agp.c revision 1.88 1 1.88 andvar /* $NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.12 lukem
67 1.12 lukem #include <sys/cdefs.h>
68 1.88 andvar __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $");
69 1.1 fvdl
70 1.1 fvdl #include <sys/param.h>
71 1.1 fvdl #include <sys/systm.h>
72 1.1 fvdl #include <sys/malloc.h>
73 1.1 fvdl #include <sys/kernel.h>
74 1.1 fvdl #include <sys/device.h>
75 1.1 fvdl #include <sys/conf.h>
76 1.1 fvdl #include <sys/ioctl.h>
77 1.1 fvdl #include <sys/fcntl.h>
78 1.1 fvdl #include <sys/agpio.h>
79 1.1 fvdl #include <sys/proc.h>
80 1.46 xtraeme #include <sys/mutex.h>
81 1.1 fvdl
82 1.1 fvdl #include <dev/pci/pcireg.h>
83 1.1 fvdl #include <dev/pci/pcivar.h>
84 1.1 fvdl #include <dev/pci/agpvar.h>
85 1.1 fvdl #include <dev/pci/agpreg.h>
86 1.1 fvdl #include <dev/pci/pcidevs.h>
87 1.1 fvdl
88 1.49 ad #include <sys/bus.h>
89 1.25 thorpej
90 1.25 thorpej MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 1.1 fvdl
92 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
93 1.1 fvdl /* XXXfvdl get rid of this one. */
94 1.1 fvdl
95 1.1 fvdl extern struct cfdriver agp_cd;
96 1.17 gehenna
97 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
98 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
99 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
101 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
102 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 1.79 dyoung static int agp_generic_enable_v2(struct agp_softc *,
104 1.79 dyoung const struct pci_attach_args *, int, u_int32_t);
105 1.79 dyoung static int agp_generic_enable_v3(struct agp_softc *,
106 1.79 dyoung const struct pci_attach_args *, int, u_int32_t);
107 1.79 dyoung static int agpdev_match(const struct pci_attach_args *);
108 1.68 dyoung static bool agp_resume(device_t, const pmf_qual_t *);
109 1.1 fvdl
110 1.7 thorpej #include "agp_ali.h"
111 1.7 thorpej #include "agp_amd.h"
112 1.7 thorpej #include "agp_i810.h"
113 1.7 thorpej #include "agp_intel.h"
114 1.7 thorpej #include "agp_sis.h"
115 1.7 thorpej #include "agp_via.h"
116 1.47 kiyohara #include "agp_amd64.h"
117 1.7 thorpej
118 1.5 thorpej const struct agp_product {
119 1.5 thorpej uint32_t ap_vendor;
120 1.5 thorpej uint32_t ap_product;
121 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
122 1.59 freza int (*ap_attach)(device_t, device_t, void *);
123 1.5 thorpej } agp_products[] = {
124 1.57 njoly #if NAGP_AMD64 > 0
125 1.57 njoly { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 1.57 njoly agp_amd64_match, agp_amd64_attach },
127 1.57 njoly #endif
128 1.57 njoly
129 1.7 thorpej #if NAGP_ALI > 0
130 1.5 thorpej { PCI_VENDOR_ALI, -1,
131 1.5 thorpej NULL, agp_ali_attach },
132 1.7 thorpej #endif
133 1.5 thorpej
134 1.51 joerg #if NAGP_AMD64 > 0
135 1.51 joerg { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 1.51 joerg agp_amd64_match, agp_amd64_attach },
137 1.51 joerg #endif
138 1.51 joerg
139 1.7 thorpej #if NAGP_AMD > 0
140 1.5 thorpej { PCI_VENDOR_AMD, -1,
141 1.5 thorpej agp_amd_match, agp_amd_attach },
142 1.7 thorpej #endif
143 1.5 thorpej
144 1.7 thorpej #if NAGP_I810 > 0
145 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 1.5 thorpej NULL, agp_i810_attach },
147 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 1.5 thorpej NULL, agp_i810_attach },
149 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 1.5 thorpej NULL, agp_i810_attach },
151 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 1.5 thorpej NULL, agp_i810_attach },
153 1.11 fvdl { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 1.13 augustss NULL, agp_i810_attach },
155 1.13 augustss { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 1.11 fvdl NULL, agp_i810_attach },
157 1.23 scw { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 1.29 hannken NULL, agp_i810_attach },
159 1.29 hannken { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 1.31 tron NULL, agp_i810_attach },
161 1.31 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 1.23 scw NULL, agp_i810_attach },
163 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 1.37 christos NULL, agp_i810_attach },
165 1.37 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 1.37 christos NULL, agp_i810_attach },
167 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 1.39 simonb NULL, agp_i810_attach },
169 1.39 simonb { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 1.39 simonb NULL, agp_i810_attach },
171 1.61 tnn { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 1.61 tnn NULL, agp_i810_attach },
173 1.48 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 1.48 markd NULL, agp_i810_attach },
175 1.51 joerg { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 1.51 joerg NULL, agp_i810_attach },
177 1.50 jnemeth { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 1.50 jnemeth NULL, agp_i810_attach },
179 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 1.52 markd NULL, agp_i810_attach },
181 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 1.52 markd NULL, agp_i810_attach },
183 1.52 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 1.52 markd NULL, agp_i810_attach },
185 1.63 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 1.63 christos NULL, agp_i810_attach },
187 1.60 matthias { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 1.60 matthias NULL, agp_i810_attach },
189 1.64 christos { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 1.64 christos NULL, agp_i810_attach },
191 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 1.65 markd NULL, agp_i810_attach },
193 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 1.65 markd NULL, agp_i810_attach },
195 1.65 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 1.65 markd NULL, agp_i810_attach },
197 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 1.69 riz NULL, agp_i810_attach },
199 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 1.69 riz NULL, agp_i810_attach },
201 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 1.69 riz NULL, agp_i810_attach },
203 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 1.69 riz NULL, agp_i810_attach },
205 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 1.69 riz NULL, agp_i810_attach },
207 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 1.69 riz NULL, agp_i810_attach },
209 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 1.69 riz NULL, agp_i810_attach },
211 1.69 riz { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 1.69 riz NULL, agp_i810_attach },
213 1.78 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 1.78 matt NULL, agp_i810_attach },
215 1.78 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 1.78 matt NULL, agp_i810_attach },
217 1.7 thorpej #endif
218 1.5 thorpej
219 1.7 thorpej #if NAGP_INTEL > 0
220 1.5 thorpej { PCI_VENDOR_INTEL, -1,
221 1.5 thorpej NULL, agp_intel_attach },
222 1.7 thorpej #endif
223 1.5 thorpej
224 1.51 joerg #if NAGP_AMD64 > 0
225 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 1.51 joerg agp_amd64_match, agp_amd64_attach },
227 1.51 joerg { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 1.51 joerg agp_amd64_match, agp_amd64_attach },
229 1.7 thorpej #endif
230 1.5 thorpej
231 1.47 kiyohara #if NAGP_AMD64 > 0
232 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
234 1.47 kiyohara { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
236 1.51 joerg #endif
237 1.51 joerg
238 1.51 joerg #if NAGP_SIS > 0
239 1.51 joerg { PCI_VENDOR_SIS, -1,
240 1.51 joerg NULL, agp_sis_attach },
241 1.51 joerg #endif
242 1.51 joerg
243 1.51 joerg #if NAGP_AMD64 > 0
244 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
246 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
248 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
250 1.47 kiyohara { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 1.47 kiyohara agp_amd64_match, agp_amd64_attach },
252 1.47 kiyohara #endif
253 1.47 kiyohara
254 1.51 joerg #if NAGP_VIA > 0
255 1.51 joerg { PCI_VENDOR_VIATECH, -1,
256 1.51 joerg NULL, agp_via_attach },
257 1.51 joerg #endif
258 1.51 joerg
259 1.5 thorpej { 0, 0,
260 1.5 thorpej NULL, NULL },
261 1.5 thorpej };
262 1.5 thorpej
263 1.5 thorpej static const struct agp_product *
264 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
265 1.5 thorpej {
266 1.5 thorpej const struct agp_product *ap;
267 1.5 thorpej
268 1.5 thorpej /* First find the vendor. */
269 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 1.5 thorpej break;
272 1.5 thorpej }
273 1.5 thorpej
274 1.5 thorpej if (ap->ap_attach == NULL)
275 1.5 thorpej return (NULL);
276 1.5 thorpej
277 1.5 thorpej /* Now find the product within the vendor's domain. */
278 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
279 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 1.5 thorpej /* Ran out of this vendor's section of the table. */
281 1.5 thorpej return (NULL);
282 1.5 thorpej }
283 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 1.5 thorpej /* Exact match. */
285 1.5 thorpej break;
286 1.5 thorpej }
287 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
288 1.5 thorpej /* Wildcard match. */
289 1.5 thorpej break;
290 1.5 thorpej }
291 1.5 thorpej }
292 1.5 thorpej
293 1.5 thorpej if (ap->ap_attach == NULL)
294 1.5 thorpej return (NULL);
295 1.5 thorpej
296 1.5 thorpej /* Now let the product-specific driver filter the match. */
297 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 1.5 thorpej return (NULL);
299 1.5 thorpej
300 1.5 thorpej return (ap);
301 1.5 thorpej }
302 1.5 thorpej
303 1.35 thorpej static int
304 1.59 freza agpmatch(device_t parent, cfdata_t match, void *aux)
305 1.1 fvdl {
306 1.5 thorpej struct agpbus_attach_args *apa = aux;
307 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
308 1.1 fvdl
309 1.5 thorpej if (agp_lookup(pa) == NULL)
310 1.5 thorpej return (0);
311 1.1 fvdl
312 1.5 thorpej return (1);
313 1.1 fvdl }
314 1.1 fvdl
315 1.86 msaitoh static const u_int agp_max[][2] = {
316 1.1 fvdl {0, 0},
317 1.1 fvdl {32, 4},
318 1.1 fvdl {64, 28},
319 1.1 fvdl {128, 96},
320 1.1 fvdl {256, 204},
321 1.1 fvdl {512, 440},
322 1.1 fvdl {1024, 942},
323 1.1 fvdl {2048, 1920},
324 1.1 fvdl {4096, 3932}
325 1.1 fvdl };
326 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327 1.1 fvdl
328 1.35 thorpej static void
329 1.59 freza agpattach(device_t parent, device_t self, void *aux)
330 1.1 fvdl {
331 1.5 thorpej struct agpbus_attach_args *apa = aux;
332 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
333 1.59 freza struct agp_softc *sc = device_private(self);
334 1.5 thorpej const struct agp_product *ap;
335 1.86 msaitoh int ret;
336 1.86 msaitoh u_int memsize, i;
337 1.1 fvdl
338 1.5 thorpej ap = agp_lookup(pa);
339 1.59 freza KASSERT(ap != NULL);
340 1.1 fvdl
341 1.24 thorpej aprint_naive(": AGP controller\n");
342 1.24 thorpej
343 1.59 freza sc->as_dev = self;
344 1.1 fvdl sc->as_dmat = pa->pa_dmat;
345 1.1 fvdl sc->as_pc = pa->pa_pc;
346 1.1 fvdl sc->as_tag = pa->pa_tag;
347 1.1 fvdl sc->as_id = pa->pa_id;
348 1.1 fvdl
349 1.1 fvdl /*
350 1.1 fvdl * Work out an upper bound for agp memory allocation. This
351 1.59 freza * uses a heuristic table from the Linux driver.
352 1.1 fvdl */
353 1.67 jym memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
354 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
355 1.1 fvdl if (memsize <= agp_max[i][0])
356 1.1 fvdl break;
357 1.1 fvdl }
358 1.1 fvdl if (i == agp_max_size)
359 1.1 fvdl i = agp_max_size - 1;
360 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
361 1.1 fvdl
362 1.1 fvdl /*
363 1.46 xtraeme * The mutex is used to prevent re-entry to
364 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
365 1.1 fvdl */
366 1.53 ad mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
367 1.1 fvdl
368 1.1 fvdl TAILQ_INIT(&sc->as_memory);
369 1.1 fvdl
370 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
371 1.1 fvdl if (ret == 0)
372 1.24 thorpej aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
373 1.1 fvdl (unsigned long)sc->as_apaddr,
374 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
375 1.1 fvdl else
376 1.1 fvdl sc->as_chipc = NULL;
377 1.54 jmcneill
378 1.80 plunky if (!pmf_device_register(self, NULL, agp_resume))
379 1.80 plunky aprint_error_dev(self, "couldn't establish power handler\n");
380 1.1 fvdl }
381 1.30 tron
382 1.59 freza CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
383 1.35 thorpej agpmatch, agpattach, NULL, NULL);
384 1.35 thorpej
385 1.1 fvdl int
386 1.37 christos agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
387 1.1 fvdl {
388 1.1 fvdl /*
389 1.18 nathanw * Find the aperture. Don't map it (yet), this would
390 1.11 fvdl * eat KVA.
391 1.1 fvdl */
392 1.37 christos if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
393 1.11 fvdl PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
394 1.11 fvdl &sc->as_apflags) != 0)
395 1.1 fvdl return ENXIO;
396 1.8 drochner
397 1.11 fvdl sc->as_apt = pa->pa_memt;
398 1.11 fvdl
399 1.1 fvdl return 0;
400 1.1 fvdl }
401 1.1 fvdl
402 1.1 fvdl struct agp_gatt *
403 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
404 1.1 fvdl {
405 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
406 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
407 1.1 fvdl struct agp_gatt *gatt;
408 1.45 christos void *virtual;
409 1.1 fvdl int dummyseg;
410 1.1 fvdl
411 1.87 chs gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_WAITOK);
412 1.1 fvdl gatt->ag_entries = entries;
413 1.1 fvdl
414 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
415 1.38 tron 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
416 1.62 christos &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
417 1.62 christos free(gatt, M_AGP);
418 1.1 fvdl return NULL;
419 1.62 christos }
420 1.38 tron gatt->ag_virtual = (uint32_t *)virtual;
421 1.1 fvdl
422 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
423 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
424 1.1 fvdl agp_flush_cache();
425 1.1 fvdl
426 1.1 fvdl return gatt;
427 1.1 fvdl }
428 1.1 fvdl
429 1.1 fvdl void
430 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
431 1.1 fvdl {
432 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
433 1.45 christos (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
434 1.1 fvdl free(gatt, M_AGP);
435 1.1 fvdl }
436 1.1 fvdl
437 1.1 fvdl
438 1.1 fvdl int
439 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
440 1.1 fvdl {
441 1.46 xtraeme mutex_destroy(&sc->as_mtx);
442 1.1 fvdl agp_flush_cache();
443 1.1 fvdl return 0;
444 1.1 fvdl }
445 1.1 fvdl
446 1.1 fvdl static int
447 1.79 dyoung agpdev_match(const struct pci_attach_args *pa)
448 1.1 fvdl {
449 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
450 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
451 1.26 tron if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
452 1.26 tron NULL, NULL))
453 1.1 fvdl return 1;
454 1.1 fvdl
455 1.1 fvdl return 0;
456 1.1 fvdl }
457 1.1 fvdl
458 1.1 fvdl int
459 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
460 1.1 fvdl {
461 1.1 fvdl struct pci_attach_args pa;
462 1.1 fvdl pcireg_t tstatus, mstatus;
463 1.77 jmcneill int capoff;
464 1.1 fvdl
465 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
466 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
467 1.1 fvdl &capoff, NULL) == 0) {
468 1.59 freza aprint_error_dev(sc->as_dev, "can't find display\n");
469 1.1 fvdl return ENXIO;
470 1.1 fvdl }
471 1.1 fvdl
472 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
473 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
474 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
475 1.84 msaitoh capoff + PCI_AGP_STATUS);
476 1.1 fvdl
477 1.77 jmcneill if (AGP_MODE_GET_MODE_3(mode) &&
478 1.77 jmcneill AGP_MODE_GET_MODE_3(tstatus) &&
479 1.77 jmcneill AGP_MODE_GET_MODE_3(mstatus))
480 1.77 jmcneill return agp_generic_enable_v3(sc, &pa, capoff, mode);
481 1.77 jmcneill else
482 1.77 jmcneill return agp_generic_enable_v2(sc, &pa, capoff, mode);
483 1.77 jmcneill }
484 1.77 jmcneill
485 1.77 jmcneill static int
486 1.79 dyoung agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
487 1.77 jmcneill int capoff, u_int32_t mode)
488 1.77 jmcneill {
489 1.77 jmcneill pcireg_t tstatus, mstatus;
490 1.77 jmcneill pcireg_t command;
491 1.77 jmcneill int rq, sba, fw, rate;
492 1.77 jmcneill
493 1.77 jmcneill tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
494 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
495 1.77 jmcneill mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
496 1.84 msaitoh capoff + PCI_AGP_STATUS);
497 1.77 jmcneill
498 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
499 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
500 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
501 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
502 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
503 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
504 1.1 fvdl
505 1.1 fvdl /* Set SBA if all three can deal with SBA */
506 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
507 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
508 1.1 fvdl & AGP_MODE_GET_SBA(mode));
509 1.1 fvdl
510 1.1 fvdl /* Similar for FW */
511 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
512 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
513 1.1 fvdl & AGP_MODE_GET_FW(mode));
514 1.1 fvdl
515 1.1 fvdl /* Figure out the max rate */
516 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
517 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
518 1.1 fvdl & AGP_MODE_GET_RATE(mode));
519 1.77 jmcneill if (rate & AGP_MODE_V2_RATE_4x)
520 1.77 jmcneill rate = AGP_MODE_V2_RATE_4x;
521 1.77 jmcneill else if (rate & AGP_MODE_V2_RATE_2x)
522 1.77 jmcneill rate = AGP_MODE_V2_RATE_2x;
523 1.77 jmcneill else
524 1.77 jmcneill rate = AGP_MODE_V2_RATE_1x;
525 1.77 jmcneill
526 1.77 jmcneill /* Construct the new mode word and tell the hardware */
527 1.77 jmcneill command = AGP_MODE_SET_RQ(0, rq);
528 1.77 jmcneill command = AGP_MODE_SET_SBA(command, sba);
529 1.77 jmcneill command = AGP_MODE_SET_FW(command, fw);
530 1.77 jmcneill command = AGP_MODE_SET_RATE(command, rate);
531 1.77 jmcneill command = AGP_MODE_SET_AGP(command, 1);
532 1.77 jmcneill pci_conf_write(sc->as_pc, sc->as_tag,
533 1.84 msaitoh sc->as_capoff + PCI_AGP_COMMAND, command);
534 1.84 msaitoh pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
535 1.84 msaitoh command);
536 1.77 jmcneill
537 1.77 jmcneill return 0;
538 1.77 jmcneill }
539 1.77 jmcneill
540 1.77 jmcneill static int
541 1.79 dyoung agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
542 1.77 jmcneill int capoff, u_int32_t mode)
543 1.77 jmcneill {
544 1.77 jmcneill pcireg_t tstatus, mstatus;
545 1.77 jmcneill pcireg_t command;
546 1.77 jmcneill int rq, sba, fw, rate, arqsz, cal;
547 1.77 jmcneill
548 1.77 jmcneill tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
549 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
550 1.77 jmcneill mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
551 1.84 msaitoh capoff + PCI_AGP_STATUS);
552 1.77 jmcneill
553 1.77 jmcneill /* Set RQ to the min of mode, tstatus and mstatus */
554 1.77 jmcneill rq = AGP_MODE_GET_RQ(mode);
555 1.77 jmcneill if (AGP_MODE_GET_RQ(tstatus) < rq)
556 1.77 jmcneill rq = AGP_MODE_GET_RQ(tstatus);
557 1.77 jmcneill if (AGP_MODE_GET_RQ(mstatus) < rq)
558 1.77 jmcneill rq = AGP_MODE_GET_RQ(mstatus);
559 1.77 jmcneill
560 1.77 jmcneill /*
561 1.77 jmcneill * ARQSZ - Set the value to the maximum one.
562 1.77 jmcneill * Don't allow the mode register to override values.
563 1.77 jmcneill */
564 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(mode);
565 1.77 jmcneill if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
566 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(tstatus);
567 1.77 jmcneill if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
568 1.77 jmcneill arqsz = AGP_MODE_GET_ARQSZ(mstatus);
569 1.77 jmcneill
570 1.77 jmcneill /* Calibration cycle - don't allow override by mode register */
571 1.77 jmcneill cal = AGP_MODE_GET_CAL(tstatus);
572 1.77 jmcneill if (AGP_MODE_GET_CAL(mstatus) < cal)
573 1.77 jmcneill cal = AGP_MODE_GET_CAL(mstatus);
574 1.77 jmcneill
575 1.77 jmcneill /* SBA must be supported for AGP v3. */
576 1.77 jmcneill sba = 1;
577 1.77 jmcneill
578 1.77 jmcneill /* Set FW if all three support it. */
579 1.77 jmcneill fw = (AGP_MODE_GET_FW(tstatus)
580 1.77 jmcneill & AGP_MODE_GET_FW(mstatus)
581 1.77 jmcneill & AGP_MODE_GET_FW(mode));
582 1.77 jmcneill
583 1.77 jmcneill /* Figure out the max rate */
584 1.77 jmcneill rate = (AGP_MODE_GET_RATE(tstatus)
585 1.77 jmcneill & AGP_MODE_GET_RATE(mstatus)
586 1.77 jmcneill & AGP_MODE_GET_RATE(mode));
587 1.77 jmcneill if (rate & AGP_MODE_V3_RATE_8x)
588 1.77 jmcneill rate = AGP_MODE_V3_RATE_8x;
589 1.1 fvdl else
590 1.77 jmcneill rate = AGP_MODE_V3_RATE_4x;
591 1.1 fvdl
592 1.1 fvdl /* Construct the new mode word and tell the hardware */
593 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
594 1.77 jmcneill command = AGP_MODE_SET_ARQSZ(command, arqsz);
595 1.77 jmcneill command = AGP_MODE_SET_CAL(command, cal);
596 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
597 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
598 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
599 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
600 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
601 1.84 msaitoh sc->as_capoff + PCI_AGP_COMMAND, command);
602 1.84 msaitoh pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
603 1.84 msaitoh command);
604 1.1 fvdl
605 1.1 fvdl return 0;
606 1.1 fvdl }
607 1.1 fvdl
608 1.1 fvdl struct agp_memory *
609 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
610 1.1 fvdl {
611 1.1 fvdl struct agp_memory *mem;
612 1.1 fvdl
613 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
614 1.1 fvdl return 0;
615 1.1 fvdl
616 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
617 1.1 fvdl return 0;
618 1.1 fvdl
619 1.1 fvdl if (type != 0) {
620 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
621 1.1 fvdl type);
622 1.1 fvdl return 0;
623 1.1 fvdl }
624 1.1 fvdl
625 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
626 1.1 fvdl if (mem == NULL)
627 1.1 fvdl return NULL;
628 1.1 fvdl
629 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
630 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
631 1.1 fvdl free(mem, M_AGP);
632 1.1 fvdl return NULL;
633 1.1 fvdl }
634 1.1 fvdl
635 1.1 fvdl mem->am_id = sc->as_nextid++;
636 1.1 fvdl mem->am_size = size;
637 1.1 fvdl mem->am_type = 0;
638 1.1 fvdl mem->am_physical = 0;
639 1.1 fvdl mem->am_offset = 0;
640 1.1 fvdl mem->am_is_bound = 0;
641 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
642 1.1 fvdl sc->as_allocated += size;
643 1.1 fvdl
644 1.1 fvdl return mem;
645 1.1 fvdl }
646 1.1 fvdl
647 1.1 fvdl int
648 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
649 1.1 fvdl {
650 1.1 fvdl if (mem->am_is_bound)
651 1.1 fvdl return EBUSY;
652 1.1 fvdl
653 1.1 fvdl sc->as_allocated -= mem->am_size;
654 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
655 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
656 1.1 fvdl free(mem, M_AGP);
657 1.1 fvdl return 0;
658 1.1 fvdl }
659 1.1 fvdl
660 1.1 fvdl int
661 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
662 1.82 riastrad off_t offset)
663 1.82 riastrad {
664 1.82 riastrad
665 1.82 riastrad return agp_generic_bind_memory_bounded(sc, mem, offset,
666 1.82 riastrad 0, AGP_GET_APERTURE(sc));
667 1.82 riastrad }
668 1.82 riastrad
669 1.82 riastrad int
670 1.82 riastrad agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
671 1.82 riastrad off_t offset, off_t start, off_t end)
672 1.1 fvdl {
673 1.1 fvdl off_t i, k;
674 1.1 fvdl bus_size_t done, j;
675 1.1 fvdl int error;
676 1.1 fvdl bus_dma_segment_t *segs, *seg;
677 1.1 fvdl bus_addr_t pa;
678 1.1 fvdl int contigpages, nseg;
679 1.1 fvdl
680 1.46 xtraeme mutex_enter(&sc->as_mtx);
681 1.1 fvdl
682 1.1 fvdl if (mem->am_is_bound) {
683 1.59 freza aprint_error_dev(sc->as_dev, "memory already bound\n");
684 1.46 xtraeme mutex_exit(&sc->as_mtx);
685 1.1 fvdl return EINVAL;
686 1.1 fvdl }
687 1.34 perry
688 1.82 riastrad if (offset < start
689 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
690 1.82 riastrad || offset > end
691 1.82 riastrad || mem->am_size > (end - offset)) {
692 1.59 freza aprint_error_dev(sc->as_dev,
693 1.59 freza "binding memory at bad offset %#lx\n",
694 1.56 cegger (unsigned long) offset);
695 1.46 xtraeme mutex_exit(&sc->as_mtx);
696 1.1 fvdl return EINVAL;
697 1.1 fvdl }
698 1.1 fvdl
699 1.1 fvdl /*
700 1.1 fvdl * XXXfvdl
701 1.88 andvar * The memory here needs to be directly accessible from the
702 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
703 1.1 fvdl * However, it need not be contiguous, since individual pages
704 1.1 fvdl * are translated using the GATT.
705 1.1 fvdl *
706 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
707 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
708 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
709 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
710 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
711 1.1 fvdl * a bus_dma_segment per page would be overkill.
712 1.1 fvdl */
713 1.1 fvdl
714 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
715 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
716 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
717 1.16 drochner if (segs == NULL) {
718 1.46 xtraeme mutex_exit(&sc->as_mtx);
719 1.10 thorpej return ENOMEM;
720 1.16 drochner }
721 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
722 1.4 drochner segs, nseg, &mem->am_nseg,
723 1.15 drochner contigpages > 1 ?
724 1.15 drochner BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
725 1.4 drochner free(segs, M_AGP);
726 1.1 fvdl continue;
727 1.4 drochner }
728 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
729 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
730 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
731 1.4 drochner free(segs, M_AGP);
732 1.1 fvdl continue;
733 1.1 fvdl }
734 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
735 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
736 1.34 perry bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
737 1.1 fvdl mem->am_size);
738 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
739 1.4 drochner free(segs, M_AGP);
740 1.1 fvdl continue;
741 1.1 fvdl }
742 1.1 fvdl mem->am_dmaseg = segs;
743 1.1 fvdl break;
744 1.1 fvdl }
745 1.1 fvdl
746 1.1 fvdl if (contigpages == 0) {
747 1.46 xtraeme mutex_exit(&sc->as_mtx);
748 1.1 fvdl return ENOMEM;
749 1.1 fvdl }
750 1.1 fvdl
751 1.1 fvdl
752 1.1 fvdl /*
753 1.1 fvdl * Bind the individual pages and flush the chipset's
754 1.1 fvdl * TLB.
755 1.1 fvdl */
756 1.1 fvdl done = 0;
757 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
758 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
759 1.1 fvdl /*
760 1.1 fvdl * Install entries in the GATT, making sure that if
761 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
762 1.34 perry * aligned to PAGE_SIZE, we don't modify too many GATT
763 1.1 fvdl * entries.
764 1.1 fvdl */
765 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
766 1.1 fvdl j += AGP_PAGE_SIZE) {
767 1.1 fvdl pa = seg->ds_addr + j;
768 1.40 christos AGP_DPF(("binding offset %#lx to pa %#lx\n",
769 1.3 drochner (unsigned long)(offset + done + j),
770 1.40 christos (unsigned long)pa));
771 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
772 1.1 fvdl if (error) {
773 1.1 fvdl /*
774 1.1 fvdl * Bail out. Reverse all the mappings
775 1.1 fvdl * and unwire the pages.
776 1.1 fvdl */
777 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
778 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
779 1.1 fvdl
780 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
781 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
782 1.4 drochner mem->am_size);
783 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
784 1.4 drochner mem->am_nseg);
785 1.4 drochner free(mem->am_dmaseg, M_AGP);
786 1.46 xtraeme mutex_exit(&sc->as_mtx);
787 1.1 fvdl return error;
788 1.1 fvdl }
789 1.1 fvdl }
790 1.1 fvdl done += seg->ds_len;
791 1.1 fvdl }
792 1.1 fvdl
793 1.1 fvdl /*
794 1.32 wiz * Flush the CPU cache since we are providing a new mapping
795 1.1 fvdl * for these pages.
796 1.1 fvdl */
797 1.1 fvdl agp_flush_cache();
798 1.1 fvdl
799 1.1 fvdl /*
800 1.1 fvdl * Make sure the chipset gets the new mappings.
801 1.1 fvdl */
802 1.1 fvdl AGP_FLUSH_TLB(sc);
803 1.1 fvdl
804 1.1 fvdl mem->am_offset = offset;
805 1.1 fvdl mem->am_is_bound = 1;
806 1.1 fvdl
807 1.46 xtraeme mutex_exit(&sc->as_mtx);
808 1.1 fvdl
809 1.1 fvdl return 0;
810 1.1 fvdl }
811 1.1 fvdl
812 1.1 fvdl int
813 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
814 1.1 fvdl {
815 1.1 fvdl int i;
816 1.1 fvdl
817 1.46 xtraeme mutex_enter(&sc->as_mtx);
818 1.1 fvdl
819 1.1 fvdl if (!mem->am_is_bound) {
820 1.59 freza aprint_error_dev(sc->as_dev, "memory is not bound\n");
821 1.46 xtraeme mutex_exit(&sc->as_mtx);
822 1.1 fvdl return EINVAL;
823 1.1 fvdl }
824 1.1 fvdl
825 1.1 fvdl
826 1.1 fvdl /*
827 1.1 fvdl * Unbind the individual pages and flush the chipset's
828 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
829 1.1 fvdl */
830 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
831 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
832 1.34 perry
833 1.1 fvdl agp_flush_cache();
834 1.1 fvdl AGP_FLUSH_TLB(sc);
835 1.1 fvdl
836 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
837 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
838 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
839 1.1 fvdl
840 1.1 fvdl free(mem->am_dmaseg, M_AGP);
841 1.1 fvdl
842 1.1 fvdl mem->am_offset = 0;
843 1.1 fvdl mem->am_is_bound = 0;
844 1.1 fvdl
845 1.46 xtraeme mutex_exit(&sc->as_mtx);
846 1.1 fvdl
847 1.1 fvdl return 0;
848 1.1 fvdl }
849 1.1 fvdl
850 1.1 fvdl /* Helper functions for implementing user/kernel api */
851 1.1 fvdl
852 1.1 fvdl static int
853 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
854 1.1 fvdl {
855 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
856 1.1 fvdl return EBUSY;
857 1.1 fvdl sc->as_state = state;
858 1.1 fvdl
859 1.1 fvdl return 0;
860 1.1 fvdl }
861 1.1 fvdl
862 1.1 fvdl static int
863 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
864 1.1 fvdl {
865 1.1 fvdl
866 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
867 1.1 fvdl return 0;
868 1.1 fvdl
869 1.1 fvdl if (sc->as_state != state)
870 1.1 fvdl return EBUSY;
871 1.1 fvdl
872 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
873 1.1 fvdl return 0;
874 1.1 fvdl }
875 1.1 fvdl
876 1.1 fvdl static struct agp_memory *
877 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
878 1.1 fvdl {
879 1.1 fvdl struct agp_memory *mem;
880 1.1 fvdl
881 1.40 christos AGP_DPF(("searching for memory block %d\n", id));
882 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
883 1.40 christos AGP_DPF(("considering memory block %d\n", mem->am_id));
884 1.1 fvdl if (mem->am_id == id)
885 1.1 fvdl return mem;
886 1.1 fvdl }
887 1.1 fvdl return 0;
888 1.1 fvdl }
889 1.1 fvdl
890 1.1 fvdl /* Implementation of the userland ioctl api */
891 1.1 fvdl
892 1.1 fvdl static int
893 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
894 1.1 fvdl {
895 1.1 fvdl memset(info, 0, sizeof *info);
896 1.1 fvdl info->bridge_id = sc->as_id;
897 1.3 drochner if (sc->as_capoff != 0)
898 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
899 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
900 1.3 drochner else
901 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
902 1.1 fvdl info->aper_base = sc->as_apaddr;
903 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
904 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
905 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
906 1.1 fvdl
907 1.1 fvdl return 0;
908 1.1 fvdl }
909 1.1 fvdl
910 1.1 fvdl static int
911 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
912 1.1 fvdl {
913 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
914 1.1 fvdl }
915 1.1 fvdl
916 1.1 fvdl static int
917 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
918 1.1 fvdl {
919 1.1 fvdl struct agp_memory *mem;
920 1.1 fvdl
921 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
922 1.1 fvdl alloc->type,
923 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
924 1.1 fvdl if (mem) {
925 1.1 fvdl alloc->key = mem->am_id;
926 1.1 fvdl alloc->physical = mem->am_physical;
927 1.1 fvdl return 0;
928 1.1 fvdl } else {
929 1.1 fvdl return ENOMEM;
930 1.1 fvdl }
931 1.1 fvdl }
932 1.1 fvdl
933 1.1 fvdl static int
934 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
935 1.1 fvdl {
936 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
937 1.1 fvdl
938 1.1 fvdl if (mem) {
939 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
940 1.1 fvdl return 0;
941 1.1 fvdl } else {
942 1.1 fvdl return ENOENT;
943 1.1 fvdl }
944 1.1 fvdl }
945 1.1 fvdl
946 1.1 fvdl static int
947 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
948 1.1 fvdl {
949 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
950 1.1 fvdl
951 1.1 fvdl if (!mem)
952 1.1 fvdl return ENOENT;
953 1.1 fvdl
954 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
955 1.1 fvdl }
956 1.1 fvdl
957 1.1 fvdl static int
958 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
959 1.1 fvdl {
960 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
961 1.1 fvdl
962 1.1 fvdl if (!mem)
963 1.1 fvdl return ENOENT;
964 1.1 fvdl
965 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
966 1.1 fvdl }
967 1.1 fvdl
968 1.35 thorpej static int
969 1.59 freza agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
970 1.1 fvdl {
971 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
972 1.9 thorpej
973 1.9 thorpej if (sc == NULL)
974 1.9 thorpej return ENXIO;
975 1.1 fvdl
976 1.1 fvdl if (sc->as_chipc == NULL)
977 1.1 fvdl return ENXIO;
978 1.1 fvdl
979 1.1 fvdl if (!sc->as_isopen)
980 1.1 fvdl sc->as_isopen = 1;
981 1.1 fvdl else
982 1.1 fvdl return EBUSY;
983 1.1 fvdl
984 1.1 fvdl return 0;
985 1.1 fvdl }
986 1.1 fvdl
987 1.35 thorpej static int
988 1.59 freza agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
989 1.1 fvdl {
990 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
991 1.16 drochner struct agp_memory *mem;
992 1.1 fvdl
993 1.59 freza if (sc == NULL)
994 1.59 freza return ENODEV;
995 1.59 freza
996 1.1 fvdl /*
997 1.1 fvdl * Clear the GATT and force release on last close
998 1.1 fvdl */
999 1.16 drochner if (sc->as_state == AGP_ACQUIRE_USER) {
1000 1.16 drochner while ((mem = TAILQ_FIRST(&sc->as_memory))) {
1001 1.16 drochner if (mem->am_is_bound) {
1002 1.16 drochner printf("agpclose: mem %d is bound\n",
1003 1.16 drochner mem->am_id);
1004 1.16 drochner AGP_UNBIND_MEMORY(sc, mem);
1005 1.16 drochner }
1006 1.16 drochner /*
1007 1.16 drochner * XXX it is not documented, but if the protocol allows
1008 1.16 drochner * allocate->acquire->bind, it would be possible that
1009 1.16 drochner * memory ranges are allocated by the kernel here,
1010 1.16 drochner * which we shouldn't free. We'd have to keep track of
1011 1.16 drochner * the memory range's owner.
1012 1.16 drochner * The kernel API is unsed yet, so we get away with
1013 1.16 drochner * freeing all.
1014 1.16 drochner */
1015 1.16 drochner AGP_FREE_MEMORY(sc, mem);
1016 1.16 drochner }
1017 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
1018 1.16 drochner }
1019 1.1 fvdl sc->as_isopen = 0;
1020 1.1 fvdl
1021 1.1 fvdl return 0;
1022 1.1 fvdl }
1023 1.1 fvdl
1024 1.35 thorpej static int
1025 1.45 christos agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1026 1.1 fvdl {
1027 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1028 1.1 fvdl
1029 1.1 fvdl if (sc == NULL)
1030 1.1 fvdl return ENODEV;
1031 1.1 fvdl
1032 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1033 1.1 fvdl return EPERM;
1034 1.1 fvdl
1035 1.1 fvdl switch (cmd) {
1036 1.1 fvdl case AGPIOC_INFO:
1037 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
1038 1.1 fvdl
1039 1.1 fvdl case AGPIOC_ACQUIRE:
1040 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1041 1.1 fvdl
1042 1.1 fvdl case AGPIOC_RELEASE:
1043 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
1044 1.1 fvdl
1045 1.1 fvdl case AGPIOC_SETUP:
1046 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
1047 1.1 fvdl
1048 1.75 christos #ifdef __x86_64__
1049 1.75 christos {
1050 1.75 christos /*
1051 1.75 christos * Handle paddr_t change from 32 bit for non PAE kernels
1052 1.75 christos * to 64 bit.
1053 1.75 christos */
1054 1.75 christos #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1055 1.75 christos
1056 1.75 christos typedef struct _agp_oallocate {
1057 1.75 christos int key; /* tag of allocation */
1058 1.75 christos size_t pg_count; /* number of pages */
1059 1.75 christos uint32_t type; /* 0 == normal, other devspec */
1060 1.75 christos u_long physical; /* device specific (some devices
1061 1.75 christos * need a phys address of the
1062 1.75 christos * actual page behind the gatt
1063 1.75 christos * table) */
1064 1.75 christos } agp_oallocate;
1065 1.75 christos
1066 1.75 christos case AGPIOC_OALLOCATE: {
1067 1.75 christos int ret;
1068 1.75 christos agp_allocate aga;
1069 1.75 christos agp_oallocate *oaga = data;
1070 1.75 christos
1071 1.75 christos aga.type = oaga->type;
1072 1.75 christos aga.pg_count = oaga->pg_count;
1073 1.75 christos
1074 1.75 christos if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1075 1.75 christos oaga->key = aga.key;
1076 1.75 christos oaga->physical = (u_long)aga.physical;
1077 1.75 christos }
1078 1.75 christos
1079 1.75 christos return ret;
1080 1.75 christos }
1081 1.75 christos }
1082 1.75 christos #endif
1083 1.1 fvdl case AGPIOC_ALLOCATE:
1084 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
1085 1.1 fvdl
1086 1.1 fvdl case AGPIOC_DEALLOCATE:
1087 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
1088 1.1 fvdl
1089 1.1 fvdl case AGPIOC_BIND:
1090 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
1091 1.1 fvdl
1092 1.1 fvdl case AGPIOC_UNBIND:
1093 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
1094 1.1 fvdl
1095 1.1 fvdl }
1096 1.1 fvdl
1097 1.1 fvdl return EINVAL;
1098 1.1 fvdl }
1099 1.1 fvdl
1100 1.35 thorpej static paddr_t
1101 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
1102 1.1 fvdl {
1103 1.58 tsutsui struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1104 1.1 fvdl
1105 1.59 freza if (sc == NULL)
1106 1.59 freza return ENODEV;
1107 1.59 freza
1108 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
1109 1.1 fvdl return -1;
1110 1.6 thorpej
1111 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1112 1.6 thorpej BUS_SPACE_MAP_LINEAR));
1113 1.1 fvdl }
1114 1.1 fvdl
1115 1.35 thorpej const struct cdevsw agp_cdevsw = {
1116 1.81 dholland .d_open = agpopen,
1117 1.81 dholland .d_close = agpclose,
1118 1.81 dholland .d_read = noread,
1119 1.81 dholland .d_write = nowrite,
1120 1.81 dholland .d_ioctl = agpioctl,
1121 1.81 dholland .d_stop = nostop,
1122 1.81 dholland .d_tty = notty,
1123 1.81 dholland .d_poll = nopoll,
1124 1.81 dholland .d_mmap = agpmmap,
1125 1.81 dholland .d_kqfilter = nokqfilter,
1126 1.83 dholland .d_discard = nodiscard,
1127 1.81 dholland .d_flag = D_OTHER
1128 1.35 thorpej };
1129 1.35 thorpej
1130 1.1 fvdl /* Implementation of the kernel api */
1131 1.1 fvdl
1132 1.1 fvdl void *
1133 1.1 fvdl agp_find_device(int unit)
1134 1.1 fvdl {
1135 1.59 freza return device_lookup_private(&agp_cd, unit);
1136 1.1 fvdl }
1137 1.1 fvdl
1138 1.1 fvdl enum agp_acquire_state
1139 1.1 fvdl agp_state(void *devcookie)
1140 1.1 fvdl {
1141 1.1 fvdl struct agp_softc *sc = devcookie;
1142 1.59 freza
1143 1.1 fvdl return sc->as_state;
1144 1.1 fvdl }
1145 1.1 fvdl
1146 1.1 fvdl void
1147 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
1148 1.1 fvdl {
1149 1.1 fvdl struct agp_softc *sc = devcookie;
1150 1.1 fvdl
1151 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1152 1.84 msaitoh sc->as_capoff + PCI_AGP_STATUS);
1153 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
1154 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1155 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
1156 1.1 fvdl info->ai_memory_used = sc->as_allocated;
1157 1.85 riastrad info->ai_devid = sc->as_id;
1158 1.1 fvdl }
1159 1.1 fvdl
1160 1.1 fvdl int
1161 1.1 fvdl agp_acquire(void *dev)
1162 1.1 fvdl {
1163 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1164 1.1 fvdl }
1165 1.1 fvdl
1166 1.1 fvdl int
1167 1.1 fvdl agp_release(void *dev)
1168 1.1 fvdl {
1169 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1170 1.1 fvdl }
1171 1.1 fvdl
1172 1.1 fvdl int
1173 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
1174 1.1 fvdl {
1175 1.1 fvdl struct agp_softc *sc = dev;
1176 1.1 fvdl
1177 1.1 fvdl return AGP_ENABLE(sc, mode);
1178 1.1 fvdl }
1179 1.1 fvdl
1180 1.59 freza void *
1181 1.59 freza agp_alloc_memory(void *dev, int type, vsize_t bytes)
1182 1.1 fvdl {
1183 1.1 fvdl struct agp_softc *sc = dev;
1184 1.1 fvdl
1185 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1186 1.1 fvdl }
1187 1.1 fvdl
1188 1.59 freza void
1189 1.59 freza agp_free_memory(void *dev, void *handle)
1190 1.1 fvdl {
1191 1.1 fvdl struct agp_softc *sc = dev;
1192 1.59 freza struct agp_memory *mem = handle;
1193 1.59 freza
1194 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
1195 1.1 fvdl }
1196 1.1 fvdl
1197 1.59 freza int
1198 1.59 freza agp_bind_memory(void *dev, void *handle, off_t offset)
1199 1.1 fvdl {
1200 1.1 fvdl struct agp_softc *sc = dev;
1201 1.59 freza struct agp_memory *mem = handle;
1202 1.1 fvdl
1203 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
1204 1.1 fvdl }
1205 1.1 fvdl
1206 1.59 freza int
1207 1.59 freza agp_unbind_memory(void *dev, void *handle)
1208 1.1 fvdl {
1209 1.1 fvdl struct agp_softc *sc = dev;
1210 1.59 freza struct agp_memory *mem = handle;
1211 1.1 fvdl
1212 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
1213 1.1 fvdl }
1214 1.1 fvdl
1215 1.59 freza void
1216 1.59 freza agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1217 1.1 fvdl {
1218 1.59 freza struct agp_memory *mem = handle;
1219 1.1 fvdl
1220 1.1 fvdl mi->ami_size = mem->am_size;
1221 1.1 fvdl mi->ami_physical = mem->am_physical;
1222 1.1 fvdl mi->ami_offset = mem->am_offset;
1223 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
1224 1.1 fvdl }
1225 1.1 fvdl
1226 1.1 fvdl int
1227 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1228 1.45 christos bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1229 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
1230 1.1 fvdl
1231 1.1 fvdl {
1232 1.1 fvdl int error, level = 0;
1233 1.1 fvdl
1234 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1235 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1236 1.1 fvdl goto out;
1237 1.1 fvdl level++;
1238 1.1 fvdl
1239 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1240 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
1241 1.1 fvdl goto out;
1242 1.1 fvdl level++;
1243 1.1 fvdl
1244 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1245 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
1246 1.1 fvdl goto out;
1247 1.1 fvdl level++;
1248 1.1 fvdl
1249 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1250 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
1251 1.1 fvdl goto out;
1252 1.1 fvdl
1253 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
1254 1.1 fvdl
1255 1.1 fvdl return 0;
1256 1.1 fvdl out:
1257 1.1 fvdl switch (level) {
1258 1.1 fvdl case 3:
1259 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
1260 1.1 fvdl /* FALLTHROUGH */
1261 1.1 fvdl case 2:
1262 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
1263 1.1 fvdl /* FALLTHROUGH */
1264 1.1 fvdl case 1:
1265 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
1266 1.1 fvdl break;
1267 1.1 fvdl default:
1268 1.1 fvdl break;
1269 1.1 fvdl }
1270 1.1 fvdl
1271 1.1 fvdl return error;
1272 1.1 fvdl }
1273 1.1 fvdl
1274 1.1 fvdl void
1275 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1276 1.45 christos void *vaddr, bus_dma_segment_t *seg, int nseg)
1277 1.1 fvdl {
1278 1.1 fvdl bus_dmamap_unload(tag, map);
1279 1.1 fvdl bus_dmamap_destroy(tag, map);
1280 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
1281 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
1282 1.1 fvdl }
1283 1.54 jmcneill
1284 1.54 jmcneill static bool
1285 1.68 dyoung agp_resume(device_t dv, const pmf_qual_t *qual)
1286 1.54 jmcneill {
1287 1.54 jmcneill agp_flush_cache();
1288 1.54 jmcneill
1289 1.54 jmcneill return true;
1290 1.54 jmcneill }
1291