agp.c revision 1.28 1 /* $NetBSD: agp.c,v 1.28 2003/06/29 22:30:23 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.28 2003/06/29 22:30:23 fvdl Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80
81 #include <uvm/uvm_extern.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/agpvar.h>
86 #include <dev/pci/agpreg.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <machine/bus.h>
90
91 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
92
93 /* Helper functions for implementing chipset mini drivers. */
94 /* XXXfvdl get rid of this one. */
95
96 extern struct cfdriver agp_cd;
97
98 dev_type_open(agpopen);
99 dev_type_close(agpclose);
100 dev_type_ioctl(agpioctl);
101 dev_type_mmap(agpmmap);
102
103 const struct cdevsw agp_cdevsw = {
104 agpopen, agpclose, noread, nowrite, agpioctl,
105 nostop, notty, nopoll, agpmmap, nokqfilter,
106 };
107
108 int agpmatch(struct device *, struct cfdata *, void *);
109 void agpattach(struct device *, struct device *, void *);
110
111 CFATTACH_DECL(agp, sizeof(struct agp_softc),
112 agpmatch, agpattach, NULL, NULL);
113
114 static int agp_info_user(struct agp_softc *, agp_info *);
115 static int agp_setup_user(struct agp_softc *, agp_setup *);
116 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
117 static int agp_deallocate_user(struct agp_softc *, int);
118 static int agp_bind_user(struct agp_softc *, agp_bind *);
119 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
120 static int agpdev_match(struct pci_attach_args *);
121
122 #include "agp_ali.h"
123 #include "agp_amd.h"
124 #include "agp_i810.h"
125 #include "agp_intel.h"
126 #include "agp_sis.h"
127 #include "agp_via.h"
128
129 const struct agp_product {
130 uint32_t ap_vendor;
131 uint32_t ap_product;
132 int (*ap_match)(const struct pci_attach_args *);
133 int (*ap_attach)(struct device *, struct device *, void *);
134 } agp_products[] = {
135 #if NAGP_ALI > 0
136 { PCI_VENDOR_ALI, -1,
137 NULL, agp_ali_attach },
138 #endif
139
140 #if NAGP_AMD > 0
141 { PCI_VENDOR_AMD, -1,
142 agp_amd_match, agp_amd_attach },
143 #endif
144
145 #if NAGP_I810 > 0
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
147 NULL, agp_i810_attach },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
149 NULL, agp_i810_attach },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
151 NULL, agp_i810_attach },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
153 NULL, agp_i810_attach },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
155 NULL, agp_i810_attach },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
157 NULL, agp_i810_attach },
158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
159 NULL, agp_i810_attach },
160 #endif
161
162 #if NAGP_INTEL > 0
163 { PCI_VENDOR_INTEL, -1,
164 NULL, agp_intel_attach },
165 #endif
166
167 #if NAGP_SIS > 0
168 { PCI_VENDOR_SIS, -1,
169 NULL, agp_sis_attach },
170 #endif
171
172 #if NAGP_VIA > 0
173 { PCI_VENDOR_VIATECH, -1,
174 NULL, agp_via_attach },
175 #endif
176
177 { 0, 0,
178 NULL, NULL },
179 };
180
181 static const struct agp_product *
182 agp_lookup(const struct pci_attach_args *pa)
183 {
184 const struct agp_product *ap;
185
186 /* First find the vendor. */
187 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
188 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
189 break;
190 }
191
192 if (ap->ap_attach == NULL)
193 return (NULL);
194
195 /* Now find the product within the vendor's domain. */
196 for (; ap->ap_attach != NULL; ap++) {
197 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
198 /* Ran out of this vendor's section of the table. */
199 return (NULL);
200 }
201 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
202 /* Exact match. */
203 break;
204 }
205 if (ap->ap_product == (uint32_t) -1) {
206 /* Wildcard match. */
207 break;
208 }
209 }
210
211 if (ap->ap_attach == NULL)
212 return (NULL);
213
214 /* Now let the product-specific driver filter the match. */
215 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
216 return (NULL);
217
218 return (ap);
219 }
220
221 int
222 agpmatch(struct device *parent, struct cfdata *match, void *aux)
223 {
224 struct agpbus_attach_args *apa = aux;
225 struct pci_attach_args *pa = &apa->apa_pci_args;
226
227 if (strcmp(apa->apa_busname, "agp") != 0)
228 return (0);
229
230 if (agp_lookup(pa) == NULL)
231 return (0);
232
233 return (1);
234 }
235
236 static int agp_max[][2] = {
237 {0, 0},
238 {32, 4},
239 {64, 28},
240 {128, 96},
241 {256, 204},
242 {512, 440},
243 {1024, 942},
244 {2048, 1920},
245 {4096, 3932}
246 };
247 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
248
249 void
250 agpattach(struct device *parent, struct device *self, void *aux)
251 {
252 struct agpbus_attach_args *apa = aux;
253 struct pci_attach_args *pa = &apa->apa_pci_args;
254 struct agp_softc *sc = (void *)self;
255 const struct agp_product *ap;
256 int memsize, i, ret;
257
258 ap = agp_lookup(pa);
259 if (ap == NULL) {
260 printf("\n");
261 panic("agpattach: impossible");
262 }
263
264 aprint_naive(": AGP controller\n");
265
266 sc->as_dmat = pa->pa_dmat;
267 sc->as_pc = pa->pa_pc;
268 sc->as_tag = pa->pa_tag;
269 sc->as_id = pa->pa_id;
270
271 /*
272 * Work out an upper bound for agp memory allocation. This
273 * uses a heurisitc table from the Linux driver.
274 */
275 memsize = ptoa(physmem) >> 20;
276 for (i = 0; i < agp_max_size; i++) {
277 if (memsize <= agp_max[i][0])
278 break;
279 }
280 if (i == agp_max_size)
281 i = agp_max_size - 1;
282 sc->as_maxmem = agp_max[i][1] << 20U;
283
284 /*
285 * The lock is used to prevent re-entry to
286 * agp_generic_bind_memory() since that function can sleep.
287 */
288 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
289
290 TAILQ_INIT(&sc->as_memory);
291
292 ret = (*ap->ap_attach)(parent, self, pa);
293 if (ret == 0)
294 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
295 (unsigned long)sc->as_apaddr,
296 (unsigned long)AGP_GET_APERTURE(sc));
297 else
298 sc->as_chipc = NULL;
299 }
300 int
301 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
302 {
303 /*
304 * Find the aperture. Don't map it (yet), this would
305 * eat KVA.
306 */
307 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE,
308 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
309 &sc->as_apflags) != 0)
310 return ENXIO;
311
312 sc->as_apt = pa->pa_memt;
313
314 return 0;
315 }
316
317 struct agp_gatt *
318 agp_alloc_gatt(struct agp_softc *sc)
319 {
320 u_int32_t apsize = AGP_GET_APERTURE(sc);
321 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
322 struct agp_gatt *gatt;
323 int dummyseg;
324
325 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
326 if (!gatt)
327 return NULL;
328 gatt->ag_entries = entries;
329
330 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
331 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
332 &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
333 return NULL;
334
335 gatt->ag_size = entries * sizeof(u_int32_t);
336 memset(gatt->ag_virtual, 0, gatt->ag_size);
337 agp_flush_cache();
338
339 return gatt;
340 }
341
342 void
343 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
344 {
345 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
346 (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
347 free(gatt, M_AGP);
348 }
349
350
351 int
352 agp_generic_detach(struct agp_softc *sc)
353 {
354 lockmgr(&sc->as_lock, LK_DRAIN, 0);
355 agp_flush_cache();
356 return 0;
357 }
358
359 static int
360 agpdev_match(struct pci_attach_args *pa)
361 {
362 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
363 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
364 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
365 NULL, NULL))
366 return 1;
367
368 return 0;
369 }
370
371 int
372 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
373 {
374 struct pci_attach_args pa;
375 pcireg_t tstatus, mstatus;
376 pcireg_t command;
377 int rq, sba, fw, rate, capoff;
378
379 if (pci_find_device(&pa, agpdev_match) == 0 ||
380 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
381 &capoff, NULL) == 0) {
382 printf("%s: can't find display\n", sc->as_dev.dv_xname);
383 return ENXIO;
384 }
385
386 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
387 sc->as_capoff + AGP_STATUS);
388 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
389 capoff + AGP_STATUS);
390
391 /* Set RQ to the min of mode, tstatus and mstatus */
392 rq = AGP_MODE_GET_RQ(mode);
393 if (AGP_MODE_GET_RQ(tstatus) < rq)
394 rq = AGP_MODE_GET_RQ(tstatus);
395 if (AGP_MODE_GET_RQ(mstatus) < rq)
396 rq = AGP_MODE_GET_RQ(mstatus);
397
398 /* Set SBA if all three can deal with SBA */
399 sba = (AGP_MODE_GET_SBA(tstatus)
400 & AGP_MODE_GET_SBA(mstatus)
401 & AGP_MODE_GET_SBA(mode));
402
403 /* Similar for FW */
404 fw = (AGP_MODE_GET_FW(tstatus)
405 & AGP_MODE_GET_FW(mstatus)
406 & AGP_MODE_GET_FW(mode));
407
408 /* Figure out the max rate */
409 rate = (AGP_MODE_GET_RATE(tstatus)
410 & AGP_MODE_GET_RATE(mstatus)
411 & AGP_MODE_GET_RATE(mode));
412 if (rate & AGP_MODE_RATE_4x)
413 rate = AGP_MODE_RATE_4x;
414 else if (rate & AGP_MODE_RATE_2x)
415 rate = AGP_MODE_RATE_2x;
416 else
417 rate = AGP_MODE_RATE_1x;
418
419 /* Construct the new mode word and tell the hardware */
420 command = AGP_MODE_SET_RQ(0, rq);
421 command = AGP_MODE_SET_SBA(command, sba);
422 command = AGP_MODE_SET_FW(command, fw);
423 command = AGP_MODE_SET_RATE(command, rate);
424 command = AGP_MODE_SET_AGP(command, 1);
425 pci_conf_write(sc->as_pc, sc->as_tag,
426 sc->as_capoff + AGP_COMMAND, command);
427 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
428
429 return 0;
430 }
431
432 struct agp_memory *
433 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
434 {
435 struct agp_memory *mem;
436
437 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
438 return 0;
439
440 if (sc->as_allocated + size > sc->as_maxmem)
441 return 0;
442
443 if (type != 0) {
444 printf("agp_generic_alloc_memory: unsupported type %d\n",
445 type);
446 return 0;
447 }
448
449 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
450 if (mem == NULL)
451 return NULL;
452
453 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
454 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
455 free(mem, M_AGP);
456 return NULL;
457 }
458
459 mem->am_id = sc->as_nextid++;
460 mem->am_size = size;
461 mem->am_type = 0;
462 mem->am_physical = 0;
463 mem->am_offset = 0;
464 mem->am_is_bound = 0;
465 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
466 sc->as_allocated += size;
467
468 return mem;
469 }
470
471 int
472 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
473 {
474 if (mem->am_is_bound)
475 return EBUSY;
476
477 sc->as_allocated -= mem->am_size;
478 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
479 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
480 free(mem, M_AGP);
481 return 0;
482 }
483
484 int
485 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
486 off_t offset)
487 {
488 off_t i, k;
489 bus_size_t done, j;
490 int error;
491 bus_dma_segment_t *segs, *seg;
492 bus_addr_t pa;
493 int contigpages, nseg;
494
495 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
496
497 if (mem->am_is_bound) {
498 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
499 lockmgr(&sc->as_lock, LK_RELEASE, 0);
500 return EINVAL;
501 }
502
503 if (offset < 0
504 || (offset & (AGP_PAGE_SIZE - 1)) != 0
505 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
506 printf("%s: binding memory at bad offset %#lx\n",
507 sc->as_dev.dv_xname, (unsigned long) offset);
508 lockmgr(&sc->as_lock, LK_RELEASE, 0);
509 return EINVAL;
510 }
511
512 /*
513 * XXXfvdl
514 * The memory here needs to be directly accessable from the
515 * AGP video card, so it should be allocated using bus_dma.
516 * However, it need not be contiguous, since individual pages
517 * are translated using the GATT.
518 *
519 * Using a large chunk of contiguous memory may get in the way
520 * of other subsystems that may need one, so we try to be friendly
521 * and ask for allocation in chunks of a minimum of 8 pages
522 * of contiguous memory on average, falling back to 4, 2 and 1
523 * if really needed. Larger chunks are preferred, since allocating
524 * a bus_dma_segment per page would be overkill.
525 */
526
527 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
528 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
529 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
530 if (segs == NULL) {
531 lockmgr(&sc->as_lock, LK_RELEASE, 0);
532 return ENOMEM;
533 }
534 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
535 segs, nseg, &mem->am_nseg,
536 contigpages > 1 ?
537 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
538 free(segs, M_AGP);
539 continue;
540 }
541 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
542 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
543 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
544 free(segs, M_AGP);
545 continue;
546 }
547 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
548 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
549 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
550 mem->am_size);
551 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
552 free(segs, M_AGP);
553 continue;
554 }
555 mem->am_dmaseg = segs;
556 break;
557 }
558
559 if (contigpages == 0) {
560 lockmgr(&sc->as_lock, LK_RELEASE, 0);
561 return ENOMEM;
562 }
563
564
565 /*
566 * Bind the individual pages and flush the chipset's
567 * TLB.
568 */
569 done = 0;
570 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
571 seg = &mem->am_dmamap->dm_segs[i];
572 /*
573 * Install entries in the GATT, making sure that if
574 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
575 * aligned to PAGE_SIZE, we don't modify too many GATT
576 * entries.
577 */
578 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
579 j += AGP_PAGE_SIZE) {
580 pa = seg->ds_addr + j;
581 AGP_DPF("binding offset %#lx to pa %#lx\n",
582 (unsigned long)(offset + done + j),
583 (unsigned long)pa);
584 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
585 if (error) {
586 /*
587 * Bail out. Reverse all the mappings
588 * and unwire the pages.
589 */
590 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
591 AGP_UNBIND_PAGE(sc, offset + k);
592
593 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
594 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
595 mem->am_size);
596 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
597 mem->am_nseg);
598 free(mem->am_dmaseg, M_AGP);
599 lockmgr(&sc->as_lock, LK_RELEASE, 0);
600 return error;
601 }
602 }
603 done += seg->ds_len;
604 }
605
606 /*
607 * Flush the cpu cache since we are providing a new mapping
608 * for these pages.
609 */
610 agp_flush_cache();
611
612 /*
613 * Make sure the chipset gets the new mappings.
614 */
615 AGP_FLUSH_TLB(sc);
616
617 mem->am_offset = offset;
618 mem->am_is_bound = 1;
619
620 lockmgr(&sc->as_lock, LK_RELEASE, 0);
621
622 return 0;
623 }
624
625 int
626 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
627 {
628 int i;
629
630 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
631
632 if (!mem->am_is_bound) {
633 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
634 lockmgr(&sc->as_lock, LK_RELEASE, 0);
635 return EINVAL;
636 }
637
638
639 /*
640 * Unbind the individual pages and flush the chipset's
641 * TLB. Unwire the pages so they can be swapped.
642 */
643 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
644 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
645
646 agp_flush_cache();
647 AGP_FLUSH_TLB(sc);
648
649 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
650 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
651 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
652
653 free(mem->am_dmaseg, M_AGP);
654
655 mem->am_offset = 0;
656 mem->am_is_bound = 0;
657
658 lockmgr(&sc->as_lock, LK_RELEASE, 0);
659
660 return 0;
661 }
662
663 /* Helper functions for implementing user/kernel api */
664
665 static int
666 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
667 {
668 if (sc->as_state != AGP_ACQUIRE_FREE)
669 return EBUSY;
670 sc->as_state = state;
671
672 return 0;
673 }
674
675 static int
676 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
677 {
678 struct agp_memory *mem;
679
680 if (sc->as_state == AGP_ACQUIRE_FREE)
681 return 0;
682
683 if (sc->as_state != state)
684 return EBUSY;
685
686 /*
687 * Clear out outstanding aperture mappings.
688 * (should not be necessary, done by caller)
689 */
690 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
691 if (mem->am_is_bound) {
692 printf("agp_release_helper: mem %d is bound\n",
693 mem->am_id);
694 AGP_UNBIND_MEMORY(sc, mem);
695 }
696 }
697
698 sc->as_state = AGP_ACQUIRE_FREE;
699 return 0;
700 }
701
702 static struct agp_memory *
703 agp_find_memory(struct agp_softc *sc, int id)
704 {
705 struct agp_memory *mem;
706
707 AGP_DPF("searching for memory block %d\n", id);
708 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
709 AGP_DPF("considering memory block %d\n", mem->am_id);
710 if (mem->am_id == id)
711 return mem;
712 }
713 return 0;
714 }
715
716 /* Implementation of the userland ioctl api */
717
718 static int
719 agp_info_user(struct agp_softc *sc, agp_info *info)
720 {
721 memset(info, 0, sizeof *info);
722 info->bridge_id = sc->as_id;
723 if (sc->as_capoff != 0)
724 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
725 sc->as_capoff + AGP_STATUS);
726 else
727 info->agp_mode = 0; /* i810 doesn't have real AGP */
728 info->aper_base = sc->as_apaddr;
729 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
730 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
731 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
732
733 return 0;
734 }
735
736 static int
737 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
738 {
739 return AGP_ENABLE(sc, setup->agp_mode);
740 }
741
742 static int
743 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
744 {
745 struct agp_memory *mem;
746
747 mem = AGP_ALLOC_MEMORY(sc,
748 alloc->type,
749 alloc->pg_count << AGP_PAGE_SHIFT);
750 if (mem) {
751 alloc->key = mem->am_id;
752 alloc->physical = mem->am_physical;
753 return 0;
754 } else {
755 return ENOMEM;
756 }
757 }
758
759 static int
760 agp_deallocate_user(struct agp_softc *sc, int id)
761 {
762 struct agp_memory *mem = agp_find_memory(sc, id);
763
764 if (mem) {
765 AGP_FREE_MEMORY(sc, mem);
766 return 0;
767 } else {
768 return ENOENT;
769 }
770 }
771
772 static int
773 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
774 {
775 struct agp_memory *mem = agp_find_memory(sc, bind->key);
776
777 if (!mem)
778 return ENOENT;
779
780 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
781 }
782
783 static int
784 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
785 {
786 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
787
788 if (!mem)
789 return ENOENT;
790
791 return AGP_UNBIND_MEMORY(sc, mem);
792 }
793
794 int
795 agpopen(dev_t dev, int oflags, int devtype, struct proc *p)
796 {
797 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
798
799 if (sc == NULL)
800 return ENXIO;
801
802 if (sc->as_chipc == NULL)
803 return ENXIO;
804
805 if (!sc->as_isopen)
806 sc->as_isopen = 1;
807 else
808 return EBUSY;
809
810 return 0;
811 }
812
813 int
814 agpclose(dev_t dev, int fflag, int devtype, struct proc *p)
815 {
816 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
817 struct agp_memory *mem;
818
819 /*
820 * Clear the GATT and force release on last close
821 */
822 if (sc->as_state == AGP_ACQUIRE_USER) {
823 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
824 if (mem->am_is_bound) {
825 printf("agpclose: mem %d is bound\n",
826 mem->am_id);
827 AGP_UNBIND_MEMORY(sc, mem);
828 }
829 /*
830 * XXX it is not documented, but if the protocol allows
831 * allocate->acquire->bind, it would be possible that
832 * memory ranges are allocated by the kernel here,
833 * which we shouldn't free. We'd have to keep track of
834 * the memory range's owner.
835 * The kernel API is unsed yet, so we get away with
836 * freeing all.
837 */
838 AGP_FREE_MEMORY(sc, mem);
839 }
840 agp_release_helper(sc, AGP_ACQUIRE_USER);
841 }
842 sc->as_isopen = 0;
843
844 return 0;
845 }
846
847 int
848 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
849 {
850 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
851
852 if (sc == NULL)
853 return ENODEV;
854
855 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
856 return EPERM;
857
858 switch (cmd) {
859 case AGPIOC_INFO:
860 return agp_info_user(sc, (agp_info *) data);
861
862 case AGPIOC_ACQUIRE:
863 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
864
865 case AGPIOC_RELEASE:
866 return agp_release_helper(sc, AGP_ACQUIRE_USER);
867
868 case AGPIOC_SETUP:
869 return agp_setup_user(sc, (agp_setup *)data);
870
871 case AGPIOC_ALLOCATE:
872 return agp_allocate_user(sc, (agp_allocate *)data);
873
874 case AGPIOC_DEALLOCATE:
875 return agp_deallocate_user(sc, *(int *) data);
876
877 case AGPIOC_BIND:
878 return agp_bind_user(sc, (agp_bind *)data);
879
880 case AGPIOC_UNBIND:
881 return agp_unbind_user(sc, (agp_unbind *)data);
882
883 }
884
885 return EINVAL;
886 }
887
888 paddr_t
889 agpmmap(dev_t dev, off_t offset, int prot)
890 {
891 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
892
893 if (offset > AGP_GET_APERTURE(sc))
894 return -1;
895
896 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
897 BUS_SPACE_MAP_LINEAR));
898 }
899
900 /* Implementation of the kernel api */
901
902 void *
903 agp_find_device(int unit)
904 {
905 return device_lookup(&agp_cd, unit);
906 }
907
908 enum agp_acquire_state
909 agp_state(void *devcookie)
910 {
911 struct agp_softc *sc = devcookie;
912 return sc->as_state;
913 }
914
915 void
916 agp_get_info(void *devcookie, struct agp_info *info)
917 {
918 struct agp_softc *sc = devcookie;
919
920 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
921 sc->as_capoff + AGP_STATUS);
922 info->ai_aperture_base = sc->as_apaddr;
923 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
924 info->ai_memory_allowed = sc->as_maxmem;
925 info->ai_memory_used = sc->as_allocated;
926 }
927
928 int
929 agp_acquire(void *dev)
930 {
931 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
932 }
933
934 int
935 agp_release(void *dev)
936 {
937 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
938 }
939
940 int
941 agp_enable(void *dev, u_int32_t mode)
942 {
943 struct agp_softc *sc = dev;
944
945 return AGP_ENABLE(sc, mode);
946 }
947
948 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
949 {
950 struct agp_softc *sc = dev;
951
952 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
953 }
954
955 void agp_free_memory(void *dev, void *handle)
956 {
957 struct agp_softc *sc = dev;
958 struct agp_memory *mem = (struct agp_memory *) handle;
959 AGP_FREE_MEMORY(sc, mem);
960 }
961
962 int agp_bind_memory(void *dev, void *handle, off_t offset)
963 {
964 struct agp_softc *sc = dev;
965 struct agp_memory *mem = (struct agp_memory *) handle;
966
967 return AGP_BIND_MEMORY(sc, mem, offset);
968 }
969
970 int agp_unbind_memory(void *dev, void *handle)
971 {
972 struct agp_softc *sc = dev;
973 struct agp_memory *mem = (struct agp_memory *) handle;
974
975 return AGP_UNBIND_MEMORY(sc, mem);
976 }
977
978 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
979 {
980 struct agp_memory *mem = (struct agp_memory *) handle;
981
982 mi->ami_size = mem->am_size;
983 mi->ami_physical = mem->am_physical;
984 mi->ami_offset = mem->am_offset;
985 mi->ami_is_bound = mem->am_is_bound;
986 }
987
988 int
989 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
990 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
991 bus_dma_segment_t *seg, int nseg, int *rseg)
992
993 {
994 int error, level = 0;
995
996 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
997 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
998 goto out;
999 level++;
1000
1001 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1002 BUS_DMA_NOWAIT | flags)) != 0)
1003 goto out;
1004 level++;
1005
1006 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1007 BUS_DMA_NOWAIT, mapp)) != 0)
1008 goto out;
1009 level++;
1010
1011 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1012 BUS_DMA_NOWAIT)) != 0)
1013 goto out;
1014
1015 *baddr = (*mapp)->dm_segs[0].ds_addr;
1016
1017 return 0;
1018 out:
1019 switch (level) {
1020 case 3:
1021 bus_dmamap_destroy(tag, *mapp);
1022 /* FALLTHROUGH */
1023 case 2:
1024 bus_dmamem_unmap(tag, *vaddr, size);
1025 /* FALLTHROUGH */
1026 case 1:
1027 bus_dmamem_free(tag, seg, *rseg);
1028 break;
1029 default:
1030 break;
1031 }
1032
1033 return error;
1034 }
1035
1036 void
1037 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1038 caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1039 {
1040
1041 bus_dmamap_unload(tag, map);
1042 bus_dmamap_destroy(tag, map);
1043 bus_dmamem_unmap(tag, vaddr, size);
1044 bus_dmamem_free(tag, seg, nseg);
1045 }
1046