Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.46.14.4
      1 /*	$NetBSD: agp.c,v 1.46.14.4 2007/08/27 03:15:51 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.46.14.4 2007/08/27 03:15:51 jmcneill Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <machine/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 
    107 #include "agp_ali.h"
    108 #include "agp_amd.h"
    109 #include "agp_i810.h"
    110 #include "agp_intel.h"
    111 #include "agp_sis.h"
    112 #include "agp_via.h"
    113 #include "agp_amd64.h"
    114 
    115 const struct agp_product {
    116 	uint32_t	ap_vendor;
    117 	uint32_t	ap_product;
    118 	int		(*ap_match)(const struct pci_attach_args *);
    119 	int		(*ap_attach)(struct device *, struct device *, void *);
    120 } agp_products[] = {
    121 #if NAGP_ALI > 0
    122 	{ PCI_VENDOR_ALI,	-1,
    123 	  NULL,			agp_ali_attach },
    124 #endif
    125 
    126 #if NAGP_AMD > 0
    127 	{ PCI_VENDOR_AMD,	-1,
    128 	  agp_amd_match,	agp_amd_attach },
    129 #endif
    130 
    131 #if NAGP_I810 > 0
    132 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    133 	  NULL,			agp_i810_attach },
    134 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    135 	  NULL,			agp_i810_attach },
    136 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    137 	  NULL,			agp_i810_attach },
    138 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    139 	  NULL,			agp_i810_attach },
    140 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    141 	  NULL,			agp_i810_attach },
    142 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    143 	  NULL,			agp_i810_attach },
    144 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    145 	  NULL,			agp_i810_attach },
    146 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    147 	  NULL,			agp_i810_attach },
    148 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    149 	  NULL,			agp_i810_attach },
    150 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    151 	  NULL,			agp_i810_attach },
    152 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    153 	  NULL,			agp_i810_attach },
    154 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    155 	  NULL,			agp_i810_attach },
    156 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    157 	  NULL,			agp_i810_attach },
    158 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    159 	  NULL,			agp_i810_attach },
    160 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    161 	  NULL,			agp_i810_attach },
    162 #endif
    163 
    164 #if NAGP_INTEL > 0
    165 	{ PCI_VENDOR_INTEL,	-1,
    166 	  NULL,			agp_intel_attach },
    167 #endif
    168 
    169 #if NAGP_SIS > 0
    170 	{ PCI_VENDOR_SIS,	-1,
    171 	  NULL,			agp_sis_attach },
    172 #endif
    173 
    174 #if NAGP_VIA > 0
    175 	{ PCI_VENDOR_VIATECH,	-1,
    176 	  NULL,			agp_via_attach },
    177 #endif
    178 
    179 #if NAGP_AMD64 > 0
    180 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    181 	  agp_amd64_match,	agp_amd64_attach },
    182 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    183 	  agp_amd64_match,	agp_amd64_attach },
    184 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    185 	  agp_amd64_match,	agp_amd64_attach },
    186 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    187 	  agp_amd64_match,	agp_amd64_attach },
    188 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    189 	  agp_amd64_match,	agp_amd64_attach },
    190 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    191 	  agp_amd64_match,	agp_amd64_attach },
    192 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    193 	  agp_amd64_match,	agp_amd64_attach },
    194 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    195 	  agp_amd64_match,	agp_amd64_attach },
    196 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    197 	  agp_amd64_match,	agp_amd64_attach },
    198 #endif
    199 
    200 	{ 0,			0,
    201 	  NULL,			NULL },
    202 };
    203 
    204 static const struct agp_product *
    205 agp_lookup(const struct pci_attach_args *pa)
    206 {
    207 	const struct agp_product *ap;
    208 
    209 	/* First find the vendor. */
    210 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    211 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    212 			break;
    213 	}
    214 
    215 	if (ap->ap_attach == NULL)
    216 		return (NULL);
    217 
    218 	/* Now find the product within the vendor's domain. */
    219 	for (; ap->ap_attach != NULL; ap++) {
    220 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    221 			/* Ran out of this vendor's section of the table. */
    222 			return (NULL);
    223 		}
    224 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    225 			/* Exact match. */
    226 			break;
    227 		}
    228 		if (ap->ap_product == (uint32_t) -1) {
    229 			/* Wildcard match. */
    230 			break;
    231 		}
    232 	}
    233 
    234 	if (ap->ap_attach == NULL)
    235 		return (NULL);
    236 
    237 	/* Now let the product-specific driver filter the match. */
    238 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    239 		return (NULL);
    240 
    241 	return (ap);
    242 }
    243 
    244 static int
    245 agpmatch(struct device *parent, struct cfdata *match,
    246     void *aux)
    247 {
    248 	struct agpbus_attach_args *apa = aux;
    249 	struct pci_attach_args *pa = &apa->apa_pci_args;
    250 
    251 	if (agp_lookup(pa) == NULL)
    252 		return (0);
    253 
    254 	return (1);
    255 }
    256 
    257 static const int agp_max[][2] = {
    258 	{0,	0},
    259 	{32,	4},
    260 	{64,	28},
    261 	{128,	96},
    262 	{256,	204},
    263 	{512,	440},
    264 	{1024,	942},
    265 	{2048,	1920},
    266 	{4096,	3932}
    267 };
    268 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    269 
    270 static void
    271 agpattach(struct device *parent, struct device *self, void *aux)
    272 {
    273 	struct agpbus_attach_args *apa = aux;
    274 	struct pci_attach_args *pa = &apa->apa_pci_args;
    275 	struct agp_softc *sc = (void *)self;
    276 	pnp_device_t *pnp;
    277 	const struct agp_product *ap;
    278 	int memsize, i, ret;
    279 
    280 	ap = agp_lookup(pa);
    281 	if (ap == NULL) {
    282 		printf("\n");
    283 		panic("agpattach: impossible");
    284 	}
    285 
    286 	aprint_naive(": AGP controller\n");
    287 
    288 	sc->as_dmat = pa->pa_dmat;
    289 	sc->as_pc = pa->pa_pc;
    290 	sc->as_tag = pa->pa_tag;
    291 	sc->as_id = pa->pa_id;
    292 
    293 	/*
    294 	 * Work out an upper bound for agp memory allocation. This
    295 	 * uses a heurisitc table from the Linux driver.
    296 	 */
    297 	memsize = ptoa(physmem) >> 20;
    298 	for (i = 0; i < agp_max_size; i++) {
    299 		if (memsize <= agp_max[i][0])
    300 			break;
    301 	}
    302 	if (i == agp_max_size)
    303 		i = agp_max_size - 1;
    304 	sc->as_maxmem = agp_max[i][1] << 20U;
    305 
    306 	/*
    307 	 * The mutex is used to prevent re-entry to
    308 	 * agp_generic_bind_memory() since that function can sleep.
    309 	 */
    310 	mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
    311 
    312 	TAILQ_INIT(&sc->as_memory);
    313 
    314 	ret = (*ap->ap_attach)(parent, self, pa);
    315 	if (ret == 0)
    316 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    317 		    (unsigned long)sc->as_apaddr,
    318 		    (unsigned long)AGP_GET_APERTURE(sc));
    319 	else
    320 		sc->as_chipc = NULL;
    321 
    322 	pnp = device_pnp(self);
    323 	if (pnp->pnp_power == NULL)
    324 		if (pnp_register(self, agp_power) != PNP_STATUS_SUCCESS)
    325 			aprint_error("%s: couldn't establish power handler\n",
    326 			    device_xname(self));
    327 }
    328 
    329 CFATTACH_DECL(agp, sizeof(struct agp_softc),
    330     agpmatch, agpattach, NULL, NULL);
    331 
    332 int
    333 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    334 {
    335 	/*
    336 	 * Find the aperture. Don't map it (yet), this would
    337 	 * eat KVA.
    338 	 */
    339 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    340 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    341 	    &sc->as_apflags) != 0)
    342 		return ENXIO;
    343 
    344 	sc->as_apt = pa->pa_memt;
    345 
    346 	return 0;
    347 }
    348 
    349 struct agp_gatt *
    350 agp_alloc_gatt(struct agp_softc *sc)
    351 {
    352 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    353 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    354 	struct agp_gatt *gatt;
    355 	void *virtual;
    356 	int dummyseg;
    357 
    358 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    359 	if (!gatt)
    360 		return NULL;
    361 	gatt->ag_entries = entries;
    362 
    363 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    364 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    365 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    366 		return NULL;
    367 	gatt->ag_virtual = (uint32_t *)virtual;
    368 
    369 	gatt->ag_size = entries * sizeof(u_int32_t);
    370 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    371 	agp_flush_cache();
    372 
    373 	return gatt;
    374 }
    375 
    376 void
    377 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    378 {
    379 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    380 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    381 	free(gatt, M_AGP);
    382 }
    383 
    384 
    385 int
    386 agp_generic_detach(struct agp_softc *sc)
    387 {
    388 	mutex_destroy(&sc->as_mtx);
    389 	agp_flush_cache();
    390 	return 0;
    391 }
    392 
    393 static int
    394 agpdev_match(struct pci_attach_args *pa)
    395 {
    396 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    397 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    398 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    399 		    NULL, NULL))
    400 		return 1;
    401 
    402 	return 0;
    403 }
    404 
    405 int
    406 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    407 {
    408 	struct pci_attach_args pa;
    409 	pcireg_t tstatus, mstatus;
    410 	pcireg_t command;
    411 	int rq, sba, fw, rate, capoff;
    412 
    413 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    414 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    415 	     &capoff, NULL) == 0) {
    416 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    417 		return ENXIO;
    418 	}
    419 
    420 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    421 	    sc->as_capoff + AGP_STATUS);
    422 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    423 	    capoff + AGP_STATUS);
    424 
    425 	/* Set RQ to the min of mode, tstatus and mstatus */
    426 	rq = AGP_MODE_GET_RQ(mode);
    427 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    428 		rq = AGP_MODE_GET_RQ(tstatus);
    429 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    430 		rq = AGP_MODE_GET_RQ(mstatus);
    431 
    432 	/* Set SBA if all three can deal with SBA */
    433 	sba = (AGP_MODE_GET_SBA(tstatus)
    434 	       & AGP_MODE_GET_SBA(mstatus)
    435 	       & AGP_MODE_GET_SBA(mode));
    436 
    437 	/* Similar for FW */
    438 	fw = (AGP_MODE_GET_FW(tstatus)
    439 	       & AGP_MODE_GET_FW(mstatus)
    440 	       & AGP_MODE_GET_FW(mode));
    441 
    442 	/* Figure out the max rate */
    443 	rate = (AGP_MODE_GET_RATE(tstatus)
    444 		& AGP_MODE_GET_RATE(mstatus)
    445 		& AGP_MODE_GET_RATE(mode));
    446 	if (rate & AGP_MODE_RATE_4x)
    447 		rate = AGP_MODE_RATE_4x;
    448 	else if (rate & AGP_MODE_RATE_2x)
    449 		rate = AGP_MODE_RATE_2x;
    450 	else
    451 		rate = AGP_MODE_RATE_1x;
    452 
    453 	/* Construct the new mode word and tell the hardware */
    454 	command = AGP_MODE_SET_RQ(0, rq);
    455 	command = AGP_MODE_SET_SBA(command, sba);
    456 	command = AGP_MODE_SET_FW(command, fw);
    457 	command = AGP_MODE_SET_RATE(command, rate);
    458 	command = AGP_MODE_SET_AGP(command, 1);
    459 	pci_conf_write(sc->as_pc, sc->as_tag,
    460 	    sc->as_capoff + AGP_COMMAND, command);
    461 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    462 
    463 	return 0;
    464 }
    465 
    466 struct agp_memory *
    467 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    468 {
    469 	struct agp_memory *mem;
    470 
    471 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    472 		return 0;
    473 
    474 	if (sc->as_allocated + size > sc->as_maxmem)
    475 		return 0;
    476 
    477 	if (type != 0) {
    478 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    479 		       type);
    480 		return 0;
    481 	}
    482 
    483 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    484 	if (mem == NULL)
    485 		return NULL;
    486 
    487 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    488 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    489 		free(mem, M_AGP);
    490 		return NULL;
    491 	}
    492 
    493 	mem->am_id = sc->as_nextid++;
    494 	mem->am_size = size;
    495 	mem->am_type = 0;
    496 	mem->am_physical = 0;
    497 	mem->am_offset = 0;
    498 	mem->am_is_bound = 0;
    499 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    500 	sc->as_allocated += size;
    501 
    502 	return mem;
    503 }
    504 
    505 int
    506 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    507 {
    508 	if (mem->am_is_bound)
    509 		return EBUSY;
    510 
    511 	sc->as_allocated -= mem->am_size;
    512 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    513 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    514 	free(mem, M_AGP);
    515 	return 0;
    516 }
    517 
    518 int
    519 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    520 			off_t offset)
    521 {
    522 	off_t i, k;
    523 	bus_size_t done, j;
    524 	int error;
    525 	bus_dma_segment_t *segs, *seg;
    526 	bus_addr_t pa;
    527 	int contigpages, nseg;
    528 
    529 	mutex_enter(&sc->as_mtx);
    530 
    531 	if (mem->am_is_bound) {
    532 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    533 		mutex_exit(&sc->as_mtx);
    534 		return EINVAL;
    535 	}
    536 
    537 	if (offset < 0
    538 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    539 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    540 		printf("%s: binding memory at bad offset %#lx\n",
    541 			      sc->as_dev.dv_xname, (unsigned long) offset);
    542 		mutex_exit(&sc->as_mtx);
    543 		return EINVAL;
    544 	}
    545 
    546 	/*
    547 	 * XXXfvdl
    548 	 * The memory here needs to be directly accessable from the
    549 	 * AGP video card, so it should be allocated using bus_dma.
    550 	 * However, it need not be contiguous, since individual pages
    551 	 * are translated using the GATT.
    552 	 *
    553 	 * Using a large chunk of contiguous memory may get in the way
    554 	 * of other subsystems that may need one, so we try to be friendly
    555 	 * and ask for allocation in chunks of a minimum of 8 pages
    556 	 * of contiguous memory on average, falling back to 4, 2 and 1
    557 	 * if really needed. Larger chunks are preferred, since allocating
    558 	 * a bus_dma_segment per page would be overkill.
    559 	 */
    560 
    561 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    562 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    563 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    564 		if (segs == NULL) {
    565 			mutex_exit(&sc->as_mtx);
    566 			return ENOMEM;
    567 		}
    568 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    569 				     segs, nseg, &mem->am_nseg,
    570 				     contigpages > 1 ?
    571 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    572 			free(segs, M_AGP);
    573 			continue;
    574 		}
    575 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    576 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    577 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    578 			free(segs, M_AGP);
    579 			continue;
    580 		}
    581 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    582 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    583 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    584 			    mem->am_size);
    585 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    586 			free(segs, M_AGP);
    587 			continue;
    588 		}
    589 		mem->am_dmaseg = segs;
    590 		break;
    591 	}
    592 
    593 	if (contigpages == 0) {
    594 		mutex_exit(&sc->as_mtx);
    595 		return ENOMEM;
    596 	}
    597 
    598 
    599 	/*
    600 	 * Bind the individual pages and flush the chipset's
    601 	 * TLB.
    602 	 */
    603 	done = 0;
    604 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    605 		seg = &mem->am_dmamap->dm_segs[i];
    606 		/*
    607 		 * Install entries in the GATT, making sure that if
    608 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    609 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    610 		 * entries.
    611 		 */
    612 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    613 		     j += AGP_PAGE_SIZE) {
    614 			pa = seg->ds_addr + j;
    615 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    616 				(unsigned long)(offset + done + j),
    617 				(unsigned long)pa));
    618 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    619 			if (error) {
    620 				/*
    621 				 * Bail out. Reverse all the mappings
    622 				 * and unwire the pages.
    623 				 */
    624 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    625 					AGP_UNBIND_PAGE(sc, offset + k);
    626 
    627 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    628 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    629 						 mem->am_size);
    630 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    631 						mem->am_nseg);
    632 				free(mem->am_dmaseg, M_AGP);
    633 				mutex_exit(&sc->as_mtx);
    634 				return error;
    635 			}
    636 		}
    637 		done += seg->ds_len;
    638 	}
    639 
    640 	/*
    641 	 * Flush the CPU cache since we are providing a new mapping
    642 	 * for these pages.
    643 	 */
    644 	agp_flush_cache();
    645 
    646 	/*
    647 	 * Make sure the chipset gets the new mappings.
    648 	 */
    649 	AGP_FLUSH_TLB(sc);
    650 
    651 	mem->am_offset = offset;
    652 	mem->am_is_bound = 1;
    653 
    654 	mutex_exit(&sc->as_mtx);
    655 
    656 	return 0;
    657 }
    658 
    659 int
    660 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    661 {
    662 	int i;
    663 
    664 	mutex_enter(&sc->as_mtx);
    665 
    666 	if (!mem->am_is_bound) {
    667 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    668 		mutex_exit(&sc->as_mtx);
    669 		return EINVAL;
    670 	}
    671 
    672 
    673 	/*
    674 	 * Unbind the individual pages and flush the chipset's
    675 	 * TLB. Unwire the pages so they can be swapped.
    676 	 */
    677 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    678 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    679 
    680 	agp_flush_cache();
    681 	AGP_FLUSH_TLB(sc);
    682 
    683 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    684 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    685 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    686 
    687 	free(mem->am_dmaseg, M_AGP);
    688 
    689 	mem->am_offset = 0;
    690 	mem->am_is_bound = 0;
    691 
    692 	mutex_exit(&sc->as_mtx);
    693 
    694 	return 0;
    695 }
    696 
    697 /* Helper functions for implementing user/kernel api */
    698 
    699 static int
    700 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    701 {
    702 	if (sc->as_state != AGP_ACQUIRE_FREE)
    703 		return EBUSY;
    704 	sc->as_state = state;
    705 
    706 	return 0;
    707 }
    708 
    709 static int
    710 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    711 {
    712 
    713 	if (sc->as_state == AGP_ACQUIRE_FREE)
    714 		return 0;
    715 
    716 	if (sc->as_state != state)
    717 		return EBUSY;
    718 
    719 	sc->as_state = AGP_ACQUIRE_FREE;
    720 	return 0;
    721 }
    722 
    723 static struct agp_memory *
    724 agp_find_memory(struct agp_softc *sc, int id)
    725 {
    726 	struct agp_memory *mem;
    727 
    728 	AGP_DPF(("searching for memory block %d\n", id));
    729 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    730 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    731 		if (mem->am_id == id)
    732 			return mem;
    733 	}
    734 	return 0;
    735 }
    736 
    737 /* Implementation of the userland ioctl api */
    738 
    739 static int
    740 agp_info_user(struct agp_softc *sc, agp_info *info)
    741 {
    742 	memset(info, 0, sizeof *info);
    743 	info->bridge_id = sc->as_id;
    744 	if (sc->as_capoff != 0)
    745 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    746 					       sc->as_capoff + AGP_STATUS);
    747 	else
    748 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    749 	info->aper_base = sc->as_apaddr;
    750 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    751 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    752 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    753 
    754 	return 0;
    755 }
    756 
    757 static int
    758 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    759 {
    760 	return AGP_ENABLE(sc, setup->agp_mode);
    761 }
    762 
    763 static int
    764 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    765 {
    766 	struct agp_memory *mem;
    767 
    768 	mem = AGP_ALLOC_MEMORY(sc,
    769 			       alloc->type,
    770 			       alloc->pg_count << AGP_PAGE_SHIFT);
    771 	if (mem) {
    772 		alloc->key = mem->am_id;
    773 		alloc->physical = mem->am_physical;
    774 		return 0;
    775 	} else {
    776 		return ENOMEM;
    777 	}
    778 }
    779 
    780 static int
    781 agp_deallocate_user(struct agp_softc *sc, int id)
    782 {
    783 	struct agp_memory *mem = agp_find_memory(sc, id);
    784 
    785 	if (mem) {
    786 		AGP_FREE_MEMORY(sc, mem);
    787 		return 0;
    788 	} else {
    789 		return ENOENT;
    790 	}
    791 }
    792 
    793 static int
    794 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    795 {
    796 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    797 
    798 	if (!mem)
    799 		return ENOENT;
    800 
    801 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    802 }
    803 
    804 static int
    805 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    806 {
    807 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    808 
    809 	if (!mem)
    810 		return ENOENT;
    811 
    812 	return AGP_UNBIND_MEMORY(sc, mem);
    813 }
    814 
    815 static int
    816 agpopen(dev_t dev, int oflags, int devtype,
    817     struct lwp *l)
    818 {
    819 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    820 
    821 	if (sc == NULL)
    822 		return ENXIO;
    823 
    824 	if (sc->as_chipc == NULL)
    825 		return ENXIO;
    826 
    827 	if (!sc->as_isopen)
    828 		sc->as_isopen = 1;
    829 	else
    830 		return EBUSY;
    831 
    832 	return 0;
    833 }
    834 
    835 static int
    836 agpclose(dev_t dev, int fflag, int devtype,
    837     struct lwp *l)
    838 {
    839 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    840 	struct agp_memory *mem;
    841 
    842 	/*
    843 	 * Clear the GATT and force release on last close
    844 	 */
    845 	if (sc->as_state == AGP_ACQUIRE_USER) {
    846 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    847 			if (mem->am_is_bound) {
    848 				printf("agpclose: mem %d is bound\n",
    849 				       mem->am_id);
    850 				AGP_UNBIND_MEMORY(sc, mem);
    851 			}
    852 			/*
    853 			 * XXX it is not documented, but if the protocol allows
    854 			 * allocate->acquire->bind, it would be possible that
    855 			 * memory ranges are allocated by the kernel here,
    856 			 * which we shouldn't free. We'd have to keep track of
    857 			 * the memory range's owner.
    858 			 * The kernel API is unsed yet, so we get away with
    859 			 * freeing all.
    860 			 */
    861 			AGP_FREE_MEMORY(sc, mem);
    862 		}
    863 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    864 	}
    865 	sc->as_isopen = 0;
    866 
    867 	return 0;
    868 }
    869 
    870 static int
    871 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    872 {
    873 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    874 
    875 	if (sc == NULL)
    876 		return ENODEV;
    877 
    878 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    879 		return EPERM;
    880 
    881 	switch (cmd) {
    882 	case AGPIOC_INFO:
    883 		return agp_info_user(sc, (agp_info *) data);
    884 
    885 	case AGPIOC_ACQUIRE:
    886 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    887 
    888 	case AGPIOC_RELEASE:
    889 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    890 
    891 	case AGPIOC_SETUP:
    892 		return agp_setup_user(sc, (agp_setup *)data);
    893 
    894 	case AGPIOC_ALLOCATE:
    895 		return agp_allocate_user(sc, (agp_allocate *)data);
    896 
    897 	case AGPIOC_DEALLOCATE:
    898 		return agp_deallocate_user(sc, *(int *) data);
    899 
    900 	case AGPIOC_BIND:
    901 		return agp_bind_user(sc, (agp_bind *)data);
    902 
    903 	case AGPIOC_UNBIND:
    904 		return agp_unbind_user(sc, (agp_unbind *)data);
    905 
    906 	}
    907 
    908 	return EINVAL;
    909 }
    910 
    911 static paddr_t
    912 agpmmap(dev_t dev, off_t offset, int prot)
    913 {
    914 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    915 
    916 	if (offset > AGP_GET_APERTURE(sc))
    917 		return -1;
    918 
    919 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    920 	    BUS_SPACE_MAP_LINEAR));
    921 }
    922 
    923 const struct cdevsw agp_cdevsw = {
    924 	agpopen, agpclose, noread, nowrite, agpioctl,
    925 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    926 };
    927 
    928 /* Implementation of the kernel api */
    929 
    930 void *
    931 agp_find_device(int unit)
    932 {
    933 	return device_lookup(&agp_cd, unit);
    934 }
    935 
    936 enum agp_acquire_state
    937 agp_state(void *devcookie)
    938 {
    939 	struct agp_softc *sc = devcookie;
    940 	return sc->as_state;
    941 }
    942 
    943 void
    944 agp_get_info(void *devcookie, struct agp_info *info)
    945 {
    946 	struct agp_softc *sc = devcookie;
    947 
    948 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    949 	    sc->as_capoff + AGP_STATUS);
    950 	info->ai_aperture_base = sc->as_apaddr;
    951 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    952 	info->ai_memory_allowed = sc->as_maxmem;
    953 	info->ai_memory_used = sc->as_allocated;
    954 }
    955 
    956 int
    957 agp_acquire(void *dev)
    958 {
    959 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    960 }
    961 
    962 int
    963 agp_release(void *dev)
    964 {
    965 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    966 }
    967 
    968 int
    969 agp_enable(void *dev, u_int32_t mode)
    970 {
    971 	struct agp_softc *sc = dev;
    972 
    973 	return AGP_ENABLE(sc, mode);
    974 }
    975 
    976 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    977 {
    978 	struct agp_softc *sc = dev;
    979 
    980 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    981 }
    982 
    983 void agp_free_memory(void *dev, void *handle)
    984 {
    985 	struct agp_softc *sc = dev;
    986 	struct agp_memory *mem = (struct agp_memory *) handle;
    987 	AGP_FREE_MEMORY(sc, mem);
    988 }
    989 
    990 int agp_bind_memory(void *dev, void *handle, off_t offset)
    991 {
    992 	struct agp_softc *sc = dev;
    993 	struct agp_memory *mem = (struct agp_memory *) handle;
    994 
    995 	return AGP_BIND_MEMORY(sc, mem, offset);
    996 }
    997 
    998 int agp_unbind_memory(void *dev, void *handle)
    999 {
   1000 	struct agp_softc *sc = dev;
   1001 	struct agp_memory *mem = (struct agp_memory *) handle;
   1002 
   1003 	return AGP_UNBIND_MEMORY(sc, mem);
   1004 }
   1005 
   1006 void agp_memory_info(void *dev, void *handle,
   1007     struct agp_memory_info *mi)
   1008 {
   1009 	struct agp_memory *mem = (struct agp_memory *) handle;
   1010 
   1011 	mi->ami_size = mem->am_size;
   1012 	mi->ami_physical = mem->am_physical;
   1013 	mi->ami_offset = mem->am_offset;
   1014 	mi->ami_is_bound = mem->am_is_bound;
   1015 }
   1016 
   1017 int
   1018 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1019 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1020 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1021 
   1022 {
   1023 	int error, level = 0;
   1024 
   1025 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1026 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1027 		goto out;
   1028 	level++;
   1029 
   1030 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1031 			BUS_DMA_NOWAIT | flags)) != 0)
   1032 		goto out;
   1033 	level++;
   1034 
   1035 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1036 			BUS_DMA_NOWAIT, mapp)) != 0)
   1037 		goto out;
   1038 	level++;
   1039 
   1040 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1041 			BUS_DMA_NOWAIT)) != 0)
   1042 		goto out;
   1043 
   1044 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1045 
   1046 	return 0;
   1047 out:
   1048 	switch (level) {
   1049 	case 3:
   1050 		bus_dmamap_destroy(tag, *mapp);
   1051 		/* FALLTHROUGH */
   1052 	case 2:
   1053 		bus_dmamem_unmap(tag, *vaddr, size);
   1054 		/* FALLTHROUGH */
   1055 	case 1:
   1056 		bus_dmamem_free(tag, seg, *rseg);
   1057 		break;
   1058 	default:
   1059 		break;
   1060 	}
   1061 
   1062 	return error;
   1063 }
   1064 
   1065 void
   1066 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1067 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1068 {
   1069 
   1070 	bus_dmamap_unload(tag, map);
   1071 	bus_dmamap_destroy(tag, map);
   1072 	bus_dmamem_unmap(tag, vaddr, size);
   1073 	bus_dmamem_free(tag, seg, nseg);
   1074 }
   1075 
   1076 pnp_status_t
   1077 agp_power(device_t dv, pnp_request_t req, void *opaque)
   1078 {
   1079 	struct agp_softc *as = (struct agp_softc *)dv;
   1080 	pnp_capabilities_t *pcaps;
   1081 	pnp_state_t *pstate;
   1082 	pcireg_t val;
   1083 	int off;
   1084 
   1085 	switch (req) {
   1086 	case PNP_REQUEST_GET_CAPABILITIES:
   1087 		pcaps = opaque;
   1088 
   1089 		pci_get_capability(as->as_pc, as->as_tag, PCI_CAP_PWRMGMT,
   1090 		    &off, &val);
   1091 		pcaps->state = pci_pnp_capabilities(val);
   1092 		pcaps->state |= PNP_STATE_D0 | PNP_STATE_D3;
   1093 		break;
   1094 
   1095 	case PNP_REQUEST_GET_STATE:
   1096 		pstate = opaque;
   1097 		if (pci_get_powerstate(as->as_pc, as->as_tag, &val) != 0)
   1098 			*pstate = PNP_STATE_D0;
   1099 		else
   1100 			*pstate = pci_pnp_powerstate(val);
   1101 		break;
   1102 
   1103 	case PNP_REQUEST_SET_STATE:
   1104 		pstate = opaque;
   1105 		switch (*pstate) {
   1106 		case PNP_STATE_D0:
   1107 			val = PCI_PMCSR_STATE_D0;
   1108 			break;
   1109 		case PNP_STATE_D3:
   1110 			val = PCI_PMCSR_STATE_D3;
   1111 			pci_conf_capture(as->as_pc, as->as_tag,
   1112 			    &as->as_pciconf);
   1113 			break;
   1114 		default:
   1115 			return PNP_STATUS_UNSUPPORTED;
   1116 		}
   1117 
   1118 		(void)pci_set_powerstate(as->as_pc, as->as_tag, val);
   1119 		if (*pstate != PNP_STATE_D0)
   1120 			break;
   1121 
   1122 		pci_conf_restore(as->as_pc, as->as_tag,
   1123 		    &as->as_pciconf);
   1124 		agp_flush_cache();
   1125 		break;
   1126 
   1127 	default:
   1128 		return PNP_STATUS_UNSUPPORTED;
   1129 	}
   1130 
   1131 	return PNP_STATUS_SUCCESS;
   1132 }
   1133