Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.46.14.5
      1 /*	$NetBSD: agp.c,v 1.46.14.5 2007/09/06 22:17:20 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.46.14.5 2007/09/06 22:17:20 jmcneill Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <machine/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 
    107 #include "agp_ali.h"
    108 #include "agp_amd.h"
    109 #include "agp_i810.h"
    110 #include "agp_intel.h"
    111 #include "agp_sis.h"
    112 #include "agp_via.h"
    113 #include "agp_amd64.h"
    114 
    115 const struct agp_product {
    116 	uint32_t	ap_vendor;
    117 	uint32_t	ap_product;
    118 	int		(*ap_match)(const struct pci_attach_args *);
    119 	int		(*ap_attach)(struct device *, struct device *, void *);
    120 } agp_products[] = {
    121 #if NAGP_ALI > 0
    122 	{ PCI_VENDOR_ALI,	-1,
    123 	  NULL,			agp_ali_attach },
    124 #endif
    125 
    126 #if NAGP_AMD64 > 0
    127 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    128 	  agp_amd64_match,	agp_amd64_attach },
    129 #endif
    130 
    131 #if NAGP_AMD > 0
    132 	{ PCI_VENDOR_AMD,	-1,
    133 	  agp_amd_match,	agp_amd_attach },
    134 #endif
    135 
    136 #if NAGP_I810 > 0
    137 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    138 	  NULL,			agp_i810_attach },
    139 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    140 	  NULL,			agp_i810_attach },
    141 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    142 	  NULL,			agp_i810_attach },
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    166 	  NULL,			agp_i810_attach },
    167 #endif
    168 
    169 #if NAGP_INTEL > 0
    170 	{ PCI_VENDOR_INTEL,	-1,
    171 	  NULL,			agp_intel_attach },
    172 #endif
    173 
    174 #if NAGP_AMD64 > 0
    175 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    176 	  agp_amd64_match,	agp_amd64_attach },
    177 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    178 	  agp_amd64_match,	agp_amd64_attach },
    179 #endif
    180 
    181 #if NAGP_AMD64 > 0
    182 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    183 	  agp_amd64_match,	agp_amd64_attach },
    184 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    185 	  agp_amd64_match,	agp_amd64_attach },
    186 #endif
    187 
    188 #if NAGP_SIS > 0
    189 	{ PCI_VENDOR_SIS,	-1,
    190 	  NULL,			agp_sis_attach },
    191 #endif
    192 
    193 #if NAGP_AMD64 > 0
    194 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    195 	  agp_amd64_match,	agp_amd64_attach },
    196 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    197 	  agp_amd64_match,	agp_amd64_attach },
    198 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    199 	  agp_amd64_match,	agp_amd64_attach },
    200 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    201 	  agp_amd64_match,	agp_amd64_attach },
    202 #endif
    203 
    204 #if NAGP_VIA > 0
    205 	{ PCI_VENDOR_VIATECH,	-1,
    206 	  NULL,			agp_via_attach },
    207 #endif
    208 
    209 	{ 0,			0,
    210 	  NULL,			NULL },
    211 };
    212 
    213 static const struct agp_product *
    214 agp_lookup(const struct pci_attach_args *pa)
    215 {
    216 	const struct agp_product *ap;
    217 
    218 	/* First find the vendor. */
    219 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    220 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    221 			break;
    222 	}
    223 
    224 	if (ap->ap_attach == NULL)
    225 		return (NULL);
    226 
    227 	/* Now find the product within the vendor's domain. */
    228 	for (; ap->ap_attach != NULL; ap++) {
    229 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    230 			/* Ran out of this vendor's section of the table. */
    231 			return (NULL);
    232 		}
    233 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    234 			/* Exact match. */
    235 			break;
    236 		}
    237 		if (ap->ap_product == (uint32_t) -1) {
    238 			/* Wildcard match. */
    239 			break;
    240 		}
    241 	}
    242 
    243 	if (ap->ap_attach == NULL)
    244 		return (NULL);
    245 
    246 	/* Now let the product-specific driver filter the match. */
    247 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    248 		return (NULL);
    249 
    250 	return (ap);
    251 }
    252 
    253 static int
    254 agpmatch(struct device *parent, struct cfdata *match,
    255     void *aux)
    256 {
    257 	struct agpbus_attach_args *apa = aux;
    258 	struct pci_attach_args *pa = &apa->apa_pci_args;
    259 
    260 	if (agp_lookup(pa) == NULL)
    261 		return (0);
    262 
    263 	return (1);
    264 }
    265 
    266 static const int agp_max[][2] = {
    267 	{0,	0},
    268 	{32,	4},
    269 	{64,	28},
    270 	{128,	96},
    271 	{256,	204},
    272 	{512,	440},
    273 	{1024,	942},
    274 	{2048,	1920},
    275 	{4096,	3932}
    276 };
    277 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    278 
    279 static void
    280 agpattach(struct device *parent, struct device *self, void *aux)
    281 {
    282 	struct agpbus_attach_args *apa = aux;
    283 	struct pci_attach_args *pa = &apa->apa_pci_args;
    284 	struct agp_softc *sc = (void *)self;
    285 	pnp_device_t *pnp;
    286 	const struct agp_product *ap;
    287 	int memsize, i, ret;
    288 
    289 	ap = agp_lookup(pa);
    290 	if (ap == NULL) {
    291 		printf("\n");
    292 		panic("agpattach: impossible");
    293 	}
    294 
    295 	aprint_naive(": AGP controller\n");
    296 
    297 	sc->as_dmat = pa->pa_dmat;
    298 	sc->as_pc = pa->pa_pc;
    299 	sc->as_tag = pa->pa_tag;
    300 	sc->as_id = pa->pa_id;
    301 
    302 	/*
    303 	 * Work out an upper bound for agp memory allocation. This
    304 	 * uses a heurisitc table from the Linux driver.
    305 	 */
    306 	memsize = ptoa(physmem) >> 20;
    307 	for (i = 0; i < agp_max_size; i++) {
    308 		if (memsize <= agp_max[i][0])
    309 			break;
    310 	}
    311 	if (i == agp_max_size)
    312 		i = agp_max_size - 1;
    313 	sc->as_maxmem = agp_max[i][1] << 20U;
    314 
    315 	/*
    316 	 * The mutex is used to prevent re-entry to
    317 	 * agp_generic_bind_memory() since that function can sleep.
    318 	 */
    319 	mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
    320 
    321 	TAILQ_INIT(&sc->as_memory);
    322 
    323 	ret = (*ap->ap_attach)(parent, self, pa);
    324 	if (ret == 0)
    325 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    326 		    (unsigned long)sc->as_apaddr,
    327 		    (unsigned long)AGP_GET_APERTURE(sc));
    328 	else
    329 		sc->as_chipc = NULL;
    330 
    331 	pnp = device_pnp(self);
    332 	if (pnp->pnp_power == NULL)
    333 		if (pnp_register(self, agp_power) != PNP_STATUS_SUCCESS)
    334 			aprint_error("%s: couldn't establish power handler\n",
    335 			    device_xname(self));
    336 }
    337 
    338 CFATTACH_DECL(agp, sizeof(struct agp_softc),
    339     agpmatch, agpattach, NULL, NULL);
    340 
    341 int
    342 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    343 {
    344 	/*
    345 	 * Find the aperture. Don't map it (yet), this would
    346 	 * eat KVA.
    347 	 */
    348 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    349 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    350 	    &sc->as_apflags) != 0)
    351 		return ENXIO;
    352 
    353 	sc->as_apt = pa->pa_memt;
    354 
    355 	return 0;
    356 }
    357 
    358 struct agp_gatt *
    359 agp_alloc_gatt(struct agp_softc *sc)
    360 {
    361 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    362 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    363 	struct agp_gatt *gatt;
    364 	void *virtual;
    365 	int dummyseg;
    366 
    367 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    368 	if (!gatt)
    369 		return NULL;
    370 	gatt->ag_entries = entries;
    371 
    372 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    373 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    374 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    375 		return NULL;
    376 	gatt->ag_virtual = (uint32_t *)virtual;
    377 
    378 	gatt->ag_size = entries * sizeof(u_int32_t);
    379 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    380 	agp_flush_cache();
    381 
    382 	return gatt;
    383 }
    384 
    385 void
    386 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    387 {
    388 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    389 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    390 	free(gatt, M_AGP);
    391 }
    392 
    393 
    394 int
    395 agp_generic_detach(struct agp_softc *sc)
    396 {
    397 	mutex_destroy(&sc->as_mtx);
    398 	agp_flush_cache();
    399 	return 0;
    400 }
    401 
    402 static int
    403 agpdev_match(struct pci_attach_args *pa)
    404 {
    405 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    406 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    407 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    408 		    NULL, NULL))
    409 		return 1;
    410 
    411 	return 0;
    412 }
    413 
    414 int
    415 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    416 {
    417 	struct pci_attach_args pa;
    418 	pcireg_t tstatus, mstatus;
    419 	pcireg_t command;
    420 	int rq, sba, fw, rate, capoff;
    421 
    422 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    423 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    424 	     &capoff, NULL) == 0) {
    425 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    426 		return ENXIO;
    427 	}
    428 
    429 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    430 	    sc->as_capoff + AGP_STATUS);
    431 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    432 	    capoff + AGP_STATUS);
    433 
    434 	/* Set RQ to the min of mode, tstatus and mstatus */
    435 	rq = AGP_MODE_GET_RQ(mode);
    436 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    437 		rq = AGP_MODE_GET_RQ(tstatus);
    438 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    439 		rq = AGP_MODE_GET_RQ(mstatus);
    440 
    441 	/* Set SBA if all three can deal with SBA */
    442 	sba = (AGP_MODE_GET_SBA(tstatus)
    443 	       & AGP_MODE_GET_SBA(mstatus)
    444 	       & AGP_MODE_GET_SBA(mode));
    445 
    446 	/* Similar for FW */
    447 	fw = (AGP_MODE_GET_FW(tstatus)
    448 	       & AGP_MODE_GET_FW(mstatus)
    449 	       & AGP_MODE_GET_FW(mode));
    450 
    451 	/* Figure out the max rate */
    452 	rate = (AGP_MODE_GET_RATE(tstatus)
    453 		& AGP_MODE_GET_RATE(mstatus)
    454 		& AGP_MODE_GET_RATE(mode));
    455 	if (rate & AGP_MODE_RATE_4x)
    456 		rate = AGP_MODE_RATE_4x;
    457 	else if (rate & AGP_MODE_RATE_2x)
    458 		rate = AGP_MODE_RATE_2x;
    459 	else
    460 		rate = AGP_MODE_RATE_1x;
    461 
    462 	/* Construct the new mode word and tell the hardware */
    463 	command = AGP_MODE_SET_RQ(0, rq);
    464 	command = AGP_MODE_SET_SBA(command, sba);
    465 	command = AGP_MODE_SET_FW(command, fw);
    466 	command = AGP_MODE_SET_RATE(command, rate);
    467 	command = AGP_MODE_SET_AGP(command, 1);
    468 	pci_conf_write(sc->as_pc, sc->as_tag,
    469 	    sc->as_capoff + AGP_COMMAND, command);
    470 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    471 
    472 	return 0;
    473 }
    474 
    475 struct agp_memory *
    476 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    477 {
    478 	struct agp_memory *mem;
    479 
    480 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    481 		return 0;
    482 
    483 	if (sc->as_allocated + size > sc->as_maxmem)
    484 		return 0;
    485 
    486 	if (type != 0) {
    487 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    488 		       type);
    489 		return 0;
    490 	}
    491 
    492 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    493 	if (mem == NULL)
    494 		return NULL;
    495 
    496 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    497 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    498 		free(mem, M_AGP);
    499 		return NULL;
    500 	}
    501 
    502 	mem->am_id = sc->as_nextid++;
    503 	mem->am_size = size;
    504 	mem->am_type = 0;
    505 	mem->am_physical = 0;
    506 	mem->am_offset = 0;
    507 	mem->am_is_bound = 0;
    508 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    509 	sc->as_allocated += size;
    510 
    511 	return mem;
    512 }
    513 
    514 int
    515 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    516 {
    517 	if (mem->am_is_bound)
    518 		return EBUSY;
    519 
    520 	sc->as_allocated -= mem->am_size;
    521 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    522 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    523 	free(mem, M_AGP);
    524 	return 0;
    525 }
    526 
    527 int
    528 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    529 			off_t offset)
    530 {
    531 	off_t i, k;
    532 	bus_size_t done, j;
    533 	int error;
    534 	bus_dma_segment_t *segs, *seg;
    535 	bus_addr_t pa;
    536 	int contigpages, nseg;
    537 
    538 	mutex_enter(&sc->as_mtx);
    539 
    540 	if (mem->am_is_bound) {
    541 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    542 		mutex_exit(&sc->as_mtx);
    543 		return EINVAL;
    544 	}
    545 
    546 	if (offset < 0
    547 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    548 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    549 		printf("%s: binding memory at bad offset %#lx\n",
    550 			      sc->as_dev.dv_xname, (unsigned long) offset);
    551 		mutex_exit(&sc->as_mtx);
    552 		return EINVAL;
    553 	}
    554 
    555 	/*
    556 	 * XXXfvdl
    557 	 * The memory here needs to be directly accessable from the
    558 	 * AGP video card, so it should be allocated using bus_dma.
    559 	 * However, it need not be contiguous, since individual pages
    560 	 * are translated using the GATT.
    561 	 *
    562 	 * Using a large chunk of contiguous memory may get in the way
    563 	 * of other subsystems that may need one, so we try to be friendly
    564 	 * and ask for allocation in chunks of a minimum of 8 pages
    565 	 * of contiguous memory on average, falling back to 4, 2 and 1
    566 	 * if really needed. Larger chunks are preferred, since allocating
    567 	 * a bus_dma_segment per page would be overkill.
    568 	 */
    569 
    570 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    571 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    572 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    573 		if (segs == NULL) {
    574 			mutex_exit(&sc->as_mtx);
    575 			return ENOMEM;
    576 		}
    577 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    578 				     segs, nseg, &mem->am_nseg,
    579 				     contigpages > 1 ?
    580 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    581 			free(segs, M_AGP);
    582 			continue;
    583 		}
    584 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    585 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    586 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    587 			free(segs, M_AGP);
    588 			continue;
    589 		}
    590 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    591 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    592 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    593 			    mem->am_size);
    594 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    595 			free(segs, M_AGP);
    596 			continue;
    597 		}
    598 		mem->am_dmaseg = segs;
    599 		break;
    600 	}
    601 
    602 	if (contigpages == 0) {
    603 		mutex_exit(&sc->as_mtx);
    604 		return ENOMEM;
    605 	}
    606 
    607 
    608 	/*
    609 	 * Bind the individual pages and flush the chipset's
    610 	 * TLB.
    611 	 */
    612 	done = 0;
    613 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    614 		seg = &mem->am_dmamap->dm_segs[i];
    615 		/*
    616 		 * Install entries in the GATT, making sure that if
    617 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    618 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    619 		 * entries.
    620 		 */
    621 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    622 		     j += AGP_PAGE_SIZE) {
    623 			pa = seg->ds_addr + j;
    624 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    625 				(unsigned long)(offset + done + j),
    626 				(unsigned long)pa));
    627 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    628 			if (error) {
    629 				/*
    630 				 * Bail out. Reverse all the mappings
    631 				 * and unwire the pages.
    632 				 */
    633 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    634 					AGP_UNBIND_PAGE(sc, offset + k);
    635 
    636 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    637 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    638 						 mem->am_size);
    639 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    640 						mem->am_nseg);
    641 				free(mem->am_dmaseg, M_AGP);
    642 				mutex_exit(&sc->as_mtx);
    643 				return error;
    644 			}
    645 		}
    646 		done += seg->ds_len;
    647 	}
    648 
    649 	/*
    650 	 * Flush the CPU cache since we are providing a new mapping
    651 	 * for these pages.
    652 	 */
    653 	agp_flush_cache();
    654 
    655 	/*
    656 	 * Make sure the chipset gets the new mappings.
    657 	 */
    658 	AGP_FLUSH_TLB(sc);
    659 
    660 	mem->am_offset = offset;
    661 	mem->am_is_bound = 1;
    662 
    663 	mutex_exit(&sc->as_mtx);
    664 
    665 	return 0;
    666 }
    667 
    668 int
    669 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    670 {
    671 	int i;
    672 
    673 	mutex_enter(&sc->as_mtx);
    674 
    675 	if (!mem->am_is_bound) {
    676 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    677 		mutex_exit(&sc->as_mtx);
    678 		return EINVAL;
    679 	}
    680 
    681 
    682 	/*
    683 	 * Unbind the individual pages and flush the chipset's
    684 	 * TLB. Unwire the pages so they can be swapped.
    685 	 */
    686 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    687 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    688 
    689 	agp_flush_cache();
    690 	AGP_FLUSH_TLB(sc);
    691 
    692 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    693 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    694 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    695 
    696 	free(mem->am_dmaseg, M_AGP);
    697 
    698 	mem->am_offset = 0;
    699 	mem->am_is_bound = 0;
    700 
    701 	mutex_exit(&sc->as_mtx);
    702 
    703 	return 0;
    704 }
    705 
    706 /* Helper functions for implementing user/kernel api */
    707 
    708 static int
    709 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    710 {
    711 	if (sc->as_state != AGP_ACQUIRE_FREE)
    712 		return EBUSY;
    713 	sc->as_state = state;
    714 
    715 	return 0;
    716 }
    717 
    718 static int
    719 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    720 {
    721 
    722 	if (sc->as_state == AGP_ACQUIRE_FREE)
    723 		return 0;
    724 
    725 	if (sc->as_state != state)
    726 		return EBUSY;
    727 
    728 	sc->as_state = AGP_ACQUIRE_FREE;
    729 	return 0;
    730 }
    731 
    732 static struct agp_memory *
    733 agp_find_memory(struct agp_softc *sc, int id)
    734 {
    735 	struct agp_memory *mem;
    736 
    737 	AGP_DPF(("searching for memory block %d\n", id));
    738 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    739 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    740 		if (mem->am_id == id)
    741 			return mem;
    742 	}
    743 	return 0;
    744 }
    745 
    746 /* Implementation of the userland ioctl api */
    747 
    748 static int
    749 agp_info_user(struct agp_softc *sc, agp_info *info)
    750 {
    751 	memset(info, 0, sizeof *info);
    752 	info->bridge_id = sc->as_id;
    753 	if (sc->as_capoff != 0)
    754 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    755 					       sc->as_capoff + AGP_STATUS);
    756 	else
    757 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    758 	info->aper_base = sc->as_apaddr;
    759 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    760 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    761 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    762 
    763 	return 0;
    764 }
    765 
    766 static int
    767 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    768 {
    769 	return AGP_ENABLE(sc, setup->agp_mode);
    770 }
    771 
    772 static int
    773 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    774 {
    775 	struct agp_memory *mem;
    776 
    777 	mem = AGP_ALLOC_MEMORY(sc,
    778 			       alloc->type,
    779 			       alloc->pg_count << AGP_PAGE_SHIFT);
    780 	if (mem) {
    781 		alloc->key = mem->am_id;
    782 		alloc->physical = mem->am_physical;
    783 		return 0;
    784 	} else {
    785 		return ENOMEM;
    786 	}
    787 }
    788 
    789 static int
    790 agp_deallocate_user(struct agp_softc *sc, int id)
    791 {
    792 	struct agp_memory *mem = agp_find_memory(sc, id);
    793 
    794 	if (mem) {
    795 		AGP_FREE_MEMORY(sc, mem);
    796 		return 0;
    797 	} else {
    798 		return ENOENT;
    799 	}
    800 }
    801 
    802 static int
    803 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    804 {
    805 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    806 
    807 	if (!mem)
    808 		return ENOENT;
    809 
    810 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    811 }
    812 
    813 static int
    814 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    815 {
    816 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    817 
    818 	if (!mem)
    819 		return ENOENT;
    820 
    821 	return AGP_UNBIND_MEMORY(sc, mem);
    822 }
    823 
    824 static int
    825 agpopen(dev_t dev, int oflags, int devtype,
    826     struct lwp *l)
    827 {
    828 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    829 
    830 	if (sc == NULL)
    831 		return ENXIO;
    832 
    833 	if (sc->as_chipc == NULL)
    834 		return ENXIO;
    835 
    836 	if (!sc->as_isopen)
    837 		sc->as_isopen = 1;
    838 	else
    839 		return EBUSY;
    840 
    841 	return 0;
    842 }
    843 
    844 static int
    845 agpclose(dev_t dev, int fflag, int devtype,
    846     struct lwp *l)
    847 {
    848 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    849 	struct agp_memory *mem;
    850 
    851 	/*
    852 	 * Clear the GATT and force release on last close
    853 	 */
    854 	if (sc->as_state == AGP_ACQUIRE_USER) {
    855 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    856 			if (mem->am_is_bound) {
    857 				printf("agpclose: mem %d is bound\n",
    858 				       mem->am_id);
    859 				AGP_UNBIND_MEMORY(sc, mem);
    860 			}
    861 			/*
    862 			 * XXX it is not documented, but if the protocol allows
    863 			 * allocate->acquire->bind, it would be possible that
    864 			 * memory ranges are allocated by the kernel here,
    865 			 * which we shouldn't free. We'd have to keep track of
    866 			 * the memory range's owner.
    867 			 * The kernel API is unsed yet, so we get away with
    868 			 * freeing all.
    869 			 */
    870 			AGP_FREE_MEMORY(sc, mem);
    871 		}
    872 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    873 	}
    874 	sc->as_isopen = 0;
    875 
    876 	return 0;
    877 }
    878 
    879 static int
    880 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    881 {
    882 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    883 
    884 	if (sc == NULL)
    885 		return ENODEV;
    886 
    887 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    888 		return EPERM;
    889 
    890 	switch (cmd) {
    891 	case AGPIOC_INFO:
    892 		return agp_info_user(sc, (agp_info *) data);
    893 
    894 	case AGPIOC_ACQUIRE:
    895 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    896 
    897 	case AGPIOC_RELEASE:
    898 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    899 
    900 	case AGPIOC_SETUP:
    901 		return agp_setup_user(sc, (agp_setup *)data);
    902 
    903 	case AGPIOC_ALLOCATE:
    904 		return agp_allocate_user(sc, (agp_allocate *)data);
    905 
    906 	case AGPIOC_DEALLOCATE:
    907 		return agp_deallocate_user(sc, *(int *) data);
    908 
    909 	case AGPIOC_BIND:
    910 		return agp_bind_user(sc, (agp_bind *)data);
    911 
    912 	case AGPIOC_UNBIND:
    913 		return agp_unbind_user(sc, (agp_unbind *)data);
    914 
    915 	}
    916 
    917 	return EINVAL;
    918 }
    919 
    920 static paddr_t
    921 agpmmap(dev_t dev, off_t offset, int prot)
    922 {
    923 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    924 
    925 	if (offset > AGP_GET_APERTURE(sc))
    926 		return -1;
    927 
    928 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    929 	    BUS_SPACE_MAP_LINEAR));
    930 }
    931 
    932 const struct cdevsw agp_cdevsw = {
    933 	agpopen, agpclose, noread, nowrite, agpioctl,
    934 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    935 };
    936 
    937 /* Implementation of the kernel api */
    938 
    939 void *
    940 agp_find_device(int unit)
    941 {
    942 	return device_lookup(&agp_cd, unit);
    943 }
    944 
    945 enum agp_acquire_state
    946 agp_state(void *devcookie)
    947 {
    948 	struct agp_softc *sc = devcookie;
    949 	return sc->as_state;
    950 }
    951 
    952 void
    953 agp_get_info(void *devcookie, struct agp_info *info)
    954 {
    955 	struct agp_softc *sc = devcookie;
    956 
    957 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    958 	    sc->as_capoff + AGP_STATUS);
    959 	info->ai_aperture_base = sc->as_apaddr;
    960 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    961 	info->ai_memory_allowed = sc->as_maxmem;
    962 	info->ai_memory_used = sc->as_allocated;
    963 }
    964 
    965 int
    966 agp_acquire(void *dev)
    967 {
    968 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    969 }
    970 
    971 int
    972 agp_release(void *dev)
    973 {
    974 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    975 }
    976 
    977 int
    978 agp_enable(void *dev, u_int32_t mode)
    979 {
    980 	struct agp_softc *sc = dev;
    981 
    982 	return AGP_ENABLE(sc, mode);
    983 }
    984 
    985 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    986 {
    987 	struct agp_softc *sc = dev;
    988 
    989 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    990 }
    991 
    992 void agp_free_memory(void *dev, void *handle)
    993 {
    994 	struct agp_softc *sc = dev;
    995 	struct agp_memory *mem = (struct agp_memory *) handle;
    996 	AGP_FREE_MEMORY(sc, mem);
    997 }
    998 
    999 int agp_bind_memory(void *dev, void *handle, off_t offset)
   1000 {
   1001 	struct agp_softc *sc = dev;
   1002 	struct agp_memory *mem = (struct agp_memory *) handle;
   1003 
   1004 	return AGP_BIND_MEMORY(sc, mem, offset);
   1005 }
   1006 
   1007 int agp_unbind_memory(void *dev, void *handle)
   1008 {
   1009 	struct agp_softc *sc = dev;
   1010 	struct agp_memory *mem = (struct agp_memory *) handle;
   1011 
   1012 	return AGP_UNBIND_MEMORY(sc, mem);
   1013 }
   1014 
   1015 void agp_memory_info(void *dev, void *handle,
   1016     struct agp_memory_info *mi)
   1017 {
   1018 	struct agp_memory *mem = (struct agp_memory *) handle;
   1019 
   1020 	mi->ami_size = mem->am_size;
   1021 	mi->ami_physical = mem->am_physical;
   1022 	mi->ami_offset = mem->am_offset;
   1023 	mi->ami_is_bound = mem->am_is_bound;
   1024 }
   1025 
   1026 int
   1027 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1028 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1029 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1030 
   1031 {
   1032 	int error, level = 0;
   1033 
   1034 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1035 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1036 		goto out;
   1037 	level++;
   1038 
   1039 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1040 			BUS_DMA_NOWAIT | flags)) != 0)
   1041 		goto out;
   1042 	level++;
   1043 
   1044 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1045 			BUS_DMA_NOWAIT, mapp)) != 0)
   1046 		goto out;
   1047 	level++;
   1048 
   1049 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1050 			BUS_DMA_NOWAIT)) != 0)
   1051 		goto out;
   1052 
   1053 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1054 
   1055 	return 0;
   1056 out:
   1057 	switch (level) {
   1058 	case 3:
   1059 		bus_dmamap_destroy(tag, *mapp);
   1060 		/* FALLTHROUGH */
   1061 	case 2:
   1062 		bus_dmamem_unmap(tag, *vaddr, size);
   1063 		/* FALLTHROUGH */
   1064 	case 1:
   1065 		bus_dmamem_free(tag, seg, *rseg);
   1066 		break;
   1067 	default:
   1068 		break;
   1069 	}
   1070 
   1071 	return error;
   1072 }
   1073 
   1074 void
   1075 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1076 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1077 {
   1078 
   1079 	bus_dmamap_unload(tag, map);
   1080 	bus_dmamap_destroy(tag, map);
   1081 	bus_dmamem_unmap(tag, vaddr, size);
   1082 	bus_dmamem_free(tag, seg, nseg);
   1083 }
   1084 
   1085 pnp_status_t
   1086 agp_power(device_t dv, pnp_request_t req, void *opaque)
   1087 {
   1088 	struct agp_softc *as = (struct agp_softc *)dv;
   1089 	pnp_capabilities_t *pcaps;
   1090 	pnp_state_t *pstate;
   1091 	pcireg_t val;
   1092 	int off;
   1093 
   1094 	switch (req) {
   1095 	case PNP_REQUEST_GET_CAPABILITIES:
   1096 		pcaps = opaque;
   1097 
   1098 		pci_get_capability(as->as_pc, as->as_tag, PCI_CAP_PWRMGMT,
   1099 		    &off, &val);
   1100 		pcaps->state = pci_pnp_capabilities(val);
   1101 		pcaps->state |= PNP_STATE_D0 | PNP_STATE_D3;
   1102 		break;
   1103 
   1104 	case PNP_REQUEST_GET_STATE:
   1105 		pstate = opaque;
   1106 		if (pci_get_powerstate(as->as_pc, as->as_tag, &val) != 0)
   1107 			*pstate = PNP_STATE_D0;
   1108 		else
   1109 			*pstate = pci_pnp_powerstate(val);
   1110 		break;
   1111 
   1112 	case PNP_REQUEST_SET_STATE:
   1113 		pstate = opaque;
   1114 		switch (*pstate) {
   1115 		case PNP_STATE_D0:
   1116 			val = PCI_PMCSR_STATE_D0;
   1117 			break;
   1118 		case PNP_STATE_D3:
   1119 			val = PCI_PMCSR_STATE_D3;
   1120 			pci_conf_capture(as->as_pc, as->as_tag,
   1121 			    &as->as_pciconf);
   1122 			break;
   1123 		default:
   1124 			return PNP_STATUS_UNSUPPORTED;
   1125 		}
   1126 
   1127 		(void)pci_set_powerstate(as->as_pc, as->as_tag, val);
   1128 		if (*pstate != PNP_STATE_D0)
   1129 			break;
   1130 
   1131 		pci_conf_restore(as->as_pc, as->as_tag,
   1132 		    &as->as_pciconf);
   1133 		agp_flush_cache();
   1134 		break;
   1135 
   1136 	default:
   1137 		return PNP_STATUS_UNSUPPORTED;
   1138 	}
   1139 
   1140 	return PNP_STATUS_SUCCESS;
   1141 }
   1142