Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.75
      1  1.74       jym /*	$NetBSD: agp.c,v 1.75 2010/10/10 21:24:34 christos Exp $	*/
      2   1.1      fvdl 
      3   1.1      fvdl /*-
      4   1.1      fvdl  * Copyright (c) 2000 Doug Rabson
      5   1.1      fvdl  * All rights reserved.
      6   1.1      fvdl  *
      7   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      8   1.1      fvdl  * modification, are permitted provided that the following conditions
      9   1.1      fvdl  * are met:
     10   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     11   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     12   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     15   1.1      fvdl  *
     16   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      fvdl  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      fvdl  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      fvdl  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      fvdl  * SUCH DAMAGE.
     27   1.1      fvdl  *
     28   1.1      fvdl  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29   1.1      fvdl  */
     30   1.1      fvdl 
     31   1.1      fvdl /*
     32   1.1      fvdl  * Copyright (c) 2001 Wasabi Systems, Inc.
     33   1.1      fvdl  * All rights reserved.
     34   1.1      fvdl  *
     35   1.1      fvdl  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36   1.1      fvdl  *
     37   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
     38   1.1      fvdl  * modification, are permitted provided that the following conditions
     39   1.1      fvdl  * are met:
     40   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     41   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     42   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     43   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     44   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     45   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     46   1.1      fvdl  *    must display the following acknowledgement:
     47   1.1      fvdl  *      This product includes software developed for the NetBSD Project by
     48   1.1      fvdl  *      Wasabi Systems, Inc.
     49   1.1      fvdl  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50   1.1      fvdl  *    or promote products derived from this software without specific prior
     51   1.1      fvdl  *    written permission.
     52   1.1      fvdl  *
     53   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55   1.1      fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56   1.1      fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63   1.1      fvdl  * POSSIBILITY OF SUCH DAMAGE.
     64   1.1      fvdl  */
     65   1.1      fvdl 
     66  1.12     lukem 
     67  1.12     lukem #include <sys/cdefs.h>
     68  1.74       jym __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.75 2010/10/10 21:24:34 christos Exp $");
     69   1.1      fvdl 
     70   1.1      fvdl #include <sys/param.h>
     71   1.1      fvdl #include <sys/systm.h>
     72   1.1      fvdl #include <sys/malloc.h>
     73   1.1      fvdl #include <sys/kernel.h>
     74   1.1      fvdl #include <sys/device.h>
     75   1.1      fvdl #include <sys/conf.h>
     76   1.1      fvdl #include <sys/ioctl.h>
     77   1.1      fvdl #include <sys/fcntl.h>
     78   1.1      fvdl #include <sys/agpio.h>
     79   1.1      fvdl #include <sys/proc.h>
     80  1.46   xtraeme #include <sys/mutex.h>
     81   1.1      fvdl 
     82   1.1      fvdl #include <uvm/uvm_extern.h>
     83   1.1      fvdl 
     84   1.1      fvdl #include <dev/pci/pcireg.h>
     85   1.1      fvdl #include <dev/pci/pcivar.h>
     86   1.1      fvdl #include <dev/pci/agpvar.h>
     87   1.1      fvdl #include <dev/pci/agpreg.h>
     88   1.1      fvdl #include <dev/pci/pcidevs.h>
     89   1.1      fvdl 
     90  1.49        ad #include <sys/bus.h>
     91  1.25   thorpej 
     92  1.25   thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93   1.1      fvdl 
     94   1.1      fvdl /* Helper functions for implementing chipset mini drivers. */
     95   1.1      fvdl /* XXXfvdl get rid of this one. */
     96   1.1      fvdl 
     97   1.1      fvdl extern struct cfdriver agp_cd;
     98  1.17   gehenna 
     99   1.1      fvdl static int agp_info_user(struct agp_softc *, agp_info *);
    100   1.1      fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
    101   1.1      fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102   1.1      fvdl static int agp_deallocate_user(struct agp_softc *, int);
    103   1.1      fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
    104   1.1      fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105   1.1      fvdl static int agpdev_match(struct pci_attach_args *);
    106  1.68    dyoung static bool agp_resume(device_t, const pmf_qual_t *);
    107   1.1      fvdl 
    108   1.7   thorpej #include "agp_ali.h"
    109   1.7   thorpej #include "agp_amd.h"
    110   1.7   thorpej #include "agp_i810.h"
    111   1.7   thorpej #include "agp_intel.h"
    112   1.7   thorpej #include "agp_sis.h"
    113   1.7   thorpej #include "agp_via.h"
    114  1.47  kiyohara #include "agp_amd64.h"
    115   1.7   thorpej 
    116   1.5   thorpej const struct agp_product {
    117   1.5   thorpej 	uint32_t	ap_vendor;
    118   1.5   thorpej 	uint32_t	ap_product;
    119   1.5   thorpej 	int		(*ap_match)(const struct pci_attach_args *);
    120  1.59     freza 	int		(*ap_attach)(device_t, device_t, void *);
    121   1.5   thorpej } agp_products[] = {
    122  1.57     njoly #if NAGP_AMD64 > 0
    123  1.57     njoly 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    124  1.57     njoly 	  agp_amd64_match,	agp_amd64_attach },
    125  1.57     njoly #endif
    126  1.57     njoly 
    127   1.7   thorpej #if NAGP_ALI > 0
    128   1.5   thorpej 	{ PCI_VENDOR_ALI,	-1,
    129   1.5   thorpej 	  NULL,			agp_ali_attach },
    130   1.7   thorpej #endif
    131   1.5   thorpej 
    132  1.51     joerg #if NAGP_AMD64 > 0
    133  1.51     joerg 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    134  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    135  1.51     joerg #endif
    136  1.51     joerg 
    137   1.7   thorpej #if NAGP_AMD > 0
    138   1.5   thorpej 	{ PCI_VENDOR_AMD,	-1,
    139   1.5   thorpej 	  agp_amd_match,	agp_amd_attach },
    140   1.7   thorpej #endif
    141   1.5   thorpej 
    142   1.7   thorpej #if NAGP_I810 > 0
    143   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    144   1.5   thorpej 	  NULL,			agp_i810_attach },
    145   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    146   1.5   thorpej 	  NULL,			agp_i810_attach },
    147   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    148   1.5   thorpej 	  NULL,			agp_i810_attach },
    149   1.5   thorpej 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    150   1.5   thorpej 	  NULL,			agp_i810_attach },
    151  1.11      fvdl 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    152  1.13  augustss 	  NULL,			agp_i810_attach },
    153  1.13  augustss 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    154  1.11      fvdl 	  NULL,			agp_i810_attach },
    155  1.23       scw 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    156  1.29   hannken 	  NULL,			agp_i810_attach },
    157  1.29   hannken 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    158  1.31      tron 	  NULL,			agp_i810_attach },
    159  1.31      tron 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    160  1.23       scw 	  NULL,			agp_i810_attach },
    161  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    162  1.37  christos 	  NULL,			agp_i810_attach },
    163  1.37  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    164  1.37  christos 	  NULL,			agp_i810_attach },
    165  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    166  1.39    simonb 	  NULL,			agp_i810_attach },
    167  1.39    simonb 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    168  1.39    simonb 	  NULL,			agp_i810_attach },
    169  1.61       tnn 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    170  1.61       tnn 	  NULL,			agp_i810_attach },
    171  1.48     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    172  1.48     markd 	  NULL,			agp_i810_attach },
    173  1.51     joerg 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    174  1.51     joerg 	  NULL,			agp_i810_attach },
    175  1.50   jnemeth 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    176  1.50   jnemeth 	  NULL,			agp_i810_attach },
    177  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    178  1.52     markd 	  NULL,			agp_i810_attach },
    179  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    180  1.52     markd 	  NULL,			agp_i810_attach },
    181  1.52     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    182  1.52     markd 	  NULL,			agp_i810_attach },
    183  1.63  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    184  1.63  christos 	  NULL,			agp_i810_attach },
    185  1.60  matthias 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    186  1.60  matthias 	  NULL,			agp_i810_attach },
    187  1.64  christos 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    188  1.64  christos 	  NULL, 		agp_i810_attach },
    189  1.65     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    190  1.65     markd 	  NULL, 		agp_i810_attach },
    191  1.65     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    192  1.65     markd 	  NULL, 		agp_i810_attach },
    193  1.65     markd 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    194  1.65     markd 	  NULL, 		agp_i810_attach },
    195  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    196  1.69       riz 	  NULL, 		agp_i810_attach },
    197  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    198  1.69       riz 	  NULL, 		agp_i810_attach },
    199  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    200  1.69       riz 	  NULL, 		agp_i810_attach },
    201  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    202  1.69       riz 	  NULL, 		agp_i810_attach },
    203  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    204  1.69       riz 	  NULL, 		agp_i810_attach },
    205  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    206  1.69       riz 	  NULL, 		agp_i810_attach },
    207  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    208  1.69       riz 	  NULL, 		agp_i810_attach },
    209  1.69       riz 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    210  1.69       riz 	  NULL, 		agp_i810_attach },
    211   1.7   thorpej #endif
    212   1.5   thorpej 
    213   1.7   thorpej #if NAGP_INTEL > 0
    214   1.5   thorpej 	{ PCI_VENDOR_INTEL,	-1,
    215   1.5   thorpej 	  NULL,			agp_intel_attach },
    216   1.7   thorpej #endif
    217   1.5   thorpej 
    218  1.51     joerg #if NAGP_AMD64 > 0
    219  1.51     joerg 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    220  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    221  1.51     joerg 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    222  1.51     joerg 	  agp_amd64_match,	agp_amd64_attach },
    223   1.7   thorpej #endif
    224   1.5   thorpej 
    225  1.47  kiyohara #if NAGP_AMD64 > 0
    226  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    227  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    228  1.47  kiyohara 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    229  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    230  1.51     joerg #endif
    231  1.51     joerg 
    232  1.51     joerg #if NAGP_SIS > 0
    233  1.51     joerg 	{ PCI_VENDOR_SIS,	-1,
    234  1.51     joerg 	  NULL,			agp_sis_attach },
    235  1.51     joerg #endif
    236  1.51     joerg 
    237  1.51     joerg #if NAGP_AMD64 > 0
    238  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    239  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    240  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    241  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    242  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    243  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    244  1.47  kiyohara 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    245  1.47  kiyohara 	  agp_amd64_match,	agp_amd64_attach },
    246  1.47  kiyohara #endif
    247  1.47  kiyohara 
    248  1.51     joerg #if NAGP_VIA > 0
    249  1.51     joerg 	{ PCI_VENDOR_VIATECH,	-1,
    250  1.51     joerg 	  NULL,			agp_via_attach },
    251  1.51     joerg #endif
    252  1.51     joerg 
    253   1.5   thorpej 	{ 0,			0,
    254   1.5   thorpej 	  NULL,			NULL },
    255   1.5   thorpej };
    256   1.5   thorpej 
    257   1.5   thorpej static const struct agp_product *
    258   1.5   thorpej agp_lookup(const struct pci_attach_args *pa)
    259   1.5   thorpej {
    260   1.5   thorpej 	const struct agp_product *ap;
    261   1.5   thorpej 
    262   1.5   thorpej 	/* First find the vendor. */
    263   1.5   thorpej 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    264   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    265   1.5   thorpej 			break;
    266   1.5   thorpej 	}
    267   1.5   thorpej 
    268   1.5   thorpej 	if (ap->ap_attach == NULL)
    269   1.5   thorpej 		return (NULL);
    270   1.5   thorpej 
    271   1.5   thorpej 	/* Now find the product within the vendor's domain. */
    272   1.5   thorpej 	for (; ap->ap_attach != NULL; ap++) {
    273   1.5   thorpej 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    274   1.5   thorpej 			/* Ran out of this vendor's section of the table. */
    275   1.5   thorpej 			return (NULL);
    276   1.5   thorpej 		}
    277   1.5   thorpej 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    278   1.5   thorpej 			/* Exact match. */
    279   1.5   thorpej 			break;
    280   1.5   thorpej 		}
    281   1.5   thorpej 		if (ap->ap_product == (uint32_t) -1) {
    282   1.5   thorpej 			/* Wildcard match. */
    283   1.5   thorpej 			break;
    284   1.5   thorpej 		}
    285   1.5   thorpej 	}
    286   1.5   thorpej 
    287   1.5   thorpej 	if (ap->ap_attach == NULL)
    288   1.5   thorpej 		return (NULL);
    289   1.5   thorpej 
    290   1.5   thorpej 	/* Now let the product-specific driver filter the match. */
    291   1.5   thorpej 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    292   1.5   thorpej 		return (NULL);
    293   1.5   thorpej 
    294   1.5   thorpej 	return (ap);
    295   1.5   thorpej }
    296   1.5   thorpej 
    297  1.35   thorpej static int
    298  1.59     freza agpmatch(device_t parent, cfdata_t match, void *aux)
    299   1.1      fvdl {
    300   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    301   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    302   1.1      fvdl 
    303   1.5   thorpej 	if (agp_lookup(pa) == NULL)
    304   1.5   thorpej 		return (0);
    305   1.1      fvdl 
    306   1.5   thorpej 	return (1);
    307   1.1      fvdl }
    308   1.1      fvdl 
    309  1.35   thorpej static const int agp_max[][2] = {
    310   1.1      fvdl 	{0,	0},
    311   1.1      fvdl 	{32,	4},
    312   1.1      fvdl 	{64,	28},
    313   1.1      fvdl 	{128,	96},
    314   1.1      fvdl 	{256,	204},
    315   1.1      fvdl 	{512,	440},
    316   1.1      fvdl 	{1024,	942},
    317   1.1      fvdl 	{2048,	1920},
    318   1.1      fvdl 	{4096,	3932}
    319   1.1      fvdl };
    320   1.1      fvdl #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    321   1.1      fvdl 
    322  1.35   thorpej static void
    323  1.59     freza agpattach(device_t parent, device_t self, void *aux)
    324   1.1      fvdl {
    325   1.5   thorpej 	struct agpbus_attach_args *apa = aux;
    326   1.1      fvdl 	struct pci_attach_args *pa = &apa->apa_pci_args;
    327  1.59     freza 	struct agp_softc *sc = device_private(self);
    328   1.5   thorpej 	const struct agp_product *ap;
    329   1.1      fvdl 	int memsize, i, ret;
    330   1.1      fvdl 
    331   1.5   thorpej 	ap = agp_lookup(pa);
    332  1.59     freza 	KASSERT(ap != NULL);
    333   1.1      fvdl 
    334  1.24   thorpej 	aprint_naive(": AGP controller\n");
    335  1.24   thorpej 
    336  1.59     freza 	sc->as_dev = self;
    337   1.1      fvdl 	sc->as_dmat = pa->pa_dmat;
    338   1.1      fvdl 	sc->as_pc = pa->pa_pc;
    339   1.1      fvdl 	sc->as_tag = pa->pa_tag;
    340   1.1      fvdl 	sc->as_id = pa->pa_id;
    341   1.1      fvdl 
    342   1.1      fvdl 	/*
    343   1.1      fvdl 	 * Work out an upper bound for agp memory allocation. This
    344  1.59     freza 	 * uses a heuristic table from the Linux driver.
    345   1.1      fvdl 	 */
    346  1.67       jym 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    347   1.1      fvdl 	for (i = 0; i < agp_max_size; i++) {
    348   1.1      fvdl 		if (memsize <= agp_max[i][0])
    349   1.1      fvdl 			break;
    350   1.1      fvdl 	}
    351   1.1      fvdl 	if (i == agp_max_size)
    352   1.1      fvdl 		i = agp_max_size - 1;
    353   1.1      fvdl 	sc->as_maxmem = agp_max[i][1] << 20U;
    354   1.1      fvdl 
    355   1.1      fvdl 	/*
    356  1.46   xtraeme 	 * The mutex is used to prevent re-entry to
    357   1.1      fvdl 	 * agp_generic_bind_memory() since that function can sleep.
    358   1.1      fvdl 	 */
    359  1.53        ad 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    360   1.1      fvdl 
    361   1.1      fvdl 	TAILQ_INIT(&sc->as_memory);
    362   1.1      fvdl 
    363   1.5   thorpej 	ret = (*ap->ap_attach)(parent, self, pa);
    364   1.1      fvdl 	if (ret == 0)
    365  1.24   thorpej 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    366   1.1      fvdl 		    (unsigned long)sc->as_apaddr,
    367   1.1      fvdl 		    (unsigned long)AGP_GET_APERTURE(sc));
    368   1.1      fvdl 	else
    369   1.1      fvdl 		sc->as_chipc = NULL;
    370  1.54  jmcneill 
    371  1.54  jmcneill 	if (!device_pmf_is_registered(self)) {
    372  1.54  jmcneill 		if (!pmf_device_register(self, NULL, agp_resume))
    373  1.59     freza 			aprint_error_dev(self, "couldn't establish power "
    374  1.59     freza 			    "handler\n");
    375  1.54  jmcneill 	}
    376   1.1      fvdl }
    377  1.30      tron 
    378  1.59     freza CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    379  1.35   thorpej     agpmatch, agpattach, NULL, NULL);
    380  1.35   thorpej 
    381   1.1      fvdl int
    382  1.37  christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    383   1.1      fvdl {
    384   1.1      fvdl 	/*
    385  1.18   nathanw 	 * Find the aperture. Don't map it (yet), this would
    386  1.11      fvdl 	 * eat KVA.
    387   1.1      fvdl 	 */
    388  1.37  christos 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    389  1.11      fvdl 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    390  1.11      fvdl 	    &sc->as_apflags) != 0)
    391   1.1      fvdl 		return ENXIO;
    392   1.8  drochner 
    393  1.11      fvdl 	sc->as_apt = pa->pa_memt;
    394  1.11      fvdl 
    395   1.1      fvdl 	return 0;
    396   1.1      fvdl }
    397   1.1      fvdl 
    398   1.1      fvdl struct agp_gatt *
    399   1.1      fvdl agp_alloc_gatt(struct agp_softc *sc)
    400   1.1      fvdl {
    401   1.1      fvdl 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    402   1.1      fvdl 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    403   1.1      fvdl 	struct agp_gatt *gatt;
    404  1.45  christos 	void *virtual;
    405   1.1      fvdl 	int dummyseg;
    406   1.1      fvdl 
    407   1.1      fvdl 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    408   1.1      fvdl 	if (!gatt)
    409   1.1      fvdl 		return NULL;
    410   1.1      fvdl 	gatt->ag_entries = entries;
    411   1.1      fvdl 
    412   1.1      fvdl 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    413  1.38      tron 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    414  1.62  christos 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    415  1.62  christos 		free(gatt, M_AGP);
    416   1.1      fvdl 		return NULL;
    417  1.62  christos 	}
    418  1.38      tron 	gatt->ag_virtual = (uint32_t *)virtual;
    419   1.1      fvdl 
    420   1.1      fvdl 	gatt->ag_size = entries * sizeof(u_int32_t);
    421   1.1      fvdl 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    422   1.1      fvdl 	agp_flush_cache();
    423   1.1      fvdl 
    424   1.1      fvdl 	return gatt;
    425   1.1      fvdl }
    426   1.1      fvdl 
    427   1.1      fvdl void
    428   1.1      fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    429   1.1      fvdl {
    430   1.1      fvdl 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    431  1.45  christos 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    432   1.1      fvdl 	free(gatt, M_AGP);
    433   1.1      fvdl }
    434   1.1      fvdl 
    435   1.1      fvdl 
    436   1.1      fvdl int
    437   1.1      fvdl agp_generic_detach(struct agp_softc *sc)
    438   1.1      fvdl {
    439  1.46   xtraeme 	mutex_destroy(&sc->as_mtx);
    440   1.1      fvdl 	agp_flush_cache();
    441   1.1      fvdl 	return 0;
    442   1.1      fvdl }
    443   1.1      fvdl 
    444   1.1      fvdl static int
    445   1.1      fvdl agpdev_match(struct pci_attach_args *pa)
    446   1.1      fvdl {
    447   1.1      fvdl 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    448   1.1      fvdl 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    449  1.26      tron 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    450  1.26      tron 		    NULL, NULL))
    451   1.1      fvdl 		return 1;
    452   1.1      fvdl 
    453   1.1      fvdl 	return 0;
    454   1.1      fvdl }
    455   1.1      fvdl 
    456   1.1      fvdl int
    457   1.1      fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    458   1.1      fvdl {
    459   1.1      fvdl 	struct pci_attach_args pa;
    460   1.1      fvdl 	pcireg_t tstatus, mstatus;
    461   1.1      fvdl 	pcireg_t command;
    462   1.1      fvdl 	int rq, sba, fw, rate, capoff;
    463   1.1      fvdl 
    464   1.1      fvdl 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    465   1.1      fvdl 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    466   1.1      fvdl 	     &capoff, NULL) == 0) {
    467  1.59     freza 		aprint_error_dev(sc->as_dev, "can't find display\n");
    468   1.1      fvdl 		return ENXIO;
    469   1.1      fvdl 	}
    470   1.1      fvdl 
    471   1.1      fvdl 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    472   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
    473   1.1      fvdl 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    474   1.1      fvdl 	    capoff + AGP_STATUS);
    475   1.1      fvdl 
    476   1.1      fvdl 	/* Set RQ to the min of mode, tstatus and mstatus */
    477   1.1      fvdl 	rq = AGP_MODE_GET_RQ(mode);
    478   1.1      fvdl 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    479   1.1      fvdl 		rq = AGP_MODE_GET_RQ(tstatus);
    480   1.1      fvdl 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    481   1.1      fvdl 		rq = AGP_MODE_GET_RQ(mstatus);
    482   1.1      fvdl 
    483   1.1      fvdl 	/* Set SBA if all three can deal with SBA */
    484   1.1      fvdl 	sba = (AGP_MODE_GET_SBA(tstatus)
    485   1.1      fvdl 	       & AGP_MODE_GET_SBA(mstatus)
    486   1.1      fvdl 	       & AGP_MODE_GET_SBA(mode));
    487   1.1      fvdl 
    488   1.1      fvdl 	/* Similar for FW */
    489   1.1      fvdl 	fw = (AGP_MODE_GET_FW(tstatus)
    490   1.1      fvdl 	       & AGP_MODE_GET_FW(mstatus)
    491   1.1      fvdl 	       & AGP_MODE_GET_FW(mode));
    492   1.1      fvdl 
    493   1.1      fvdl 	/* Figure out the max rate */
    494   1.1      fvdl 	rate = (AGP_MODE_GET_RATE(tstatus)
    495   1.1      fvdl 		& AGP_MODE_GET_RATE(mstatus)
    496   1.1      fvdl 		& AGP_MODE_GET_RATE(mode));
    497   1.1      fvdl 	if (rate & AGP_MODE_RATE_4x)
    498   1.1      fvdl 		rate = AGP_MODE_RATE_4x;
    499   1.1      fvdl 	else if (rate & AGP_MODE_RATE_2x)
    500   1.1      fvdl 		rate = AGP_MODE_RATE_2x;
    501   1.1      fvdl 	else
    502   1.1      fvdl 		rate = AGP_MODE_RATE_1x;
    503   1.1      fvdl 
    504   1.1      fvdl 	/* Construct the new mode word and tell the hardware */
    505   1.1      fvdl 	command = AGP_MODE_SET_RQ(0, rq);
    506   1.1      fvdl 	command = AGP_MODE_SET_SBA(command, sba);
    507   1.1      fvdl 	command = AGP_MODE_SET_FW(command, fw);
    508   1.1      fvdl 	command = AGP_MODE_SET_RATE(command, rate);
    509   1.1      fvdl 	command = AGP_MODE_SET_AGP(command, 1);
    510   1.1      fvdl 	pci_conf_write(sc->as_pc, sc->as_tag,
    511   1.1      fvdl 	    sc->as_capoff + AGP_COMMAND, command);
    512   1.1      fvdl 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    513   1.1      fvdl 
    514   1.1      fvdl 	return 0;
    515   1.1      fvdl }
    516   1.1      fvdl 
    517   1.1      fvdl struct agp_memory *
    518   1.1      fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    519   1.1      fvdl {
    520   1.1      fvdl 	struct agp_memory *mem;
    521   1.1      fvdl 
    522   1.1      fvdl 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    523   1.1      fvdl 		return 0;
    524   1.1      fvdl 
    525   1.1      fvdl 	if (sc->as_allocated + size > sc->as_maxmem)
    526   1.1      fvdl 		return 0;
    527   1.1      fvdl 
    528   1.1      fvdl 	if (type != 0) {
    529   1.1      fvdl 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    530   1.1      fvdl 		       type);
    531   1.1      fvdl 		return 0;
    532   1.1      fvdl 	}
    533   1.1      fvdl 
    534   1.1      fvdl 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    535   1.1      fvdl 	if (mem == NULL)
    536   1.1      fvdl 		return NULL;
    537   1.1      fvdl 
    538   1.3  drochner 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    539   1.3  drochner 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    540   1.1      fvdl 		free(mem, M_AGP);
    541   1.1      fvdl 		return NULL;
    542   1.1      fvdl 	}
    543   1.1      fvdl 
    544   1.1      fvdl 	mem->am_id = sc->as_nextid++;
    545   1.1      fvdl 	mem->am_size = size;
    546   1.1      fvdl 	mem->am_type = 0;
    547   1.1      fvdl 	mem->am_physical = 0;
    548   1.1      fvdl 	mem->am_offset = 0;
    549   1.1      fvdl 	mem->am_is_bound = 0;
    550   1.1      fvdl 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    551   1.1      fvdl 	sc->as_allocated += size;
    552   1.1      fvdl 
    553   1.1      fvdl 	return mem;
    554   1.1      fvdl }
    555   1.1      fvdl 
    556   1.1      fvdl int
    557   1.1      fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    558   1.1      fvdl {
    559   1.1      fvdl 	if (mem->am_is_bound)
    560   1.1      fvdl 		return EBUSY;
    561   1.1      fvdl 
    562   1.1      fvdl 	sc->as_allocated -= mem->am_size;
    563   1.1      fvdl 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    564   1.1      fvdl 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    565   1.1      fvdl 	free(mem, M_AGP);
    566   1.1      fvdl 	return 0;
    567   1.1      fvdl }
    568   1.1      fvdl 
    569   1.1      fvdl int
    570   1.1      fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    571   1.1      fvdl 			off_t offset)
    572   1.1      fvdl {
    573   1.1      fvdl 	off_t i, k;
    574   1.1      fvdl 	bus_size_t done, j;
    575   1.1      fvdl 	int error;
    576   1.1      fvdl 	bus_dma_segment_t *segs, *seg;
    577   1.1      fvdl 	bus_addr_t pa;
    578   1.1      fvdl 	int contigpages, nseg;
    579   1.1      fvdl 
    580  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    581   1.1      fvdl 
    582   1.1      fvdl 	if (mem->am_is_bound) {
    583  1.59     freza 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    584  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    585   1.1      fvdl 		return EINVAL;
    586   1.1      fvdl 	}
    587  1.34     perry 
    588   1.1      fvdl 	if (offset < 0
    589   1.1      fvdl 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    590   1.1      fvdl 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    591  1.59     freza 		aprint_error_dev(sc->as_dev,
    592  1.59     freza 			      "binding memory at bad offset %#lx\n",
    593  1.56    cegger 			      (unsigned long) offset);
    594  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    595   1.1      fvdl 		return EINVAL;
    596   1.1      fvdl 	}
    597   1.1      fvdl 
    598   1.1      fvdl 	/*
    599   1.1      fvdl 	 * XXXfvdl
    600   1.1      fvdl 	 * The memory here needs to be directly accessable from the
    601   1.1      fvdl 	 * AGP video card, so it should be allocated using bus_dma.
    602   1.1      fvdl 	 * However, it need not be contiguous, since individual pages
    603   1.1      fvdl 	 * are translated using the GATT.
    604   1.1      fvdl 	 *
    605   1.1      fvdl 	 * Using a large chunk of contiguous memory may get in the way
    606   1.1      fvdl 	 * of other subsystems that may need one, so we try to be friendly
    607   1.1      fvdl 	 * and ask for allocation in chunks of a minimum of 8 pages
    608   1.1      fvdl 	 * of contiguous memory on average, falling back to 4, 2 and 1
    609   1.1      fvdl 	 * if really needed. Larger chunks are preferred, since allocating
    610   1.1      fvdl 	 * a bus_dma_segment per page would be overkill.
    611   1.1      fvdl 	 */
    612   1.1      fvdl 
    613   1.1      fvdl 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    614   1.1      fvdl 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    615   1.3  drochner 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    616  1.16  drochner 		if (segs == NULL) {
    617  1.46   xtraeme 			mutex_exit(&sc->as_mtx);
    618  1.10   thorpej 			return ENOMEM;
    619  1.16  drochner 		}
    620   1.1      fvdl 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    621   1.4  drochner 				     segs, nseg, &mem->am_nseg,
    622  1.15  drochner 				     contigpages > 1 ?
    623  1.15  drochner 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    624   1.4  drochner 			free(segs, M_AGP);
    625   1.1      fvdl 			continue;
    626   1.4  drochner 		}
    627   1.1      fvdl 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    628   1.1      fvdl 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    629   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    630   1.4  drochner 			free(segs, M_AGP);
    631   1.1      fvdl 			continue;
    632   1.1      fvdl 		}
    633   1.1      fvdl 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    634   1.1      fvdl 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    635  1.34     perry 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    636   1.1      fvdl 			    mem->am_size);
    637   1.1      fvdl 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    638   1.4  drochner 			free(segs, M_AGP);
    639   1.1      fvdl 			continue;
    640   1.1      fvdl 		}
    641   1.1      fvdl 		mem->am_dmaseg = segs;
    642   1.1      fvdl 		break;
    643   1.1      fvdl 	}
    644   1.1      fvdl 
    645   1.1      fvdl 	if (contigpages == 0) {
    646  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    647   1.1      fvdl 		return ENOMEM;
    648   1.1      fvdl 	}
    649   1.1      fvdl 
    650   1.1      fvdl 
    651   1.1      fvdl 	/*
    652   1.1      fvdl 	 * Bind the individual pages and flush the chipset's
    653   1.1      fvdl 	 * TLB.
    654   1.1      fvdl 	 */
    655   1.1      fvdl 	done = 0;
    656   1.1      fvdl 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    657   1.1      fvdl 		seg = &mem->am_dmamap->dm_segs[i];
    658   1.1      fvdl 		/*
    659   1.1      fvdl 		 * Install entries in the GATT, making sure that if
    660   1.1      fvdl 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    661  1.34     perry 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    662   1.1      fvdl 		 * entries.
    663   1.1      fvdl 		 */
    664   1.1      fvdl 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    665   1.1      fvdl 		     j += AGP_PAGE_SIZE) {
    666   1.1      fvdl 			pa = seg->ds_addr + j;
    667  1.40  christos 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    668   1.3  drochner 				(unsigned long)(offset + done + j),
    669  1.40  christos 				(unsigned long)pa));
    670   1.1      fvdl 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    671   1.1      fvdl 			if (error) {
    672   1.1      fvdl 				/*
    673   1.1      fvdl 				 * Bail out. Reverse all the mappings
    674   1.1      fvdl 				 * and unwire the pages.
    675   1.1      fvdl 				 */
    676   1.1      fvdl 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    677   1.1      fvdl 					AGP_UNBIND_PAGE(sc, offset + k);
    678   1.1      fvdl 
    679   1.4  drochner 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    680   1.4  drochner 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    681   1.4  drochner 						 mem->am_size);
    682   1.4  drochner 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    683   1.4  drochner 						mem->am_nseg);
    684   1.4  drochner 				free(mem->am_dmaseg, M_AGP);
    685  1.46   xtraeme 				mutex_exit(&sc->as_mtx);
    686   1.1      fvdl 				return error;
    687   1.1      fvdl 			}
    688   1.1      fvdl 		}
    689   1.1      fvdl 		done += seg->ds_len;
    690   1.1      fvdl 	}
    691   1.1      fvdl 
    692   1.1      fvdl 	/*
    693  1.32       wiz 	 * Flush the CPU cache since we are providing a new mapping
    694   1.1      fvdl 	 * for these pages.
    695   1.1      fvdl 	 */
    696   1.1      fvdl 	agp_flush_cache();
    697   1.1      fvdl 
    698   1.1      fvdl 	/*
    699   1.1      fvdl 	 * Make sure the chipset gets the new mappings.
    700   1.1      fvdl 	 */
    701   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    702   1.1      fvdl 
    703   1.1      fvdl 	mem->am_offset = offset;
    704   1.1      fvdl 	mem->am_is_bound = 1;
    705   1.1      fvdl 
    706  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    707   1.1      fvdl 
    708   1.1      fvdl 	return 0;
    709   1.1      fvdl }
    710   1.1      fvdl 
    711   1.1      fvdl int
    712   1.1      fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    713   1.1      fvdl {
    714   1.1      fvdl 	int i;
    715   1.1      fvdl 
    716  1.46   xtraeme 	mutex_enter(&sc->as_mtx);
    717   1.1      fvdl 
    718   1.1      fvdl 	if (!mem->am_is_bound) {
    719  1.59     freza 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    720  1.46   xtraeme 		mutex_exit(&sc->as_mtx);
    721   1.1      fvdl 		return EINVAL;
    722   1.1      fvdl 	}
    723   1.1      fvdl 
    724   1.1      fvdl 
    725   1.1      fvdl 	/*
    726   1.1      fvdl 	 * Unbind the individual pages and flush the chipset's
    727   1.1      fvdl 	 * TLB. Unwire the pages so they can be swapped.
    728   1.1      fvdl 	 */
    729   1.1      fvdl 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    730   1.1      fvdl 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    731  1.34     perry 
    732   1.1      fvdl 	agp_flush_cache();
    733   1.1      fvdl 	AGP_FLUSH_TLB(sc);
    734   1.1      fvdl 
    735   1.1      fvdl 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    736   1.1      fvdl 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    737   1.1      fvdl 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    738   1.1      fvdl 
    739   1.1      fvdl 	free(mem->am_dmaseg, M_AGP);
    740   1.1      fvdl 
    741   1.1      fvdl 	mem->am_offset = 0;
    742   1.1      fvdl 	mem->am_is_bound = 0;
    743   1.1      fvdl 
    744  1.46   xtraeme 	mutex_exit(&sc->as_mtx);
    745   1.1      fvdl 
    746   1.1      fvdl 	return 0;
    747   1.1      fvdl }
    748   1.1      fvdl 
    749   1.1      fvdl /* Helper functions for implementing user/kernel api */
    750   1.1      fvdl 
    751   1.1      fvdl static int
    752   1.1      fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    753   1.1      fvdl {
    754   1.1      fvdl 	if (sc->as_state != AGP_ACQUIRE_FREE)
    755   1.1      fvdl 		return EBUSY;
    756   1.1      fvdl 	sc->as_state = state;
    757   1.1      fvdl 
    758   1.1      fvdl 	return 0;
    759   1.1      fvdl }
    760   1.1      fvdl 
    761   1.1      fvdl static int
    762   1.1      fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    763   1.1      fvdl {
    764   1.1      fvdl 
    765   1.1      fvdl 	if (sc->as_state == AGP_ACQUIRE_FREE)
    766   1.1      fvdl 		return 0;
    767   1.1      fvdl 
    768   1.1      fvdl 	if (sc->as_state != state)
    769   1.1      fvdl 		return EBUSY;
    770   1.1      fvdl 
    771   1.1      fvdl 	sc->as_state = AGP_ACQUIRE_FREE;
    772   1.1      fvdl 	return 0;
    773   1.1      fvdl }
    774   1.1      fvdl 
    775   1.1      fvdl static struct agp_memory *
    776   1.1      fvdl agp_find_memory(struct agp_softc *sc, int id)
    777   1.1      fvdl {
    778   1.1      fvdl 	struct agp_memory *mem;
    779   1.1      fvdl 
    780  1.40  christos 	AGP_DPF(("searching for memory block %d\n", id));
    781   1.1      fvdl 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    782  1.40  christos 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    783   1.1      fvdl 		if (mem->am_id == id)
    784   1.1      fvdl 			return mem;
    785   1.1      fvdl 	}
    786   1.1      fvdl 	return 0;
    787   1.1      fvdl }
    788   1.1      fvdl 
    789   1.1      fvdl /* Implementation of the userland ioctl api */
    790   1.1      fvdl 
    791   1.1      fvdl static int
    792   1.1      fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
    793   1.1      fvdl {
    794   1.1      fvdl 	memset(info, 0, sizeof *info);
    795   1.1      fvdl 	info->bridge_id = sc->as_id;
    796   1.3  drochner 	if (sc->as_capoff != 0)
    797   1.3  drochner 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    798   1.3  drochner 					       sc->as_capoff + AGP_STATUS);
    799   1.3  drochner 	else
    800   1.3  drochner 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    801   1.1      fvdl 	info->aper_base = sc->as_apaddr;
    802   1.1      fvdl 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    803   1.1      fvdl 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    804   1.1      fvdl 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    805   1.1      fvdl 
    806   1.1      fvdl 	return 0;
    807   1.1      fvdl }
    808   1.1      fvdl 
    809   1.1      fvdl static int
    810   1.1      fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    811   1.1      fvdl {
    812   1.1      fvdl 	return AGP_ENABLE(sc, setup->agp_mode);
    813   1.1      fvdl }
    814   1.1      fvdl 
    815   1.1      fvdl static int
    816   1.1      fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    817   1.1      fvdl {
    818   1.1      fvdl 	struct agp_memory *mem;
    819   1.1      fvdl 
    820   1.1      fvdl 	mem = AGP_ALLOC_MEMORY(sc,
    821   1.1      fvdl 			       alloc->type,
    822   1.1      fvdl 			       alloc->pg_count << AGP_PAGE_SHIFT);
    823   1.1      fvdl 	if (mem) {
    824   1.1      fvdl 		alloc->key = mem->am_id;
    825   1.1      fvdl 		alloc->physical = mem->am_physical;
    826   1.1      fvdl 		return 0;
    827   1.1      fvdl 	} else {
    828   1.1      fvdl 		return ENOMEM;
    829   1.1      fvdl 	}
    830   1.1      fvdl }
    831   1.1      fvdl 
    832   1.1      fvdl static int
    833   1.1      fvdl agp_deallocate_user(struct agp_softc *sc, int id)
    834   1.1      fvdl {
    835   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, id);
    836   1.1      fvdl 
    837   1.1      fvdl 	if (mem) {
    838   1.1      fvdl 		AGP_FREE_MEMORY(sc, mem);
    839   1.1      fvdl 		return 0;
    840   1.1      fvdl 	} else {
    841   1.1      fvdl 		return ENOENT;
    842   1.1      fvdl 	}
    843   1.1      fvdl }
    844   1.1      fvdl 
    845   1.1      fvdl static int
    846   1.1      fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    847   1.1      fvdl {
    848   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    849   1.1      fvdl 
    850   1.1      fvdl 	if (!mem)
    851   1.1      fvdl 		return ENOENT;
    852   1.1      fvdl 
    853   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    854   1.1      fvdl }
    855   1.1      fvdl 
    856   1.1      fvdl static int
    857   1.1      fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    858   1.1      fvdl {
    859   1.1      fvdl 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    860   1.1      fvdl 
    861   1.1      fvdl 	if (!mem)
    862   1.1      fvdl 		return ENOENT;
    863   1.1      fvdl 
    864   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
    865   1.1      fvdl }
    866   1.1      fvdl 
    867  1.35   thorpej static int
    868  1.59     freza agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    869   1.1      fvdl {
    870  1.58   tsutsui 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    871   1.9   thorpej 
    872   1.9   thorpej 	if (sc == NULL)
    873   1.9   thorpej 		return ENXIO;
    874   1.1      fvdl 
    875   1.1      fvdl 	if (sc->as_chipc == NULL)
    876   1.1      fvdl 		return ENXIO;
    877   1.1      fvdl 
    878   1.1      fvdl 	if (!sc->as_isopen)
    879   1.1      fvdl 		sc->as_isopen = 1;
    880   1.1      fvdl 	else
    881   1.1      fvdl 		return EBUSY;
    882   1.1      fvdl 
    883   1.1      fvdl 	return 0;
    884   1.1      fvdl }
    885   1.1      fvdl 
    886  1.35   thorpej static int
    887  1.59     freza agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    888   1.1      fvdl {
    889  1.58   tsutsui 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    890  1.16  drochner 	struct agp_memory *mem;
    891   1.1      fvdl 
    892  1.59     freza 	if (sc == NULL)
    893  1.59     freza 		return ENODEV;
    894  1.59     freza 
    895   1.1      fvdl 	/*
    896   1.1      fvdl 	 * Clear the GATT and force release on last close
    897   1.1      fvdl 	 */
    898  1.16  drochner 	if (sc->as_state == AGP_ACQUIRE_USER) {
    899  1.16  drochner 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    900  1.16  drochner 			if (mem->am_is_bound) {
    901  1.16  drochner 				printf("agpclose: mem %d is bound\n",
    902  1.16  drochner 				       mem->am_id);
    903  1.16  drochner 				AGP_UNBIND_MEMORY(sc, mem);
    904  1.16  drochner 			}
    905  1.16  drochner 			/*
    906  1.16  drochner 			 * XXX it is not documented, but if the protocol allows
    907  1.16  drochner 			 * allocate->acquire->bind, it would be possible that
    908  1.16  drochner 			 * memory ranges are allocated by the kernel here,
    909  1.16  drochner 			 * which we shouldn't free. We'd have to keep track of
    910  1.16  drochner 			 * the memory range's owner.
    911  1.16  drochner 			 * The kernel API is unsed yet, so we get away with
    912  1.16  drochner 			 * freeing all.
    913  1.16  drochner 			 */
    914  1.16  drochner 			AGP_FREE_MEMORY(sc, mem);
    915  1.16  drochner 		}
    916   1.1      fvdl 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    917  1.16  drochner 	}
    918   1.1      fvdl 	sc->as_isopen = 0;
    919   1.1      fvdl 
    920   1.1      fvdl 	return 0;
    921   1.1      fvdl }
    922   1.1      fvdl 
    923  1.35   thorpej static int
    924  1.45  christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    925   1.1      fvdl {
    926  1.58   tsutsui 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    927   1.1      fvdl 
    928   1.1      fvdl 	if (sc == NULL)
    929   1.1      fvdl 		return ENODEV;
    930   1.1      fvdl 
    931   1.1      fvdl 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    932   1.1      fvdl 		return EPERM;
    933   1.1      fvdl 
    934   1.1      fvdl 	switch (cmd) {
    935   1.1      fvdl 	case AGPIOC_INFO:
    936   1.1      fvdl 		return agp_info_user(sc, (agp_info *) data);
    937   1.1      fvdl 
    938   1.1      fvdl 	case AGPIOC_ACQUIRE:
    939   1.1      fvdl 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    940   1.1      fvdl 
    941   1.1      fvdl 	case AGPIOC_RELEASE:
    942   1.1      fvdl 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    943   1.1      fvdl 
    944   1.1      fvdl 	case AGPIOC_SETUP:
    945   1.1      fvdl 		return agp_setup_user(sc, (agp_setup *)data);
    946   1.1      fvdl 
    947  1.75  christos #ifdef __x86_64__
    948  1.75  christos {
    949  1.75  christos 	/*
    950  1.75  christos 	 * Handle paddr_t change from 32 bit for non PAE kernels
    951  1.75  christos 	 * to 64 bit.
    952  1.75  christos 	 */
    953  1.75  christos #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
    954  1.75  christos 
    955  1.75  christos 	typedef struct _agp_oallocate {
    956  1.75  christos 		int key;		/* tag of allocation            */
    957  1.75  christos 		size_t pg_count;	/* number of pages              */
    958  1.75  christos 		uint32_t type;		/* 0 == normal, other devspec   */
    959  1.75  christos 		u_long physical;	/* device specific (some devices
    960  1.75  christos 					 * need a phys address of the
    961  1.75  christos 					 * actual page behind the gatt
    962  1.75  christos 					 * table)                        */
    963  1.75  christos 	} agp_oallocate;
    964  1.75  christos 
    965  1.75  christos 	case AGPIOC_OALLOCATE: {
    966  1.75  christos 		int ret;
    967  1.75  christos 		agp_allocate aga;
    968  1.75  christos 		agp_oallocate *oaga = data;
    969  1.75  christos 
    970  1.75  christos 		aga.type = oaga->type;
    971  1.75  christos 		aga.pg_count = oaga->pg_count;
    972  1.75  christos 
    973  1.75  christos 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
    974  1.75  christos 			oaga->key = aga.key;
    975  1.75  christos 			oaga->physical = (u_long)aga.physical;
    976  1.75  christos 		}
    977  1.75  christos 
    978  1.75  christos 		return ret;
    979  1.75  christos 	}
    980  1.75  christos }
    981  1.75  christos #endif
    982   1.1      fvdl 	case AGPIOC_ALLOCATE:
    983   1.1      fvdl 		return agp_allocate_user(sc, (agp_allocate *)data);
    984   1.1      fvdl 
    985   1.1      fvdl 	case AGPIOC_DEALLOCATE:
    986   1.1      fvdl 		return agp_deallocate_user(sc, *(int *) data);
    987   1.1      fvdl 
    988   1.1      fvdl 	case AGPIOC_BIND:
    989   1.1      fvdl 		return agp_bind_user(sc, (agp_bind *)data);
    990   1.1      fvdl 
    991   1.1      fvdl 	case AGPIOC_UNBIND:
    992   1.1      fvdl 		return agp_unbind_user(sc, (agp_unbind *)data);
    993   1.1      fvdl 
    994   1.1      fvdl 	}
    995   1.1      fvdl 
    996   1.1      fvdl 	return EINVAL;
    997   1.1      fvdl }
    998   1.1      fvdl 
    999  1.35   thorpej static paddr_t
   1000   1.1      fvdl agpmmap(dev_t dev, off_t offset, int prot)
   1001   1.1      fvdl {
   1002  1.58   tsutsui 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1003   1.1      fvdl 
   1004  1.59     freza 	if (sc == NULL)
   1005  1.59     freza 		return ENODEV;
   1006  1.59     freza 
   1007   1.1      fvdl 	if (offset > AGP_GET_APERTURE(sc))
   1008   1.1      fvdl 		return -1;
   1009   1.6   thorpej 
   1010   1.6   thorpej 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
   1011   1.6   thorpej 	    BUS_SPACE_MAP_LINEAR));
   1012   1.1      fvdl }
   1013   1.1      fvdl 
   1014  1.35   thorpej const struct cdevsw agp_cdevsw = {
   1015  1.35   thorpej 	agpopen, agpclose, noread, nowrite, agpioctl,
   1016  1.59     freza 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
   1017  1.35   thorpej };
   1018  1.35   thorpej 
   1019   1.1      fvdl /* Implementation of the kernel api */
   1020   1.1      fvdl 
   1021   1.1      fvdl void *
   1022   1.1      fvdl agp_find_device(int unit)
   1023   1.1      fvdl {
   1024  1.59     freza 	return device_lookup_private(&agp_cd, unit);
   1025   1.1      fvdl }
   1026   1.1      fvdl 
   1027   1.1      fvdl enum agp_acquire_state
   1028   1.1      fvdl agp_state(void *devcookie)
   1029   1.1      fvdl {
   1030   1.1      fvdl 	struct agp_softc *sc = devcookie;
   1031  1.59     freza 
   1032   1.1      fvdl 	return sc->as_state;
   1033   1.1      fvdl }
   1034   1.1      fvdl 
   1035   1.1      fvdl void
   1036   1.1      fvdl agp_get_info(void *devcookie, struct agp_info *info)
   1037   1.1      fvdl {
   1038   1.1      fvdl 	struct agp_softc *sc = devcookie;
   1039   1.1      fvdl 
   1040   1.1      fvdl 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1041   1.1      fvdl 	    sc->as_capoff + AGP_STATUS);
   1042   1.1      fvdl 	info->ai_aperture_base = sc->as_apaddr;
   1043   1.1      fvdl 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1044   1.1      fvdl 	info->ai_memory_allowed = sc->as_maxmem;
   1045   1.1      fvdl 	info->ai_memory_used = sc->as_allocated;
   1046   1.1      fvdl }
   1047   1.1      fvdl 
   1048   1.1      fvdl int
   1049   1.1      fvdl agp_acquire(void *dev)
   1050   1.1      fvdl {
   1051   1.1      fvdl 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1052   1.1      fvdl }
   1053   1.1      fvdl 
   1054   1.1      fvdl int
   1055   1.1      fvdl agp_release(void *dev)
   1056   1.1      fvdl {
   1057   1.1      fvdl 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1058   1.1      fvdl }
   1059   1.1      fvdl 
   1060   1.1      fvdl int
   1061   1.1      fvdl agp_enable(void *dev, u_int32_t mode)
   1062   1.1      fvdl {
   1063   1.1      fvdl 	struct agp_softc *sc = dev;
   1064   1.1      fvdl 
   1065   1.1      fvdl 	return AGP_ENABLE(sc, mode);
   1066   1.1      fvdl }
   1067   1.1      fvdl 
   1068  1.59     freza void *
   1069  1.59     freza agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1070   1.1      fvdl {
   1071   1.1      fvdl 	struct agp_softc *sc = dev;
   1072   1.1      fvdl 
   1073   1.1      fvdl 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1074   1.1      fvdl }
   1075   1.1      fvdl 
   1076  1.59     freza void
   1077  1.59     freza agp_free_memory(void *dev, void *handle)
   1078   1.1      fvdl {
   1079   1.1      fvdl 	struct agp_softc *sc = dev;
   1080  1.59     freza 	struct agp_memory *mem = handle;
   1081  1.59     freza 
   1082   1.1      fvdl 	AGP_FREE_MEMORY(sc, mem);
   1083   1.1      fvdl }
   1084   1.1      fvdl 
   1085  1.59     freza int
   1086  1.59     freza agp_bind_memory(void *dev, void *handle, off_t offset)
   1087   1.1      fvdl {
   1088   1.1      fvdl 	struct agp_softc *sc = dev;
   1089  1.59     freza 	struct agp_memory *mem = handle;
   1090   1.1      fvdl 
   1091   1.1      fvdl 	return AGP_BIND_MEMORY(sc, mem, offset);
   1092   1.1      fvdl }
   1093   1.1      fvdl 
   1094  1.59     freza int
   1095  1.59     freza agp_unbind_memory(void *dev, void *handle)
   1096   1.1      fvdl {
   1097   1.1      fvdl 	struct agp_softc *sc = dev;
   1098  1.59     freza 	struct agp_memory *mem = handle;
   1099   1.1      fvdl 
   1100   1.1      fvdl 	return AGP_UNBIND_MEMORY(sc, mem);
   1101   1.1      fvdl }
   1102   1.1      fvdl 
   1103  1.59     freza void
   1104  1.59     freza agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1105   1.1      fvdl {
   1106  1.59     freza 	struct agp_memory *mem = handle;
   1107   1.1      fvdl 
   1108   1.1      fvdl 	mi->ami_size = mem->am_size;
   1109   1.1      fvdl 	mi->ami_physical = mem->am_physical;
   1110   1.1      fvdl 	mi->ami_offset = mem->am_offset;
   1111   1.1      fvdl 	mi->ami_is_bound = mem->am_is_bound;
   1112   1.1      fvdl }
   1113   1.1      fvdl 
   1114   1.1      fvdl int
   1115   1.1      fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1116  1.45  christos 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1117   1.1      fvdl 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1118   1.1      fvdl 
   1119   1.1      fvdl {
   1120   1.1      fvdl 	int error, level = 0;
   1121   1.1      fvdl 
   1122   1.1      fvdl 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1123   1.1      fvdl 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1124   1.1      fvdl 		goto out;
   1125   1.1      fvdl 	level++;
   1126   1.1      fvdl 
   1127   1.1      fvdl 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1128   1.1      fvdl 			BUS_DMA_NOWAIT | flags)) != 0)
   1129   1.1      fvdl 		goto out;
   1130   1.1      fvdl 	level++;
   1131   1.1      fvdl 
   1132   1.3  drochner 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1133   1.1      fvdl 			BUS_DMA_NOWAIT, mapp)) != 0)
   1134   1.1      fvdl 		goto out;
   1135   1.1      fvdl 	level++;
   1136   1.1      fvdl 
   1137   1.1      fvdl 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1138   1.1      fvdl 			BUS_DMA_NOWAIT)) != 0)
   1139   1.1      fvdl 		goto out;
   1140   1.1      fvdl 
   1141   1.1      fvdl 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1142   1.1      fvdl 
   1143   1.1      fvdl 	return 0;
   1144   1.1      fvdl out:
   1145   1.1      fvdl 	switch (level) {
   1146   1.1      fvdl 	case 3:
   1147   1.1      fvdl 		bus_dmamap_destroy(tag, *mapp);
   1148   1.1      fvdl 		/* FALLTHROUGH */
   1149   1.1      fvdl 	case 2:
   1150   1.1      fvdl 		bus_dmamem_unmap(tag, *vaddr, size);
   1151   1.1      fvdl 		/* FALLTHROUGH */
   1152   1.1      fvdl 	case 1:
   1153   1.1      fvdl 		bus_dmamem_free(tag, seg, *rseg);
   1154   1.1      fvdl 		break;
   1155   1.1      fvdl 	default:
   1156   1.1      fvdl 		break;
   1157   1.1      fvdl 	}
   1158   1.1      fvdl 
   1159   1.1      fvdl 	return error;
   1160   1.1      fvdl }
   1161   1.1      fvdl 
   1162   1.1      fvdl void
   1163   1.1      fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1164  1.45  christos 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1165   1.1      fvdl {
   1166   1.1      fvdl 	bus_dmamap_unload(tag, map);
   1167   1.1      fvdl 	bus_dmamap_destroy(tag, map);
   1168   1.1      fvdl 	bus_dmamem_unmap(tag, vaddr, size);
   1169   1.1      fvdl 	bus_dmamem_free(tag, seg, nseg);
   1170   1.1      fvdl }
   1171  1.54  jmcneill 
   1172  1.54  jmcneill static bool
   1173  1.68    dyoung agp_resume(device_t dv, const pmf_qual_t *qual)
   1174  1.54  jmcneill {
   1175  1.54  jmcneill 	agp_flush_cache();
   1176  1.54  jmcneill 
   1177  1.54  jmcneill 	return true;
   1178  1.54  jmcneill }
   1179