agp.c revision 1.17 1 /* $NetBSD: agp.c,v 1.17 2002/09/06 13:18:43 gehenna Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.17 2002/09/06 13:18:43 gehenna Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80
81 #include <uvm/uvm_extern.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/agpvar.h>
86 #include <dev/pci/agpreg.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <machine/bus.h>
90
91 /* Helper functions for implementing chipset mini drivers. */
92 /* XXXfvdl get rid of this one. */
93
94 extern struct cfdriver agp_cd;
95
96 dev_type_open(agpopen);
97 dev_type_close(agpclose);
98 dev_type_ioctl(agpioctl);
99 dev_type_mmap(agpmmap);
100
101 const struct cdevsw agp_cdevsw = {
102 agpopen, agpclose, noread, nowrite, agpioctl,
103 nostop, notty, nopoll, agpmmap,
104 };
105
106 int agpmatch(struct device *, struct cfdata *, void *);
107 void agpattach(struct device *, struct device *, void *);
108
109 struct cfattach agp_ca = {
110 sizeof(struct agp_softc), agpmatch, agpattach
111 };
112
113 static int agp_info_user(struct agp_softc *, agp_info *);
114 static int agp_setup_user(struct agp_softc *, agp_setup *);
115 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
116 static int agp_deallocate_user(struct agp_softc *, int);
117 static int agp_bind_user(struct agp_softc *, agp_bind *);
118 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
119 static int agpdev_match(struct pci_attach_args *);
120
121 #include "agp_ali.h"
122 #include "agp_amd.h"
123 #include "agp_i810.h"
124 #include "agp_intel.h"
125 #include "agp_sis.h"
126 #include "agp_via.h"
127
128 const struct agp_product {
129 uint32_t ap_vendor;
130 uint32_t ap_product;
131 int (*ap_match)(const struct pci_attach_args *);
132 int (*ap_attach)(struct device *, struct device *, void *);
133 } agp_products[] = {
134 #if NAGP_ALI > 0
135 { PCI_VENDOR_ALI, -1,
136 NULL, agp_ali_attach },
137 #endif
138
139 #if NAGP_AMD > 0
140 { PCI_VENDOR_AMD, -1,
141 agp_amd_match, agp_amd_attach },
142 #endif
143
144 #if NAGP_I810 > 0
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 NULL, agp_i810_attach },
155 #if 0
156 /* XXX needs somewhat different driver */
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
158 NULL, agp_i810_attach },
159 #endif
160 #endif
161
162 #if NAGP_INTEL > 0
163 { PCI_VENDOR_INTEL, -1,
164 NULL, agp_intel_attach },
165 #endif
166
167 #if NAGP_SIS > 0
168 { PCI_VENDOR_SIS, -1,
169 NULL, agp_sis_attach },
170 #endif
171
172 #if NAGP_VIA > 0
173 { PCI_VENDOR_VIATECH, -1,
174 NULL, agp_via_attach },
175 #endif
176
177 { 0, 0,
178 NULL, NULL },
179 };
180
181 static const struct agp_product *
182 agp_lookup(const struct pci_attach_args *pa)
183 {
184 const struct agp_product *ap;
185
186 /* First find the vendor. */
187 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
188 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
189 break;
190 }
191
192 if (ap->ap_attach == NULL)
193 return (NULL);
194
195 /* Now find the product within the vendor's domain. */
196 for (; ap->ap_attach != NULL; ap++) {
197 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
198 /* Ran out of this vendor's section of the table. */
199 return (NULL);
200 }
201 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
202 /* Exact match. */
203 break;
204 }
205 if (ap->ap_product == (uint32_t) -1) {
206 /* Wildcard match. */
207 break;
208 }
209 }
210
211 if (ap->ap_attach == NULL)
212 return (NULL);
213
214 /* Now let the product-specific driver filter the match. */
215 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
216 return (NULL);
217
218 return (ap);
219 }
220
221 int
222 agpmatch(struct device *parent, struct cfdata *match, void *aux)
223 {
224 struct agpbus_attach_args *apa = aux;
225 struct pci_attach_args *pa = &apa->apa_pci_args;
226
227 if (strcmp(apa->apa_busname, "agp") != 0)
228 return (0);
229
230 if (agp_lookup(pa) == NULL)
231 return (0);
232
233 return (1);
234 }
235
236 static int agp_max[][2] = {
237 {0, 0},
238 {32, 4},
239 {64, 28},
240 {128, 96},
241 {256, 204},
242 {512, 440},
243 {1024, 942},
244 {2048, 1920},
245 {4096, 3932}
246 };
247 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
248
249 void
250 agpattach(struct device *parent, struct device *self, void *aux)
251 {
252 struct agpbus_attach_args *apa = aux;
253 struct pci_attach_args *pa = &apa->apa_pci_args;
254 struct agp_softc *sc = (void *)self;
255 const struct agp_product *ap;
256 int memsize, i, ret;
257
258 ap = agp_lookup(pa);
259 if (ap == NULL) {
260 printf("\n");
261 panic("agpattach: impossible");
262 }
263
264 sc->as_dmat = pa->pa_dmat;
265 sc->as_pc = pa->pa_pc;
266 sc->as_tag = pa->pa_tag;
267 sc->as_id = pa->pa_id;
268
269 /*
270 * Work out an upper bound for agp memory allocation. This
271 * uses a heurisitc table from the Linux driver.
272 */
273 memsize = ptoa(physmem) >> 20;
274 for (i = 0; i < agp_max_size; i++) {
275 if (memsize <= agp_max[i][0])
276 break;
277 }
278 if (i == agp_max_size)
279 i = agp_max_size - 1;
280 sc->as_maxmem = agp_max[i][1] << 20U;
281
282 /*
283 * The lock is used to prevent re-entry to
284 * agp_generic_bind_memory() since that function can sleep.
285 */
286 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
287
288 TAILQ_INIT(&sc->as_memory);
289
290 ret = (*ap->ap_attach)(parent, self, pa);
291 if (ret == 0)
292 printf(": aperture at 0x%lx, size 0x%lx\n",
293 (unsigned long)sc->as_apaddr,
294 (unsigned long)AGP_GET_APERTURE(sc));
295 else
296 sc->as_chipc = NULL;
297 }
298 int
299 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
300 {
301 /*
302 * Find and the aperture. Don't map it (yet), this would
303 * eat KVA.
304 */
305 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE,
306 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
307 &sc->as_apflags) != 0)
308 return ENXIO;
309
310 sc->as_apt = pa->pa_memt;
311
312 return 0;
313 }
314
315 struct agp_gatt *
316 agp_alloc_gatt(struct agp_softc *sc)
317 {
318 u_int32_t apsize = AGP_GET_APERTURE(sc);
319 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
320 struct agp_gatt *gatt;
321 int dummyseg;
322
323 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
324 if (!gatt)
325 return NULL;
326 gatt->ag_entries = entries;
327
328 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
329 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
330 &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
331 return NULL;
332
333 gatt->ag_size = entries * sizeof(u_int32_t);
334 memset(gatt->ag_virtual, 0, gatt->ag_size);
335 agp_flush_cache();
336
337 return gatt;
338 }
339
340 void
341 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
342 {
343 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
344 (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
345 free(gatt, M_AGP);
346 }
347
348
349 int
350 agp_generic_detach(struct agp_softc *sc)
351 {
352 lockmgr(&sc->as_lock, LK_DRAIN, 0);
353 agp_flush_cache();
354 return 0;
355 }
356
357 static int
358 agpdev_match(struct pci_attach_args *pa)
359 {
360 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
361 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
362 return 1;
363
364 return 0;
365 }
366
367 int
368 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
369 {
370 struct pci_attach_args pa;
371 pcireg_t tstatus, mstatus;
372 pcireg_t command;
373 int rq, sba, fw, rate, capoff;
374
375 if (pci_find_device(&pa, agpdev_match) == 0 ||
376 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
377 &capoff, NULL) == 0) {
378 printf("%s: can't find display\n", sc->as_dev.dv_xname);
379 return ENXIO;
380 }
381
382 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
383 sc->as_capoff + AGP_STATUS);
384 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
385 capoff + AGP_STATUS);
386
387 /* Set RQ to the min of mode, tstatus and mstatus */
388 rq = AGP_MODE_GET_RQ(mode);
389 if (AGP_MODE_GET_RQ(tstatus) < rq)
390 rq = AGP_MODE_GET_RQ(tstatus);
391 if (AGP_MODE_GET_RQ(mstatus) < rq)
392 rq = AGP_MODE_GET_RQ(mstatus);
393
394 /* Set SBA if all three can deal with SBA */
395 sba = (AGP_MODE_GET_SBA(tstatus)
396 & AGP_MODE_GET_SBA(mstatus)
397 & AGP_MODE_GET_SBA(mode));
398
399 /* Similar for FW */
400 fw = (AGP_MODE_GET_FW(tstatus)
401 & AGP_MODE_GET_FW(mstatus)
402 & AGP_MODE_GET_FW(mode));
403
404 /* Figure out the max rate */
405 rate = (AGP_MODE_GET_RATE(tstatus)
406 & AGP_MODE_GET_RATE(mstatus)
407 & AGP_MODE_GET_RATE(mode));
408 if (rate & AGP_MODE_RATE_4x)
409 rate = AGP_MODE_RATE_4x;
410 else if (rate & AGP_MODE_RATE_2x)
411 rate = AGP_MODE_RATE_2x;
412 else
413 rate = AGP_MODE_RATE_1x;
414
415 /* Construct the new mode word and tell the hardware */
416 command = AGP_MODE_SET_RQ(0, rq);
417 command = AGP_MODE_SET_SBA(command, sba);
418 command = AGP_MODE_SET_FW(command, fw);
419 command = AGP_MODE_SET_RATE(command, rate);
420 command = AGP_MODE_SET_AGP(command, 1);
421 pci_conf_write(sc->as_pc, sc->as_tag,
422 sc->as_capoff + AGP_COMMAND, command);
423 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
424
425 return 0;
426 }
427
428 struct agp_memory *
429 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
430 {
431 struct agp_memory *mem;
432
433 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
434 return 0;
435
436 if (sc->as_allocated + size > sc->as_maxmem)
437 return 0;
438
439 if (type != 0) {
440 printf("agp_generic_alloc_memory: unsupported type %d\n",
441 type);
442 return 0;
443 }
444
445 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
446 if (mem == NULL)
447 return NULL;
448
449 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
450 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
451 free(mem, M_AGP);
452 return NULL;
453 }
454
455 mem->am_id = sc->as_nextid++;
456 mem->am_size = size;
457 mem->am_type = 0;
458 mem->am_physical = 0;
459 mem->am_offset = 0;
460 mem->am_is_bound = 0;
461 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
462 sc->as_allocated += size;
463
464 return mem;
465 }
466
467 int
468 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
469 {
470 if (mem->am_is_bound)
471 return EBUSY;
472
473 sc->as_allocated -= mem->am_size;
474 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
475 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
476 free(mem, M_AGP);
477 return 0;
478 }
479
480 int
481 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
482 off_t offset)
483 {
484 off_t i, k;
485 bus_size_t done, j;
486 int error;
487 bus_dma_segment_t *segs, *seg;
488 bus_addr_t pa;
489 int contigpages, nseg;
490
491 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
492
493 if (mem->am_is_bound) {
494 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
495 lockmgr(&sc->as_lock, LK_RELEASE, 0);
496 return EINVAL;
497 }
498
499 if (offset < 0
500 || (offset & (AGP_PAGE_SIZE - 1)) != 0
501 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
502 printf("%s: binding memory at bad offset %#lx\n",
503 sc->as_dev.dv_xname, (unsigned long) offset);
504 lockmgr(&sc->as_lock, LK_RELEASE, 0);
505 return EINVAL;
506 }
507
508 /*
509 * XXXfvdl
510 * The memory here needs to be directly accessable from the
511 * AGP video card, so it should be allocated using bus_dma.
512 * However, it need not be contiguous, since individual pages
513 * are translated using the GATT.
514 *
515 * Using a large chunk of contiguous memory may get in the way
516 * of other subsystems that may need one, so we try to be friendly
517 * and ask for allocation in chunks of a minimum of 8 pages
518 * of contiguous memory on average, falling back to 4, 2 and 1
519 * if really needed. Larger chunks are preferred, since allocating
520 * a bus_dma_segment per page would be overkill.
521 */
522
523 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
524 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
525 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
526 if (segs == NULL) {
527 lockmgr(&sc->as_lock, LK_RELEASE, 0);
528 return ENOMEM;
529 }
530 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
531 segs, nseg, &mem->am_nseg,
532 contigpages > 1 ?
533 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
534 free(segs, M_AGP);
535 continue;
536 }
537 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
538 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
539 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
540 free(segs, M_AGP);
541 continue;
542 }
543 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
544 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
545 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
546 mem->am_size);
547 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
548 free(segs, M_AGP);
549 continue;
550 }
551 mem->am_dmaseg = segs;
552 break;
553 }
554
555 if (contigpages == 0) {
556 lockmgr(&sc->as_lock, LK_RELEASE, 0);
557 return ENOMEM;
558 }
559
560
561 /*
562 * Bind the individual pages and flush the chipset's
563 * TLB.
564 */
565 done = 0;
566 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
567 seg = &mem->am_dmamap->dm_segs[i];
568 /*
569 * Install entries in the GATT, making sure that if
570 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
571 * aligned to PAGE_SIZE, we don't modify too many GATT
572 * entries.
573 */
574 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
575 j += AGP_PAGE_SIZE) {
576 pa = seg->ds_addr + j;
577 AGP_DPF("binding offset %#lx to pa %#lx\n",
578 (unsigned long)(offset + done + j),
579 (unsigned long)pa);
580 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
581 if (error) {
582 /*
583 * Bail out. Reverse all the mappings
584 * and unwire the pages.
585 */
586 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
587 AGP_UNBIND_PAGE(sc, offset + k);
588
589 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
590 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
591 mem->am_size);
592 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
593 mem->am_nseg);
594 free(mem->am_dmaseg, M_AGP);
595 lockmgr(&sc->as_lock, LK_RELEASE, 0);
596 return error;
597 }
598 }
599 done += seg->ds_len;
600 }
601
602 /*
603 * Flush the cpu cache since we are providing a new mapping
604 * for these pages.
605 */
606 agp_flush_cache();
607
608 /*
609 * Make sure the chipset gets the new mappings.
610 */
611 AGP_FLUSH_TLB(sc);
612
613 mem->am_offset = offset;
614 mem->am_is_bound = 1;
615
616 lockmgr(&sc->as_lock, LK_RELEASE, 0);
617
618 return 0;
619 }
620
621 int
622 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
623 {
624 int i;
625
626 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
627
628 if (!mem->am_is_bound) {
629 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
630 lockmgr(&sc->as_lock, LK_RELEASE, 0);
631 return EINVAL;
632 }
633
634
635 /*
636 * Unbind the individual pages and flush the chipset's
637 * TLB. Unwire the pages so they can be swapped.
638 */
639 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
640 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
641
642 agp_flush_cache();
643 AGP_FLUSH_TLB(sc);
644
645 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
646 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
647 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
648
649 free(mem->am_dmaseg, M_AGP);
650
651 mem->am_offset = 0;
652 mem->am_is_bound = 0;
653
654 lockmgr(&sc->as_lock, LK_RELEASE, 0);
655
656 return 0;
657 }
658
659 /* Helper functions for implementing user/kernel api */
660
661 static int
662 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
663 {
664 if (sc->as_state != AGP_ACQUIRE_FREE)
665 return EBUSY;
666 sc->as_state = state;
667
668 return 0;
669 }
670
671 static int
672 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
673 {
674 struct agp_memory *mem;
675
676 if (sc->as_state == AGP_ACQUIRE_FREE)
677 return 0;
678
679 if (sc->as_state != state)
680 return EBUSY;
681
682 /*
683 * Clear out outstanding aperture mappings.
684 * (should not be necessary, done by caller)
685 */
686 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
687 if (mem->am_is_bound) {
688 printf("agp_release_helper: mem %d is bound\n",
689 mem->am_id);
690 AGP_UNBIND_MEMORY(sc, mem);
691 }
692 }
693
694 sc->as_state = AGP_ACQUIRE_FREE;
695 return 0;
696 }
697
698 static struct agp_memory *
699 agp_find_memory(struct agp_softc *sc, int id)
700 {
701 struct agp_memory *mem;
702
703 AGP_DPF("searching for memory block %d\n", id);
704 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
705 AGP_DPF("considering memory block %d\n", mem->am_id);
706 if (mem->am_id == id)
707 return mem;
708 }
709 return 0;
710 }
711
712 /* Implementation of the userland ioctl api */
713
714 static int
715 agp_info_user(struct agp_softc *sc, agp_info *info)
716 {
717 memset(info, 0, sizeof *info);
718 info->bridge_id = sc->as_id;
719 if (sc->as_capoff != 0)
720 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
721 sc->as_capoff + AGP_STATUS);
722 else
723 info->agp_mode = 0; /* i810 doesn't have real AGP */
724 info->aper_base = sc->as_apaddr;
725 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
726 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
727 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
728
729 return 0;
730 }
731
732 static int
733 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
734 {
735 return AGP_ENABLE(sc, setup->agp_mode);
736 }
737
738 static int
739 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
740 {
741 struct agp_memory *mem;
742
743 mem = AGP_ALLOC_MEMORY(sc,
744 alloc->type,
745 alloc->pg_count << AGP_PAGE_SHIFT);
746 if (mem) {
747 alloc->key = mem->am_id;
748 alloc->physical = mem->am_physical;
749 return 0;
750 } else {
751 return ENOMEM;
752 }
753 }
754
755 static int
756 agp_deallocate_user(struct agp_softc *sc, int id)
757 {
758 struct agp_memory *mem = agp_find_memory(sc, id);
759
760 if (mem) {
761 AGP_FREE_MEMORY(sc, mem);
762 return 0;
763 } else {
764 return ENOENT;
765 }
766 }
767
768 static int
769 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
770 {
771 struct agp_memory *mem = agp_find_memory(sc, bind->key);
772
773 if (!mem)
774 return ENOENT;
775
776 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
777 }
778
779 static int
780 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
781 {
782 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
783
784 if (!mem)
785 return ENOENT;
786
787 return AGP_UNBIND_MEMORY(sc, mem);
788 }
789
790 int
791 agpopen(dev_t dev, int oflags, int devtype, struct proc *p)
792 {
793 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
794
795 if (sc == NULL)
796 return ENXIO;
797
798 if (sc->as_chipc == NULL)
799 return ENXIO;
800
801 if (!sc->as_isopen)
802 sc->as_isopen = 1;
803 else
804 return EBUSY;
805
806 return 0;
807 }
808
809 int
810 agpclose(dev_t dev, int fflag, int devtype, struct proc *p)
811 {
812 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
813 struct agp_memory *mem;
814
815 /*
816 * Clear the GATT and force release on last close
817 */
818 if (sc->as_state == AGP_ACQUIRE_USER) {
819 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
820 if (mem->am_is_bound) {
821 printf("agpclose: mem %d is bound\n",
822 mem->am_id);
823 AGP_UNBIND_MEMORY(sc, mem);
824 }
825 /*
826 * XXX it is not documented, but if the protocol allows
827 * allocate->acquire->bind, it would be possible that
828 * memory ranges are allocated by the kernel here,
829 * which we shouldn't free. We'd have to keep track of
830 * the memory range's owner.
831 * The kernel API is unsed yet, so we get away with
832 * freeing all.
833 */
834 AGP_FREE_MEMORY(sc, mem);
835 }
836 agp_release_helper(sc, AGP_ACQUIRE_USER);
837 }
838 sc->as_isopen = 0;
839
840 return 0;
841 }
842
843 int
844 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
845 {
846 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
847
848 if (sc == NULL)
849 return ENODEV;
850
851 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
852 return EPERM;
853
854 switch (cmd) {
855 case AGPIOC_INFO:
856 return agp_info_user(sc, (agp_info *) data);
857
858 case AGPIOC_ACQUIRE:
859 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
860
861 case AGPIOC_RELEASE:
862 return agp_release_helper(sc, AGP_ACQUIRE_USER);
863
864 case AGPIOC_SETUP:
865 return agp_setup_user(sc, (agp_setup *)data);
866
867 case AGPIOC_ALLOCATE:
868 return agp_allocate_user(sc, (agp_allocate *)data);
869
870 case AGPIOC_DEALLOCATE:
871 return agp_deallocate_user(sc, *(int *) data);
872
873 case AGPIOC_BIND:
874 return agp_bind_user(sc, (agp_bind *)data);
875
876 case AGPIOC_UNBIND:
877 return agp_unbind_user(sc, (agp_unbind *)data);
878
879 }
880
881 return EINVAL;
882 }
883
884 paddr_t
885 agpmmap(dev_t dev, off_t offset, int prot)
886 {
887 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
888
889 if (offset > AGP_GET_APERTURE(sc))
890 return -1;
891
892 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
893 BUS_SPACE_MAP_LINEAR));
894 }
895
896 /* Implementation of the kernel api */
897
898 void *
899 agp_find_device(int unit)
900 {
901 return device_lookup(&agp_cd, unit);
902 }
903
904 enum agp_acquire_state
905 agp_state(void *devcookie)
906 {
907 struct agp_softc *sc = devcookie;
908 return sc->as_state;
909 }
910
911 void
912 agp_get_info(void *devcookie, struct agp_info *info)
913 {
914 struct agp_softc *sc = devcookie;
915
916 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
917 sc->as_capoff + AGP_STATUS);
918 info->ai_aperture_base = sc->as_apaddr;
919 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
920 info->ai_memory_allowed = sc->as_maxmem;
921 info->ai_memory_used = sc->as_allocated;
922 }
923
924 int
925 agp_acquire(void *dev)
926 {
927 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
928 }
929
930 int
931 agp_release(void *dev)
932 {
933 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
934 }
935
936 int
937 agp_enable(void *dev, u_int32_t mode)
938 {
939 struct agp_softc *sc = dev;
940
941 return AGP_ENABLE(sc, mode);
942 }
943
944 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
945 {
946 struct agp_softc *sc = dev;
947
948 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
949 }
950
951 void agp_free_memory(void *dev, void *handle)
952 {
953 struct agp_softc *sc = dev;
954 struct agp_memory *mem = (struct agp_memory *) handle;
955 AGP_FREE_MEMORY(sc, mem);
956 }
957
958 int agp_bind_memory(void *dev, void *handle, off_t offset)
959 {
960 struct agp_softc *sc = dev;
961 struct agp_memory *mem = (struct agp_memory *) handle;
962
963 return AGP_BIND_MEMORY(sc, mem, offset);
964 }
965
966 int agp_unbind_memory(void *dev, void *handle)
967 {
968 struct agp_softc *sc = dev;
969 struct agp_memory *mem = (struct agp_memory *) handle;
970
971 return AGP_UNBIND_MEMORY(sc, mem);
972 }
973
974 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
975 {
976 struct agp_memory *mem = (struct agp_memory *) handle;
977
978 mi->ami_size = mem->am_size;
979 mi->ami_physical = mem->am_physical;
980 mi->ami_offset = mem->am_offset;
981 mi->ami_is_bound = mem->am_is_bound;
982 }
983
984 int
985 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
986 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
987 bus_dma_segment_t *seg, int nseg, int *rseg)
988
989 {
990 int error, level = 0;
991
992 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
993 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
994 goto out;
995 level++;
996
997 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
998 BUS_DMA_NOWAIT | flags)) != 0)
999 goto out;
1000 level++;
1001
1002 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1003 BUS_DMA_NOWAIT, mapp)) != 0)
1004 goto out;
1005 level++;
1006
1007 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1008 BUS_DMA_NOWAIT)) != 0)
1009 goto out;
1010
1011 *baddr = (*mapp)->dm_segs[0].ds_addr;
1012
1013 return 0;
1014 out:
1015 switch (level) {
1016 case 3:
1017 bus_dmamap_destroy(tag, *mapp);
1018 /* FALLTHROUGH */
1019 case 2:
1020 bus_dmamem_unmap(tag, *vaddr, size);
1021 /* FALLTHROUGH */
1022 case 1:
1023 bus_dmamem_free(tag, seg, *rseg);
1024 break;
1025 default:
1026 break;
1027 }
1028
1029 return error;
1030 }
1031
1032 void
1033 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1034 caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1035 {
1036
1037 bus_dmamap_unload(tag, map);
1038 bus_dmamap_destroy(tag, map);
1039 bus_dmamem_unmap(tag, vaddr, size);
1040 bus_dmamem_free(tag, seg, nseg);
1041 }
1042