agp.c revision 1.9 1 1.9 thorpej /* $NetBSD: agp.c,v 1.9 2001/09/15 18:03:35 thorpej Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*-
4 1.1 fvdl * Copyright (c) 2000 Doug Rabson
5 1.1 fvdl * All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl *
16 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 fvdl * SUCH DAMAGE.
27 1.1 fvdl *
28 1.1 fvdl * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 1.1 fvdl */
30 1.1 fvdl
31 1.1 fvdl /*
32 1.1 fvdl * Copyright (c) 2001 Wasabi Systems, Inc.
33 1.1 fvdl * All rights reserved.
34 1.1 fvdl *
35 1.1 fvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
36 1.1 fvdl *
37 1.1 fvdl * Redistribution and use in source and binary forms, with or without
38 1.1 fvdl * modification, are permitted provided that the following conditions
39 1.1 fvdl * are met:
40 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
41 1.1 fvdl * notice, this list of conditions and the following disclaimer.
42 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
44 1.1 fvdl * documentation and/or other materials provided with the distribution.
45 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
46 1.1 fvdl * must display the following acknowledgement:
47 1.1 fvdl * This product includes software developed for the NetBSD Project by
48 1.1 fvdl * Wasabi Systems, Inc.
49 1.1 fvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 1.1 fvdl * or promote products derived from this software without specific prior
51 1.1 fvdl * written permission.
52 1.1 fvdl *
53 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 fvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 fvdl * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 fvdl * POSSIBILITY OF SUCH DAMAGE.
64 1.1 fvdl */
65 1.1 fvdl
66 1.1 fvdl
67 1.1 fvdl #include <sys/param.h>
68 1.1 fvdl #include <sys/systm.h>
69 1.1 fvdl #include <sys/malloc.h>
70 1.1 fvdl #include <sys/kernel.h>
71 1.1 fvdl #include <sys/device.h>
72 1.1 fvdl #include <sys/conf.h>
73 1.1 fvdl #include <sys/ioctl.h>
74 1.1 fvdl #include <sys/fcntl.h>
75 1.1 fvdl #include <sys/agpio.h>
76 1.1 fvdl #include <sys/proc.h>
77 1.1 fvdl
78 1.1 fvdl #include <uvm/uvm_extern.h>
79 1.1 fvdl
80 1.1 fvdl #include <dev/pci/pcireg.h>
81 1.1 fvdl #include <dev/pci/pcivar.h>
82 1.1 fvdl #include <dev/pci/agpvar.h>
83 1.1 fvdl #include <dev/pci/agpreg.h>
84 1.1 fvdl #include <dev/pci/pcidevs.h>
85 1.1 fvdl
86 1.1 fvdl #include <machine/bus.h>
87 1.1 fvdl
88 1.1 fvdl /* Helper functions for implementing chipset mini drivers. */
89 1.1 fvdl /* XXXfvdl get rid of this one. */
90 1.1 fvdl
91 1.1 fvdl extern struct cfdriver agp_cd;
92 1.1 fvdl cdev_decl(agp);
93 1.1 fvdl
94 1.1 fvdl int agpmatch(struct device *, struct cfdata *, void *);
95 1.1 fvdl void agpattach(struct device *, struct device *, void *);
96 1.1 fvdl
97 1.1 fvdl struct cfattach agp_ca = {
98 1.1 fvdl sizeof(struct agp_softc), agpmatch, agpattach
99 1.1 fvdl };
100 1.1 fvdl
101 1.1 fvdl static int agp_info_user(struct agp_softc *, agp_info *);
102 1.1 fvdl static int agp_setup_user(struct agp_softc *, agp_setup *);
103 1.1 fvdl static int agp_allocate_user(struct agp_softc *, agp_allocate *);
104 1.1 fvdl static int agp_deallocate_user(struct agp_softc *, int);
105 1.1 fvdl static int agp_bind_user(struct agp_softc *, agp_bind *);
106 1.1 fvdl static int agp_unbind_user(struct agp_softc *, agp_unbind *);
107 1.1 fvdl static int agpdev_match(struct pci_attach_args *);
108 1.1 fvdl
109 1.7 thorpej #include "agp_ali.h"
110 1.7 thorpej #include "agp_amd.h"
111 1.7 thorpej #include "agp_i810.h"
112 1.7 thorpej #include "agp_intel.h"
113 1.7 thorpej #include "agp_sis.h"
114 1.7 thorpej #include "agp_via.h"
115 1.7 thorpej
116 1.5 thorpej const struct agp_product {
117 1.5 thorpej uint32_t ap_vendor;
118 1.5 thorpej uint32_t ap_product;
119 1.5 thorpej int (*ap_match)(const struct pci_attach_args *);
120 1.5 thorpej int (*ap_attach)(struct device *, struct device *, void *);
121 1.5 thorpej } agp_products[] = {
122 1.7 thorpej #if NAGP_ALI > 0
123 1.5 thorpej { PCI_VENDOR_ALI, -1,
124 1.5 thorpej NULL, agp_ali_attach },
125 1.7 thorpej #endif
126 1.5 thorpej
127 1.7 thorpej #if NAGP_AMD > 0
128 1.5 thorpej { PCI_VENDOR_AMD, -1,
129 1.5 thorpej agp_amd_match, agp_amd_attach },
130 1.7 thorpej #endif
131 1.5 thorpej
132 1.7 thorpej #if NAGP_I810 > 0
133 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
134 1.5 thorpej NULL, agp_i810_attach },
135 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
136 1.5 thorpej NULL, agp_i810_attach },
137 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
138 1.5 thorpej NULL, agp_i810_attach },
139 1.5 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
140 1.5 thorpej NULL, agp_i810_attach },
141 1.7 thorpej #endif
142 1.5 thorpej
143 1.7 thorpej #if NAGP_INTEL > 0
144 1.5 thorpej { PCI_VENDOR_INTEL, -1,
145 1.5 thorpej NULL, agp_intel_attach },
146 1.7 thorpej #endif
147 1.5 thorpej
148 1.7 thorpej #if NAGP_SIS > 0
149 1.5 thorpej { PCI_VENDOR_SIS, -1,
150 1.5 thorpej NULL, agp_sis_attach },
151 1.7 thorpej #endif
152 1.5 thorpej
153 1.7 thorpej #if NAGP_VIA > 0
154 1.5 thorpej { PCI_VENDOR_VIATECH, -1,
155 1.5 thorpej NULL, agp_via_attach },
156 1.7 thorpej #endif
157 1.5 thorpej
158 1.5 thorpej { 0, 0,
159 1.5 thorpej NULL, NULL },
160 1.5 thorpej };
161 1.5 thorpej
162 1.5 thorpej static const struct agp_product *
163 1.5 thorpej agp_lookup(const struct pci_attach_args *pa)
164 1.5 thorpej {
165 1.5 thorpej const struct agp_product *ap;
166 1.5 thorpej
167 1.5 thorpej /* First find the vendor. */
168 1.5 thorpej for (ap = agp_products; ap->ap_attach != NULL; ap++) {
169 1.5 thorpej if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
170 1.5 thorpej break;
171 1.5 thorpej }
172 1.5 thorpej
173 1.5 thorpej if (ap->ap_attach == NULL)
174 1.5 thorpej return (NULL);
175 1.5 thorpej
176 1.5 thorpej /* Now find the product within the vendor's domain. */
177 1.5 thorpej for (; ap->ap_attach != NULL; ap++) {
178 1.5 thorpej if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
179 1.5 thorpej /* Ran out of this vendor's section of the table. */
180 1.5 thorpej return (NULL);
181 1.5 thorpej }
182 1.5 thorpej if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
183 1.5 thorpej /* Exact match. */
184 1.5 thorpej break;
185 1.5 thorpej }
186 1.5 thorpej if (ap->ap_product == (uint32_t) -1) {
187 1.5 thorpej /* Wildcard match. */
188 1.5 thorpej break;
189 1.5 thorpej }
190 1.5 thorpej }
191 1.5 thorpej
192 1.5 thorpej if (ap->ap_attach == NULL)
193 1.5 thorpej return (NULL);
194 1.5 thorpej
195 1.5 thorpej /* Now let the product-specific driver filter the match. */
196 1.5 thorpej if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
197 1.5 thorpej return (NULL);
198 1.5 thorpej
199 1.5 thorpej return (ap);
200 1.5 thorpej }
201 1.5 thorpej
202 1.1 fvdl int
203 1.1 fvdl agpmatch(struct device *parent, struct cfdata *match, void *aux)
204 1.1 fvdl {
205 1.5 thorpej struct agpbus_attach_args *apa = aux;
206 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
207 1.1 fvdl
208 1.5 thorpej if (strcmp(apa->apa_busname, "agp") != 0)
209 1.5 thorpej return (0);
210 1.5 thorpej
211 1.5 thorpej if (agp_lookup(pa) == NULL)
212 1.5 thorpej return (0);
213 1.1 fvdl
214 1.5 thorpej return (1);
215 1.1 fvdl }
216 1.1 fvdl
217 1.1 fvdl static int agp_max[][2] = {
218 1.1 fvdl {0, 0},
219 1.1 fvdl {32, 4},
220 1.1 fvdl {64, 28},
221 1.1 fvdl {128, 96},
222 1.1 fvdl {256, 204},
223 1.1 fvdl {512, 440},
224 1.1 fvdl {1024, 942},
225 1.1 fvdl {2048, 1920},
226 1.1 fvdl {4096, 3932}
227 1.1 fvdl };
228 1.1 fvdl #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
229 1.1 fvdl
230 1.1 fvdl void
231 1.1 fvdl agpattach(struct device *parent, struct device *self, void *aux)
232 1.1 fvdl {
233 1.5 thorpej struct agpbus_attach_args *apa = aux;
234 1.1 fvdl struct pci_attach_args *pa = &apa->apa_pci_args;
235 1.1 fvdl struct agp_softc *sc = (void *)self;
236 1.5 thorpej const struct agp_product *ap;
237 1.1 fvdl int memsize, i, ret;
238 1.1 fvdl
239 1.5 thorpej ap = agp_lookup(pa);
240 1.5 thorpej if (ap == NULL) {
241 1.5 thorpej printf("\n");
242 1.5 thorpej panic("agpattach: impossible");
243 1.5 thorpej }
244 1.1 fvdl
245 1.1 fvdl sc->as_dmat = pa->pa_dmat;
246 1.1 fvdl sc->as_pc = pa->pa_pc;
247 1.1 fvdl sc->as_tag = pa->pa_tag;
248 1.1 fvdl sc->as_id = pa->pa_id;
249 1.1 fvdl
250 1.1 fvdl /*
251 1.1 fvdl * Work out an upper bound for agp memory allocation. This
252 1.1 fvdl * uses a heurisitc table from the Linux driver.
253 1.1 fvdl */
254 1.1 fvdl memsize = ptoa(physmem) >> 20;
255 1.1 fvdl for (i = 0; i < agp_max_size; i++) {
256 1.1 fvdl if (memsize <= agp_max[i][0])
257 1.1 fvdl break;
258 1.1 fvdl }
259 1.1 fvdl if (i == agp_max_size)
260 1.1 fvdl i = agp_max_size - 1;
261 1.1 fvdl sc->as_maxmem = agp_max[i][1] << 20U;
262 1.1 fvdl
263 1.1 fvdl /*
264 1.1 fvdl * The lock is used to prevent re-entry to
265 1.1 fvdl * agp_generic_bind_memory() since that function can sleep.
266 1.1 fvdl */
267 1.1 fvdl lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
268 1.1 fvdl
269 1.1 fvdl TAILQ_INIT(&sc->as_memory);
270 1.1 fvdl
271 1.5 thorpej ret = (*ap->ap_attach)(parent, self, pa);
272 1.1 fvdl if (ret == 0)
273 1.1 fvdl printf(": aperture at 0x%lx, size 0x%lx\n",
274 1.1 fvdl (unsigned long)sc->as_apaddr,
275 1.1 fvdl (unsigned long)AGP_GET_APERTURE(sc));
276 1.1 fvdl else
277 1.1 fvdl sc->as_chipc = NULL;
278 1.1 fvdl }
279 1.1 fvdl int
280 1.1 fvdl agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
281 1.1 fvdl {
282 1.1 fvdl /*
283 1.1 fvdl * Find and map the aperture.
284 1.1 fvdl */
285 1.1 fvdl if (pci_mapreg_map(pa, AGP_APBASE, PCI_MAPREG_TYPE_MEM,
286 1.1 fvdl BUS_SPACE_MAP_LINEAR,
287 1.8 drochner &sc->as_apt, &sc->as_aph, &sc->as_apaddr, &sc->as_apsize) != 0)
288 1.1 fvdl return ENXIO;
289 1.8 drochner
290 1.1 fvdl return 0;
291 1.1 fvdl }
292 1.1 fvdl
293 1.1 fvdl struct agp_gatt *
294 1.1 fvdl agp_alloc_gatt(struct agp_softc *sc)
295 1.1 fvdl {
296 1.1 fvdl u_int32_t apsize = AGP_GET_APERTURE(sc);
297 1.1 fvdl u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
298 1.1 fvdl struct agp_gatt *gatt;
299 1.1 fvdl int dummyseg;
300 1.1 fvdl
301 1.1 fvdl gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
302 1.1 fvdl if (!gatt)
303 1.1 fvdl return NULL;
304 1.1 fvdl gatt->ag_entries = entries;
305 1.1 fvdl
306 1.1 fvdl if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
307 1.1 fvdl 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
308 1.1 fvdl &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
309 1.1 fvdl return NULL;
310 1.1 fvdl
311 1.1 fvdl gatt->ag_size = entries * sizeof(u_int32_t);
312 1.1 fvdl memset(gatt->ag_virtual, 0, gatt->ag_size);
313 1.1 fvdl agp_flush_cache();
314 1.1 fvdl
315 1.1 fvdl return gatt;
316 1.1 fvdl }
317 1.1 fvdl
318 1.1 fvdl void
319 1.1 fvdl agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
320 1.1 fvdl {
321 1.1 fvdl agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
322 1.1 fvdl (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
323 1.1 fvdl free(gatt, M_AGP);
324 1.1 fvdl }
325 1.1 fvdl
326 1.1 fvdl
327 1.1 fvdl int
328 1.1 fvdl agp_generic_detach(struct agp_softc *sc)
329 1.1 fvdl {
330 1.1 fvdl lockmgr(&sc->as_lock, LK_DRAIN, 0);
331 1.1 fvdl agp_flush_cache();
332 1.1 fvdl return 0;
333 1.1 fvdl }
334 1.1 fvdl
335 1.1 fvdl static int
336 1.1 fvdl agpdev_match(struct pci_attach_args *pa)
337 1.1 fvdl {
338 1.1 fvdl if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
339 1.1 fvdl PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
340 1.1 fvdl return 1;
341 1.1 fvdl
342 1.1 fvdl return 0;
343 1.1 fvdl }
344 1.1 fvdl
345 1.1 fvdl int
346 1.1 fvdl agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
347 1.1 fvdl {
348 1.1 fvdl struct pci_attach_args pa;
349 1.1 fvdl pcireg_t tstatus, mstatus;
350 1.1 fvdl pcireg_t command;
351 1.1 fvdl int rq, sba, fw, rate, capoff;
352 1.1 fvdl
353 1.1 fvdl if (pci_find_device(&pa, agpdev_match) == 0 ||
354 1.1 fvdl pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
355 1.1 fvdl &capoff, NULL) == 0) {
356 1.1 fvdl printf("%s: can't find display\n", sc->as_dev.dv_xname);
357 1.1 fvdl return ENXIO;
358 1.1 fvdl }
359 1.1 fvdl
360 1.1 fvdl tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
361 1.1 fvdl sc->as_capoff + AGP_STATUS);
362 1.1 fvdl mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
363 1.1 fvdl capoff + AGP_STATUS);
364 1.1 fvdl
365 1.1 fvdl /* Set RQ to the min of mode, tstatus and mstatus */
366 1.1 fvdl rq = AGP_MODE_GET_RQ(mode);
367 1.1 fvdl if (AGP_MODE_GET_RQ(tstatus) < rq)
368 1.1 fvdl rq = AGP_MODE_GET_RQ(tstatus);
369 1.1 fvdl if (AGP_MODE_GET_RQ(mstatus) < rq)
370 1.1 fvdl rq = AGP_MODE_GET_RQ(mstatus);
371 1.1 fvdl
372 1.1 fvdl /* Set SBA if all three can deal with SBA */
373 1.1 fvdl sba = (AGP_MODE_GET_SBA(tstatus)
374 1.1 fvdl & AGP_MODE_GET_SBA(mstatus)
375 1.1 fvdl & AGP_MODE_GET_SBA(mode));
376 1.1 fvdl
377 1.1 fvdl /* Similar for FW */
378 1.1 fvdl fw = (AGP_MODE_GET_FW(tstatus)
379 1.1 fvdl & AGP_MODE_GET_FW(mstatus)
380 1.1 fvdl & AGP_MODE_GET_FW(mode));
381 1.1 fvdl
382 1.1 fvdl /* Figure out the max rate */
383 1.1 fvdl rate = (AGP_MODE_GET_RATE(tstatus)
384 1.1 fvdl & AGP_MODE_GET_RATE(mstatus)
385 1.1 fvdl & AGP_MODE_GET_RATE(mode));
386 1.1 fvdl if (rate & AGP_MODE_RATE_4x)
387 1.1 fvdl rate = AGP_MODE_RATE_4x;
388 1.1 fvdl else if (rate & AGP_MODE_RATE_2x)
389 1.1 fvdl rate = AGP_MODE_RATE_2x;
390 1.1 fvdl else
391 1.1 fvdl rate = AGP_MODE_RATE_1x;
392 1.1 fvdl
393 1.1 fvdl /* Construct the new mode word and tell the hardware */
394 1.1 fvdl command = AGP_MODE_SET_RQ(0, rq);
395 1.1 fvdl command = AGP_MODE_SET_SBA(command, sba);
396 1.1 fvdl command = AGP_MODE_SET_FW(command, fw);
397 1.1 fvdl command = AGP_MODE_SET_RATE(command, rate);
398 1.1 fvdl command = AGP_MODE_SET_AGP(command, 1);
399 1.1 fvdl pci_conf_write(sc->as_pc, sc->as_tag,
400 1.1 fvdl sc->as_capoff + AGP_COMMAND, command);
401 1.1 fvdl pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
402 1.1 fvdl
403 1.1 fvdl return 0;
404 1.1 fvdl }
405 1.1 fvdl
406 1.1 fvdl struct agp_memory *
407 1.1 fvdl agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
408 1.1 fvdl {
409 1.1 fvdl struct agp_memory *mem;
410 1.1 fvdl
411 1.1 fvdl if ((size & (AGP_PAGE_SIZE - 1)) != 0)
412 1.1 fvdl return 0;
413 1.1 fvdl
414 1.1 fvdl if (sc->as_allocated + size > sc->as_maxmem)
415 1.1 fvdl return 0;
416 1.1 fvdl
417 1.1 fvdl if (type != 0) {
418 1.1 fvdl printf("agp_generic_alloc_memory: unsupported type %d\n",
419 1.1 fvdl type);
420 1.1 fvdl return 0;
421 1.1 fvdl }
422 1.1 fvdl
423 1.1 fvdl mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
424 1.1 fvdl if (mem == NULL)
425 1.1 fvdl return NULL;
426 1.1 fvdl
427 1.3 drochner if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
428 1.3 drochner size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
429 1.1 fvdl free(mem, M_AGP);
430 1.1 fvdl return NULL;
431 1.1 fvdl }
432 1.1 fvdl
433 1.1 fvdl mem->am_id = sc->as_nextid++;
434 1.1 fvdl mem->am_size = size;
435 1.1 fvdl mem->am_type = 0;
436 1.1 fvdl mem->am_physical = 0;
437 1.1 fvdl mem->am_offset = 0;
438 1.1 fvdl mem->am_is_bound = 0;
439 1.1 fvdl TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
440 1.1 fvdl sc->as_allocated += size;
441 1.1 fvdl
442 1.1 fvdl return mem;
443 1.1 fvdl }
444 1.1 fvdl
445 1.1 fvdl int
446 1.1 fvdl agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
447 1.1 fvdl {
448 1.1 fvdl if (mem->am_is_bound)
449 1.1 fvdl return EBUSY;
450 1.1 fvdl
451 1.1 fvdl sc->as_allocated -= mem->am_size;
452 1.1 fvdl TAILQ_REMOVE(&sc->as_memory, mem, am_link);
453 1.1 fvdl bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
454 1.1 fvdl free(mem, M_AGP);
455 1.1 fvdl return 0;
456 1.1 fvdl }
457 1.1 fvdl
458 1.1 fvdl int
459 1.1 fvdl agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
460 1.1 fvdl off_t offset)
461 1.1 fvdl {
462 1.1 fvdl off_t i, k;
463 1.1 fvdl bus_size_t done, j;
464 1.1 fvdl int error;
465 1.1 fvdl bus_dma_segment_t *segs, *seg;
466 1.1 fvdl bus_addr_t pa;
467 1.1 fvdl int contigpages, nseg;
468 1.1 fvdl
469 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
470 1.1 fvdl
471 1.1 fvdl if (mem->am_is_bound) {
472 1.1 fvdl printf("%s: memory already bound\n", sc->as_dev.dv_xname);
473 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
474 1.1 fvdl return EINVAL;
475 1.1 fvdl }
476 1.1 fvdl
477 1.1 fvdl if (offset < 0
478 1.1 fvdl || (offset & (AGP_PAGE_SIZE - 1)) != 0
479 1.1 fvdl || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
480 1.1 fvdl printf("%s: binding memory at bad offset %#lx\n",
481 1.1 fvdl sc->as_dev.dv_xname, (unsigned long) offset);
482 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
483 1.1 fvdl return EINVAL;
484 1.1 fvdl }
485 1.1 fvdl
486 1.1 fvdl /*
487 1.1 fvdl * XXXfvdl
488 1.1 fvdl * The memory here needs to be directly accessable from the
489 1.1 fvdl * AGP video card, so it should be allocated using bus_dma.
490 1.1 fvdl * However, it need not be contiguous, since individual pages
491 1.1 fvdl * are translated using the GATT.
492 1.1 fvdl *
493 1.1 fvdl * Using a large chunk of contiguous memory may get in the way
494 1.1 fvdl * of other subsystems that may need one, so we try to be friendly
495 1.1 fvdl * and ask for allocation in chunks of a minimum of 8 pages
496 1.1 fvdl * of contiguous memory on average, falling back to 4, 2 and 1
497 1.1 fvdl * if really needed. Larger chunks are preferred, since allocating
498 1.1 fvdl * a bus_dma_segment per page would be overkill.
499 1.1 fvdl */
500 1.1 fvdl
501 1.1 fvdl for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
502 1.1 fvdl nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
503 1.3 drochner segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
504 1.1 fvdl if (segs == NULL)
505 1.1 fvdl return NULL;
506 1.1 fvdl if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
507 1.4 drochner segs, nseg, &mem->am_nseg,
508 1.4 drochner BUS_DMA_WAITOK) != 0) {
509 1.4 drochner free(segs, M_AGP);
510 1.1 fvdl continue;
511 1.4 drochner }
512 1.1 fvdl if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
513 1.1 fvdl mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
514 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
515 1.4 drochner free(segs, M_AGP);
516 1.1 fvdl continue;
517 1.1 fvdl }
518 1.1 fvdl if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
519 1.1 fvdl mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
520 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
521 1.1 fvdl mem->am_size);
522 1.1 fvdl bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
523 1.4 drochner free(segs, M_AGP);
524 1.1 fvdl continue;
525 1.1 fvdl }
526 1.1 fvdl mem->am_dmaseg = segs;
527 1.1 fvdl break;
528 1.1 fvdl }
529 1.1 fvdl
530 1.1 fvdl if (contigpages == 0) {
531 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
532 1.1 fvdl return ENOMEM;
533 1.1 fvdl }
534 1.1 fvdl
535 1.1 fvdl
536 1.1 fvdl /*
537 1.1 fvdl * Bind the individual pages and flush the chipset's
538 1.1 fvdl * TLB.
539 1.1 fvdl */
540 1.1 fvdl done = 0;
541 1.1 fvdl for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
542 1.1 fvdl seg = &mem->am_dmamap->dm_segs[i];
543 1.1 fvdl /*
544 1.1 fvdl * Install entries in the GATT, making sure that if
545 1.1 fvdl * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
546 1.1 fvdl * aligned to PAGE_SIZE, we don't modify too many GATT
547 1.1 fvdl * entries.
548 1.1 fvdl */
549 1.1 fvdl for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
550 1.1 fvdl j += AGP_PAGE_SIZE) {
551 1.1 fvdl pa = seg->ds_addr + j;
552 1.3 drochner AGP_DPF("binding offset %#lx to pa %#lx\n",
553 1.3 drochner (unsigned long)(offset + done + j),
554 1.3 drochner (unsigned long)pa);
555 1.1 fvdl error = AGP_BIND_PAGE(sc, offset + done + j, pa);
556 1.1 fvdl if (error) {
557 1.1 fvdl /*
558 1.1 fvdl * Bail out. Reverse all the mappings
559 1.1 fvdl * and unwire the pages.
560 1.1 fvdl */
561 1.1 fvdl for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
562 1.1 fvdl AGP_UNBIND_PAGE(sc, offset + k);
563 1.1 fvdl
564 1.4 drochner bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
565 1.4 drochner bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
566 1.4 drochner mem->am_size);
567 1.4 drochner bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
568 1.4 drochner mem->am_nseg);
569 1.4 drochner free(mem->am_dmaseg, M_AGP);
570 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
571 1.1 fvdl return error;
572 1.1 fvdl }
573 1.1 fvdl }
574 1.1 fvdl done += seg->ds_len;
575 1.1 fvdl }
576 1.1 fvdl
577 1.1 fvdl /*
578 1.1 fvdl * Flush the cpu cache since we are providing a new mapping
579 1.1 fvdl * for these pages.
580 1.1 fvdl */
581 1.1 fvdl agp_flush_cache();
582 1.1 fvdl
583 1.1 fvdl /*
584 1.1 fvdl * Make sure the chipset gets the new mappings.
585 1.1 fvdl */
586 1.1 fvdl AGP_FLUSH_TLB(sc);
587 1.1 fvdl
588 1.1 fvdl mem->am_offset = offset;
589 1.1 fvdl mem->am_is_bound = 1;
590 1.1 fvdl
591 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
592 1.1 fvdl
593 1.1 fvdl return 0;
594 1.1 fvdl }
595 1.1 fvdl
596 1.1 fvdl int
597 1.1 fvdl agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
598 1.1 fvdl {
599 1.1 fvdl int i;
600 1.1 fvdl
601 1.1 fvdl lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
602 1.1 fvdl
603 1.1 fvdl if (!mem->am_is_bound) {
604 1.1 fvdl printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
605 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
606 1.1 fvdl return EINVAL;
607 1.1 fvdl }
608 1.1 fvdl
609 1.1 fvdl
610 1.1 fvdl /*
611 1.1 fvdl * Unbind the individual pages and flush the chipset's
612 1.1 fvdl * TLB. Unwire the pages so they can be swapped.
613 1.1 fvdl */
614 1.1 fvdl for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
615 1.1 fvdl AGP_UNBIND_PAGE(sc, mem->am_offset + i);
616 1.1 fvdl
617 1.1 fvdl agp_flush_cache();
618 1.1 fvdl AGP_FLUSH_TLB(sc);
619 1.1 fvdl
620 1.1 fvdl bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
621 1.1 fvdl bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
622 1.1 fvdl bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
623 1.1 fvdl
624 1.1 fvdl free(mem->am_dmaseg, M_AGP);
625 1.1 fvdl
626 1.1 fvdl mem->am_offset = 0;
627 1.1 fvdl mem->am_is_bound = 0;
628 1.1 fvdl
629 1.1 fvdl lockmgr(&sc->as_lock, LK_RELEASE, 0);
630 1.1 fvdl
631 1.1 fvdl return 0;
632 1.1 fvdl }
633 1.1 fvdl
634 1.1 fvdl /* Helper functions for implementing user/kernel api */
635 1.1 fvdl
636 1.1 fvdl static int
637 1.1 fvdl agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
638 1.1 fvdl {
639 1.1 fvdl if (sc->as_state != AGP_ACQUIRE_FREE)
640 1.1 fvdl return EBUSY;
641 1.1 fvdl sc->as_state = state;
642 1.1 fvdl
643 1.1 fvdl return 0;
644 1.1 fvdl }
645 1.1 fvdl
646 1.1 fvdl static int
647 1.1 fvdl agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
648 1.1 fvdl {
649 1.1 fvdl struct agp_memory *mem;
650 1.1 fvdl
651 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_FREE)
652 1.1 fvdl return 0;
653 1.1 fvdl
654 1.1 fvdl if (sc->as_state != state)
655 1.1 fvdl return EBUSY;
656 1.1 fvdl
657 1.1 fvdl /*
658 1.1 fvdl * Clear out the aperture and free any outstanding memory blocks.
659 1.1 fvdl */
660 1.4 drochner TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
661 1.4 drochner if (mem->am_is_bound) {
662 1.4 drochner printf("agp_release_helper: mem %d is bound\n",
663 1.4 drochner mem->am_id);
664 1.1 fvdl AGP_UNBIND_MEMORY(sc, mem);
665 1.4 drochner }
666 1.1 fvdl }
667 1.1 fvdl
668 1.1 fvdl sc->as_state = AGP_ACQUIRE_FREE;
669 1.1 fvdl return 0;
670 1.1 fvdl }
671 1.1 fvdl
672 1.1 fvdl static struct agp_memory *
673 1.1 fvdl agp_find_memory(struct agp_softc *sc, int id)
674 1.1 fvdl {
675 1.1 fvdl struct agp_memory *mem;
676 1.1 fvdl
677 1.1 fvdl AGP_DPF("searching for memory block %d\n", id);
678 1.1 fvdl TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
679 1.1 fvdl AGP_DPF("considering memory block %d\n", mem->am_id);
680 1.1 fvdl if (mem->am_id == id)
681 1.1 fvdl return mem;
682 1.1 fvdl }
683 1.1 fvdl return 0;
684 1.1 fvdl }
685 1.1 fvdl
686 1.1 fvdl /* Implementation of the userland ioctl api */
687 1.1 fvdl
688 1.1 fvdl static int
689 1.1 fvdl agp_info_user(struct agp_softc *sc, agp_info *info)
690 1.1 fvdl {
691 1.1 fvdl memset(info, 0, sizeof *info);
692 1.1 fvdl info->bridge_id = sc->as_id;
693 1.3 drochner if (sc->as_capoff != 0)
694 1.3 drochner info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
695 1.3 drochner sc->as_capoff + AGP_STATUS);
696 1.3 drochner else
697 1.3 drochner info->agp_mode = 0; /* i810 doesn't have real AGP */
698 1.1 fvdl info->aper_base = sc->as_apaddr;
699 1.1 fvdl info->aper_size = AGP_GET_APERTURE(sc) >> 20;
700 1.1 fvdl info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
701 1.1 fvdl info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
702 1.1 fvdl
703 1.1 fvdl return 0;
704 1.1 fvdl }
705 1.1 fvdl
706 1.1 fvdl static int
707 1.1 fvdl agp_setup_user(struct agp_softc *sc, agp_setup *setup)
708 1.1 fvdl {
709 1.1 fvdl return AGP_ENABLE(sc, setup->agp_mode);
710 1.1 fvdl }
711 1.1 fvdl
712 1.1 fvdl static int
713 1.1 fvdl agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
714 1.1 fvdl {
715 1.1 fvdl struct agp_memory *mem;
716 1.1 fvdl
717 1.1 fvdl mem = AGP_ALLOC_MEMORY(sc,
718 1.1 fvdl alloc->type,
719 1.1 fvdl alloc->pg_count << AGP_PAGE_SHIFT);
720 1.1 fvdl if (mem) {
721 1.1 fvdl alloc->key = mem->am_id;
722 1.1 fvdl alloc->physical = mem->am_physical;
723 1.1 fvdl return 0;
724 1.1 fvdl } else {
725 1.1 fvdl return ENOMEM;
726 1.1 fvdl }
727 1.1 fvdl }
728 1.1 fvdl
729 1.1 fvdl static int
730 1.1 fvdl agp_deallocate_user(struct agp_softc *sc, int id)
731 1.1 fvdl {
732 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, id);
733 1.1 fvdl
734 1.1 fvdl if (mem) {
735 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
736 1.1 fvdl return 0;
737 1.1 fvdl } else {
738 1.1 fvdl return ENOENT;
739 1.1 fvdl }
740 1.1 fvdl }
741 1.1 fvdl
742 1.1 fvdl static int
743 1.1 fvdl agp_bind_user(struct agp_softc *sc, agp_bind *bind)
744 1.1 fvdl {
745 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, bind->key);
746 1.1 fvdl
747 1.1 fvdl if (!mem)
748 1.1 fvdl return ENOENT;
749 1.1 fvdl
750 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
751 1.1 fvdl }
752 1.1 fvdl
753 1.1 fvdl static int
754 1.1 fvdl agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
755 1.1 fvdl {
756 1.1 fvdl struct agp_memory *mem = agp_find_memory(sc, unbind->key);
757 1.1 fvdl
758 1.1 fvdl if (!mem)
759 1.1 fvdl return ENOENT;
760 1.1 fvdl
761 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
762 1.1 fvdl }
763 1.1 fvdl
764 1.1 fvdl int
765 1.1 fvdl agpopen(dev_t dev, int oflags, int devtype, struct proc *p)
766 1.1 fvdl {
767 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
768 1.9 thorpej
769 1.9 thorpej if (sc == NULL)
770 1.9 thorpej return ENXIO;
771 1.1 fvdl
772 1.1 fvdl if (sc->as_chipc == NULL)
773 1.1 fvdl return ENXIO;
774 1.1 fvdl
775 1.1 fvdl if (!sc->as_isopen)
776 1.1 fvdl sc->as_isopen = 1;
777 1.1 fvdl else
778 1.1 fvdl return EBUSY;
779 1.1 fvdl
780 1.1 fvdl return 0;
781 1.1 fvdl }
782 1.1 fvdl
783 1.1 fvdl int
784 1.1 fvdl agpclose(dev_t dev, int fflag, int devtype, struct proc *p)
785 1.1 fvdl {
786 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
787 1.1 fvdl
788 1.1 fvdl /*
789 1.1 fvdl * Clear the GATT and force release on last close
790 1.1 fvdl */
791 1.1 fvdl if (sc->as_state == AGP_ACQUIRE_USER)
792 1.1 fvdl agp_release_helper(sc, AGP_ACQUIRE_USER);
793 1.1 fvdl sc->as_isopen = 0;
794 1.1 fvdl
795 1.1 fvdl return 0;
796 1.1 fvdl }
797 1.1 fvdl
798 1.1 fvdl int
799 1.1 fvdl agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
800 1.1 fvdl {
801 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
802 1.1 fvdl
803 1.1 fvdl if (sc == NULL)
804 1.1 fvdl return ENODEV;
805 1.1 fvdl
806 1.1 fvdl if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
807 1.1 fvdl return EPERM;
808 1.1 fvdl
809 1.1 fvdl switch (cmd) {
810 1.1 fvdl case AGPIOC_INFO:
811 1.1 fvdl return agp_info_user(sc, (agp_info *) data);
812 1.1 fvdl
813 1.1 fvdl case AGPIOC_ACQUIRE:
814 1.1 fvdl return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
815 1.1 fvdl
816 1.1 fvdl case AGPIOC_RELEASE:
817 1.1 fvdl return agp_release_helper(sc, AGP_ACQUIRE_USER);
818 1.1 fvdl
819 1.1 fvdl case AGPIOC_SETUP:
820 1.1 fvdl return agp_setup_user(sc, (agp_setup *)data);
821 1.1 fvdl
822 1.1 fvdl case AGPIOC_ALLOCATE:
823 1.1 fvdl return agp_allocate_user(sc, (agp_allocate *)data);
824 1.1 fvdl
825 1.1 fvdl case AGPIOC_DEALLOCATE:
826 1.1 fvdl return agp_deallocate_user(sc, *(int *) data);
827 1.1 fvdl
828 1.1 fvdl case AGPIOC_BIND:
829 1.1 fvdl return agp_bind_user(sc, (agp_bind *)data);
830 1.1 fvdl
831 1.1 fvdl case AGPIOC_UNBIND:
832 1.1 fvdl return agp_unbind_user(sc, (agp_unbind *)data);
833 1.1 fvdl
834 1.1 fvdl }
835 1.1 fvdl
836 1.1 fvdl return EINVAL;
837 1.1 fvdl }
838 1.1 fvdl
839 1.1 fvdl paddr_t
840 1.1 fvdl agpmmap(dev_t dev, off_t offset, int prot)
841 1.1 fvdl {
842 1.1 fvdl struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
843 1.1 fvdl
844 1.1 fvdl if (offset > AGP_GET_APERTURE(sc))
845 1.1 fvdl return -1;
846 1.6 thorpej
847 1.6 thorpej return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
848 1.6 thorpej BUS_SPACE_MAP_LINEAR));
849 1.1 fvdl }
850 1.1 fvdl
851 1.1 fvdl /* Implementation of the kernel api */
852 1.1 fvdl
853 1.1 fvdl void *
854 1.1 fvdl agp_find_device(int unit)
855 1.1 fvdl {
856 1.1 fvdl return device_lookup(&agp_cd, unit);
857 1.1 fvdl }
858 1.1 fvdl
859 1.1 fvdl enum agp_acquire_state
860 1.1 fvdl agp_state(void *devcookie)
861 1.1 fvdl {
862 1.1 fvdl struct agp_softc *sc = devcookie;
863 1.1 fvdl return sc->as_state;
864 1.1 fvdl }
865 1.1 fvdl
866 1.1 fvdl void
867 1.1 fvdl agp_get_info(void *devcookie, struct agp_info *info)
868 1.1 fvdl {
869 1.1 fvdl struct agp_softc *sc = devcookie;
870 1.1 fvdl
871 1.1 fvdl info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
872 1.1 fvdl sc->as_capoff + AGP_STATUS);
873 1.1 fvdl info->ai_aperture_base = sc->as_apaddr;
874 1.1 fvdl info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
875 1.1 fvdl info->ai_aperture_vaddr = bus_space_vaddr(sc->as_apt, sc->as_aph);
876 1.1 fvdl info->ai_memory_allowed = sc->as_maxmem;
877 1.1 fvdl info->ai_memory_used = sc->as_allocated;
878 1.1 fvdl }
879 1.1 fvdl
880 1.1 fvdl int
881 1.1 fvdl agp_acquire(void *dev)
882 1.1 fvdl {
883 1.1 fvdl return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
884 1.1 fvdl }
885 1.1 fvdl
886 1.1 fvdl int
887 1.1 fvdl agp_release(void *dev)
888 1.1 fvdl {
889 1.1 fvdl return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
890 1.1 fvdl }
891 1.1 fvdl
892 1.1 fvdl int
893 1.1 fvdl agp_enable(void *dev, u_int32_t mode)
894 1.1 fvdl {
895 1.1 fvdl struct agp_softc *sc = dev;
896 1.1 fvdl
897 1.1 fvdl return AGP_ENABLE(sc, mode);
898 1.1 fvdl }
899 1.1 fvdl
900 1.1 fvdl void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
901 1.1 fvdl {
902 1.1 fvdl struct agp_softc *sc = dev;
903 1.1 fvdl
904 1.1 fvdl return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
905 1.1 fvdl }
906 1.1 fvdl
907 1.1 fvdl void agp_free_memory(void *dev, void *handle)
908 1.1 fvdl {
909 1.1 fvdl struct agp_softc *sc = dev;
910 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
911 1.1 fvdl AGP_FREE_MEMORY(sc, mem);
912 1.1 fvdl }
913 1.1 fvdl
914 1.1 fvdl int agp_bind_memory(void *dev, void *handle, off_t offset)
915 1.1 fvdl {
916 1.1 fvdl struct agp_softc *sc = dev;
917 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
918 1.1 fvdl
919 1.1 fvdl return AGP_BIND_MEMORY(sc, mem, offset);
920 1.1 fvdl }
921 1.1 fvdl
922 1.1 fvdl int agp_unbind_memory(void *dev, void *handle)
923 1.1 fvdl {
924 1.1 fvdl struct agp_softc *sc = dev;
925 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
926 1.1 fvdl
927 1.1 fvdl return AGP_UNBIND_MEMORY(sc, mem);
928 1.1 fvdl }
929 1.1 fvdl
930 1.1 fvdl void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
931 1.1 fvdl {
932 1.1 fvdl struct agp_memory *mem = (struct agp_memory *) handle;
933 1.1 fvdl
934 1.1 fvdl mi->ami_size = mem->am_size;
935 1.1 fvdl mi->ami_physical = mem->am_physical;
936 1.1 fvdl mi->ami_offset = mem->am_offset;
937 1.1 fvdl mi->ami_is_bound = mem->am_is_bound;
938 1.1 fvdl }
939 1.1 fvdl
940 1.1 fvdl int
941 1.1 fvdl agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
942 1.1 fvdl bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
943 1.1 fvdl bus_dma_segment_t *seg, int nseg, int *rseg)
944 1.1 fvdl
945 1.1 fvdl {
946 1.1 fvdl int error, level = 0;
947 1.1 fvdl
948 1.1 fvdl if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
949 1.1 fvdl seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
950 1.1 fvdl goto out;
951 1.1 fvdl level++;
952 1.1 fvdl
953 1.1 fvdl if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
954 1.1 fvdl BUS_DMA_NOWAIT | flags)) != 0)
955 1.1 fvdl goto out;
956 1.1 fvdl level++;
957 1.1 fvdl
958 1.3 drochner if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
959 1.1 fvdl BUS_DMA_NOWAIT, mapp)) != 0)
960 1.1 fvdl goto out;
961 1.1 fvdl level++;
962 1.1 fvdl
963 1.1 fvdl if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
964 1.1 fvdl BUS_DMA_NOWAIT)) != 0)
965 1.1 fvdl goto out;
966 1.1 fvdl
967 1.1 fvdl *baddr = (*mapp)->dm_segs[0].ds_addr;
968 1.1 fvdl
969 1.1 fvdl return 0;
970 1.1 fvdl out:
971 1.1 fvdl switch (level) {
972 1.1 fvdl case 3:
973 1.1 fvdl bus_dmamap_destroy(tag, *mapp);
974 1.1 fvdl /* FALLTHROUGH */
975 1.1 fvdl case 2:
976 1.1 fvdl bus_dmamem_unmap(tag, *vaddr, size);
977 1.1 fvdl /* FALLTHROUGH */
978 1.1 fvdl case 1:
979 1.1 fvdl bus_dmamem_free(tag, seg, *rseg);
980 1.1 fvdl break;
981 1.1 fvdl default:
982 1.1 fvdl break;
983 1.1 fvdl }
984 1.1 fvdl
985 1.1 fvdl return error;
986 1.1 fvdl }
987 1.1 fvdl
988 1.1 fvdl void
989 1.1 fvdl agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
990 1.1 fvdl caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
991 1.1 fvdl {
992 1.1 fvdl
993 1.1 fvdl bus_dmamap_unload(tag, map);
994 1.1 fvdl bus_dmamap_destroy(tag, map);
995 1.1 fvdl bus_dmamem_unmap(tag, vaddr, size);
996 1.1 fvdl bus_dmamem_free(tag, seg, nseg);
997 1.1 fvdl }
998