agp.c revision 1.46.14.2 1 /* $NetBSD: agp.c,v 1.46.14.2 2007/08/06 19:49:34 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.46.14.2 2007/08/06 19:49:34 jmcneill Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <machine/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106
107 #include "agp_ali.h"
108 #include "agp_amd.h"
109 #include "agp_i810.h"
110 #include "agp_intel.h"
111 #include "agp_sis.h"
112 #include "agp_via.h"
113 #include "agp_amd64.h"
114
115 const struct agp_product {
116 uint32_t ap_vendor;
117 uint32_t ap_product;
118 int (*ap_match)(const struct pci_attach_args *);
119 int (*ap_attach)(struct device *, struct device *, void *);
120 } agp_products[] = {
121 #if NAGP_ALI > 0
122 { PCI_VENDOR_ALI, -1,
123 NULL, agp_ali_attach },
124 #endif
125
126 #if NAGP_AMD > 0
127 { PCI_VENDOR_AMD, -1,
128 agp_amd_match, agp_amd_attach },
129 #endif
130
131 #if NAGP_I810 > 0
132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
133 NULL, agp_i810_attach },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
135 NULL, agp_i810_attach },
136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
137 NULL, agp_i810_attach },
138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
139 NULL, agp_i810_attach },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
141 NULL, agp_i810_attach },
142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
143 NULL, agp_i810_attach },
144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
145 NULL, agp_i810_attach },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
147 NULL, agp_i810_attach },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
149 NULL, agp_i810_attach },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
151 NULL, agp_i810_attach },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
153 NULL, agp_i810_attach },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
155 NULL, agp_i810_attach },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
157 NULL, agp_i810_attach },
158 #endif
159
160 #if NAGP_INTEL > 0
161 { PCI_VENDOR_INTEL, -1,
162 NULL, agp_intel_attach },
163 #endif
164
165 #if NAGP_SIS > 0
166 { PCI_VENDOR_SIS, -1,
167 NULL, agp_sis_attach },
168 #endif
169
170 #if NAGP_VIA > 0
171 { PCI_VENDOR_VIATECH, -1,
172 NULL, agp_via_attach },
173 #endif
174
175 #if NAGP_AMD64 > 0
176 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
177 agp_amd64_match, agp_amd64_attach },
178 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
179 agp_amd64_match, agp_amd64_attach },
180 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
181 agp_amd64_match, agp_amd64_attach },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
183 agp_amd64_match, agp_amd64_attach },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
185 agp_amd64_match, agp_amd64_attach },
186 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
187 agp_amd64_match, agp_amd64_attach },
188 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
189 agp_amd64_match, agp_amd64_attach },
190 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
191 agp_amd64_match, agp_amd64_attach },
192 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
193 agp_amd64_match, agp_amd64_attach },
194 #endif
195
196 { 0, 0,
197 NULL, NULL },
198 };
199
200 static const struct agp_product *
201 agp_lookup(const struct pci_attach_args *pa)
202 {
203 const struct agp_product *ap;
204
205 /* First find the vendor. */
206 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
207 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
208 break;
209 }
210
211 if (ap->ap_attach == NULL)
212 return (NULL);
213
214 /* Now find the product within the vendor's domain. */
215 for (; ap->ap_attach != NULL; ap++) {
216 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
217 /* Ran out of this vendor's section of the table. */
218 return (NULL);
219 }
220 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
221 /* Exact match. */
222 break;
223 }
224 if (ap->ap_product == (uint32_t) -1) {
225 /* Wildcard match. */
226 break;
227 }
228 }
229
230 if (ap->ap_attach == NULL)
231 return (NULL);
232
233 /* Now let the product-specific driver filter the match. */
234 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
235 return (NULL);
236
237 return (ap);
238 }
239
240 static int
241 agpmatch(struct device *parent, struct cfdata *match,
242 void *aux)
243 {
244 struct agpbus_attach_args *apa = aux;
245 struct pci_attach_args *pa = &apa->apa_pci_args;
246
247 if (agp_lookup(pa) == NULL)
248 return (0);
249
250 return (1);
251 }
252
253 static const int agp_max[][2] = {
254 {0, 0},
255 {32, 4},
256 {64, 28},
257 {128, 96},
258 {256, 204},
259 {512, 440},
260 {1024, 942},
261 {2048, 1920},
262 {4096, 3932}
263 };
264 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
265
266 static void
267 agpattach(struct device *parent, struct device *self, void *aux)
268 {
269 struct agpbus_attach_args *apa = aux;
270 struct pci_attach_args *pa = &apa->apa_pci_args;
271 struct agp_softc *sc = (void *)self;
272 pnp_device_t *pnp;
273 const struct agp_product *ap;
274 int memsize, i, ret;
275
276 ap = agp_lookup(pa);
277 if (ap == NULL) {
278 printf("\n");
279 panic("agpattach: impossible");
280 }
281
282 aprint_naive(": AGP controller\n");
283
284 sc->as_dmat = pa->pa_dmat;
285 sc->as_pc = pa->pa_pc;
286 sc->as_tag = pa->pa_tag;
287 sc->as_id = pa->pa_id;
288
289 /*
290 * Work out an upper bound for agp memory allocation. This
291 * uses a heurisitc table from the Linux driver.
292 */
293 memsize = ptoa(physmem) >> 20;
294 for (i = 0; i < agp_max_size; i++) {
295 if (memsize <= agp_max[i][0])
296 break;
297 }
298 if (i == agp_max_size)
299 i = agp_max_size - 1;
300 sc->as_maxmem = agp_max[i][1] << 20U;
301
302 /*
303 * The mutex is used to prevent re-entry to
304 * agp_generic_bind_memory() since that function can sleep.
305 */
306 mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
307
308 TAILQ_INIT(&sc->as_memory);
309
310 ret = (*ap->ap_attach)(parent, self, pa);
311 if (ret == 0)
312 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
313 (unsigned long)sc->as_apaddr,
314 (unsigned long)AGP_GET_APERTURE(sc));
315 else
316 sc->as_chipc = NULL;
317
318 pnp = device_pnp(self);
319 if (pnp->pnp_power == NULL)
320 if (pnp_register(self, agp_power) != PNP_STATUS_SUCCESS)
321 aprint_error("%s: couldn't establish power handler\n",
322 device_xname(self));
323 }
324
325 CFATTACH_DECL(agp, sizeof(struct agp_softc),
326 agpmatch, agpattach, NULL, NULL);
327
328 int
329 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
330 {
331 /*
332 * Find the aperture. Don't map it (yet), this would
333 * eat KVA.
334 */
335 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
336 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
337 &sc->as_apflags) != 0)
338 return ENXIO;
339
340 sc->as_apt = pa->pa_memt;
341
342 return 0;
343 }
344
345 struct agp_gatt *
346 agp_alloc_gatt(struct agp_softc *sc)
347 {
348 u_int32_t apsize = AGP_GET_APERTURE(sc);
349 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
350 struct agp_gatt *gatt;
351 void *virtual;
352 int dummyseg;
353
354 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
355 if (!gatt)
356 return NULL;
357 gatt->ag_entries = entries;
358
359 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
360 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
361 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
362 return NULL;
363 gatt->ag_virtual = (uint32_t *)virtual;
364
365 gatt->ag_size = entries * sizeof(u_int32_t);
366 memset(gatt->ag_virtual, 0, gatt->ag_size);
367 agp_flush_cache();
368
369 return gatt;
370 }
371
372 void
373 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
374 {
375 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
376 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
377 free(gatt, M_AGP);
378 }
379
380
381 int
382 agp_generic_detach(struct agp_softc *sc)
383 {
384 mutex_destroy(&sc->as_mtx);
385 agp_flush_cache();
386 return 0;
387 }
388
389 static int
390 agpdev_match(struct pci_attach_args *pa)
391 {
392 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
393 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
394 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
395 NULL, NULL))
396 return 1;
397
398 return 0;
399 }
400
401 int
402 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
403 {
404 struct pci_attach_args pa;
405 pcireg_t tstatus, mstatus;
406 pcireg_t command;
407 int rq, sba, fw, rate, capoff;
408
409 if (pci_find_device(&pa, agpdev_match) == 0 ||
410 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
411 &capoff, NULL) == 0) {
412 printf("%s: can't find display\n", sc->as_dev.dv_xname);
413 return ENXIO;
414 }
415
416 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
417 sc->as_capoff + AGP_STATUS);
418 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
419 capoff + AGP_STATUS);
420
421 /* Set RQ to the min of mode, tstatus and mstatus */
422 rq = AGP_MODE_GET_RQ(mode);
423 if (AGP_MODE_GET_RQ(tstatus) < rq)
424 rq = AGP_MODE_GET_RQ(tstatus);
425 if (AGP_MODE_GET_RQ(mstatus) < rq)
426 rq = AGP_MODE_GET_RQ(mstatus);
427
428 /* Set SBA if all three can deal with SBA */
429 sba = (AGP_MODE_GET_SBA(tstatus)
430 & AGP_MODE_GET_SBA(mstatus)
431 & AGP_MODE_GET_SBA(mode));
432
433 /* Similar for FW */
434 fw = (AGP_MODE_GET_FW(tstatus)
435 & AGP_MODE_GET_FW(mstatus)
436 & AGP_MODE_GET_FW(mode));
437
438 /* Figure out the max rate */
439 rate = (AGP_MODE_GET_RATE(tstatus)
440 & AGP_MODE_GET_RATE(mstatus)
441 & AGP_MODE_GET_RATE(mode));
442 if (rate & AGP_MODE_RATE_4x)
443 rate = AGP_MODE_RATE_4x;
444 else if (rate & AGP_MODE_RATE_2x)
445 rate = AGP_MODE_RATE_2x;
446 else
447 rate = AGP_MODE_RATE_1x;
448
449 /* Construct the new mode word and tell the hardware */
450 command = AGP_MODE_SET_RQ(0, rq);
451 command = AGP_MODE_SET_SBA(command, sba);
452 command = AGP_MODE_SET_FW(command, fw);
453 command = AGP_MODE_SET_RATE(command, rate);
454 command = AGP_MODE_SET_AGP(command, 1);
455 pci_conf_write(sc->as_pc, sc->as_tag,
456 sc->as_capoff + AGP_COMMAND, command);
457 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
458
459 return 0;
460 }
461
462 struct agp_memory *
463 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
464 {
465 struct agp_memory *mem;
466
467 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
468 return 0;
469
470 if (sc->as_allocated + size > sc->as_maxmem)
471 return 0;
472
473 if (type != 0) {
474 printf("agp_generic_alloc_memory: unsupported type %d\n",
475 type);
476 return 0;
477 }
478
479 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
480 if (mem == NULL)
481 return NULL;
482
483 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
484 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
485 free(mem, M_AGP);
486 return NULL;
487 }
488
489 mem->am_id = sc->as_nextid++;
490 mem->am_size = size;
491 mem->am_type = 0;
492 mem->am_physical = 0;
493 mem->am_offset = 0;
494 mem->am_is_bound = 0;
495 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
496 sc->as_allocated += size;
497
498 return mem;
499 }
500
501 int
502 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
503 {
504 if (mem->am_is_bound)
505 return EBUSY;
506
507 sc->as_allocated -= mem->am_size;
508 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
509 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
510 free(mem, M_AGP);
511 return 0;
512 }
513
514 int
515 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
516 off_t offset)
517 {
518 off_t i, k;
519 bus_size_t done, j;
520 int error;
521 bus_dma_segment_t *segs, *seg;
522 bus_addr_t pa;
523 int contigpages, nseg;
524
525 mutex_enter(&sc->as_mtx);
526
527 if (mem->am_is_bound) {
528 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
529 mutex_exit(&sc->as_mtx);
530 return EINVAL;
531 }
532
533 if (offset < 0
534 || (offset & (AGP_PAGE_SIZE - 1)) != 0
535 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
536 printf("%s: binding memory at bad offset %#lx\n",
537 sc->as_dev.dv_xname, (unsigned long) offset);
538 mutex_exit(&sc->as_mtx);
539 return EINVAL;
540 }
541
542 /*
543 * XXXfvdl
544 * The memory here needs to be directly accessable from the
545 * AGP video card, so it should be allocated using bus_dma.
546 * However, it need not be contiguous, since individual pages
547 * are translated using the GATT.
548 *
549 * Using a large chunk of contiguous memory may get in the way
550 * of other subsystems that may need one, so we try to be friendly
551 * and ask for allocation in chunks of a minimum of 8 pages
552 * of contiguous memory on average, falling back to 4, 2 and 1
553 * if really needed. Larger chunks are preferred, since allocating
554 * a bus_dma_segment per page would be overkill.
555 */
556
557 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
558 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
559 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
560 if (segs == NULL) {
561 mutex_exit(&sc->as_mtx);
562 return ENOMEM;
563 }
564 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
565 segs, nseg, &mem->am_nseg,
566 contigpages > 1 ?
567 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
568 free(segs, M_AGP);
569 continue;
570 }
571 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
572 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
573 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
574 free(segs, M_AGP);
575 continue;
576 }
577 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
578 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
579 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
580 mem->am_size);
581 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
582 free(segs, M_AGP);
583 continue;
584 }
585 mem->am_dmaseg = segs;
586 break;
587 }
588
589 if (contigpages == 0) {
590 mutex_exit(&sc->as_mtx);
591 return ENOMEM;
592 }
593
594
595 /*
596 * Bind the individual pages and flush the chipset's
597 * TLB.
598 */
599 done = 0;
600 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
601 seg = &mem->am_dmamap->dm_segs[i];
602 /*
603 * Install entries in the GATT, making sure that if
604 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
605 * aligned to PAGE_SIZE, we don't modify too many GATT
606 * entries.
607 */
608 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
609 j += AGP_PAGE_SIZE) {
610 pa = seg->ds_addr + j;
611 AGP_DPF(("binding offset %#lx to pa %#lx\n",
612 (unsigned long)(offset + done + j),
613 (unsigned long)pa));
614 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
615 if (error) {
616 /*
617 * Bail out. Reverse all the mappings
618 * and unwire the pages.
619 */
620 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
621 AGP_UNBIND_PAGE(sc, offset + k);
622
623 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
624 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
625 mem->am_size);
626 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
627 mem->am_nseg);
628 free(mem->am_dmaseg, M_AGP);
629 mutex_exit(&sc->as_mtx);
630 return error;
631 }
632 }
633 done += seg->ds_len;
634 }
635
636 /*
637 * Flush the CPU cache since we are providing a new mapping
638 * for these pages.
639 */
640 agp_flush_cache();
641
642 /*
643 * Make sure the chipset gets the new mappings.
644 */
645 AGP_FLUSH_TLB(sc);
646
647 mem->am_offset = offset;
648 mem->am_is_bound = 1;
649
650 mutex_exit(&sc->as_mtx);
651
652 return 0;
653 }
654
655 int
656 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
657 {
658 int i;
659
660 mutex_enter(&sc->as_mtx);
661
662 if (!mem->am_is_bound) {
663 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
664 mutex_exit(&sc->as_mtx);
665 return EINVAL;
666 }
667
668
669 /*
670 * Unbind the individual pages and flush the chipset's
671 * TLB. Unwire the pages so they can be swapped.
672 */
673 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
674 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
675
676 agp_flush_cache();
677 AGP_FLUSH_TLB(sc);
678
679 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
680 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
681 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
682
683 free(mem->am_dmaseg, M_AGP);
684
685 mem->am_offset = 0;
686 mem->am_is_bound = 0;
687
688 mutex_exit(&sc->as_mtx);
689
690 return 0;
691 }
692
693 /* Helper functions for implementing user/kernel api */
694
695 static int
696 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
697 {
698 if (sc->as_state != AGP_ACQUIRE_FREE)
699 return EBUSY;
700 sc->as_state = state;
701
702 return 0;
703 }
704
705 static int
706 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
707 {
708
709 if (sc->as_state == AGP_ACQUIRE_FREE)
710 return 0;
711
712 if (sc->as_state != state)
713 return EBUSY;
714
715 sc->as_state = AGP_ACQUIRE_FREE;
716 return 0;
717 }
718
719 static struct agp_memory *
720 agp_find_memory(struct agp_softc *sc, int id)
721 {
722 struct agp_memory *mem;
723
724 AGP_DPF(("searching for memory block %d\n", id));
725 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
726 AGP_DPF(("considering memory block %d\n", mem->am_id));
727 if (mem->am_id == id)
728 return mem;
729 }
730 return 0;
731 }
732
733 /* Implementation of the userland ioctl api */
734
735 static int
736 agp_info_user(struct agp_softc *sc, agp_info *info)
737 {
738 memset(info, 0, sizeof *info);
739 info->bridge_id = sc->as_id;
740 if (sc->as_capoff != 0)
741 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
742 sc->as_capoff + AGP_STATUS);
743 else
744 info->agp_mode = 0; /* i810 doesn't have real AGP */
745 info->aper_base = sc->as_apaddr;
746 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
747 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
748 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
749
750 return 0;
751 }
752
753 static int
754 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
755 {
756 return AGP_ENABLE(sc, setup->agp_mode);
757 }
758
759 static int
760 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
761 {
762 struct agp_memory *mem;
763
764 mem = AGP_ALLOC_MEMORY(sc,
765 alloc->type,
766 alloc->pg_count << AGP_PAGE_SHIFT);
767 if (mem) {
768 alloc->key = mem->am_id;
769 alloc->physical = mem->am_physical;
770 return 0;
771 } else {
772 return ENOMEM;
773 }
774 }
775
776 static int
777 agp_deallocate_user(struct agp_softc *sc, int id)
778 {
779 struct agp_memory *mem = agp_find_memory(sc, id);
780
781 if (mem) {
782 AGP_FREE_MEMORY(sc, mem);
783 return 0;
784 } else {
785 return ENOENT;
786 }
787 }
788
789 static int
790 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
791 {
792 struct agp_memory *mem = agp_find_memory(sc, bind->key);
793
794 if (!mem)
795 return ENOENT;
796
797 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
798 }
799
800 static int
801 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
802 {
803 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
804
805 if (!mem)
806 return ENOENT;
807
808 return AGP_UNBIND_MEMORY(sc, mem);
809 }
810
811 static int
812 agpopen(dev_t dev, int oflags, int devtype,
813 struct lwp *l)
814 {
815 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
816
817 if (sc == NULL)
818 return ENXIO;
819
820 if (sc->as_chipc == NULL)
821 return ENXIO;
822
823 if (!sc->as_isopen)
824 sc->as_isopen = 1;
825 else
826 return EBUSY;
827
828 return 0;
829 }
830
831 static int
832 agpclose(dev_t dev, int fflag, int devtype,
833 struct lwp *l)
834 {
835 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
836 struct agp_memory *mem;
837
838 /*
839 * Clear the GATT and force release on last close
840 */
841 if (sc->as_state == AGP_ACQUIRE_USER) {
842 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
843 if (mem->am_is_bound) {
844 printf("agpclose: mem %d is bound\n",
845 mem->am_id);
846 AGP_UNBIND_MEMORY(sc, mem);
847 }
848 /*
849 * XXX it is not documented, but if the protocol allows
850 * allocate->acquire->bind, it would be possible that
851 * memory ranges are allocated by the kernel here,
852 * which we shouldn't free. We'd have to keep track of
853 * the memory range's owner.
854 * The kernel API is unsed yet, so we get away with
855 * freeing all.
856 */
857 AGP_FREE_MEMORY(sc, mem);
858 }
859 agp_release_helper(sc, AGP_ACQUIRE_USER);
860 }
861 sc->as_isopen = 0;
862
863 return 0;
864 }
865
866 static int
867 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
868 {
869 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
870
871 if (sc == NULL)
872 return ENODEV;
873
874 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
875 return EPERM;
876
877 switch (cmd) {
878 case AGPIOC_INFO:
879 return agp_info_user(sc, (agp_info *) data);
880
881 case AGPIOC_ACQUIRE:
882 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
883
884 case AGPIOC_RELEASE:
885 return agp_release_helper(sc, AGP_ACQUIRE_USER);
886
887 case AGPIOC_SETUP:
888 return agp_setup_user(sc, (agp_setup *)data);
889
890 case AGPIOC_ALLOCATE:
891 return agp_allocate_user(sc, (agp_allocate *)data);
892
893 case AGPIOC_DEALLOCATE:
894 return agp_deallocate_user(sc, *(int *) data);
895
896 case AGPIOC_BIND:
897 return agp_bind_user(sc, (agp_bind *)data);
898
899 case AGPIOC_UNBIND:
900 return agp_unbind_user(sc, (agp_unbind *)data);
901
902 }
903
904 return EINVAL;
905 }
906
907 static paddr_t
908 agpmmap(dev_t dev, off_t offset, int prot)
909 {
910 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
911
912 if (offset > AGP_GET_APERTURE(sc))
913 return -1;
914
915 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
916 BUS_SPACE_MAP_LINEAR));
917 }
918
919 const struct cdevsw agp_cdevsw = {
920 agpopen, agpclose, noread, nowrite, agpioctl,
921 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
922 };
923
924 /* Implementation of the kernel api */
925
926 void *
927 agp_find_device(int unit)
928 {
929 return device_lookup(&agp_cd, unit);
930 }
931
932 enum agp_acquire_state
933 agp_state(void *devcookie)
934 {
935 struct agp_softc *sc = devcookie;
936 return sc->as_state;
937 }
938
939 void
940 agp_get_info(void *devcookie, struct agp_info *info)
941 {
942 struct agp_softc *sc = devcookie;
943
944 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
945 sc->as_capoff + AGP_STATUS);
946 info->ai_aperture_base = sc->as_apaddr;
947 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
948 info->ai_memory_allowed = sc->as_maxmem;
949 info->ai_memory_used = sc->as_allocated;
950 }
951
952 int
953 agp_acquire(void *dev)
954 {
955 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
956 }
957
958 int
959 agp_release(void *dev)
960 {
961 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
962 }
963
964 int
965 agp_enable(void *dev, u_int32_t mode)
966 {
967 struct agp_softc *sc = dev;
968
969 return AGP_ENABLE(sc, mode);
970 }
971
972 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
973 {
974 struct agp_softc *sc = dev;
975
976 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
977 }
978
979 void agp_free_memory(void *dev, void *handle)
980 {
981 struct agp_softc *sc = dev;
982 struct agp_memory *mem = (struct agp_memory *) handle;
983 AGP_FREE_MEMORY(sc, mem);
984 }
985
986 int agp_bind_memory(void *dev, void *handle, off_t offset)
987 {
988 struct agp_softc *sc = dev;
989 struct agp_memory *mem = (struct agp_memory *) handle;
990
991 return AGP_BIND_MEMORY(sc, mem, offset);
992 }
993
994 int agp_unbind_memory(void *dev, void *handle)
995 {
996 struct agp_softc *sc = dev;
997 struct agp_memory *mem = (struct agp_memory *) handle;
998
999 return AGP_UNBIND_MEMORY(sc, mem);
1000 }
1001
1002 void agp_memory_info(void *dev, void *handle,
1003 struct agp_memory_info *mi)
1004 {
1005 struct agp_memory *mem = (struct agp_memory *) handle;
1006
1007 mi->ami_size = mem->am_size;
1008 mi->ami_physical = mem->am_physical;
1009 mi->ami_offset = mem->am_offset;
1010 mi->ami_is_bound = mem->am_is_bound;
1011 }
1012
1013 int
1014 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1015 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1016 bus_dma_segment_t *seg, int nseg, int *rseg)
1017
1018 {
1019 int error, level = 0;
1020
1021 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1022 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1023 goto out;
1024 level++;
1025
1026 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1027 BUS_DMA_NOWAIT | flags)) != 0)
1028 goto out;
1029 level++;
1030
1031 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1032 BUS_DMA_NOWAIT, mapp)) != 0)
1033 goto out;
1034 level++;
1035
1036 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1037 BUS_DMA_NOWAIT)) != 0)
1038 goto out;
1039
1040 *baddr = (*mapp)->dm_segs[0].ds_addr;
1041
1042 return 0;
1043 out:
1044 switch (level) {
1045 case 3:
1046 bus_dmamap_destroy(tag, *mapp);
1047 /* FALLTHROUGH */
1048 case 2:
1049 bus_dmamem_unmap(tag, *vaddr, size);
1050 /* FALLTHROUGH */
1051 case 1:
1052 bus_dmamem_free(tag, seg, *rseg);
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 return error;
1059 }
1060
1061 void
1062 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1063 void *vaddr, bus_dma_segment_t *seg, int nseg)
1064 {
1065
1066 bus_dmamap_unload(tag, map);
1067 bus_dmamap_destroy(tag, map);
1068 bus_dmamem_unmap(tag, vaddr, size);
1069 bus_dmamem_free(tag, seg, nseg);
1070 }
1071
1072 pnp_status_t
1073 agp_power(device_t dv, pnp_request_t req, void *opaque)
1074 {
1075 struct agp_softc *as = (struct agp_softc *)dv;
1076 pnp_capabilities_t *pcaps;
1077 pnp_state_t *pstate;
1078 pcireg_t val;
1079 int off;
1080
1081 switch (req) {
1082 case PNP_REQUEST_GET_CAPABILITIES:
1083 pcaps = opaque;
1084
1085 pci_get_capability(as->as_pc, as->as_tag, PCI_CAP_PWRMGMT,
1086 &off, &val);
1087 pcaps->state = pci_pnp_capabilities(val);
1088 pcaps->state |= PNP_STATE_D0 | PNP_STATE_D3;
1089 break;
1090
1091 case PNP_REQUEST_GET_STATE:
1092 pstate = opaque;
1093 if (pci_get_powerstate(as->as_pc, as->as_tag, &val) != 0)
1094 *pstate = PNP_STATE_D0;
1095 else
1096 *pstate = pci_pnp_powerstate(val);
1097 break;
1098
1099 case PNP_REQUEST_SET_STATE:
1100 pstate = opaque;
1101 switch (*pstate) {
1102 case PNP_STATE_D0:
1103 val = PCI_PMCSR_STATE_D0;
1104 break;
1105 case PNP_STATE_D3:
1106 val = PCI_PMCSR_STATE_D3;
1107 pci_conf_capture(as->as_pc, as->as_tag,
1108 &as->as_pciconf);
1109 break;
1110 default:
1111 return PNP_STATUS_UNSUPPORTED;
1112 }
1113
1114 (void)pci_set_powerstate(as->as_pc, as->as_tag, val);
1115 if (*pstate != PNP_STATE_D0)
1116 break;
1117
1118 pci_conf_restore(as->as_pc, as->as_tag,
1119 &as->as_pciconf);
1120 agp_flush_cache();
1121 break;
1122
1123 default:
1124 return PNP_STATUS_UNSUPPORTED;
1125 }
1126
1127 return PNP_STATUS_SUCCESS;
1128 }
1129