1 fvdl
309 1.5 thorpej ap = agp_lookup(pa);
310 1.59 freza KASSERT(ap != NULL);
311 1.1 fvdl
312 1.24 thorpej aprint_naive(": AGP controller\n");
313 1.24 thorpej
314 1.59 freza sc->as_dev = self;
315 1.1 fvdl sc->as_dmat = pa->pa_dmat;
316 1.1 fvdl sc->as_pc = pa->pa_pc;
317 1.1 fvdl sc->as_tag = pa->pa_tag;
318 1.1 fvdl sc->as_id = pa->pa_id;
319 1.1 fvdl
320 1.1 fvdl /*
321 1.1 fvdl * Work out an upper bound for agp memory allocation. This
322 1.59 freza * uses a heuristic table from the Linux driver.
323 1.1 fvdl */
324 1.1 fvdl memsize = ptoa(physmem) >> 20;
325 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
326 1.1 fvdl if (memsize <= agp_max[i][0])
327 1.1 fvdl break;
328 1.1 fvdl }
329 1.1 fvdl if (i == agp_max_size)
330 1.1 fvdl i = agp_max_size - 1;
331 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
332 1.1 fvdl
333 1.1 fvdl /*
334 1.46 xtraeme * The mutex is used to prevent re-entry to
335 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
336 1.1 fvdl */
337 1.53 ad mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
338 1.1 fvdl
339 1.1 fvdl TAILQ_INIT(&sc->as_memory);
340 1.1 fvdl
341 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
342 1.1 fvdl if (ret == 0)
343 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
344 1.1 fvdl (unsigned long)sc->as_apaddr,
345 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
346 1.1 fvdl else
347 1.1 fvdl sc->as_chipc = NULL;
348 1.54 jmcneill
349 1.54 jmcneill if (!device_pmf_is_registered(self)) {
350 1.54 jmcneill if (!pmf_device_register(self, NULL, agp_resume))
351 1.59 freza aprint_error_dev(self, "couldn't establish power "
352 1.59 freza "handler\n");
353 1.54 jmcneill }
354 1.1 fvdl }
355 1.30 tron
356 1.59 freza CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
357 1.35 thorpej agpmatch, agpattach, NULL, NULL);
358 1.35 thorpej
359 1.1 fvdl int
360 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
361 1.1 fvdl {
362 1.1 fvdl /*
363 1.18 nathanw * Find the aperture. Don't map it (yet), this would
364 1.11 fvdl * eat KVA.
365 1.1 fvdl */
366 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
367 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
368 1.11 fvdl &sc->as_apflags) != 0)
369 1.1 fvdl return ENXIO;
370 1.8 drochner
371 1.11 fvdl sc->as_apt = pa->pa_memt;
372 1.11 fvdl
373 1.1 fvdl return 0;
374 1.1 fvdl }
375 1.1 fvdl
376 1.1 fvdl struct agp_gatt *
377 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
378 1.1 fvdl {
379 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
380 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
381 1.1 fvdl struct agp_gatt *gatt;
382 1.45 christos void *virtual;
383 1.1 fvdl int dummyseg;
384 1.1 fvdl
385 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
386 1.1 fvdl if (!gatt)
387 1.1 fvdl return NULL;
388 1.1 fvdl gatt->ag_entries = entries;
389 1.1 fvdl
390 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
391 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
392 1.62 christos &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
393 1.62 christos free(gatt, M_AGP);
394 1.1 fvdl return NULL;
395 1.62 christos }
396 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
397 1.1 fvdl
398 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
399 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
400 1.1 fvdl agp_flush_cache();
401 1.1 fvdl
402 1.1 fvdl return gatt;
403 1.1 fvdl }
404 1.1 fvdl
405 1.1 fvdl void
406 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
407 1.1 fvdl {
408 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
409 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
410 1.1 fvdl free(gatt, M_AGP);
411 1.1 fvdl }
412 1.1 fvdl
413 1.1 fvdl
414 1.1 fvdl int
415 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
416 1.1 fvdl {
417 1.46 xtraeme mutex_destroy(&sc->as_mtx);
418 1.1 fvdl agp_flush_cache();
419 1.1 fvdl return 0;
420 1.1 fvdl }
421 1.1 fvdl
422 1.1 fvdl static int
423 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
424 1.1 fvdl {
425 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
426 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
427 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
428 1.26 tron NULL, NULL))
429 1.1 fvdl return 1;
430 1.1 fvdl
431 1.1 fvdl return 0;
432 1.1 fvdl }
433 1.1 fvdl
434 1.1 fvdl int
435 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
436 1.1 fvdl {
437 1.1 fvdl struct pci_attach_args pa;
438 1.1 fvdl pcireg_t tstatus, mstatus;
439 1.1 fvdl pcireg_t command;
440 1.1 fvdl int rq, sba, fw, rate, capoff;
441 1.1 fvdl
442 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
443 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
444 1.1 fvdl &capoff, NULL) == 0) {
445 1.59 freza aprint_error_dev(sc->as_dev, "can't find display\n");
446 1.1 fvdl return ENXIO;
447 1.1 fvdl }
448 1.1 fvdl
449 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
450 1.1 fvdl sc->as_capoff + AGP_STATUS);
451 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
452 1.1 fvdl capoff + AGP_STATUS);
453 1.1 fvdl
454 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
455 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
456 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
457 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
458 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
459 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
460 1.1 fvdl
461 1.1 fvdl /* Set SBA if all three can deal with SBA */
462 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
463 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
464 1.1 fvdl & AGP_MODE_GET_SBA(mode));
465 1.1 fvdl
466 1.1 fvdl /* Similar for FW */
467 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
468 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
469 1.1 fvdl & AGP_MODE_GET_FW(mode));
470 1.1 fvdl
471 1.1 fvdl /* Figure out the max rate */
472 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
473 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
474 1.1 fvdl & AGP_MODE_GET_RATE(mode));
475 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
476 1.1 fvdl rate = AGP_MODE_RATE_4x;
477 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
478 1.1 fvdl rate = AGP_MODE_RATE_2x;
479 1.1 fvdl else
480 1.1 fvdl rate = AGP_MODE_RATE_1x;
481 1.1 fvdl
482 1.1 fvdl /* Construct the new mode word and tell the hardware */
483 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
484 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
485 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
486 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
487 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
488 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
489 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
490 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
491 1.1 fvdl
492 1.1 fvdl return 0;
493 1.1 fvdl }
494 1.1 fvdl
495 1.1 fvdl struct agp_memory *
496 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
497 1.1 fvdl {
498 1.1 fvdl struct agp_memory *mem;
499 1.1 fvdl
500 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
501 1.1 fvdl return 0;
502 1.1 fvdl
503 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
504 1.1 fvdl return 0;
505 1.1 fvdl
506 1.1 fvdl if (type != 0) {
507 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
508 1.1 fvdl type);
509 1.1 fvdl return 0;
510 1.1 fvdl }
511 1.1 fvdl
512 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
513 1.1 fvdl if (mem == NULL)
514 1.1 fvdl return NULL;
515 1.1 fvdl
516 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
517 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
518 1.1 fvdl free(mem, M_AGP);
519 1.1 fvdl return NULL;
520 1.1 fvdl }
521 1.1 fvdl
522 1.1 fvdl mem->am_id = sc->as_nextid++;
523 1.1 fvdl mem->am_size = size;
524 1.1 fvdl mem->am_type = 0;
525 1.1 fvdl mem->am_physical = 0;
526 1.1 fvdl mem->am_offset = 0;
527 1.1 fvdl mem->am_is_bound = 0;
528 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
529 1.1 fvdl sc->as_allocated += size;
530 1.1 fvdl
531 1.1 fvdl return mem;
532 1.1 fvdl }
533 1.1 fvdl
534 1.1 fvdl int
535 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
536 1.1 fvdl {
537 1.1 fvdl if (mem->am_is_bound)
538 1.1 fvdl return EBUSY;
539 1.1 fvdl
540 1.1 fvdl sc->as_allocated -= mem->am_size;
541 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
542 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
543 1.1 fvdl free(mem, M_AGP);
544 1.1 fvdl return 0;
545 1.1 fvdl }
546 1.1 fvdl
547 1.1 fvdl int
548 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
549 1.1 fvdl off_t offset)
550 1.1 fvdl {
551 1.1 fvdl off_t i, k;
552 1.1 fvdl bus_size_t done, j;
553 1.1 fvdl int error;
554 1.1 fvdl bus_dma_segment_t *segs, *seg;
555 1.1 fvdl bus_addr_t pa;
556 1.1 fvdl int contigpages, nseg;
557 1.1 fvdl
558 1.46 xtraeme mutex_enter(&sc->as_mtx);
559 1.1 fvdl
560 1.1 fvdl if (mem->am_is_bound) {
561 1.59 freza aprint_error_dev(sc->as_dev, "memory already bound\n");
562 1.46 xtraeme mutex_exit(&sc->as_mtx);
563 1.1 fvdl return EINVAL;
564 1.1 fvdl }
565 1.34 perry
566 1.1 fvdl if (offset < 0
567 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
568 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
569 1.59 freza aprint_error_dev(sc->as_dev,
570 1.59 freza "binding memory at bad offset %#lx\n",
571 1.56 cegger (unsigned long) offset);
572 1.46 xtraeme mutex_exit(&sc->as_mtx);
573 1.1 fvdl return EINVAL;
574 1.1 fvdl }
575 1.1 fvdl
576 1.1 fvdl /*
577 1.1 fvdl * XXXfvdl
578 1.1 fvdl * The memory here needs to be directly accessable from the
579 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
580 1.1 fvdl * However, it need not be contiguous, since individual pages
581 1.1 fvdl * are translated using the GATT.
582 1.1 fvdl *
583 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
584 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
585 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
586 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
587 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
588 1.1 fvdl * a bus_dma_segment per page would be overkill.
589 1.1 fvdl */
590 1.1 fvdl
591 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
592 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
593 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
594 1.16 drochner if (segs == NULL) {
595 1.46 xtraeme mutex_exit(&sc->as_mtx);
596 1.10 thorpej return ENOMEM;
597 1.16 drochner }
598 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
599 1.4 drochner segs, nseg, &mem->am_nseg,
600 1.15 drochner contigpages > 1 ?
601 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
602 1.4 drochner free(segs, M_AGP);
603 1.1 fvdl continue;
604 1.4 drochner }
605 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
606 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
607 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
608 1.4 drochner free(segs, M_AGP);
609 1.1 fvdl continue;
610 1.1 fvdl }
611 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
612 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
613 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
614 1.1 fvdl mem->am_size);
615 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
616 1.4 drochner free(segs, M_AGP);
617 1.1 fvdl continue;
618 1.1 fvdl }
619 1.1 fvdl mem->am_dmaseg = segs;
620 1.1 fvdl break;
621 1.1 fvdl }
622 1.1 fvdl
623 1.1 fvdl if (contigpages == 0) {
624 1.46 xtraeme mutex_exit(&sc->as_mtx);
625 1.1 fvdl return ENOMEM;
626 1.1 fvdl }
627 1.1 fvdl
628 1.1 fvdl
629 1.1 fvdl /*
630 1.1 fvdl * Bind the individual pages and flush the chipset's
631 1.1 fvdl * TLB.
632 1.1 fvdl */
633 1.1 fvdl done = 0;
634 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
635 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
636 1.1 fvdl /*
637 1.1 fvdl * Install entries in the GATT, making sure that if
638 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
639 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
640 1.1 fvdl * entries.
641 1.1 fvdl */
642 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
643 1.1 fvdl j += AGP_PAGE_SIZE) {
644 1.1 fvdl pa = seg->ds_addr + j;
645 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
646 1.3 drochner (unsigned long)(offset + done + j),
647 1.40 christos (unsigned long)pa));
648 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
649 1.1 fvdl if (error) {
650 1.1 fvdl /*
651 1.1 fvdl * Bail out. Reverse all the mappings
652 1.1 fvdl * and unwire the pages.
653 1.1 fvdl */
654 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
655 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
656 1.1 fvdl
657 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
658 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
659 1.4 drochner mem->am_size);
660 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
661 1.4 drochner mem->am_nseg);
662 1.4 drochner free(mem->am_dmaseg, M_AGP);
663 1.46 xtraeme mutex_exit(&sc->as_mtx);
664 1.1 fvdl return error;
665 1.1 fvdl }
666 1.1 fvdl }
667 1.1 fvdl done += seg->ds_len;
668 1.1 fvdl }
669 1.1 fvdl
670 1.1 fvdl /*
671 1.32 wiz * Flush the CPU cache since we are providing a new mapping
672 1.1 fvdl * for these pages.
673 1.1 fvdl */
674 1.1 fvdl agp_flush_cache();
675 1.1 fvdl
676 1.1 fvdl /*
677 1.1 fvdl * Make sure the chipset gets the new mappings.
678 1.1 fvdl */
679 1.1 fvdl AGP_FLUSH_TLB(sc);
680 1.1 fvdl
681 1.1 fvdl mem->am_offset = offset;
682 1.1 fvdl mem->am_is_bound = 1;
683 1.1 fvdl
684 1.46 xtraeme mutex_exit(&sc->as_mtx);
685 1.1 fvdl
686 1.1 fvdl return 0;
687 1.1 fvdl }
688 1.1 fvdl
689 1.1 fvdl int
690 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
691 1.1 fvdl {
692 1.1 fvdl int i;
693 1.1 fvdl
694 1.46 xtraeme mutex_enter(&sc->as_mtx);
695 1.1 fvdl
696 1.1 fvdl if (!mem->am_is_bound) {
697 1.59 freza aprint_error_dev(sc->as_dev, "memory is not bound\n");
698 1.46 xtraeme mutex_exit(&sc->as_mtx);
699 1.1 fvdl return EINVAL;
700 1.1 fvdl }
701 1.1 fvdl
702 1.1 fvdl
703 1.1 fvdl /*
704 1.1 fvdl * Unbind the individual pages and flush the chipset's
705 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
706 1.1 fvdl */
707 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
708 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
709 1.34 perry
710 1.1 fvdl agp_flush_cache();
711 1.1 fvdl AGP_FLUSH_TLB(sc);
712 1.1 fvdl
713 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
714 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
715 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
716 1.1 fvdl
717 1.1 fvdl free(mem->am_dmaseg, M_AGP);
718 1.1 fvdl
719 1.1 fvdl mem->am_offset = 0;
720 1.1 fvdl mem->am_is_bound = 0;
721 1.1 fvdl
722 1.46 xtraeme mutex_exit(&sc->as_mtx);
723 1.1 fvdl
724 1.1 fvdl return 0;
725 1.1 fvdl }
726 1.1 fvdl
727 1.1 fvdl /* Helper functions for implementing user/kernel api */
728 1.1 fvdl
729 1.1 fvdl static int
730 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
731 1.1 fvdl {
732 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
733 1.1 fvdl return EBUSY;
734 1.1 fvdl sc->as_state = state;
735 1.1 fvdl
736 1.1 fvdl return 0;
737 1.1 fvdl }
738 1.1 fvdl
739 1.1 fvdl static int
740 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
741 1.1 fvdl {
742 1.1 fvdl
743 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
744 1.1 fvdl return 0;
745 1.1 fvdl
746 1.1 fvdl if (sc->as_state != state)
747 1.1 fvdl return EBUSY;
748 1.1 fvdl
749 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
750 1.1 fvdl return 0;
751 1.1 fvdl }
752 1.1 fvdl
753 1.1 fvdl static struct agp_memory *
754 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
755 1.1 fvdl {
756 1.1 fvdl struct agp_memory *mem;
757 1.1 fvdl
758 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
759 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
760 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
761 1.1 fvdl if (mem->am_id == id)
762 1.1 fvdl return mem;
763 1.1 fvdl }
764 1.1 fvdl return 0;
765 1.1 fvdl }
766 1.1 fvdl
767 1.1 fvdl /* Implementation of the userland ioctl api */
768 1.1 fvdl
769 1.1 fvdl static int
770 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
771 1.1 fvdl {
772 1.1 fvdl memset(info, 0, sizeof *info);
773 1.1 fvdl info->bridge_id = sc->as_id;
774 1.3 drochner if (sc->as_capoff != 0)
775 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
776 1.3 drochner sc->as_capoff + AGP_STATUS);
777 1.3 drochner else
778 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
779 1.1 fvdl info->aper_base = sc->as_apaddr;
780 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
781 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
782 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
783 1.1 fvdl
784 1.1 fvdl return 0;
785 1.1 fvdl }
786 1.1 fvdl
787 1.1 fvdl static int
788 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
789 1.1 fvdl {
790 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
791 1.1 fvdl }
792 1.1 fvdl
793 1.1 fvdl static int
794 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
795 1.1 fvdl {
796 1.1 fvdl struct agp_memory *mem;
797 1.1 fvdl
798 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
799 1.1 fvdl alloc->type,
800 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
801 1.1 fvdl if (mem) {
802 1.1 fvdl alloc->key = mem->am_id;
803 1.1 fvdl alloc->physical = mem->am_physical;
804 1.1 fvdl return 0;
805 1.1 fvdl } else {
806 1.1 fvdl return ENOMEM;
807 1.1 fvdl }
808 1.1 fvdl }
809 1.1 fvdl
810 1.1 fvdl static int
811 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
812 1.1 fvdl {
813 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
814 1.1 fvdl
815 1.1 fvdl if (mem) {
816 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
817 1.1 fvdl return 0;
818 1.1 fvdl } else {
819 1.1 fvdl return ENOENT;
820 1.1 fvdl }
821 1.1 fvdl }
822 1.1 fvdl
823 1.1 fvdl static int
824 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
825 1.1 fvdl {
826 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
827 1.1 fvdl
828 1.1 fvdl if (!mem)
829 1.1 fvdl return ENOENT;
830 1.1 fvdl
831 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
832 1.1 fvdl }
833 1.1 fvdl
834 1.1 fvdl static int
835 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
836 1.1 fvdl {
837 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
838 1.1 fvdl
839 1.1 fvdl if (!mem)
840 1.1 fvdl return ENOENT;
841 1.1 fvdl
842 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
843 1.1 fvdl }
844 1.1 fvdl
845 1.35 thorpej static int
846 1.59 freza agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
847 1.1 fvdl {
848 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
849 1.9 thorpej
850 1.9 thorpej if (sc == NULL)
851 1.9 thorpej return ENXIO;
852 1.1 fvdl
853 1.1 fvdl if (sc->as_chipc == NULL)
854 1.1 fvdl return ENXIO;
855 1.1 fvdl
856 1.1 fvdl if (!sc->as_isopen)
857 1.1 fvdl sc->as_isopen = 1;
858 1.1 fvdl else
859 1.1 fvdl return EBUSY;
860 1.1 fvdl
861 1.1 fvdl return 0;
862 1.1 fvdl }
863 1.1 fvdl
864 1.35 thorpej static int
865 1.59 freza agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
866 1.1 fvdl {
867 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
868 1.16 drochner struct agp_memory *mem;
869 1.1 fvdl
870 1.59 freza if (sc == NULL)
871 1.59 freza return ENODEV;
872 1.59 freza
873 1.1 fvdl /*
874 1.1 fvdl * Clear the GATT and force release on last close
875 1.1 fvdl */
876 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
877 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
878 1.16 drochner if (mem->am_is_bound) {
879 1.16 drochner printf("agpclose: mem %d is bound\n",
880 1.16 drochner mem->am_id);
881 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
882 1.16 drochner }
883 1.16 drochner /*
884 1.16 drochner * XXX it is not documented, but if the protocol allows
885 1.16 drochner * allocate->acquire->bind, it would be possible that
886 1.16 drochner * memory ranges are allocated by the kernel here,
887 1.16 drochner * which we shouldn't free. We'd have to keep track of
888 1.16 drochner * the memory range's owner.
889 1.16 drochner * The kernel API is unsed yet, so we get away with
890 1.16 drochner * freeing all.
891 1.16 drochner */
892 1.16 drochner AGP_FREE_MEMORY(sc, mem);
893 1.16 drochner }
894 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
895 1.16 drochner }
896 1.1 fvdl sc->as_isopen = 0;
897 1.1 fvdl
898 1.1 fvdl return 0;
899 1.1 fvdl }
900 1.1 fvdl
901 1.35 thorpej static int
902 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
903 1.1 fvdl {
904 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
905 1.1 fvdl
906 1.1 fvdl if (sc == NULL)
907 1.1 fvdl return ENODEV;
908 1.1 fvdl
909 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
910 1.1 fvdl return EPERM;
911 1.1 fvdl
912 1.1 fvdl switch (cmd) {
913 1.1 fvdl case AGPIOC_INFO:
914 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
915 1.1 fvdl
916 1.1 fvdl case AGPIOC_ACQUIRE:
917 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
918 1.1 fvdl
919 1.1 fvdl case AGPIOC_RELEASE:
920 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
921 1.1 fvdl
922 1.1 fvdl case AGPIOC_SETUP:
923 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
924 1.1 fvdl
925 1.1 fvdl case AGPIOC_ALLOCATE:
926 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
927 1.1 fvdl
928 1.1 fvdl case AGPIOC_DEALLOCATE:
929 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
930 1.1 fvdl
931 1.1 fvdl case AGPIOC_BIND:
932 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
933 1.1 fvdl
934 1.1 fvdl case AGPIOC_UNBIND:
935 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
936 1.1 fvdl
937 1.1 fvdl }
938 1.1 fvdl
939 1.1 fvdl return EINVAL;
940 1.1 fvdl }
941 1.1 fvdl
942 1.35 thorpej static paddr_t
943 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
944 1.1 fvdl {
945 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
946 1.1 fvdl
947 1.59 freza if (sc == NULL)
948 1.59 freza return ENODEV;
949 1.59 freza
950 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
951 1.1 fvdl return -1;
952 1.6 thorpej
953 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
954 1.6 thorpej BUS_SPACE_MAP_LINEAR));
955 1.1 fvdl }
956 1.1 fvdl
957 1.35 thorpej const struct cdevsw agp_cdevsw = {
958 1.35 thorpej agpopen, agpclose, noread, nowrite, agpioctl,
959 1.59 freza nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
960 1.35 thorpej };
961 1.35 thorpej
962 1.1 fvdl /* Implementation of the kernel api */
963 1.1 fvdl
964 1.1 fvdl void *
965 1.1 fvdl agp_find_device(int unit)
966 1.1 fvdl {
967 1.59 freza return device_lookup_private(&agp_cd, unit);
968 1.1 fvdl }
969 1.1 fvdl
970 1.1 fvdl enum agp_acquire_state
971 1.1 fvdl agp_state(void *devcookie)
972 1.1 fvdl {
973 1.1 fvdl struct agp_softc *sc = devcookie;
974 1.59 freza
975 1.1 fvdl return sc->as_state;
976 1.1 fvdl }
977 1.1 fvdl
978 1.1 fvdl void
979 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
980 1.1 fvdl {
981 1.1 fvdl struct agp_softc *sc = devcookie;
982 1.1 fvdl
983 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
984 1.1 fvdl sc->as_capoff + AGP_STATUS);
985 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
986 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
987 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
988 1.1 fvdl info->ai_memory_used = sc->as_allocated;
989 1.1 fvdl }
990 1.1 fvdl
991 1.1 fvdl int
992 1.1 fvdl agp_acquire(void *dev)
993 1.1 fvdl {
994 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
995 1.1 fvdl }
996 1.1 fvdl
997 1.1 fvdl int
998 1.1 fvdl agp_release(void *dev)
999 1.1 fvdl {
1000 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1001 1.1 fvdl }
1002 1.1 fvdl
1003 1.1 fvdl int
1004 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
1005 1.1 fvdl {
1006 1.1 fvdl struct agp_softc *sc = dev;
1007 1.1 fvdl
1008 1.1 fvdl return AGP_ENABLE(sc, mode);
1009 1.1 fvdl }
1010 1.1 fvdl
1011 1.59 freza void *
1012 1.59 freza agp_alloc_memory(void *dev, int type, vsize_t bytes)
1013 1.1 fvdl {
1014 1.1 fvdl struct agp_softc *sc = dev;
1015 1.1 fvdl
1016 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1017 1.1 fvdl }
1018 1.1 fvdl
1019 1.59 freza void
1020 1.59 freza agp_free_memory(void *dev, void *handle)
1021 1.1 fvdl {
1022 1.1 fvdl struct agp_softc *sc = dev;
1023 1.59 freza struct agp_memory *mem = handle;
1024 1.59 freza
1025 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
1026 1.1 fvdl }
1027 1.1 fvdl
1028 1.59 freza int
1029 1.59 freza agp_bind_memory(void *dev, void *handle, off_t offset)
1030 1.1 fvdl {
1031 1.1 fvdl struct agp_softc *sc = dev;
1032 1.59 freza struct agp_memory *mem = handle;
1033 1.1 fvdl
1034 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
1035 1.1 fvdl }
1036 1.1 fvdl
1037 1.59 freza int
1038 1.59 freza agp_unbind_memory(void *dev, void *handle)
1039 1.1 fvdl {
1040 1.1 fvdl struct agp_softc *sc = dev;
1041 1.59 freza struct agp_memory *mem = handle;
1042 1.1 fvdl
1043 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
1044 1.1 fvdl }
1045 1.1 fvdl
1046 1.59 freza void
1047 1.59 freza agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1048 1.1 fvdl {
1049 1.59 freza struct agp_memory *mem = handle;
1050 1.1 fvdl
1051 1.1 fvdl mi->ami_size = mem->am_size;
1052 1.1 fvdl mi->ami_physical = mem->am_physical;
1053 1.1 fvdl mi->ami_offset = mem->am_offset;
1054 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1055 1.1 fvdl }
1056 1.1 fvdl
1057 1.1 fvdl int
1058 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1059 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1060 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1061 1.1 fvdl
1062 1.1 fvdl {
1063 1.1 fvdl int error, level = 0;
1064 1.1 fvdl
1065 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1066 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1067 1.1 fvdl goto out;
1068 1.1 fvdl level++;
1069 1.1 fvdl
1070 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1071 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1072 1.1 fvdl goto out;
1073 1.1 fvdl level++;
1074 1.1 fvdl
1075 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1076 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1077 1.1 fvdl goto out;
1078 1.1 fvdl level++;
1079 1.1 fvdl
1080 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1081 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1082 1.1 fvdl goto out;
1083 1.1 fvdl
1084 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1085 1.1 fvdl
1086 1.1 fvdl return 0;
1087 1.1 fvdl out:
1088 1.1 fvdl switch (level) {
1089 1.1 fvdl case 3:
1090 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1091 1.1 fvdl /* FALLTHROUGH */
1092 1.1 fvdl case 2:
1093 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1094 1.1 fvdl /* FALLTHROUGH */
1095 1.1 fvdl case 1:
1096 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1097 1.1 fvdl break;
1098 1.1 fvdl default:
1099 1.1 fvdl break;
1100 1.1 fvdl }
1101 1.1 fvdl
1102 1.1 fvdl return error;
1103 1.1 fvdl }
1104 1.1 fvdl
1105 1.1 fvdl void
1106 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1107 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1108 1.1 fvdl {
1109 1.1 fvdl bus_dmamap_unload(tag, map);
1110 1.1 fvdl bus_dmamap_destroy(tag, map);
1111 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1112 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1113 1.1 fvdl }
1114 1.54 jmcneill
1115 1.54 jmcneill static bool
1116 1.55 dyoung agp_resume(device_t dv PMF_FN_ARGS)
1117 1.54 jmcneill {
1118 1.54 jmcneill agp_flush_cache();
1119 1.54 jmcneill
1120 1.54 jmcneill return true;
1121 1.54 jmcneill }
1122