Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.46.14.8
      1 /*	$NetBSD: agp.c,v 1.46.14.8 2007/10/31 23:14:05 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.46.14.8 2007/10/31 23:14:05 joerg Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 
    107 #include "agp_ali.h"
    108 #include "agp_amd.h"
    109 #include "agp_i810.h"
    110 #include "agp_intel.h"
    111 #include "agp_sis.h"
    112 #include "agp_via.h"
    113 #include "agp_amd64.h"
    114 
    115 const struct agp_product {
    116 	uint32_t	ap_vendor;
    117 	uint32_t	ap_product;
    118 	int		(*ap_match)(const struct pci_attach_args *);
    119 	int		(*ap_attach)(struct device *, struct device *, void *);
    120 } agp_products[] = {
    121 #if NAGP_ALI > 0
    122 	{ PCI_VENDOR_ALI,	-1,
    123 	  NULL,			agp_ali_attach },
    124 #endif
    125 
    126 #if NAGP_AMD64 > 0
    127 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    128 	  agp_amd64_match,	agp_amd64_attach },
    129 #endif
    130 
    131 #if NAGP_AMD > 0
    132 	{ PCI_VENDOR_AMD,	-1,
    133 	  agp_amd_match,	agp_amd_attach },
    134 #endif
    135 
    136 #if NAGP_I810 > 0
    137 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    138 	  NULL,			agp_i810_attach },
    139 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    140 	  NULL,			agp_i810_attach },
    141 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    142 	  NULL,			agp_i810_attach },
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    168 	  NULL,			agp_i810_attach },
    169 #endif
    170 
    171 #if NAGP_INTEL > 0
    172 	{ PCI_VENDOR_INTEL,	-1,
    173 	  NULL,			agp_intel_attach },
    174 #endif
    175 
    176 #if NAGP_AMD64 > 0
    177 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    178 	  agp_amd64_match,	agp_amd64_attach },
    179 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    180 	  agp_amd64_match,	agp_amd64_attach },
    181 #endif
    182 
    183 #if NAGP_AMD64 > 0
    184 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    185 	  agp_amd64_match,	agp_amd64_attach },
    186 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    187 	  agp_amd64_match,	agp_amd64_attach },
    188 #endif
    189 
    190 #if NAGP_SIS > 0
    191 	{ PCI_VENDOR_SIS,	-1,
    192 	  NULL,			agp_sis_attach },
    193 #endif
    194 
    195 #if NAGP_AMD64 > 0
    196 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    197 	  agp_amd64_match,	agp_amd64_attach },
    198 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    199 	  agp_amd64_match,	agp_amd64_attach },
    200 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    201 	  agp_amd64_match,	agp_amd64_attach },
    202 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    203 	  agp_amd64_match,	agp_amd64_attach },
    204 #endif
    205 
    206 #if NAGP_VIA > 0
    207 	{ PCI_VENDOR_VIATECH,	-1,
    208 	  NULL,			agp_via_attach },
    209 #endif
    210 
    211 	{ 0,			0,
    212 	  NULL,			NULL },
    213 };
    214 
    215 static const struct agp_product *
    216 agp_lookup(const struct pci_attach_args *pa)
    217 {
    218 	const struct agp_product *ap;
    219 
    220 	/* First find the vendor. */
    221 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    222 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    223 			break;
    224 	}
    225 
    226 	if (ap->ap_attach == NULL)
    227 		return (NULL);
    228 
    229 	/* Now find the product within the vendor's domain. */
    230 	for (; ap->ap_attach != NULL; ap++) {
    231 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    232 			/* Ran out of this vendor's section of the table. */
    233 			return (NULL);
    234 		}
    235 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    236 			/* Exact match. */
    237 			break;
    238 		}
    239 		if (ap->ap_product == (uint32_t) -1) {
    240 			/* Wildcard match. */
    241 			break;
    242 		}
    243 	}
    244 
    245 	if (ap->ap_attach == NULL)
    246 		return (NULL);
    247 
    248 	/* Now let the product-specific driver filter the match. */
    249 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    250 		return (NULL);
    251 
    252 	return (ap);
    253 }
    254 
    255 static int
    256 agpmatch(struct device *parent, struct cfdata *match,
    257     void *aux)
    258 {
    259 	struct agpbus_attach_args *apa = aux;
    260 	struct pci_attach_args *pa = &apa->apa_pci_args;
    261 
    262 	if (agp_lookup(pa) == NULL)
    263 		return (0);
    264 
    265 	return (1);
    266 }
    267 
    268 static const int agp_max[][2] = {
    269 	{0,	0},
    270 	{32,	4},
    271 	{64,	28},
    272 	{128,	96},
    273 	{256,	204},
    274 	{512,	440},
    275 	{1024,	942},
    276 	{2048,	1920},
    277 	{4096,	3932}
    278 };
    279 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    280 
    281 static void
    282 agpattach(struct device *parent, struct device *self, void *aux)
    283 {
    284 	struct agpbus_attach_args *apa = aux;
    285 	struct pci_attach_args *pa = &apa->apa_pci_args;
    286 	struct agp_softc *sc = (void *)self;
    287 	pnp_device_t *pnp;
    288 	const struct agp_product *ap;
    289 	int memsize, i, ret;
    290 
    291 	ap = agp_lookup(pa);
    292 	if (ap == NULL) {
    293 		printf("\n");
    294 		panic("agpattach: impossible");
    295 	}
    296 
    297 	aprint_naive(": AGP controller\n");
    298 
    299 	sc->as_dmat = pa->pa_dmat;
    300 	sc->as_pc = pa->pa_pc;
    301 	sc->as_tag = pa->pa_tag;
    302 	sc->as_id = pa->pa_id;
    303 
    304 	/*
    305 	 * Work out an upper bound for agp memory allocation. This
    306 	 * uses a heurisitc table from the Linux driver.
    307 	 */
    308 	memsize = ptoa(physmem) >> 20;
    309 	for (i = 0; i < agp_max_size; i++) {
    310 		if (memsize <= agp_max[i][0])
    311 			break;
    312 	}
    313 	if (i == agp_max_size)
    314 		i = agp_max_size - 1;
    315 	sc->as_maxmem = agp_max[i][1] << 20U;
    316 
    317 	/*
    318 	 * The mutex is used to prevent re-entry to
    319 	 * agp_generic_bind_memory() since that function can sleep.
    320 	 */
    321 	mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
    322 
    323 	TAILQ_INIT(&sc->as_memory);
    324 
    325 	ret = (*ap->ap_attach)(parent, self, pa);
    326 	if (ret == 0)
    327 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    328 		    (unsigned long)sc->as_apaddr,
    329 		    (unsigned long)AGP_GET_APERTURE(sc));
    330 	else
    331 		sc->as_chipc = NULL;
    332 
    333 	pnp = device_pnp(self);
    334 	if (pnp->pnp_power == NULL) {
    335 		pnp_status_t pnp_status;
    336 
    337 		pnp_status = pci_generic_power_register(self,
    338     		    pa->pa_pc, pa->pa_tag, NULL, agp_resume);
    339 
    340 		if (pnp_status != PNP_STATUS_SUCCESS)
    341 			aprint_error("%s: couldn't establish power handler\n",
    342 			    device_xname(self));
    343 	}
    344 }
    345 
    346 CFATTACH_DECL(agp, sizeof(struct agp_softc),
    347     agpmatch, agpattach, NULL, NULL);
    348 
    349 int
    350 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    351 {
    352 	/*
    353 	 * Find the aperture. Don't map it (yet), this would
    354 	 * eat KVA.
    355 	 */
    356 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    357 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    358 	    &sc->as_apflags) != 0)
    359 		return ENXIO;
    360 
    361 	sc->as_apt = pa->pa_memt;
    362 
    363 	return 0;
    364 }
    365 
    366 struct agp_gatt *
    367 agp_alloc_gatt(struct agp_softc *sc)
    368 {
    369 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    370 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    371 	struct agp_gatt *gatt;
    372 	void *virtual;
    373 	int dummyseg;
    374 
    375 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    376 	if (!gatt)
    377 		return NULL;
    378 	gatt->ag_entries = entries;
    379 
    380 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    381 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    382 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    383 		return NULL;
    384 	gatt->ag_virtual = (uint32_t *)virtual;
    385 
    386 	gatt->ag_size = entries * sizeof(u_int32_t);
    387 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    388 	agp_flush_cache();
    389 
    390 	return gatt;
    391 }
    392 
    393 void
    394 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    395 {
    396 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    397 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    398 	free(gatt, M_AGP);
    399 }
    400 
    401 
    402 int
    403 agp_generic_detach(struct agp_softc *sc)
    404 {
    405 	mutex_destroy(&sc->as_mtx);
    406 	agp_flush_cache();
    407 	return 0;
    408 }
    409 
    410 static int
    411 agpdev_match(struct pci_attach_args *pa)
    412 {
    413 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    414 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    415 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    416 		    NULL, NULL))
    417 		return 1;
    418 
    419 	return 0;
    420 }
    421 
    422 int
    423 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    424 {
    425 	struct pci_attach_args pa;
    426 	pcireg_t tstatus, mstatus;
    427 	pcireg_t command;
    428 	int rq, sba, fw, rate, capoff;
    429 
    430 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    431 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    432 	     &capoff, NULL) == 0) {
    433 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    434 		return ENXIO;
    435 	}
    436 
    437 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    438 	    sc->as_capoff + AGP_STATUS);
    439 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    440 	    capoff + AGP_STATUS);
    441 
    442 	/* Set RQ to the min of mode, tstatus and mstatus */
    443 	rq = AGP_MODE_GET_RQ(mode);
    444 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    445 		rq = AGP_MODE_GET_RQ(tstatus);
    446 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    447 		rq = AGP_MODE_GET_RQ(mstatus);
    448 
    449 	/* Set SBA if all three can deal with SBA */
    450 	sba = (AGP_MODE_GET_SBA(tstatus)
    451 	       & AGP_MODE_GET_SBA(mstatus)
    452 	       & AGP_MODE_GET_SBA(mode));
    453 
    454 	/* Similar for FW */
    455 	fw = (AGP_MODE_GET_FW(tstatus)
    456 	       & AGP_MODE_GET_FW(mstatus)
    457 	       & AGP_MODE_GET_FW(mode));
    458 
    459 	/* Figure out the max rate */
    460 	rate = (AGP_MODE_GET_RATE(tstatus)
    461 		& AGP_MODE_GET_RATE(mstatus)
    462 		& AGP_MODE_GET_RATE(mode));
    463 	if (rate & AGP_MODE_RATE_4x)
    464 		rate = AGP_MODE_RATE_4x;
    465 	else if (rate & AGP_MODE_RATE_2x)
    466 		rate = AGP_MODE_RATE_2x;
    467 	else
    468 		rate = AGP_MODE_RATE_1x;
    469 
    470 	/* Construct the new mode word and tell the hardware */
    471 	command = AGP_MODE_SET_RQ(0, rq);
    472 	command = AGP_MODE_SET_SBA(command, sba);
    473 	command = AGP_MODE_SET_FW(command, fw);
    474 	command = AGP_MODE_SET_RATE(command, rate);
    475 	command = AGP_MODE_SET_AGP(command, 1);
    476 	pci_conf_write(sc->as_pc, sc->as_tag,
    477 	    sc->as_capoff + AGP_COMMAND, command);
    478 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    479 
    480 	return 0;
    481 }
    482 
    483 struct agp_memory *
    484 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    485 {
    486 	struct agp_memory *mem;
    487 
    488 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    489 		return 0;
    490 
    491 	if (sc->as_allocated + size > sc->as_maxmem)
    492 		return 0;
    493 
    494 	if (type != 0) {
    495 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    496 		       type);
    497 		return 0;
    498 	}
    499 
    500 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    501 	if (mem == NULL)
    502 		return NULL;
    503 
    504 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    505 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    506 		free(mem, M_AGP);
    507 		return NULL;
    508 	}
    509 
    510 	mem->am_id = sc->as_nextid++;
    511 	mem->am_size = size;
    512 	mem->am_type = 0;
    513 	mem->am_physical = 0;
    514 	mem->am_offset = 0;
    515 	mem->am_is_bound = 0;
    516 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    517 	sc->as_allocated += size;
    518 
    519 	return mem;
    520 }
    521 
    522 int
    523 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    524 {
    525 	if (mem->am_is_bound)
    526 		return EBUSY;
    527 
    528 	sc->as_allocated -= mem->am_size;
    529 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    530 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    531 	free(mem, M_AGP);
    532 	return 0;
    533 }
    534 
    535 int
    536 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    537 			off_t offset)
    538 {
    539 	off_t i, k;
    540 	bus_size_t done, j;
    541 	int error;
    542 	bus_dma_segment_t *segs, *seg;
    543 	bus_addr_t pa;
    544 	int contigpages, nseg;
    545 
    546 	mutex_enter(&sc->as_mtx);
    547 
    548 	if (mem->am_is_bound) {
    549 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    550 		mutex_exit(&sc->as_mtx);
    551 		return EINVAL;
    552 	}
    553 
    554 	if (offset < 0
    555 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    556 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    557 		printf("%s: binding memory at bad offset %#lx\n",
    558 			      sc->as_dev.dv_xname, (unsigned long) offset);
    559 		mutex_exit(&sc->as_mtx);
    560 		return EINVAL;
    561 	}
    562 
    563 	/*
    564 	 * XXXfvdl
    565 	 * The memory here needs to be directly accessable from the
    566 	 * AGP video card, so it should be allocated using bus_dma.
    567 	 * However, it need not be contiguous, since individual pages
    568 	 * are translated using the GATT.
    569 	 *
    570 	 * Using a large chunk of contiguous memory may get in the way
    571 	 * of other subsystems that may need one, so we try to be friendly
    572 	 * and ask for allocation in chunks of a minimum of 8 pages
    573 	 * of contiguous memory on average, falling back to 4, 2 and 1
    574 	 * if really needed. Larger chunks are preferred, since allocating
    575 	 * a bus_dma_segment per page would be overkill.
    576 	 */
    577 
    578 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    579 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    580 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    581 		if (segs == NULL) {
    582 			mutex_exit(&sc->as_mtx);
    583 			return ENOMEM;
    584 		}
    585 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    586 				     segs, nseg, &mem->am_nseg,
    587 				     contigpages > 1 ?
    588 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    589 			free(segs, M_AGP);
    590 			continue;
    591 		}
    592 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    593 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    594 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    595 			free(segs, M_AGP);
    596 			continue;
    597 		}
    598 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    599 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    600 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    601 			    mem->am_size);
    602 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    603 			free(segs, M_AGP);
    604 			continue;
    605 		}
    606 		mem->am_dmaseg = segs;
    607 		break;
    608 	}
    609 
    610 	if (contigpages == 0) {
    611 		mutex_exit(&sc->as_mtx);
    612 		return ENOMEM;
    613 	}
    614 
    615 
    616 	/*
    617 	 * Bind the individual pages and flush the chipset's
    618 	 * TLB.
    619 	 */
    620 	done = 0;
    621 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    622 		seg = &mem->am_dmamap->dm_segs[i];
    623 		/*
    624 		 * Install entries in the GATT, making sure that if
    625 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    626 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    627 		 * entries.
    628 		 */
    629 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    630 		     j += AGP_PAGE_SIZE) {
    631 			pa = seg->ds_addr + j;
    632 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    633 				(unsigned long)(offset + done + j),
    634 				(unsigned long)pa));
    635 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    636 			if (error) {
    637 				/*
    638 				 * Bail out. Reverse all the mappings
    639 				 * and unwire the pages.
    640 				 */
    641 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    642 					AGP_UNBIND_PAGE(sc, offset + k);
    643 
    644 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    645 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    646 						 mem->am_size);
    647 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    648 						mem->am_nseg);
    649 				free(mem->am_dmaseg, M_AGP);
    650 				mutex_exit(&sc->as_mtx);
    651 				return error;
    652 			}
    653 		}
    654 		done += seg->ds_len;
    655 	}
    656 
    657 	/*
    658 	 * Flush the CPU cache since we are providing a new mapping
    659 	 * for these pages.
    660 	 */
    661 	agp_flush_cache();
    662 
    663 	/*
    664 	 * Make sure the chipset gets the new mappings.
    665 	 */
    666 	AGP_FLUSH_TLB(sc);
    667 
    668 	mem->am_offset = offset;
    669 	mem->am_is_bound = 1;
    670 
    671 	mutex_exit(&sc->as_mtx);
    672 
    673 	return 0;
    674 }
    675 
    676 int
    677 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    678 {
    679 	int i;
    680 
    681 	mutex_enter(&sc->as_mtx);
    682 
    683 	if (!mem->am_is_bound) {
    684 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    685 		mutex_exit(&sc->as_mtx);
    686 		return EINVAL;
    687 	}
    688 
    689 
    690 	/*
    691 	 * Unbind the individual pages and flush the chipset's
    692 	 * TLB. Unwire the pages so they can be swapped.
    693 	 */
    694 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    695 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    696 
    697 	agp_flush_cache();
    698 	AGP_FLUSH_TLB(sc);
    699 
    700 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    701 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    702 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    703 
    704 	free(mem->am_dmaseg, M_AGP);
    705 
    706 	mem->am_offset = 0;
    707 	mem->am_is_bound = 0;
    708 
    709 	mutex_exit(&sc->as_mtx);
    710 
    711 	return 0;
    712 }
    713 
    714 /* Helper functions for implementing user/kernel api */
    715 
    716 static int
    717 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    718 {
    719 	if (sc->as_state != AGP_ACQUIRE_FREE)
    720 		return EBUSY;
    721 	sc->as_state = state;
    722 
    723 	return 0;
    724 }
    725 
    726 static int
    727 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    728 {
    729 
    730 	if (sc->as_state == AGP_ACQUIRE_FREE)
    731 		return 0;
    732 
    733 	if (sc->as_state != state)
    734 		return EBUSY;
    735 
    736 	sc->as_state = AGP_ACQUIRE_FREE;
    737 	return 0;
    738 }
    739 
    740 static struct agp_memory *
    741 agp_find_memory(struct agp_softc *sc, int id)
    742 {
    743 	struct agp_memory *mem;
    744 
    745 	AGP_DPF(("searching for memory block %d\n", id));
    746 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    747 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    748 		if (mem->am_id == id)
    749 			return mem;
    750 	}
    751 	return 0;
    752 }
    753 
    754 /* Implementation of the userland ioctl api */
    755 
    756 static int
    757 agp_info_user(struct agp_softc *sc, agp_info *info)
    758 {
    759 	memset(info, 0, sizeof *info);
    760 	info->bridge_id = sc->as_id;
    761 	if (sc->as_capoff != 0)
    762 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    763 					       sc->as_capoff + AGP_STATUS);
    764 	else
    765 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    766 	info->aper_base = sc->as_apaddr;
    767 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    768 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    769 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    770 
    771 	return 0;
    772 }
    773 
    774 static int
    775 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    776 {
    777 	return AGP_ENABLE(sc, setup->agp_mode);
    778 }
    779 
    780 static int
    781 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    782 {
    783 	struct agp_memory *mem;
    784 
    785 	mem = AGP_ALLOC_MEMORY(sc,
    786 			       alloc->type,
    787 			       alloc->pg_count << AGP_PAGE_SHIFT);
    788 	if (mem) {
    789 		alloc->key = mem->am_id;
    790 		alloc->physical = mem->am_physical;
    791 		return 0;
    792 	} else {
    793 		return ENOMEM;
    794 	}
    795 }
    796 
    797 static int
    798 agp_deallocate_user(struct agp_softc *sc, int id)
    799 {
    800 	struct agp_memory *mem = agp_find_memory(sc, id);
    801 
    802 	if (mem) {
    803 		AGP_FREE_MEMORY(sc, mem);
    804 		return 0;
    805 	} else {
    806 		return ENOENT;
    807 	}
    808 }
    809 
    810 static int
    811 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    812 {
    813 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    814 
    815 	if (!mem)
    816 		return ENOENT;
    817 
    818 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    819 }
    820 
    821 static int
    822 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    823 {
    824 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    825 
    826 	if (!mem)
    827 		return ENOENT;
    828 
    829 	return AGP_UNBIND_MEMORY(sc, mem);
    830 }
    831 
    832 static int
    833 agpopen(dev_t dev, int oflags, int devtype,
    834     struct lwp *l)
    835 {
    836 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    837 
    838 	if (sc == NULL)
    839 		return ENXIO;
    840 
    841 	if (sc->as_chipc == NULL)
    842 		return ENXIO;
    843 
    844 	if (!sc->as_isopen)
    845 		sc->as_isopen = 1;
    846 	else
    847 		return EBUSY;
    848 
    849 	return 0;
    850 }
    851 
    852 static int
    853 agpclose(dev_t dev, int fflag, int devtype,
    854     struct lwp *l)
    855 {
    856 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    857 	struct agp_memory *mem;
    858 
    859 	/*
    860 	 * Clear the GATT and force release on last close
    861 	 */
    862 	if (sc->as_state == AGP_ACQUIRE_USER) {
    863 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    864 			if (mem->am_is_bound) {
    865 				printf("agpclose: mem %d is bound\n",
    866 				       mem->am_id);
    867 				AGP_UNBIND_MEMORY(sc, mem);
    868 			}
    869 			/*
    870 			 * XXX it is not documented, but if the protocol allows
    871 			 * allocate->acquire->bind, it would be possible that
    872 			 * memory ranges are allocated by the kernel here,
    873 			 * which we shouldn't free. We'd have to keep track of
    874 			 * the memory range's owner.
    875 			 * The kernel API is unsed yet, so we get away with
    876 			 * freeing all.
    877 			 */
    878 			AGP_FREE_MEMORY(sc, mem);
    879 		}
    880 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    881 	}
    882 	sc->as_isopen = 0;
    883 
    884 	return 0;
    885 }
    886 
    887 static int
    888 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    889 {
    890 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    891 
    892 	if (sc == NULL)
    893 		return ENODEV;
    894 
    895 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    896 		return EPERM;
    897 
    898 	switch (cmd) {
    899 	case AGPIOC_INFO:
    900 		return agp_info_user(sc, (agp_info *) data);
    901 
    902 	case AGPIOC_ACQUIRE:
    903 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    904 
    905 	case AGPIOC_RELEASE:
    906 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    907 
    908 	case AGPIOC_SETUP:
    909 		return agp_setup_user(sc, (agp_setup *)data);
    910 
    911 	case AGPIOC_ALLOCATE:
    912 		return agp_allocate_user(sc, (agp_allocate *)data);
    913 
    914 	case AGPIOC_DEALLOCATE:
    915 		return agp_deallocate_user(sc, *(int *) data);
    916 
    917 	case AGPIOC_BIND:
    918 		return agp_bind_user(sc, (agp_bind *)data);
    919 
    920 	case AGPIOC_UNBIND:
    921 		return agp_unbind_user(sc, (agp_unbind *)data);
    922 
    923 	}
    924 
    925 	return EINVAL;
    926 }
    927 
    928 static paddr_t
    929 agpmmap(dev_t dev, off_t offset, int prot)
    930 {
    931 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    932 
    933 	if (offset > AGP_GET_APERTURE(sc))
    934 		return -1;
    935 
    936 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    937 	    BUS_SPACE_MAP_LINEAR));
    938 }
    939 
    940 const struct cdevsw agp_cdevsw = {
    941 	agpopen, agpclose, noread, nowrite, agpioctl,
    942 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    943 };
    944 
    945 /* Implementation of the kernel api */
    946 
    947 void *
    948 agp_find_device(int unit)
    949 {
    950 	return device_lookup(&agp_cd, unit);
    951 }
    952 
    953 enum agp_acquire_state
    954 agp_state(void *devcookie)
    955 {
    956 	struct agp_softc *sc = devcookie;
    957 	return sc->as_state;
    958 }
    959 
    960 void
    961 agp_get_info(void *devcookie, struct agp_info *info)
    962 {
    963 	struct agp_softc *sc = devcookie;
    964 
    965 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    966 	    sc->as_capoff + AGP_STATUS);
    967 	info->ai_aperture_base = sc->as_apaddr;
    968 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    969 	info->ai_memory_allowed = sc->as_maxmem;
    970 	info->ai_memory_used = sc->as_allocated;
    971 }
    972 
    973 int
    974 agp_acquire(void *dev)
    975 {
    976 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    977 }
    978 
    979 int
    980 agp_release(void *dev)
    981 {
    982 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    983 }
    984 
    985 int
    986 agp_enable(void *dev, u_int32_t mode)
    987 {
    988 	struct agp_softc *sc = dev;
    989 
    990 	return AGP_ENABLE(sc, mode);
    991 }
    992 
    993 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    994 {
    995 	struct agp_softc *sc = dev;
    996 
    997 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    998 }
    999 
   1000 void agp_free_memory(void *dev, void *handle)
   1001 {
   1002 	struct agp_softc *sc = dev;
   1003 	struct agp_memory *mem = (struct agp_memory *) handle;
   1004 	AGP_FREE_MEMORY(sc, mem);
   1005 }
   1006 
   1007 int agp_bind_memory(void *dev, void *handle, off_t offset)
   1008 {
   1009 	struct agp_softc *sc = dev;
   1010 	struct agp_memory *mem = (struct agp_memory *) handle;
   1011 
   1012 	return AGP_BIND_MEMORY(sc, mem, offset);
   1013 }
   1014 
   1015 int agp_unbind_memory(void *dev, void *handle)
   1016 {
   1017 	struct agp_softc *sc = dev;
   1018 	struct agp_memory *mem = (struct agp_memory *) handle;
   1019 
   1020 	return AGP_UNBIND_MEMORY(sc, mem);
   1021 }
   1022 
   1023 void agp_memory_info(void *dev, void *handle,
   1024     struct agp_memory_info *mi)
   1025 {
   1026 	struct agp_memory *mem = (struct agp_memory *) handle;
   1027 
   1028 	mi->ami_size = mem->am_size;
   1029 	mi->ami_physical = mem->am_physical;
   1030 	mi->ami_offset = mem->am_offset;
   1031 	mi->ami_is_bound = mem->am_is_bound;
   1032 }
   1033 
   1034 int
   1035 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1036 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1037 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1038 
   1039 {
   1040 	int error, level = 0;
   1041 
   1042 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1043 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1044 		goto out;
   1045 	level++;
   1046 
   1047 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1048 			BUS_DMA_NOWAIT | flags)) != 0)
   1049 		goto out;
   1050 	level++;
   1051 
   1052 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1053 			BUS_DMA_NOWAIT, mapp)) != 0)
   1054 		goto out;
   1055 	level++;
   1056 
   1057 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1058 			BUS_DMA_NOWAIT)) != 0)
   1059 		goto out;
   1060 
   1061 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1062 
   1063 	return 0;
   1064 out:
   1065 	switch (level) {
   1066 	case 3:
   1067 		bus_dmamap_destroy(tag, *mapp);
   1068 		/* FALLTHROUGH */
   1069 	case 2:
   1070 		bus_dmamem_unmap(tag, *vaddr, size);
   1071 		/* FALLTHROUGH */
   1072 	case 1:
   1073 		bus_dmamem_free(tag, seg, *rseg);
   1074 		break;
   1075 	default:
   1076 		break;
   1077 	}
   1078 
   1079 	return error;
   1080 }
   1081 
   1082 void
   1083 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1084 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1085 {
   1086 
   1087 	bus_dmamap_unload(tag, map);
   1088 	bus_dmamap_destroy(tag, map);
   1089 	bus_dmamem_unmap(tag, vaddr, size);
   1090 	bus_dmamem_free(tag, seg, nseg);
   1091 }
   1092 
   1093 void
   1094 agp_resume(device_t dv)
   1095 {
   1096 	agp_flush_cache();
   1097 }
   1098