agp.c revision 1.48 1 /* $NetBSD: agp.c,v 1.48 2007/08/15 02:26:13 markd Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.48 2007/08/15 02:26:13 markd Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <machine/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106
107 #include "agp_ali.h"
108 #include "agp_amd.h"
109 #include "agp_i810.h"
110 #include "agp_intel.h"
111 #include "agp_sis.h"
112 #include "agp_via.h"
113 #include "agp_amd64.h"
114
115 const struct agp_product {
116 uint32_t ap_vendor;
117 uint32_t ap_product;
118 int (*ap_match)(const struct pci_attach_args *);
119 int (*ap_attach)(struct device *, struct device *, void *);
120 } agp_products[] = {
121 #if NAGP_ALI > 0
122 { PCI_VENDOR_ALI, -1,
123 NULL, agp_ali_attach },
124 #endif
125
126 #if NAGP_AMD > 0
127 { PCI_VENDOR_AMD, -1,
128 agp_amd_match, agp_amd_attach },
129 #endif
130
131 #if NAGP_I810 > 0
132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
133 NULL, agp_i810_attach },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
135 NULL, agp_i810_attach },
136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
137 NULL, agp_i810_attach },
138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
139 NULL, agp_i810_attach },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
141 NULL, agp_i810_attach },
142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
143 NULL, agp_i810_attach },
144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
145 NULL, agp_i810_attach },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
147 NULL, agp_i810_attach },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
149 NULL, agp_i810_attach },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
151 NULL, agp_i810_attach },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
153 NULL, agp_i810_attach },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
155 NULL, agp_i810_attach },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
157 NULL, agp_i810_attach },
158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
159 NULL, agp_i810_attach },
160 #endif
161
162 #if NAGP_INTEL > 0
163 { PCI_VENDOR_INTEL, -1,
164 NULL, agp_intel_attach },
165 #endif
166
167 #if NAGP_SIS > 0
168 { PCI_VENDOR_SIS, -1,
169 NULL, agp_sis_attach },
170 #endif
171
172 #if NAGP_VIA > 0
173 { PCI_VENDOR_VIATECH, -1,
174 NULL, agp_via_attach },
175 #endif
176
177 #if NAGP_AMD64 > 0
178 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
179 agp_amd64_match, agp_amd64_attach },
180 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
181 agp_amd64_match, agp_amd64_attach },
182 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
183 agp_amd64_match, agp_amd64_attach },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
185 agp_amd64_match, agp_amd64_attach },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
187 agp_amd64_match, agp_amd64_attach },
188 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
189 agp_amd64_match, agp_amd64_attach },
190 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
191 agp_amd64_match, agp_amd64_attach },
192 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
193 agp_amd64_match, agp_amd64_attach },
194 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
195 agp_amd64_match, agp_amd64_attach },
196 #endif
197
198 { 0, 0,
199 NULL, NULL },
200 };
201
202 static const struct agp_product *
203 agp_lookup(const struct pci_attach_args *pa)
204 {
205 const struct agp_product *ap;
206
207 /* First find the vendor. */
208 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
209 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
210 break;
211 }
212
213 if (ap->ap_attach == NULL)
214 return (NULL);
215
216 /* Now find the product within the vendor's domain. */
217 for (; ap->ap_attach != NULL; ap++) {
218 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
219 /* Ran out of this vendor's section of the table. */
220 return (NULL);
221 }
222 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
223 /* Exact match. */
224 break;
225 }
226 if (ap->ap_product == (uint32_t) -1) {
227 /* Wildcard match. */
228 break;
229 }
230 }
231
232 if (ap->ap_attach == NULL)
233 return (NULL);
234
235 /* Now let the product-specific driver filter the match. */
236 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
237 return (NULL);
238
239 return (ap);
240 }
241
242 static int
243 agpmatch(struct device *parent, struct cfdata *match,
244 void *aux)
245 {
246 struct agpbus_attach_args *apa = aux;
247 struct pci_attach_args *pa = &apa->apa_pci_args;
248
249 if (agp_lookup(pa) == NULL)
250 return (0);
251
252 return (1);
253 }
254
255 static const int agp_max[][2] = {
256 {0, 0},
257 {32, 4},
258 {64, 28},
259 {128, 96},
260 {256, 204},
261 {512, 440},
262 {1024, 942},
263 {2048, 1920},
264 {4096, 3932}
265 };
266 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
267
268 static void
269 agpattach(struct device *parent, struct device *self, void *aux)
270 {
271 struct agpbus_attach_args *apa = aux;
272 struct pci_attach_args *pa = &apa->apa_pci_args;
273 struct agp_softc *sc = (void *)self;
274 const struct agp_product *ap;
275 int memsize, i, ret;
276
277 ap = agp_lookup(pa);
278 if (ap == NULL) {
279 printf("\n");
280 panic("agpattach: impossible");
281 }
282
283 aprint_naive(": AGP controller\n");
284
285 sc->as_dmat = pa->pa_dmat;
286 sc->as_pc = pa->pa_pc;
287 sc->as_tag = pa->pa_tag;
288 sc->as_id = pa->pa_id;
289
290 /*
291 * Work out an upper bound for agp memory allocation. This
292 * uses a heurisitc table from the Linux driver.
293 */
294 memsize = ptoa(physmem) >> 20;
295 for (i = 0; i < agp_max_size; i++) {
296 if (memsize <= agp_max[i][0])
297 break;
298 }
299 if (i == agp_max_size)
300 i = agp_max_size - 1;
301 sc->as_maxmem = agp_max[i][1] << 20U;
302
303 /*
304 * The mutex is used to prevent re-entry to
305 * agp_generic_bind_memory() since that function can sleep.
306 */
307 mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
308
309 TAILQ_INIT(&sc->as_memory);
310
311 ret = (*ap->ap_attach)(parent, self, pa);
312 if (ret == 0)
313 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
314 (unsigned long)sc->as_apaddr,
315 (unsigned long)AGP_GET_APERTURE(sc));
316 else
317 sc->as_chipc = NULL;
318 }
319
320 CFATTACH_DECL(agp, sizeof(struct agp_softc),
321 agpmatch, agpattach, NULL, NULL);
322
323 int
324 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
325 {
326 /*
327 * Find the aperture. Don't map it (yet), this would
328 * eat KVA.
329 */
330 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
331 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
332 &sc->as_apflags) != 0)
333 return ENXIO;
334
335 sc->as_apt = pa->pa_memt;
336
337 return 0;
338 }
339
340 struct agp_gatt *
341 agp_alloc_gatt(struct agp_softc *sc)
342 {
343 u_int32_t apsize = AGP_GET_APERTURE(sc);
344 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
345 struct agp_gatt *gatt;
346 void *virtual;
347 int dummyseg;
348
349 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
350 if (!gatt)
351 return NULL;
352 gatt->ag_entries = entries;
353
354 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
355 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
356 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
357 return NULL;
358 gatt->ag_virtual = (uint32_t *)virtual;
359
360 gatt->ag_size = entries * sizeof(u_int32_t);
361 memset(gatt->ag_virtual, 0, gatt->ag_size);
362 agp_flush_cache();
363
364 return gatt;
365 }
366
367 void
368 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
369 {
370 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
371 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
372 free(gatt, M_AGP);
373 }
374
375
376 int
377 agp_generic_detach(struct agp_softc *sc)
378 {
379 mutex_destroy(&sc->as_mtx);
380 agp_flush_cache();
381 return 0;
382 }
383
384 static int
385 agpdev_match(struct pci_attach_args *pa)
386 {
387 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
388 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
389 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
390 NULL, NULL))
391 return 1;
392
393 return 0;
394 }
395
396 int
397 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
398 {
399 struct pci_attach_args pa;
400 pcireg_t tstatus, mstatus;
401 pcireg_t command;
402 int rq, sba, fw, rate, capoff;
403
404 if (pci_find_device(&pa, agpdev_match) == 0 ||
405 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
406 &capoff, NULL) == 0) {
407 printf("%s: can't find display\n", sc->as_dev.dv_xname);
408 return ENXIO;
409 }
410
411 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
412 sc->as_capoff + AGP_STATUS);
413 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
414 capoff + AGP_STATUS);
415
416 /* Set RQ to the min of mode, tstatus and mstatus */
417 rq = AGP_MODE_GET_RQ(mode);
418 if (AGP_MODE_GET_RQ(tstatus) < rq)
419 rq = AGP_MODE_GET_RQ(tstatus);
420 if (AGP_MODE_GET_RQ(mstatus) < rq)
421 rq = AGP_MODE_GET_RQ(mstatus);
422
423 /* Set SBA if all three can deal with SBA */
424 sba = (AGP_MODE_GET_SBA(tstatus)
425 & AGP_MODE_GET_SBA(mstatus)
426 & AGP_MODE_GET_SBA(mode));
427
428 /* Similar for FW */
429 fw = (AGP_MODE_GET_FW(tstatus)
430 & AGP_MODE_GET_FW(mstatus)
431 & AGP_MODE_GET_FW(mode));
432
433 /* Figure out the max rate */
434 rate = (AGP_MODE_GET_RATE(tstatus)
435 & AGP_MODE_GET_RATE(mstatus)
436 & AGP_MODE_GET_RATE(mode));
437 if (rate & AGP_MODE_RATE_4x)
438 rate = AGP_MODE_RATE_4x;
439 else if (rate & AGP_MODE_RATE_2x)
440 rate = AGP_MODE_RATE_2x;
441 else
442 rate = AGP_MODE_RATE_1x;
443
444 /* Construct the new mode word and tell the hardware */
445 command = AGP_MODE_SET_RQ(0, rq);
446 command = AGP_MODE_SET_SBA(command, sba);
447 command = AGP_MODE_SET_FW(command, fw);
448 command = AGP_MODE_SET_RATE(command, rate);
449 command = AGP_MODE_SET_AGP(command, 1);
450 pci_conf_write(sc->as_pc, sc->as_tag,
451 sc->as_capoff + AGP_COMMAND, command);
452 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
453
454 return 0;
455 }
456
457 struct agp_memory *
458 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
459 {
460 struct agp_memory *mem;
461
462 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
463 return 0;
464
465 if (sc->as_allocated + size > sc->as_maxmem)
466 return 0;
467
468 if (type != 0) {
469 printf("agp_generic_alloc_memory: unsupported type %d\n",
470 type);
471 return 0;
472 }
473
474 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
475 if (mem == NULL)
476 return NULL;
477
478 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
479 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
480 free(mem, M_AGP);
481 return NULL;
482 }
483
484 mem->am_id = sc->as_nextid++;
485 mem->am_size = size;
486 mem->am_type = 0;
487 mem->am_physical = 0;
488 mem->am_offset = 0;
489 mem->am_is_bound = 0;
490 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
491 sc->as_allocated += size;
492
493 return mem;
494 }
495
496 int
497 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
498 {
499 if (mem->am_is_bound)
500 return EBUSY;
501
502 sc->as_allocated -= mem->am_size;
503 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
504 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
505 free(mem, M_AGP);
506 return 0;
507 }
508
509 int
510 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
511 off_t offset)
512 {
513 off_t i, k;
514 bus_size_t done, j;
515 int error;
516 bus_dma_segment_t *segs, *seg;
517 bus_addr_t pa;
518 int contigpages, nseg;
519
520 mutex_enter(&sc->as_mtx);
521
522 if (mem->am_is_bound) {
523 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
524 mutex_exit(&sc->as_mtx);
525 return EINVAL;
526 }
527
528 if (offset < 0
529 || (offset & (AGP_PAGE_SIZE - 1)) != 0
530 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
531 printf("%s: binding memory at bad offset %#lx\n",
532 sc->as_dev.dv_xname, (unsigned long) offset);
533 mutex_exit(&sc->as_mtx);
534 return EINVAL;
535 }
536
537 /*
538 * XXXfvdl
539 * The memory here needs to be directly accessable from the
540 * AGP video card, so it should be allocated using bus_dma.
541 * However, it need not be contiguous, since individual pages
542 * are translated using the GATT.
543 *
544 * Using a large chunk of contiguous memory may get in the way
545 * of other subsystems that may need one, so we try to be friendly
546 * and ask for allocation in chunks of a minimum of 8 pages
547 * of contiguous memory on average, falling back to 4, 2 and 1
548 * if really needed. Larger chunks are preferred, since allocating
549 * a bus_dma_segment per page would be overkill.
550 */
551
552 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
553 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
554 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
555 if (segs == NULL) {
556 mutex_exit(&sc->as_mtx);
557 return ENOMEM;
558 }
559 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
560 segs, nseg, &mem->am_nseg,
561 contigpages > 1 ?
562 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
563 free(segs, M_AGP);
564 continue;
565 }
566 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
567 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
568 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
569 free(segs, M_AGP);
570 continue;
571 }
572 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
573 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
574 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
575 mem->am_size);
576 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
577 free(segs, M_AGP);
578 continue;
579 }
580 mem->am_dmaseg = segs;
581 break;
582 }
583
584 if (contigpages == 0) {
585 mutex_exit(&sc->as_mtx);
586 return ENOMEM;
587 }
588
589
590 /*
591 * Bind the individual pages and flush the chipset's
592 * TLB.
593 */
594 done = 0;
595 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
596 seg = &mem->am_dmamap->dm_segs[i];
597 /*
598 * Install entries in the GATT, making sure that if
599 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
600 * aligned to PAGE_SIZE, we don't modify too many GATT
601 * entries.
602 */
603 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
604 j += AGP_PAGE_SIZE) {
605 pa = seg->ds_addr + j;
606 AGP_DPF(("binding offset %#lx to pa %#lx\n",
607 (unsigned long)(offset + done + j),
608 (unsigned long)pa));
609 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
610 if (error) {
611 /*
612 * Bail out. Reverse all the mappings
613 * and unwire the pages.
614 */
615 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
616 AGP_UNBIND_PAGE(sc, offset + k);
617
618 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
619 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
620 mem->am_size);
621 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
622 mem->am_nseg);
623 free(mem->am_dmaseg, M_AGP);
624 mutex_exit(&sc->as_mtx);
625 return error;
626 }
627 }
628 done += seg->ds_len;
629 }
630
631 /*
632 * Flush the CPU cache since we are providing a new mapping
633 * for these pages.
634 */
635 agp_flush_cache();
636
637 /*
638 * Make sure the chipset gets the new mappings.
639 */
640 AGP_FLUSH_TLB(sc);
641
642 mem->am_offset = offset;
643 mem->am_is_bound = 1;
644
645 mutex_exit(&sc->as_mtx);
646
647 return 0;
648 }
649
650 int
651 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
652 {
653 int i;
654
655 mutex_enter(&sc->as_mtx);
656
657 if (!mem->am_is_bound) {
658 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
659 mutex_exit(&sc->as_mtx);
660 return EINVAL;
661 }
662
663
664 /*
665 * Unbind the individual pages and flush the chipset's
666 * TLB. Unwire the pages so they can be swapped.
667 */
668 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
669 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
670
671 agp_flush_cache();
672 AGP_FLUSH_TLB(sc);
673
674 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
675 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
676 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
677
678 free(mem->am_dmaseg, M_AGP);
679
680 mem->am_offset = 0;
681 mem->am_is_bound = 0;
682
683 mutex_exit(&sc->as_mtx);
684
685 return 0;
686 }
687
688 /* Helper functions for implementing user/kernel api */
689
690 static int
691 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
692 {
693 if (sc->as_state != AGP_ACQUIRE_FREE)
694 return EBUSY;
695 sc->as_state = state;
696
697 return 0;
698 }
699
700 static int
701 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
702 {
703
704 if (sc->as_state == AGP_ACQUIRE_FREE)
705 return 0;
706
707 if (sc->as_state != state)
708 return EBUSY;
709
710 sc->as_state = AGP_ACQUIRE_FREE;
711 return 0;
712 }
713
714 static struct agp_memory *
715 agp_find_memory(struct agp_softc *sc, int id)
716 {
717 struct agp_memory *mem;
718
719 AGP_DPF(("searching for memory block %d\n", id));
720 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
721 AGP_DPF(("considering memory block %d\n", mem->am_id));
722 if (mem->am_id == id)
723 return mem;
724 }
725 return 0;
726 }
727
728 /* Implementation of the userland ioctl api */
729
730 static int
731 agp_info_user(struct agp_softc *sc, agp_info *info)
732 {
733 memset(info, 0, sizeof *info);
734 info->bridge_id = sc->as_id;
735 if (sc->as_capoff != 0)
736 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
737 sc->as_capoff + AGP_STATUS);
738 else
739 info->agp_mode = 0; /* i810 doesn't have real AGP */
740 info->aper_base = sc->as_apaddr;
741 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
742 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
743 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
744
745 return 0;
746 }
747
748 static int
749 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
750 {
751 return AGP_ENABLE(sc, setup->agp_mode);
752 }
753
754 static int
755 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
756 {
757 struct agp_memory *mem;
758
759 mem = AGP_ALLOC_MEMORY(sc,
760 alloc->type,
761 alloc->pg_count << AGP_PAGE_SHIFT);
762 if (mem) {
763 alloc->key = mem->am_id;
764 alloc->physical = mem->am_physical;
765 return 0;
766 } else {
767 return ENOMEM;
768 }
769 }
770
771 static int
772 agp_deallocate_user(struct agp_softc *sc, int id)
773 {
774 struct agp_memory *mem = agp_find_memory(sc, id);
775
776 if (mem) {
777 AGP_FREE_MEMORY(sc, mem);
778 return 0;
779 } else {
780 return ENOENT;
781 }
782 }
783
784 static int
785 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
786 {
787 struct agp_memory *mem = agp_find_memory(sc, bind->key);
788
789 if (!mem)
790 return ENOENT;
791
792 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
793 }
794
795 static int
796 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
797 {
798 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
799
800 if (!mem)
801 return ENOENT;
802
803 return AGP_UNBIND_MEMORY(sc, mem);
804 }
805
806 static int
807 agpopen(dev_t dev, int oflags, int devtype,
808 struct lwp *l)
809 {
810 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
811
812 if (sc == NULL)
813 return ENXIO;
814
815 if (sc->as_chipc == NULL)
816 return ENXIO;
817
818 if (!sc->as_isopen)
819 sc->as_isopen = 1;
820 else
821 return EBUSY;
822
823 return 0;
824 }
825
826 static int
827 agpclose(dev_t dev, int fflag, int devtype,
828 struct lwp *l)
829 {
830 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
831 struct agp_memory *mem;
832
833 /*
834 * Clear the GATT and force release on last close
835 */
836 if (sc->as_state == AGP_ACQUIRE_USER) {
837 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
838 if (mem->am_is_bound) {
839 printf("agpclose: mem %d is bound\n",
840 mem->am_id);
841 AGP_UNBIND_MEMORY(sc, mem);
842 }
843 /*
844 * XXX it is not documented, but if the protocol allows
845 * allocate->acquire->bind, it would be possible that
846 * memory ranges are allocated by the kernel here,
847 * which we shouldn't free. We'd have to keep track of
848 * the memory range's owner.
849 * The kernel API is unsed yet, so we get away with
850 * freeing all.
851 */
852 AGP_FREE_MEMORY(sc, mem);
853 }
854 agp_release_helper(sc, AGP_ACQUIRE_USER);
855 }
856 sc->as_isopen = 0;
857
858 return 0;
859 }
860
861 static int
862 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
863 {
864 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
865
866 if (sc == NULL)
867 return ENODEV;
868
869 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
870 return EPERM;
871
872 switch (cmd) {
873 case AGPIOC_INFO:
874 return agp_info_user(sc, (agp_info *) data);
875
876 case AGPIOC_ACQUIRE:
877 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
878
879 case AGPIOC_RELEASE:
880 return agp_release_helper(sc, AGP_ACQUIRE_USER);
881
882 case AGPIOC_SETUP:
883 return agp_setup_user(sc, (agp_setup *)data);
884
885 case AGPIOC_ALLOCATE:
886 return agp_allocate_user(sc, (agp_allocate *)data);
887
888 case AGPIOC_DEALLOCATE:
889 return agp_deallocate_user(sc, *(int *) data);
890
891 case AGPIOC_BIND:
892 return agp_bind_user(sc, (agp_bind *)data);
893
894 case AGPIOC_UNBIND:
895 return agp_unbind_user(sc, (agp_unbind *)data);
896
897 }
898
899 return EINVAL;
900 }
901
902 static paddr_t
903 agpmmap(dev_t dev, off_t offset, int prot)
904 {
905 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
906
907 if (offset > AGP_GET_APERTURE(sc))
908 return -1;
909
910 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
911 BUS_SPACE_MAP_LINEAR));
912 }
913
914 const struct cdevsw agp_cdevsw = {
915 agpopen, agpclose, noread, nowrite, agpioctl,
916 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
917 };
918
919 /* Implementation of the kernel api */
920
921 void *
922 agp_find_device(int unit)
923 {
924 return device_lookup(&agp_cd, unit);
925 }
926
927 enum agp_acquire_state
928 agp_state(void *devcookie)
929 {
930 struct agp_softc *sc = devcookie;
931 return sc->as_state;
932 }
933
934 void
935 agp_get_info(void *devcookie, struct agp_info *info)
936 {
937 struct agp_softc *sc = devcookie;
938
939 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
940 sc->as_capoff + AGP_STATUS);
941 info->ai_aperture_base = sc->as_apaddr;
942 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
943 info->ai_memory_allowed = sc->as_maxmem;
944 info->ai_memory_used = sc->as_allocated;
945 }
946
947 int
948 agp_acquire(void *dev)
949 {
950 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
951 }
952
953 int
954 agp_release(void *dev)
955 {
956 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
957 }
958
959 int
960 agp_enable(void *dev, u_int32_t mode)
961 {
962 struct agp_softc *sc = dev;
963
964 return AGP_ENABLE(sc, mode);
965 }
966
967 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
968 {
969 struct agp_softc *sc = dev;
970
971 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
972 }
973
974 void agp_free_memory(void *dev, void *handle)
975 {
976 struct agp_softc *sc = dev;
977 struct agp_memory *mem = (struct agp_memory *) handle;
978 AGP_FREE_MEMORY(sc, mem);
979 }
980
981 int agp_bind_memory(void *dev, void *handle, off_t offset)
982 {
983 struct agp_softc *sc = dev;
984 struct agp_memory *mem = (struct agp_memory *) handle;
985
986 return AGP_BIND_MEMORY(sc, mem, offset);
987 }
988
989 int agp_unbind_memory(void *dev, void *handle)
990 {
991 struct agp_softc *sc = dev;
992 struct agp_memory *mem = (struct agp_memory *) handle;
993
994 return AGP_UNBIND_MEMORY(sc, mem);
995 }
996
997 void agp_memory_info(void *dev, void *handle,
998 struct agp_memory_info *mi)
999 {
1000 struct agp_memory *mem = (struct agp_memory *) handle;
1001
1002 mi->ami_size = mem->am_size;
1003 mi->ami_physical = mem->am_physical;
1004 mi->ami_offset = mem->am_offset;
1005 mi->ami_is_bound = mem->am_is_bound;
1006 }
1007
1008 int
1009 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1010 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1011 bus_dma_segment_t *seg, int nseg, int *rseg)
1012
1013 {
1014 int error, level = 0;
1015
1016 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1017 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1018 goto out;
1019 level++;
1020
1021 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1022 BUS_DMA_NOWAIT | flags)) != 0)
1023 goto out;
1024 level++;
1025
1026 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1027 BUS_DMA_NOWAIT, mapp)) != 0)
1028 goto out;
1029 level++;
1030
1031 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1032 BUS_DMA_NOWAIT)) != 0)
1033 goto out;
1034
1035 *baddr = (*mapp)->dm_segs[0].ds_addr;
1036
1037 return 0;
1038 out:
1039 switch (level) {
1040 case 3:
1041 bus_dmamap_destroy(tag, *mapp);
1042 /* FALLTHROUGH */
1043 case 2:
1044 bus_dmamem_unmap(tag, *vaddr, size);
1045 /* FALLTHROUGH */
1046 case 1:
1047 bus_dmamem_free(tag, seg, *rseg);
1048 break;
1049 default:
1050 break;
1051 }
1052
1053 return error;
1054 }
1055
1056 void
1057 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1058 void *vaddr, bus_dma_segment_t *seg, int nseg)
1059 {
1060
1061 bus_dmamap_unload(tag, map);
1062 bus_dmamap_destroy(tag, map);
1063 bus_dmamem_unmap(tag, vaddr, size);
1064 bus_dmamem_free(tag, seg, nseg);
1065 }
1066