agp.c revision 1.85.6.1 1 1.85.6.1 martin /* $NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.85.6.1 martin __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <dev/pci/pcireg.h>
83 1.1 fvdl #include <dev/pci/pcivar.h>
84 1.1 fvdl #include <dev/pci/agpvar.h>
85 1.1 fvdl #include <dev/pci/agpreg.h>
86 1.1 fvdl #include <dev/pci/pcidevs.h>
87 1.1 fvdl
88 1.49 ad #include <sys/bus.h>
89 1.25 thorpej
90 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 1.1 fvdl
92 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
93 1.1 fvdl /* XXXfvdl get rid of this one. */
94 1.1 fvdl
95 1.1 fvdl extern struct cfdriver agp_cd;
96 1.17 gehenna
97 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
98 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
99 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
101 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
102 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 1.79 dyoung static int agp_generic_enable_v2(struct agp_softc *,
104 1.79 dyoung const struct pci_attach_args *, int, u_int32_t);
105 1.79 dyoung static int agp_generic_enable_v3(struct agp_softc *,
106 1.79 dyoung const struct pci_attach_args *, int, u_int32_t);
107 1.79 dyoung static int agpdev_match(const struct pci_attach_args *);
108 1.68 dyoung static bool agp_resume(device_t, const pmf_qual_t *);
109 1.1 fvdl
110 1.7 thorpej #include "agp_ali.h"
111 1.7 thorpej #include "agp_amd.h"
112 1.7 thorpej #include "agp_i810.h"
113 1.7 thorpej #include "agp_intel.h"
114 1.7 thorpej #include "agp_sis.h"
115 1.7 thorpej #include "agp_via.h"
116 1.47 kiyohara #include "agp_amd64.h"
117 1.7 thorpej
118 1.5 thorpej const struct agp_product {
119 1.5 thorpej uint32_t ap_vendor;
120 1.5 thorpej uint32_t ap_product;
121 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
122 1.59 freza int (*ap_attach)(device_t, device_t, void *);
123 1.5 thorpej } agp_products[] = {
124 1.57 njoly #if NAGP_AMD64 > 0
125 1.57 njoly { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 1.57 njoly agp_amd64_match, agp_amd64_attach },
127 1.57 njoly #endif
128 1.57 njoly
129 1.7 thorpej #if NAGP_ALI > 0
130 1.5 thorpej { PCI_VENDOR_ALI, -1,
131 1.5 thorpej NULL, agp_ali_attach },
132 1.7 thorpej #endif
133 1.5 thorpej
134 1.51 joerg #if NAGP_AMD64 > 0
135 1.51 joerg { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 1.51 joerg agp_amd64_match, agp_amd64_attach },
137 1.51 joerg #endif
138 1.51 joerg
139 1.7 thorpej #if NAGP_AMD > 0
140 1.5 thorpej { PCI_VENDOR_AMD, -1,
141 1.5 thorpej agp_amd_match, agp_amd_attach },
142 1.7 thorpej #endif
143 1.5 thorpej
144 1.7 thorpej #if NAGP_I810 > 0
145 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 1.5 thorpej NULL, agp_i810_attach },
147 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 1.5 thorpej NULL, agp_i810_attach },
149 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 1.5 thorpej NULL, agp_i810_attach },
151 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 1.5 thorpej NULL, agp_i810_attach },
153 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 1.13 augustss NULL, agp_i810_attach },
155 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 1.11 fvdl NULL, agp_i810_attach },
157 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 1.29 hannken NULL, agp_i810_attach },
159 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 1.31 tron NULL, agp_i810_attach },
161 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 1.23 scw NULL, agp_i810_attach },
163 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 1.37 christos NULL, agp_i810_attach },
165 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 1.37 christos NULL, agp_i810_attach },
167 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 1.39 simonb NULL, agp_i810_attach },
169 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 1.39 simonb NULL, agp_i810_attach },
171 1.61 tnn { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 1.61 tnn NULL, agp_i810_attach },
173 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 1.48 markd NULL, agp_i810_attach },
175 1.51 joerg { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 1.51 joerg NULL, agp_i810_attach },
177 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 1.50 jnemeth NULL, agp_i810_attach },
179 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 1.52 markd NULL, agp_i810_attach },
181 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 1.52 markd NULL, agp_i810_attach },
183 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 1.52 markd NULL, agp_i810_attach },
185 1.63 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 1.63 christos NULL, agp_i810_attach },
187 1.60 matthias { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 1.60 matthias NULL, agp_i810_attach },
189 1.64 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 1.64 christos NULL, agp_i810_attach },
191 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 1.65 markd NULL, agp_i810_attach },
193 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 1.65 markd NULL, agp_i810_attach },
195 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 1.65 markd NULL, agp_i810_attach },
197 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 1.69 riz NULL, agp_i810_attach },
199 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 1.69 riz NULL, agp_i810_attach },
201 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 1.69 riz NULL, agp_i810_attach },
203 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 1.69 riz NULL, agp_i810_attach },
205 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 1.69 riz NULL, agp_i810_attach },
207 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 1.69 riz NULL, agp_i810_attach },
209 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 1.69 riz NULL, agp_i810_attach },
211 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 1.69 riz NULL, agp_i810_attach },
213 1.78 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 1.78 matt NULL, agp_i810_attach },
215 1.78 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 1.78 matt NULL, agp_i810_attach },
217 1.7 thorpej #endif
218 1.5 thorpej
219 1.7 thorpej #if NAGP_INTEL > 0
220 1.5 thorpej { PCI_VENDOR_INTEL, -1,
221 1.5 thorpej NULL, agp_intel_attach },
222 1.7 thorpej #endif
223 1.5 thorpej
224 1.51 joerg #if NAGP_AMD64 > 0
225 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 1.51 joerg agp_amd64_match, agp_amd64_attach },
227 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 1.51 joerg agp_amd64_match, agp_amd64_attach },
229 1.7 thorpej #endif
230 1.5 thorpej
231 1.47 kiyohara #if NAGP_AMD64 > 0
232 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
234 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
236 1.51 joerg #endif
237 1.51 joerg
238 1.51 joerg #if NAGP_SIS > 0
239 1.51 joerg { PCI_VENDOR_SIS, -1,
240 1.51 joerg NULL, agp_sis_attach },
241 1.51 joerg #endif
242 1.51 joerg
243 1.51 joerg #if NAGP_AMD64 > 0
244 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
246 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
248 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
250 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
252 1.47 kiyohara #endif
253 1.47 kiyohara
254 1.51 joerg #if NAGP_VIA > 0
255 1.51 joerg { PCI_VENDOR_VIATECH, -1,
256 1.51 joerg NULL, agp_via_attach },
257 1.51 joerg #endif
258 1.51 joerg
259 1.5 thorpej { 0, 0,
260 1.5 thorpej NULL, NULL },
261 1.5 thorpej };
262 1.5 thorpej
263 1.5 thorpej static const struct agp_product *
264 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
265 1.5 thorpej {
266 1.5 thorpej const struct agp_product *ap;
267 1.5 thorpej
268 1.5 thorpej /* First find the vendor. */
269 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 1.5 thorpej break;
272 1.5 thorpej }
273 1.5 thorpej
274 1.5 thorpej if (ap->ap_attach == NULL)
275 1.5 thorpej return (NULL);
276 1.5 thorpej
277 1.5 thorpej /* Now find the product within the vendor's domain. */
278 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
279 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 1.5 thorpej /* Ran out of this vendor's section of the table. */
281 1.5 thorpej return (NULL);
282 1.5 thorpej }
283 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 1.5 thorpej /* Exact match. */
285 1.5 thorpej break;
286 1.5 thorpej }
287 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
288 1.5 thorpej /* Wildcard match. */
289 1.5 thorpej break;
290 1.5 thorpej }
291 1.5 thorpej }
292 1.5 thorpej
293 1.5 thorpej if (ap->ap_attach == NULL)
294 1.5 thorpej return (NULL);
295 1.5 thorpej
296 1.5 thorpej /* Now let the product-specific driver filter the match. */
297 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 1.5 thorpej return (NULL);
299 1.5 thorpej
300 1.5 thorpej return (ap);
301 1.5 thorpej }
302 1.5 thorpej
303 1.35 thorpej static int
304 1.59 freza agpmatch(device_t parent, cfdata_t match, void *aux)
305 1.1 fvdl {
306 1.5 thorpej struct agpbus_attach_args *apa = aux;
307 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
308 1.1 fvdl
309 1.5 thorpej if (agp_lookup(pa) == NULL)
310 1.5 thorpej return (0);
311 1.1 fvdl
312 1.5 thorpej return (1);
313 1.1 fvdl }
314 1.1 fvdl
315 1.85.6.1 martin static const u_int agp_max[][2] = {
316 1.1 fvdl {0, 0},
317 1.1 fvdl {32, 4},
318 1.1 fvdl {64, 28},
319 1.1 fvdl {128, 96},
320 1.1 fvdl {256, 204},
321 1.1 fvdl {512, 440},
322 1.1 fvdl {1024, 942},
323 1.1 fvdl {2048, 1920},
324 1.1 fvdl {4096, 3932}
325 1.1 fvdl };
326 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327 1.1 fvdl
328 1.35 thorpej static void
329 1.59 freza agpattach(device_t parent, device_t self, void *aux)
330 1.1 fvdl {
331 1.5 thorpej struct agpbus_attach_args *apa = aux;
332 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
333 1.59 freza struct agp_softc *sc = device_private(self);
334 1.5 thorpej const struct agp_product *ap;
335 1.85.6.1 martin int ret;
336 1.85.6.1 martin u_int memsize, i;
337 1.1 fvdl
338 1.5 thorpej ap = agp_lookup(pa);
339 1.59 freza KASSERT(ap != NULL);
340 1.1 fvdl
341 1.24 thorpej aprint_naive(": AGP controller\n");
342 1.24 thorpej
343 1.59 freza sc->as_dev = self;
344 1.1 fvdl sc->as_dmat = pa->pa_dmat;
345 1.1 fvdl sc->as_pc = pa->pa_pc;
346 1.1 fvdl sc->as_tag = pa->pa_tag;
347 1.1 fvdl sc->as_id = pa->pa_id;
348 1.1 fvdl
349 1.1 fvdl /*
350 1.1 fvdl * Work out an upper bound for agp memory allocation. This
351 1.59 freza * uses a heuristic table from the Linux driver.
352 1.1 fvdl */
353 1.67 jym memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
354 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
355 1.1 fvdl if (memsize <= agp_max[i][0])
356 1.1 fvdl break;
357 1.1 fvdl }
358 1.1 fvdl if (i == agp_max_size)
359 1.1 fvdl i = agp_max_size - 1;
360 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
361 1.1 fvdl
362 1.1 fvdl /*
363 1.46 xtraeme * The mutex is used to prevent re-entry to
364 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
365 1.1 fvdl */
366 1.53 ad mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
367 1.1 fvdl
368 1.1 fvdl TAILQ_INIT(&sc->as_memory);
369 1.1 fvdl
370 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
371 1.1 fvdl if (ret == 0)
372 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
373 1.1 fvdl (unsigned long)sc->as_apaddr,
374 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
375 1.1 fvdl else
376 1.1 fvdl sc->as_chipc = NULL;
377 1.54 jmcneill
378 1.80 plunky if (!pmf_device_register(self, NULL, agp_resume))
379 1.80 plunky aprint_error_dev(self, "couldn't establish power handler\n");
380 1.1 fvdl }
381 1.30 tron
382 1.59 freza CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
383 1.35 thorpej agpmatch, agpattach, NULL, NULL);
384 1.35 thorpej
385 1.1 fvdl int
386 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
387 1.1 fvdl {
388 1.1 fvdl /*
389 1.18 nathanw * Find the aperture. Don't map it (yet), this would
390 1.11 fvdl * eat KVA.
391 1.1 fvdl */
392 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
393 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
394 1.11 fvdl &sc->as_apflags) != 0)
395 1.1 fvdl return ENXIO;
396 1.8 drochner
397 1.11 fvdl sc->as_apt = pa->pa_memt;
398 1.11 fvdl
399 1.1 fvdl return 0;
400 1.1 fvdl }
401 1.1 fvdl
402 1.1 fvdl struct agp_gatt *
403 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
404 1.1 fvdl {
405 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
406 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
407 1.1 fvdl struct agp_gatt *gatt;
408 1.45 christos void *virtual;
409 1.1 fvdl int dummyseg;
410 1.1 fvdl
411 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
412 1.1 fvdl if (!gatt)
413 1.1 fvdl return NULL;
414 1.1 fvdl gatt->ag_entries = entries;
415 1.1 fvdl
416 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
417 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
418 1.62 christos &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
419 1.62 christos free(gatt, M_AGP);
420 1.1 fvdl return NULL;
421 1.62 christos }
422 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
423 1.1 fvdl
424 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
425 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
426 1.1 fvdl agp_flush_cache();
427 1.1 fvdl
428 1.1 fvdl return gatt;
429 1.1 fvdl }
430 1.1 fvdl
431 1.1 fvdl void
432 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
433 1.1 fvdl {
434 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
435 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
436 1.1 fvdl free(gatt, M_AGP);
437 1.1 fvdl }
438 1.1 fvdl
439 1.1 fvdl
440 1.1 fvdl int
441 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
442 1.1 fvdl {
443 1.46 xtraeme mutex_destroy(&sc->as_mtx);
444 1.1 fvdl agp_flush_cache();
445 1.1 fvdl return 0;
446 1.1 fvdl }
447 1.1 fvdl
448 1.1 fvdl static int
449 1.79 dyoung agpdev_match(const struct pci_attach_args *pa)
450 1.1 fvdl {
451 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
452 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
453 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
454 1.26 tron NULL, NULL))
455 1.1 fvdl return 1;
456 1.1 fvdl
457 1.1 fvdl return 0;
458 1.1 fvdl }
459 1.1 fvdl
460 1.1 fvdl int
461 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
462 1.1 fvdl {
463 1.1 fvdl struct pci_attach_args pa;
464 1.1 fvdl pcireg_t tstatus, mstatus;
465 1.77 jmcneill int capoff;
466 1.1 fvdl
467 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
468 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
469 1.1 fvdl &capoff, NULL) == 0) {
470 1.59 freza aprint_error_dev(sc->as_dev, "can't find display\n");
471 1.1 fvdl return ENXIO;
472 1.1 fvdl }
473 1.1 fvdl
474 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
475 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
476 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
477 1.84 msaitoh capoff + PCI_AGP_STATUS);
478 1.1 fvdl
479 1.77 jmcneill if (AGP_MODE_GET_MODE_3(mode) &&
480 1.77 jmcneill AGP_MODE_GET_MODE_3(tstatus) &&
481 1.77 jmcneill AGP_MODE_GET_MODE_3(mstatus))
482 1.77 jmcneill return agp_generic_enable_v3(sc, &pa, capoff, mode);
483 1.77 jmcneill else
484 1.77 jmcneill return agp_generic_enable_v2(sc, &pa, capoff, mode);
485 1.77 jmcneill }
486 1.77 jmcneill
487 1.77 jmcneill static int
488 1.79 dyoung agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
489 1.77 jmcneill int capoff, u_int32_t mode)
490 1.77 jmcneill {
491 1.77 jmcneill pcireg_t tstatus, mstatus;
492 1.77 jmcneill pcireg_t command;
493 1.77 jmcneill int rq, sba, fw, rate;
494 1.77 jmcneill
495 1.77 jmcneill tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
496 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
497 1.77 jmcneill mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
498 1.84 msaitoh capoff + PCI_AGP_STATUS);
499 1.77 jmcneill
500 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
501 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
502 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
503 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
504 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
505 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
506 1.1 fvdl
507 1.1 fvdl /* Set SBA if all three can deal with SBA */
508 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
509 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
510 1.1 fvdl & AGP_MODE_GET_SBA(mode));
511 1.1 fvdl
512 1.1 fvdl /* Similar for FW */
513 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
514 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
515 1.1 fvdl & AGP_MODE_GET_FW(mode));
516 1.1 fvdl
517 1.1 fvdl /* Figure out the max rate */
518 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
519 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
520 1.1 fvdl & AGP_MODE_GET_RATE(mode));
521 1.77 jmcneill if (rate & AGP_MODE_V2_RATE_4x)
522 1.77 jmcneill rate = AGP_MODE_V2_RATE_4x;
523 1.77 jmcneill else if (rate & AGP_MODE_V2_RATE_2x)
524 1.77 jmcneill rate = AGP_MODE_V2_RATE_2x;
525 1.77 jmcneill else
526 1.77 jmcneill rate = AGP_MODE_V2_RATE_1x;
527 1.77 jmcneill
528 1.77 jmcneill /* Construct the new mode word and tell the hardware */
529 1.77 jmcneill command = AGP_MODE_SET_RQ(0, rq);
530 1.77 jmcneill command = AGP_MODE_SET_SBA(command, sba);
531 1.77 jmcneill command = AGP_MODE_SET_FW(command, fw);
532 1.77 jmcneill command = AGP_MODE_SET_RATE(command, rate);
533 1.77 jmcneill command = AGP_MODE_SET_AGP(command, 1);
534 1.77 jmcneill pci_conf_write(sc->as_pc, sc->as_tag,
535 1.84 msaitoh sc->as_capoff + PCI_AGP_COMMAND, command);
536 1.84 msaitoh pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
537 1.84 msaitoh command);
538 1.77 jmcneill
539 1.77 jmcneill return 0;
540 1.77 jmcneill }
541 1.77 jmcneill
542 1.77 jmcneill static int
543 1.79 dyoung agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
544 1.77 jmcneill int capoff, u_int32_t mode)
545 1.77 jmcneill {
546 1.77 jmcneill pcireg_t tstatus, mstatus;
547 1.77 jmcneill pcireg_t command;
548 1.77 jmcneill int rq, sba, fw, rate, arqsz, cal;
549 1.77 jmcneill
550 1.77 jmcneill tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
551 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
552 1.77 jmcneill mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
553 1.84 msaitoh capoff + PCI_AGP_STATUS);
554 1.77 jmcneill
555 1.77 jmcneill /* Set RQ to the min of mode, tstatus and mstatus */
556 1.77 jmcneill rq = AGP_MODE_GET_RQ(mode);
557 1.77 jmcneill if (AGP_MODE_GET_RQ(tstatus) < rq)
558 1.77 jmcneill rq = AGP_MODE_GET_RQ(tstatus);
559 1.77 jmcneill if (AGP_MODE_GET_RQ(mstatus) < rq)
560 1.77 jmcneill rq = AGP_MODE_GET_RQ(mstatus);
561 1.77 jmcneill
562 1.77 jmcneill /*
563 1.77 jmcneill * ARQSZ - Set the value to the maximum one.
564 1.77 jmcneill * Don't allow the mode register to override values.
565 1.77 jmcneill */
566 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(mode);
567 1.77 jmcneill if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
568 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(tstatus);
569 1.77 jmcneill if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
570 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(mstatus);
571 1.77 jmcneill
572 1.77 jmcneill /* Calibration cycle - don't allow override by mode register */
573 1.77 jmcneill cal = AGP_MODE_GET_CAL(tstatus);
574 1.77 jmcneill if (AGP_MODE_GET_CAL(mstatus) < cal)
575 1.77 jmcneill cal = AGP_MODE_GET_CAL(mstatus);
576 1.77 jmcneill
577 1.77 jmcneill /* SBA must be supported for AGP v3. */
578 1.77 jmcneill sba = 1;
579 1.77 jmcneill
580 1.77 jmcneill /* Set FW if all three support it. */
581 1.77 jmcneill fw = (AGP_MODE_GET_FW(tstatus)
582 1.77 jmcneill & AGP_MODE_GET_FW(mstatus)
583 1.77 jmcneill & AGP_MODE_GET_FW(mode));
584 1.77 jmcneill
585 1.77 jmcneill /* Figure out the max rate */
586 1.77 jmcneill rate = (AGP_MODE_GET_RATE(tstatus)
587 1.77 jmcneill & AGP_MODE_GET_RATE(mstatus)
588 1.77 jmcneill & AGP_MODE_GET_RATE(mode));
589 1.77 jmcneill if (rate & AGP_MODE_V3_RATE_8x)
590 1.77 jmcneill rate = AGP_MODE_V3_RATE_8x;
591 1.1 fvdl else
592 1.77 jmcneill rate = AGP_MODE_V3_RATE_4x;
593 1.1 fvdl
594 1.1 fvdl /* Construct the new mode word and tell the hardware */
595 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
596 1.77 jmcneill command = AGP_MODE_SET_ARQSZ(command, arqsz);
597 1.77 jmcneill command = AGP_MODE_SET_CAL(command, cal);
598 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
599 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
600 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
601 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
602 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
603 1.84 msaitoh sc->as_capoff + PCI_AGP_COMMAND, command);
604 1.84 msaitoh pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
605 1.84 msaitoh command);
606 1.1 fvdl
607 1.1 fvdl return 0;
608 1.1 fvdl }
609 1.1 fvdl
610 1.1 fvdl struct agp_memory *
611 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
612 1.1 fvdl {
613 1.1 fvdl struct agp_memory *mem;
614 1.1 fvdl
615 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
616 1.1 fvdl return 0;
617 1.1 fvdl
618 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
619 1.1 fvdl return 0;
620 1.1 fvdl
621 1.1 fvdl if (type != 0) {
622 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
623 1.1 fvdl type);
624 1.1 fvdl return 0;
625 1.1 fvdl }
626 1.1 fvdl
627 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
628 1.1 fvdl if (mem == NULL)
629 1.1 fvdl return NULL;
630 1.1 fvdl
631 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
632 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
633 1.1 fvdl free(mem, M_AGP);
634 1.1 fvdl return NULL;
635 1.1 fvdl }
636 1.1 fvdl
637 1.1 fvdl mem->am_id = sc->as_nextid++;
638 1.1 fvdl mem->am_size = size;
639 1.1 fvdl mem->am_type = 0;
640 1.1 fvdl mem->am_physical = 0;
641 1.1 fvdl mem->am_offset = 0;
642 1.1 fvdl mem->am_is_bound = 0;
643 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
644 1.1 fvdl sc->as_allocated += size;
645 1.1 fvdl
646 1.1 fvdl return mem;
647 1.1 fvdl }
648 1.1 fvdl
649 1.1 fvdl int
650 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
651 1.1 fvdl {
652 1.1 fvdl if (mem->am_is_bound)
653 1.1 fvdl return EBUSY;
654 1.1 fvdl
655 1.1 fvdl sc->as_allocated -= mem->am_size;
656 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
657 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
658 1.1 fvdl free(mem, M_AGP);
659 1.1 fvdl return 0;
660 1.1 fvdl }
661 1.1 fvdl
662 1.1 fvdl int
663 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
664 1.82 riastrad off_t offset)
665 1.82 riastrad {
666 1.82 riastrad
667 1.82 riastrad return agp_generic_bind_memory_bounded(sc, mem, offset,
668 1.82 riastrad 0, AGP_GET_APERTURE(sc));
669 1.82 riastrad }
670 1.82 riastrad
671 1.82 riastrad int
672 1.82 riastrad agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
673 1.82 riastrad off_t offset, off_t start, off_t end)
674 1.1 fvdl {
675 1.1 fvdl off_t i, k;
676 1.1 fvdl bus_size_t done, j;
677 1.1 fvdl int error;
678 1.1 fvdl bus_dma_segment_t *segs, *seg;
679 1.1 fvdl bus_addr_t pa;
680 1.1 fvdl int contigpages, nseg;
681 1.1 fvdl
682 1.46 xtraeme mutex_enter(&sc->as_mtx);
683 1.1 fvdl
684 1.1 fvdl if (mem->am_is_bound) {
685 1.59 freza aprint_error_dev(sc->as_dev, "memory already bound\n");
686 1.46 xtraeme mutex_exit(&sc->as_mtx);
687 1.1 fvdl return EINVAL;
688 1.1 fvdl }
689 1.34 perry
690 1.82 riastrad if (offset < start
691 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
692 1.82 riastrad || offset > end
693 1.82 riastrad || mem->am_size > (end - offset)) {
694 1.59 freza aprint_error_dev(sc->as_dev,
695 1.59 freza "binding memory at bad offset %#lx\n",
696 1.56 cegger (unsigned long) offset);
697 1.46 xtraeme mutex_exit(&sc->as_mtx);
698 1.1 fvdl return EINVAL;
699 1.1 fvdl }
700 1.1 fvdl
701 1.1 fvdl /*
702 1.1 fvdl * XXXfvdl
703 1.1 fvdl * The memory here needs to be directly accessable from the
704 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
705 1.1 fvdl * However, it need not be contiguous, since individual pages
706 1.1 fvdl * are translated using the GATT.
707 1.1 fvdl *
708 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
709 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
710 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
711 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
712 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
713 1.1 fvdl * a bus_dma_segment per page would be overkill.
714 1.1 fvdl */
715 1.1 fvdl
716 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
717 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
718 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
719 1.16 drochner if (segs == NULL) {
720 1.46 xtraeme mutex_exit(&sc->as_mtx);
721 1.10 thorpej return ENOMEM;
722 1.16 drochner }
723 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
724 1.4 drochner segs, nseg, &mem->am_nseg,
725 1.15 drochner contigpages > 1 ?
726 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
727 1.4 drochner free(segs, M_AGP);
728 1.1 fvdl continue;
729 1.4 drochner }
730 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
731 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
732 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
733 1.4 drochner free(segs, M_AGP);
734 1.1 fvdl continue;
735 1.1 fvdl }
736 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
737 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
738 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
739 1.1 fvdl mem->am_size);
740 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
741 1.4 drochner free(segs, M_AGP);
742 1.1 fvdl continue;
743 1.1 fvdl }
744 1.1 fvdl mem->am_dmaseg = segs;
745 1.1 fvdl break;
746 1.1 fvdl }
747 1.1 fvdl
748 1.1 fvdl if (contigpages == 0) {
749 1.46 xtraeme mutex_exit(&sc->as_mtx);
750 1.1 fvdl return ENOMEM;
751 1.1 fvdl }
752 1.1 fvdl
753 1.1 fvdl
754 1.1 fvdl /*
755 1.1 fvdl * Bind the individual pages and flush the chipset's
756 1.1 fvdl * TLB.
757 1.1 fvdl */
758 1.1 fvdl done = 0;
759 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
760 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
761 1.1 fvdl /*
762 1.1 fvdl * Install entries in the GATT, making sure that if
763 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
764 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
765 1.1 fvdl * entries.
766 1.1 fvdl */
767 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
768 1.1 fvdl j += AGP_PAGE_SIZE) {
769 1.1 fvdl pa = seg->ds_addr + j;
770 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
771 1.3 drochner (unsigned long)(offset + done + j),
772 1.40 christos (unsigned long)pa));
773 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
774 1.1 fvdl if (error) {
775 1.1 fvdl /*
776 1.1 fvdl * Bail out. Reverse all the mappings
777 1.1 fvdl * and unwire the pages.
778 1.1 fvdl */
779 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
780 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
781 1.1 fvdl
782 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
783 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
784 1.4 drochner mem->am_size);
785 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
786 1.4 drochner mem->am_nseg);
787 1.4 drochner free(mem->am_dmaseg, M_AGP);
788 1.46 xtraeme mutex_exit(&sc->as_mtx);
789 1.1 fvdl return error;
790 1.1 fvdl }
791 1.1 fvdl }
792 1.1 fvdl done += seg->ds_len;
793 1.1 fvdl }
794 1.1 fvdl
795 1.1 fvdl /*
796 1.32 wiz * Flush the CPU cache since we are providing a new mapping
797 1.1 fvdl * for these pages.
798 1.1 fvdl */
799 1.1 fvdl agp_flush_cache();
800 1.1 fvdl
801 1.1 fvdl /*
802 1.1 fvdl * Make sure the chipset gets the new mappings.
803 1.1 fvdl */
804 1.1 fvdl AGP_FLUSH_TLB(sc);
805 1.1 fvdl
806 1.1 fvdl mem->am_offset = offset;
807 1.1 fvdl mem->am_is_bound = 1;
808 1.1 fvdl
809 1.46 xtraeme mutex_exit(&sc->as_mtx);
810 1.1 fvdl
811 1.1 fvdl return 0;
812 1.1 fvdl }
813 1.1 fvdl
814 1.1 fvdl int
815 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
816 1.1 fvdl {
817 1.1 fvdl int i;
818 1.1 fvdl
819 1.46 xtraeme mutex_enter(&sc->as_mtx);
820 1.1 fvdl
821 1.1 fvdl if (!mem->am_is_bound) {
822 1.59 freza aprint_error_dev(sc->as_dev, "memory is not bound\n");
823 1.46 xtraeme mutex_exit(&sc->as_mtx);
824 1.1 fvdl return EINVAL;
825 1.1 fvdl }
826 1.1 fvdl
827 1.1 fvdl
828 1.1 fvdl /*
829 1.1 fvdl * Unbind the individual pages and flush the chipset's
830 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
831 1.1 fvdl */
832 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
833 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
834 1.34 perry
835 1.1 fvdl agp_flush_cache();
836 1.1 fvdl AGP_FLUSH_TLB(sc);
837 1.1 fvdl
838 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
839 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
840 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
841 1.1 fvdl
842 1.1 fvdl free(mem->am_dmaseg, M_AGP);
843 1.1 fvdl
844 1.1 fvdl mem->am_offset = 0;
845 1.1 fvdl mem->am_is_bound = 0;
846 1.1 fvdl
847 1.46 xtraeme mutex_exit(&sc->as_mtx);
848 1.1 fvdl
849 1.1 fvdl return 0;
850 1.1 fvdl }
851 1.1 fvdl
852 1.1 fvdl /* Helper functions for implementing user/kernel api */
853 1.1 fvdl
854 1.1 fvdl static int
855 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
856 1.1 fvdl {
857 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
858 1.1 fvdl return EBUSY;
859 1.1 fvdl sc->as_state = state;
860 1.1 fvdl
861 1.1 fvdl return 0;
862 1.1 fvdl }
863 1.1 fvdl
864 1.1 fvdl static int
865 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
866 1.1 fvdl {
867 1.1 fvdl
868 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
869 1.1 fvdl return 0;
870 1.1 fvdl
871 1.1 fvdl if (sc->as_state != state)
872 1.1 fvdl return EBUSY;
873 1.1 fvdl
874 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
875 1.1 fvdl return 0;
876 1.1 fvdl }
877 1.1 fvdl
878 1.1 fvdl static struct agp_memory *
879 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
880 1.1 fvdl {
881 1.1 fvdl struct agp_memory *mem;
882 1.1 fvdl
883 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
884 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
885 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
886 1.1 fvdl if (mem->am_id == id)
887 1.1 fvdl return mem;
888 1.1 fvdl }
889 1.1 fvdl return 0;
890 1.1 fvdl }
891 1.1 fvdl
892 1.1 fvdl /* Implementation of the userland ioctl api */
893 1.1 fvdl
894 1.1 fvdl static int
895 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
896 1.1 fvdl {
897 1.1 fvdl memset(info, 0, sizeof *info);
898 1.1 fvdl info->bridge_id = sc->as_id;
899 1.3 drochner if (sc->as_capoff != 0)
900 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
901 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
902 1.3 drochner else
903 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
904 1.1 fvdl info->aper_base = sc->as_apaddr;
905 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
906 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
907 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
908 1.1 fvdl
909 1.1 fvdl return 0;
910 1.1 fvdl }
911 1.1 fvdl
912 1.1 fvdl static int
913 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
914 1.1 fvdl {
915 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
916 1.1 fvdl }
917 1.1 fvdl
918 1.1 fvdl static int
919 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
920 1.1 fvdl {
921 1.1 fvdl struct agp_memory *mem;
922 1.1 fvdl
923 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
924 1.1 fvdl alloc->type,
925 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
926 1.1 fvdl if (mem) {
927 1.1 fvdl alloc->key = mem->am_id;
928 1.1 fvdl alloc->physical = mem->am_physical;
929 1.1 fvdl return 0;
930 1.1 fvdl } else {
931 1.1 fvdl return ENOMEM;
932 1.1 fvdl }
933 1.1 fvdl }
934 1.1 fvdl
935 1.1 fvdl static int
936 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
937 1.1 fvdl {
938 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
939 1.1 fvdl
940 1.1 fvdl if (mem) {
941 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
942 1.1 fvdl return 0;
943 1.1 fvdl } else {
944 1.1 fvdl return ENOENT;
945 1.1 fvdl }
946 1.1 fvdl }
947 1.1 fvdl
948 1.1 fvdl static int
949 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
950 1.1 fvdl {
951 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
952 1.1 fvdl
953 1.1 fvdl if (!mem)
954 1.1 fvdl return ENOENT;
955 1.1 fvdl
956 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
957 1.1 fvdl }
958 1.1 fvdl
959 1.1 fvdl static int
960 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
961 1.1 fvdl {
962 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
963 1.1 fvdl
964 1.1 fvdl if (!mem)
965 1.1 fvdl return ENOENT;
966 1.1 fvdl
967 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
968 1.1 fvdl }
969 1.1 fvdl
970 1.35 thorpej static int
971 1.59 freza agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
972 1.1 fvdl {
973 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
974 1.9 thorpej
975 1.9 thorpej if (sc == NULL)
976 1.9 thorpej return ENXIO;
977 1.1 fvdl
978 1.1 fvdl if (sc->as_chipc == NULL)
979 1.1 fvdl return ENXIO;
980 1.1 fvdl
981 1.1 fvdl if (!sc->as_isopen)
982 1.1 fvdl sc->as_isopen = 1;
983 1.1 fvdl else
984 1.1 fvdl return EBUSY;
985 1.1 fvdl
986 1.1 fvdl return 0;
987 1.1 fvdl }
988 1.1 fvdl
989 1.35 thorpej static int
990 1.59 freza agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
991 1.1 fvdl {
992 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
993 1.16 drochner struct agp_memory *mem;
994 1.1 fvdl
995 1.59 freza if (sc == NULL)
996 1.59 freza return ENODEV;
997 1.59 freza
998 1.1 fvdl /*
999 1.1 fvdl * Clear the GATT and force release on last close
1000 1.1 fvdl */
1001 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
1002 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
1003 1.16 drochner if (mem->am_is_bound) {
1004 1.16 drochner printf("agpclose: mem %d is bound\n",
1005 1.16 drochner mem->am_id);
1006 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
1007 1.16 drochner }
1008 1.16 drochner /*
1009 1.16 drochner * XXX it is not documented, but if the protocol allows
1010 1.16 drochner * allocate->acquire->bind, it would be possible that
1011 1.16 drochner * memory ranges are allocated by the kernel here,
1012 1.16 drochner * which we shouldn't free. We'd have to keep track of
1013 1.16 drochner * the memory range's owner.
1014 1.16 drochner * The kernel API is unsed yet, so we get away with
1015 1.16 drochner * freeing all.
1016 1.16 drochner */
1017 1.16 drochner AGP_FREE_MEMORY(sc, mem);
1018 1.16 drochner }
1019 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
1020 1.16 drochner }
1021 1.1 fvdl sc->as_isopen = 0;
1022 1.1 fvdl
1023 1.1 fvdl return 0;
1024 1.1 fvdl }
1025 1.1 fvdl
1026 1.35 thorpej static int
1027 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1028 1.1 fvdl {
1029 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1030 1.1 fvdl
1031 1.1 fvdl if (sc == NULL)
1032 1.1 fvdl return ENODEV;
1033 1.1 fvdl
1034 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1035 1.1 fvdl return EPERM;
1036 1.1 fvdl
1037 1.1 fvdl switch (cmd) {
1038 1.1 fvdl case AGPIOC_INFO:
1039 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
1040 1.1 fvdl
1041 1.1 fvdl case AGPIOC_ACQUIRE:
1042 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1043 1.1 fvdl
1044 1.1 fvdl case AGPIOC_RELEASE:
1045 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
1046 1.1 fvdl
1047 1.1 fvdl case AGPIOC_SETUP:
1048 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
1049 1.1 fvdl
1050 1.75 christos #ifdef __x86_64__
1051 1.75 christos {
1052 1.75 christos /*
1053 1.75 christos * Handle paddr_t change from 32 bit for non PAE kernels
1054 1.75 christos * to 64 bit.
1055 1.75 christos */
1056 1.75 christos #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1057 1.75 christos
1058 1.75 christos typedef struct _agp_oallocate {
1059 1.75 christos int key; /* tag of allocation */
1060 1.75 christos size_t pg_count; /* number of pages */
1061 1.75 christos uint32_t type; /* 0 == normal, other devspec */
1062 1.75 christos u_long physical; /* device specific (some devices
1063 1.75 christos * need a phys address of the
1064 1.75 christos * actual page behind the gatt
1065 1.75 christos * table) */
1066 1.75 christos } agp_oallocate;
1067 1.75 christos
1068 1.75 christos case AGPIOC_OALLOCATE: {
1069 1.75 christos int ret;
1070 1.75 christos agp_allocate aga;
1071 1.75 christos agp_oallocate *oaga = data;
1072 1.75 christos
1073 1.75 christos aga.type = oaga->type;
1074 1.75 christos aga.pg_count = oaga->pg_count;
1075 1.75 christos
1076 1.75 christos if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1077 1.75 christos oaga->key = aga.key;
1078 1.75 christos oaga->physical = (u_long)aga.physical;
1079 1.75 christos }
1080 1.75 christos
1081 1.75 christos return ret;
1082 1.75 christos }
1083 1.75 christos }
1084 1.75 christos #endif
1085 1.1 fvdl case AGPIOC_ALLOCATE:
1086 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
1087 1.1 fvdl
1088 1.1 fvdl case AGPIOC_DEALLOCATE:
1089 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
1090 1.1 fvdl
1091 1.1 fvdl case AGPIOC_BIND:
1092 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
1093 1.1 fvdl
1094 1.1 fvdl case AGPIOC_UNBIND:
1095 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
1096 1.1 fvdl
1097 1.1 fvdl }
1098 1.1 fvdl
1099 1.1 fvdl return EINVAL;
1100 1.1 fvdl }
1101 1.1 fvdl
1102 1.35 thorpej static paddr_t
1103 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
1104 1.1 fvdl {
1105 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1106 1.1 fvdl
1107 1.59 freza if (sc == NULL)
1108 1.59 freza return ENODEV;
1109 1.59 freza
1110 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
1111 1.1 fvdl return -1;
1112 1.6 thorpej
1113 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1114 1.6 thorpej BUS_SPACE_MAP_LINEAR));
1115 1.1 fvdl }
1116 1.1 fvdl
1117 1.35 thorpej const struct cdevsw agp_cdevsw = {
1118 1.81 dholland .d_open = agpopen,
1119 1.81 dholland .d_close = agpclose,
1120 1.81 dholland .d_read = noread,
1121 1.81 dholland .d_write = nowrite,
1122 1.81 dholland .d_ioctl = agpioctl,
1123 1.81 dholland .d_stop = nostop,
1124 1.81 dholland .d_tty = notty,
1125 1.81 dholland .d_poll = nopoll,
1126 1.81 dholland .d_mmap = agpmmap,
1127 1.81 dholland .d_kqfilter = nokqfilter,
1128 1.83 dholland .d_discard = nodiscard,
1129 1.81 dholland .d_flag = D_OTHER
1130 1.35 thorpej };
1131 1.35 thorpej
1132 1.1 fvdl /* Implementation of the kernel api */
1133 1.1 fvdl
1134 1.1 fvdl void *
1135 1.1 fvdl agp_find_device(int unit)
1136 1.1 fvdl {
1137 1.59 freza return device_lookup_private(&agp_cd, unit);
1138 1.1 fvdl }
1139 1.1 fvdl
1140 1.1 fvdl enum agp_acquire_state
1141 1.1 fvdl agp_state(void *devcookie)
1142 1.1 fvdl {
1143 1.1 fvdl struct agp_softc *sc = devcookie;
1144 1.59 freza
1145 1.1 fvdl return sc->as_state;
1146 1.1 fvdl }
1147 1.1 fvdl
1148 1.1 fvdl void
1149 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
1150 1.1 fvdl {
1151 1.1 fvdl struct agp_softc *sc = devcookie;
1152 1.1 fvdl
1153 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1154 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
1155 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
1156 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1157 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
1158 1.1 fvdl info->ai_memory_used = sc->as_allocated;
1159 1.85 riastrad info->ai_devid = sc->as_id;
1160 1.1 fvdl }
1161 1.1 fvdl
1162 1.1 fvdl int
1163 1.1 fvdl agp_acquire(void *dev)
1164 1.1 fvdl {
1165 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1166 1.1 fvdl }
1167 1.1 fvdl
1168 1.1 fvdl int
1169 1.1 fvdl agp_release(void *dev)
1170 1.1 fvdl {
1171 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1172 1.1 fvdl }
1173 1.1 fvdl
1174 1.1 fvdl int
1175 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
1176 1.1 fvdl {
1177 1.1 fvdl struct agp_softc *sc = dev;
1178 1.1 fvdl
1179 1.1 fvdl return AGP_ENABLE(sc, mode);
1180 1.1 fvdl }
1181 1.1 fvdl
1182 1.59 freza void *
1183 1.59 freza agp_alloc_memory(void *dev, int type, vsize_t bytes)
1184 1.1 fvdl {
1185 1.1 fvdl struct agp_softc *sc = dev;
1186 1.1 fvdl
1187 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1188 1.1 fvdl }
1189 1.1 fvdl
1190 1.59 freza void
1191 1.59 freza agp_free_memory(void *dev, void *handle)
1192 1.1 fvdl {
1193 1.1 fvdl struct agp_softc *sc = dev;
1194 1.59 freza struct agp_memory *mem = handle;
1195 1.59 freza
1196 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
1197 1.1 fvdl }
1198 1.1 fvdl
1199 1.59 freza int
1200 1.59 freza agp_bind_memory(void *dev, void *handle, off_t offset)
1201 1.1 fvdl {
1202 1.1 fvdl struct agp_softc *sc = dev;
1203 1.59 freza struct agp_memory *mem = handle;
1204 1.1 fvdl
1205 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
1206 1.1 fvdl }
1207 1.1 fvdl
1208 1.59 freza int
1209 1.59 freza agp_unbind_memory(void *dev, void *handle)
1210 1.1 fvdl {
1211 1.1 fvdl struct agp_softc *sc = dev;
1212 1.59 freza struct agp_memory *mem = handle;
1213 1.1 fvdl
1214 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
1215 1.1 fvdl }
1216 1.1 fvdl
1217 1.59 freza void
1218 1.59 freza agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1219 1.1 fvdl {
1220 1.59 freza struct agp_memory *mem = handle;
1221 1.1 fvdl
1222 1.1 fvdl mi->ami_size = mem->am_size;
1223 1.1 fvdl mi->ami_physical = mem->am_physical;
1224 1.1 fvdl mi->ami_offset = mem->am_offset;
1225 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1226 1.1 fvdl }
1227 1.1 fvdl
1228 1.1 fvdl int
1229 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1230 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1231 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1232 1.1 fvdl
1233 1.1 fvdl {
1234 1.1 fvdl int error, level = 0;
1235 1.1 fvdl
1236 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1237 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1238 1.1 fvdl goto out;
1239 1.1 fvdl level++;
1240 1.1 fvdl
1241 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1242 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1243 1.1 fvdl goto out;
1244 1.1 fvdl level++;
1245 1.1 fvdl
1246 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1247 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1248 1.1 fvdl goto out;
1249 1.1 fvdl level++;
1250 1.1 fvdl
1251 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1252 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1253 1.1 fvdl goto out;
1254 1.1 fvdl
1255 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1256 1.1 fvdl
1257 1.1 fvdl return 0;
1258 1.1 fvdl out:
1259 1.1 fvdl switch (level) {
1260 1.1 fvdl case 3:
1261 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1262 1.1 fvdl /* FALLTHROUGH */
1263 1.1 fvdl case 2:
1264 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1265 1.1 fvdl /* FALLTHROUGH */
1266 1.1 fvdl case 1:
1267 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1268 1.1 fvdl break;
1269 1.1 fvdl default:
1270 1.1 fvdl break;
1271 1.1 fvdl }
1272 1.1 fvdl
1273 1.1 fvdl return error;
1274 1.1 fvdl }
1275 1.1 fvdl
1276 1.1 fvdl void
1277 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1278 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1279 1.1 fvdl {
1280 1.1 fvdl bus_dmamap_unload(tag, map);
1281 1.1 fvdl bus_dmamap_destroy(tag, map);
1282 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1283 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1284 1.1 fvdl }
1285 1.54 jmcneill
1286 1.54 jmcneill static bool
1287 1.68 dyoung agp_resume(device_t dv, const pmf_qual_t *qual)
1288 1.54 jmcneill {
1289 1.54 jmcneill agp_flush_cache();
1290 1.54 jmcneill
1291 1.54 jmcneill return true;
1292 1.54 jmcneill }
1293