agp.c revision 1.48.6.2 1 /* $NetBSD: agp.c,v 1.48.6.2 2007/11/13 16:01:11 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.48.6.2 2007/11/13 16:01:11 bouyer Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106
107 #include "agp_ali.h"
108 #include "agp_amd.h"
109 #include "agp_i810.h"
110 #include "agp_intel.h"
111 #include "agp_sis.h"
112 #include "agp_via.h"
113 #include "agp_amd64.h"
114
115 const struct agp_product {
116 uint32_t ap_vendor;
117 uint32_t ap_product;
118 int (*ap_match)(const struct pci_attach_args *);
119 int (*ap_attach)(struct device *, struct device *, void *);
120 } agp_products[] = {
121 #if NAGP_ALI > 0
122 { PCI_VENDOR_ALI, -1,
123 NULL, agp_ali_attach },
124 #endif
125
126 #if NAGP_AMD64 > 0
127 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
128 agp_amd64_match, agp_amd64_attach },
129 #endif
130
131 #if NAGP_AMD > 0
132 { PCI_VENDOR_AMD, -1,
133 agp_amd_match, agp_amd_attach },
134 #endif
135
136 #if NAGP_I810 > 0
137 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
138 NULL, agp_i810_attach },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
140 NULL, agp_i810_attach },
141 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
142 NULL, agp_i810_attach },
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
168 NULL, agp_i810_attach },
169 #endif
170
171 #if NAGP_INTEL > 0
172 { PCI_VENDOR_INTEL, -1,
173 NULL, agp_intel_attach },
174 #endif
175
176 #if NAGP_AMD64 > 0
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
178 agp_amd64_match, agp_amd64_attach },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
180 agp_amd64_match, agp_amd64_attach },
181 #endif
182
183 #if NAGP_AMD64 > 0
184 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
185 agp_amd64_match, agp_amd64_attach },
186 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
187 agp_amd64_match, agp_amd64_attach },
188 #endif
189
190 #if NAGP_SIS > 0
191 { PCI_VENDOR_SIS, -1,
192 NULL, agp_sis_attach },
193 #endif
194
195 #if NAGP_AMD64 > 0
196 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
197 agp_amd64_match, agp_amd64_attach },
198 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
199 agp_amd64_match, agp_amd64_attach },
200 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
201 agp_amd64_match, agp_amd64_attach },
202 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
203 agp_amd64_match, agp_amd64_attach },
204 #endif
205
206 #if NAGP_VIA > 0
207 { PCI_VENDOR_VIATECH, -1,
208 NULL, agp_via_attach },
209 #endif
210
211 { 0, 0,
212 NULL, NULL },
213 };
214
215 static const struct agp_product *
216 agp_lookup(const struct pci_attach_args *pa)
217 {
218 const struct agp_product *ap;
219
220 /* First find the vendor. */
221 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
222 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
223 break;
224 }
225
226 if (ap->ap_attach == NULL)
227 return (NULL);
228
229 /* Now find the product within the vendor's domain. */
230 for (; ap->ap_attach != NULL; ap++) {
231 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
232 /* Ran out of this vendor's section of the table. */
233 return (NULL);
234 }
235 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
236 /* Exact match. */
237 break;
238 }
239 if (ap->ap_product == (uint32_t) -1) {
240 /* Wildcard match. */
241 break;
242 }
243 }
244
245 if (ap->ap_attach == NULL)
246 return (NULL);
247
248 /* Now let the product-specific driver filter the match. */
249 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
250 return (NULL);
251
252 return (ap);
253 }
254
255 static int
256 agpmatch(struct device *parent, struct cfdata *match,
257 void *aux)
258 {
259 struct agpbus_attach_args *apa = aux;
260 struct pci_attach_args *pa = &apa->apa_pci_args;
261
262 if (agp_lookup(pa) == NULL)
263 return (0);
264
265 return (1);
266 }
267
268 static const int agp_max[][2] = {
269 {0, 0},
270 {32, 4},
271 {64, 28},
272 {128, 96},
273 {256, 204},
274 {512, 440},
275 {1024, 942},
276 {2048, 1920},
277 {4096, 3932}
278 };
279 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
280
281 static void
282 agpattach(struct device *parent, struct device *self, void *aux)
283 {
284 struct agpbus_attach_args *apa = aux;
285 struct pci_attach_args *pa = &apa->apa_pci_args;
286 struct agp_softc *sc = (void *)self;
287 const struct agp_product *ap;
288 int memsize, i, ret;
289
290 ap = agp_lookup(pa);
291 if (ap == NULL) {
292 printf("\n");
293 panic("agpattach: impossible");
294 }
295
296 aprint_naive(": AGP controller\n");
297
298 sc->as_dmat = pa->pa_dmat;
299 sc->as_pc = pa->pa_pc;
300 sc->as_tag = pa->pa_tag;
301 sc->as_id = pa->pa_id;
302
303 /*
304 * Work out an upper bound for agp memory allocation. This
305 * uses a heurisitc table from the Linux driver.
306 */
307 memsize = ptoa(physmem) >> 20;
308 for (i = 0; i < agp_max_size; i++) {
309 if (memsize <= agp_max[i][0])
310 break;
311 }
312 if (i == agp_max_size)
313 i = agp_max_size - 1;
314 sc->as_maxmem = agp_max[i][1] << 20U;
315
316 /*
317 * The mutex is used to prevent re-entry to
318 * agp_generic_bind_memory() since that function can sleep.
319 */
320 mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
321
322 TAILQ_INIT(&sc->as_memory);
323
324 ret = (*ap->ap_attach)(parent, self, pa);
325 if (ret == 0)
326 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
327 (unsigned long)sc->as_apaddr,
328 (unsigned long)AGP_GET_APERTURE(sc));
329 else
330 sc->as_chipc = NULL;
331 }
332
333 CFATTACH_DECL(agp, sizeof(struct agp_softc),
334 agpmatch, agpattach, NULL, NULL);
335
336 int
337 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
338 {
339 /*
340 * Find the aperture. Don't map it (yet), this would
341 * eat KVA.
342 */
343 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
344 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
345 &sc->as_apflags) != 0)
346 return ENXIO;
347
348 sc->as_apt = pa->pa_memt;
349
350 return 0;
351 }
352
353 struct agp_gatt *
354 agp_alloc_gatt(struct agp_softc *sc)
355 {
356 u_int32_t apsize = AGP_GET_APERTURE(sc);
357 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
358 struct agp_gatt *gatt;
359 void *virtual;
360 int dummyseg;
361
362 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
363 if (!gatt)
364 return NULL;
365 gatt->ag_entries = entries;
366
367 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
368 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
369 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
370 return NULL;
371 gatt->ag_virtual = (uint32_t *)virtual;
372
373 gatt->ag_size = entries * sizeof(u_int32_t);
374 memset(gatt->ag_virtual, 0, gatt->ag_size);
375 agp_flush_cache();
376
377 return gatt;
378 }
379
380 void
381 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
382 {
383 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
384 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
385 free(gatt, M_AGP);
386 }
387
388
389 int
390 agp_generic_detach(struct agp_softc *sc)
391 {
392 mutex_destroy(&sc->as_mtx);
393 agp_flush_cache();
394 return 0;
395 }
396
397 static int
398 agpdev_match(struct pci_attach_args *pa)
399 {
400 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
401 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
402 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
403 NULL, NULL))
404 return 1;
405
406 return 0;
407 }
408
409 int
410 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
411 {
412 struct pci_attach_args pa;
413 pcireg_t tstatus, mstatus;
414 pcireg_t command;
415 int rq, sba, fw, rate, capoff;
416
417 if (pci_find_device(&pa, agpdev_match) == 0 ||
418 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
419 &capoff, NULL) == 0) {
420 printf("%s: can't find display\n", sc->as_dev.dv_xname);
421 return ENXIO;
422 }
423
424 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
425 sc->as_capoff + AGP_STATUS);
426 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
427 capoff + AGP_STATUS);
428
429 /* Set RQ to the min of mode, tstatus and mstatus */
430 rq = AGP_MODE_GET_RQ(mode);
431 if (AGP_MODE_GET_RQ(tstatus) < rq)
432 rq = AGP_MODE_GET_RQ(tstatus);
433 if (AGP_MODE_GET_RQ(mstatus) < rq)
434 rq = AGP_MODE_GET_RQ(mstatus);
435
436 /* Set SBA if all three can deal with SBA */
437 sba = (AGP_MODE_GET_SBA(tstatus)
438 & AGP_MODE_GET_SBA(mstatus)
439 & AGP_MODE_GET_SBA(mode));
440
441 /* Similar for FW */
442 fw = (AGP_MODE_GET_FW(tstatus)
443 & AGP_MODE_GET_FW(mstatus)
444 & AGP_MODE_GET_FW(mode));
445
446 /* Figure out the max rate */
447 rate = (AGP_MODE_GET_RATE(tstatus)
448 & AGP_MODE_GET_RATE(mstatus)
449 & AGP_MODE_GET_RATE(mode));
450 if (rate & AGP_MODE_RATE_4x)
451 rate = AGP_MODE_RATE_4x;
452 else if (rate & AGP_MODE_RATE_2x)
453 rate = AGP_MODE_RATE_2x;
454 else
455 rate = AGP_MODE_RATE_1x;
456
457 /* Construct the new mode word and tell the hardware */
458 command = AGP_MODE_SET_RQ(0, rq);
459 command = AGP_MODE_SET_SBA(command, sba);
460 command = AGP_MODE_SET_FW(command, fw);
461 command = AGP_MODE_SET_RATE(command, rate);
462 command = AGP_MODE_SET_AGP(command, 1);
463 pci_conf_write(sc->as_pc, sc->as_tag,
464 sc->as_capoff + AGP_COMMAND, command);
465 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
466
467 return 0;
468 }
469
470 struct agp_memory *
471 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
472 {
473 struct agp_memory *mem;
474
475 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
476 return 0;
477
478 if (sc->as_allocated + size > sc->as_maxmem)
479 return 0;
480
481 if (type != 0) {
482 printf("agp_generic_alloc_memory: unsupported type %d\n",
483 type);
484 return 0;
485 }
486
487 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
488 if (mem == NULL)
489 return NULL;
490
491 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
492 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
493 free(mem, M_AGP);
494 return NULL;
495 }
496
497 mem->am_id = sc->as_nextid++;
498 mem->am_size = size;
499 mem->am_type = 0;
500 mem->am_physical = 0;
501 mem->am_offset = 0;
502 mem->am_is_bound = 0;
503 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
504 sc->as_allocated += size;
505
506 return mem;
507 }
508
509 int
510 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
511 {
512 if (mem->am_is_bound)
513 return EBUSY;
514
515 sc->as_allocated -= mem->am_size;
516 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
517 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
518 free(mem, M_AGP);
519 return 0;
520 }
521
522 int
523 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
524 off_t offset)
525 {
526 off_t i, k;
527 bus_size_t done, j;
528 int error;
529 bus_dma_segment_t *segs, *seg;
530 bus_addr_t pa;
531 int contigpages, nseg;
532
533 mutex_enter(&sc->as_mtx);
534
535 if (mem->am_is_bound) {
536 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
537 mutex_exit(&sc->as_mtx);
538 return EINVAL;
539 }
540
541 if (offset < 0
542 || (offset & (AGP_PAGE_SIZE - 1)) != 0
543 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
544 printf("%s: binding memory at bad offset %#lx\n",
545 sc->as_dev.dv_xname, (unsigned long) offset);
546 mutex_exit(&sc->as_mtx);
547 return EINVAL;
548 }
549
550 /*
551 * XXXfvdl
552 * The memory here needs to be directly accessable from the
553 * AGP video card, so it should be allocated using bus_dma.
554 * However, it need not be contiguous, since individual pages
555 * are translated using the GATT.
556 *
557 * Using a large chunk of contiguous memory may get in the way
558 * of other subsystems that may need one, so we try to be friendly
559 * and ask for allocation in chunks of a minimum of 8 pages
560 * of contiguous memory on average, falling back to 4, 2 and 1
561 * if really needed. Larger chunks are preferred, since allocating
562 * a bus_dma_segment per page would be overkill.
563 */
564
565 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
566 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
567 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
568 if (segs == NULL) {
569 mutex_exit(&sc->as_mtx);
570 return ENOMEM;
571 }
572 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
573 segs, nseg, &mem->am_nseg,
574 contigpages > 1 ?
575 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
576 free(segs, M_AGP);
577 continue;
578 }
579 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
580 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
581 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
582 free(segs, M_AGP);
583 continue;
584 }
585 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
586 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
587 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
588 mem->am_size);
589 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
590 free(segs, M_AGP);
591 continue;
592 }
593 mem->am_dmaseg = segs;
594 break;
595 }
596
597 if (contigpages == 0) {
598 mutex_exit(&sc->as_mtx);
599 return ENOMEM;
600 }
601
602
603 /*
604 * Bind the individual pages and flush the chipset's
605 * TLB.
606 */
607 done = 0;
608 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
609 seg = &mem->am_dmamap->dm_segs[i];
610 /*
611 * Install entries in the GATT, making sure that if
612 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
613 * aligned to PAGE_SIZE, we don't modify too many GATT
614 * entries.
615 */
616 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
617 j += AGP_PAGE_SIZE) {
618 pa = seg->ds_addr + j;
619 AGP_DPF(("binding offset %#lx to pa %#lx\n",
620 (unsigned long)(offset + done + j),
621 (unsigned long)pa));
622 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
623 if (error) {
624 /*
625 * Bail out. Reverse all the mappings
626 * and unwire the pages.
627 */
628 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
629 AGP_UNBIND_PAGE(sc, offset + k);
630
631 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
632 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
633 mem->am_size);
634 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
635 mem->am_nseg);
636 free(mem->am_dmaseg, M_AGP);
637 mutex_exit(&sc->as_mtx);
638 return error;
639 }
640 }
641 done += seg->ds_len;
642 }
643
644 /*
645 * Flush the CPU cache since we are providing a new mapping
646 * for these pages.
647 */
648 agp_flush_cache();
649
650 /*
651 * Make sure the chipset gets the new mappings.
652 */
653 AGP_FLUSH_TLB(sc);
654
655 mem->am_offset = offset;
656 mem->am_is_bound = 1;
657
658 mutex_exit(&sc->as_mtx);
659
660 return 0;
661 }
662
663 int
664 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
665 {
666 int i;
667
668 mutex_enter(&sc->as_mtx);
669
670 if (!mem->am_is_bound) {
671 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
672 mutex_exit(&sc->as_mtx);
673 return EINVAL;
674 }
675
676
677 /*
678 * Unbind the individual pages and flush the chipset's
679 * TLB. Unwire the pages so they can be swapped.
680 */
681 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
682 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
683
684 agp_flush_cache();
685 AGP_FLUSH_TLB(sc);
686
687 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
688 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
689 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
690
691 free(mem->am_dmaseg, M_AGP);
692
693 mem->am_offset = 0;
694 mem->am_is_bound = 0;
695
696 mutex_exit(&sc->as_mtx);
697
698 return 0;
699 }
700
701 /* Helper functions for implementing user/kernel api */
702
703 static int
704 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
705 {
706 if (sc->as_state != AGP_ACQUIRE_FREE)
707 return EBUSY;
708 sc->as_state = state;
709
710 return 0;
711 }
712
713 static int
714 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
715 {
716
717 if (sc->as_state == AGP_ACQUIRE_FREE)
718 return 0;
719
720 if (sc->as_state != state)
721 return EBUSY;
722
723 sc->as_state = AGP_ACQUIRE_FREE;
724 return 0;
725 }
726
727 static struct agp_memory *
728 agp_find_memory(struct agp_softc *sc, int id)
729 {
730 struct agp_memory *mem;
731
732 AGP_DPF(("searching for memory block %d\n", id));
733 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
734 AGP_DPF(("considering memory block %d\n", mem->am_id));
735 if (mem->am_id == id)
736 return mem;
737 }
738 return 0;
739 }
740
741 /* Implementation of the userland ioctl api */
742
743 static int
744 agp_info_user(struct agp_softc *sc, agp_info *info)
745 {
746 memset(info, 0, sizeof *info);
747 info->bridge_id = sc->as_id;
748 if (sc->as_capoff != 0)
749 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
750 sc->as_capoff + AGP_STATUS);
751 else
752 info->agp_mode = 0; /* i810 doesn't have real AGP */
753 info->aper_base = sc->as_apaddr;
754 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
755 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
756 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
757
758 return 0;
759 }
760
761 static int
762 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
763 {
764 return AGP_ENABLE(sc, setup->agp_mode);
765 }
766
767 static int
768 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
769 {
770 struct agp_memory *mem;
771
772 mem = AGP_ALLOC_MEMORY(sc,
773 alloc->type,
774 alloc->pg_count << AGP_PAGE_SHIFT);
775 if (mem) {
776 alloc->key = mem->am_id;
777 alloc->physical = mem->am_physical;
778 return 0;
779 } else {
780 return ENOMEM;
781 }
782 }
783
784 static int
785 agp_deallocate_user(struct agp_softc *sc, int id)
786 {
787 struct agp_memory *mem = agp_find_memory(sc, id);
788
789 if (mem) {
790 AGP_FREE_MEMORY(sc, mem);
791 return 0;
792 } else {
793 return ENOENT;
794 }
795 }
796
797 static int
798 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
799 {
800 struct agp_memory *mem = agp_find_memory(sc, bind->key);
801
802 if (!mem)
803 return ENOENT;
804
805 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
806 }
807
808 static int
809 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
810 {
811 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
812
813 if (!mem)
814 return ENOENT;
815
816 return AGP_UNBIND_MEMORY(sc, mem);
817 }
818
819 static int
820 agpopen(dev_t dev, int oflags, int devtype,
821 struct lwp *l)
822 {
823 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
824
825 if (sc == NULL)
826 return ENXIO;
827
828 if (sc->as_chipc == NULL)
829 return ENXIO;
830
831 if (!sc->as_isopen)
832 sc->as_isopen = 1;
833 else
834 return EBUSY;
835
836 return 0;
837 }
838
839 static int
840 agpclose(dev_t dev, int fflag, int devtype,
841 struct lwp *l)
842 {
843 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
844 struct agp_memory *mem;
845
846 /*
847 * Clear the GATT and force release on last close
848 */
849 if (sc->as_state == AGP_ACQUIRE_USER) {
850 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
851 if (mem->am_is_bound) {
852 printf("agpclose: mem %d is bound\n",
853 mem->am_id);
854 AGP_UNBIND_MEMORY(sc, mem);
855 }
856 /*
857 * XXX it is not documented, but if the protocol allows
858 * allocate->acquire->bind, it would be possible that
859 * memory ranges are allocated by the kernel here,
860 * which we shouldn't free. We'd have to keep track of
861 * the memory range's owner.
862 * The kernel API is unsed yet, so we get away with
863 * freeing all.
864 */
865 AGP_FREE_MEMORY(sc, mem);
866 }
867 agp_release_helper(sc, AGP_ACQUIRE_USER);
868 }
869 sc->as_isopen = 0;
870
871 return 0;
872 }
873
874 static int
875 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
876 {
877 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
878
879 if (sc == NULL)
880 return ENODEV;
881
882 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
883 return EPERM;
884
885 switch (cmd) {
886 case AGPIOC_INFO:
887 return agp_info_user(sc, (agp_info *) data);
888
889 case AGPIOC_ACQUIRE:
890 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
891
892 case AGPIOC_RELEASE:
893 return agp_release_helper(sc, AGP_ACQUIRE_USER);
894
895 case AGPIOC_SETUP:
896 return agp_setup_user(sc, (agp_setup *)data);
897
898 case AGPIOC_ALLOCATE:
899 return agp_allocate_user(sc, (agp_allocate *)data);
900
901 case AGPIOC_DEALLOCATE:
902 return agp_deallocate_user(sc, *(int *) data);
903
904 case AGPIOC_BIND:
905 return agp_bind_user(sc, (agp_bind *)data);
906
907 case AGPIOC_UNBIND:
908 return agp_unbind_user(sc, (agp_unbind *)data);
909
910 }
911
912 return EINVAL;
913 }
914
915 static paddr_t
916 agpmmap(dev_t dev, off_t offset, int prot)
917 {
918 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
919
920 if (offset > AGP_GET_APERTURE(sc))
921 return -1;
922
923 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
924 BUS_SPACE_MAP_LINEAR));
925 }
926
927 const struct cdevsw agp_cdevsw = {
928 agpopen, agpclose, noread, nowrite, agpioctl,
929 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
930 };
931
932 /* Implementation of the kernel api */
933
934 void *
935 agp_find_device(int unit)
936 {
937 return device_lookup(&agp_cd, unit);
938 }
939
940 enum agp_acquire_state
941 agp_state(void *devcookie)
942 {
943 struct agp_softc *sc = devcookie;
944 return sc->as_state;
945 }
946
947 void
948 agp_get_info(void *devcookie, struct agp_info *info)
949 {
950 struct agp_softc *sc = devcookie;
951
952 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
953 sc->as_capoff + AGP_STATUS);
954 info->ai_aperture_base = sc->as_apaddr;
955 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
956 info->ai_memory_allowed = sc->as_maxmem;
957 info->ai_memory_used = sc->as_allocated;
958 }
959
960 int
961 agp_acquire(void *dev)
962 {
963 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
964 }
965
966 int
967 agp_release(void *dev)
968 {
969 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
970 }
971
972 int
973 agp_enable(void *dev, u_int32_t mode)
974 {
975 struct agp_softc *sc = dev;
976
977 return AGP_ENABLE(sc, mode);
978 }
979
980 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
981 {
982 struct agp_softc *sc = dev;
983
984 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
985 }
986
987 void agp_free_memory(void *dev, void *handle)
988 {
989 struct agp_softc *sc = dev;
990 struct agp_memory *mem = (struct agp_memory *) handle;
991 AGP_FREE_MEMORY(sc, mem);
992 }
993
994 int agp_bind_memory(void *dev, void *handle, off_t offset)
995 {
996 struct agp_softc *sc = dev;
997 struct agp_memory *mem = (struct agp_memory *) handle;
998
999 return AGP_BIND_MEMORY(sc, mem, offset);
1000 }
1001
1002 int agp_unbind_memory(void *dev, void *handle)
1003 {
1004 struct agp_softc *sc = dev;
1005 struct agp_memory *mem = (struct agp_memory *) handle;
1006
1007 return AGP_UNBIND_MEMORY(sc, mem);
1008 }
1009
1010 void agp_memory_info(void *dev, void *handle,
1011 struct agp_memory_info *mi)
1012 {
1013 struct agp_memory *mem = (struct agp_memory *) handle;
1014
1015 mi->ami_size = mem->am_size;
1016 mi->ami_physical = mem->am_physical;
1017 mi->ami_offset = mem->am_offset;
1018 mi->ami_is_bound = mem->am_is_bound;
1019 }
1020
1021 int
1022 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1023 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1024 bus_dma_segment_t *seg, int nseg, int *rseg)
1025
1026 {
1027 int error, level = 0;
1028
1029 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1030 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1031 goto out;
1032 level++;
1033
1034 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1035 BUS_DMA_NOWAIT | flags)) != 0)
1036 goto out;
1037 level++;
1038
1039 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1040 BUS_DMA_NOWAIT, mapp)) != 0)
1041 goto out;
1042 level++;
1043
1044 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1045 BUS_DMA_NOWAIT)) != 0)
1046 goto out;
1047
1048 *baddr = (*mapp)->dm_segs[0].ds_addr;
1049
1050 return 0;
1051 out:
1052 switch (level) {
1053 case 3:
1054 bus_dmamap_destroy(tag, *mapp);
1055 /* FALLTHROUGH */
1056 case 2:
1057 bus_dmamem_unmap(tag, *vaddr, size);
1058 /* FALLTHROUGH */
1059 case 1:
1060 bus_dmamem_free(tag, seg, *rseg);
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 return error;
1067 }
1068
1069 void
1070 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1071 void *vaddr, bus_dma_segment_t *seg, int nseg)
1072 {
1073
1074 bus_dmamap_unload(tag, map);
1075 bus_dmamap_destroy(tag, map);
1076 bus_dmamem_unmap(tag, vaddr, size);
1077 bus_dmamem_free(tag, seg, nseg);
1078 }
1079