agp.c revision 1.50 1 /* $NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106
107 #include "agp_ali.h"
108 #include "agp_amd.h"
109 #include "agp_i810.h"
110 #include "agp_intel.h"
111 #include "agp_sis.h"
112 #include "agp_via.h"
113 #include "agp_amd64.h"
114
115 const struct agp_product {
116 uint32_t ap_vendor;
117 uint32_t ap_product;
118 int (*ap_match)(const struct pci_attach_args *);
119 int (*ap_attach)(struct device *, struct device *, void *);
120 } agp_products[] = {
121 #if NAGP_ALI > 0
122 { PCI_VENDOR_ALI, -1,
123 NULL, agp_ali_attach },
124 #endif
125
126 #if NAGP_AMD > 0
127 { PCI_VENDOR_AMD, -1,
128 agp_amd_match, agp_amd_attach },
129 #endif
130
131 #if NAGP_I810 > 0
132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
133 NULL, agp_i810_attach },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
135 NULL, agp_i810_attach },
136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
137 NULL, agp_i810_attach },
138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
139 NULL, agp_i810_attach },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
141 NULL, agp_i810_attach },
142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
143 NULL, agp_i810_attach },
144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
145 NULL, agp_i810_attach },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
147 NULL, agp_i810_attach },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
149 NULL, agp_i810_attach },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
151 NULL, agp_i810_attach },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
153 NULL, agp_i810_attach },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
155 NULL, agp_i810_attach },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
157 NULL, agp_i810_attach },
158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
159 NULL, agp_i810_attach },
160 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
161 NULL, agp_i810_attach },
162 #endif
163
164 #if NAGP_INTEL > 0
165 { PCI_VENDOR_INTEL, -1,
166 NULL, agp_intel_attach },
167 #endif
168
169 #if NAGP_SIS > 0
170 { PCI_VENDOR_SIS, -1,
171 NULL, agp_sis_attach },
172 #endif
173
174 #if NAGP_VIA > 0
175 { PCI_VENDOR_VIATECH, -1,
176 NULL, agp_via_attach },
177 #endif
178
179 #if NAGP_AMD64 > 0
180 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
181 agp_amd64_match, agp_amd64_attach },
182 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
183 agp_amd64_match, agp_amd64_attach },
184 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
185 agp_amd64_match, agp_amd64_attach },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
187 agp_amd64_match, agp_amd64_attach },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
189 agp_amd64_match, agp_amd64_attach },
190 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
191 agp_amd64_match, agp_amd64_attach },
192 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
193 agp_amd64_match, agp_amd64_attach },
194 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
195 agp_amd64_match, agp_amd64_attach },
196 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
197 agp_amd64_match, agp_amd64_attach },
198 #endif
199
200 { 0, 0,
201 NULL, NULL },
202 };
203
204 static const struct agp_product *
205 agp_lookup(const struct pci_attach_args *pa)
206 {
207 const struct agp_product *ap;
208
209 /* First find the vendor. */
210 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
211 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
212 break;
213 }
214
215 if (ap->ap_attach == NULL)
216 return (NULL);
217
218 /* Now find the product within the vendor's domain. */
219 for (; ap->ap_attach != NULL; ap++) {
220 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
221 /* Ran out of this vendor's section of the table. */
222 return (NULL);
223 }
224 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
225 /* Exact match. */
226 break;
227 }
228 if (ap->ap_product == (uint32_t) -1) {
229 /* Wildcard match. */
230 break;
231 }
232 }
233
234 if (ap->ap_attach == NULL)
235 return (NULL);
236
237 /* Now let the product-specific driver filter the match. */
238 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
239 return (NULL);
240
241 return (ap);
242 }
243
244 static int
245 agpmatch(struct device *parent, struct cfdata *match,
246 void *aux)
247 {
248 struct agpbus_attach_args *apa = aux;
249 struct pci_attach_args *pa = &apa->apa_pci_args;
250
251 if (agp_lookup(pa) == NULL)
252 return (0);
253
254 return (1);
255 }
256
257 static const int agp_max[][2] = {
258 {0, 0},
259 {32, 4},
260 {64, 28},
261 {128, 96},
262 {256, 204},
263 {512, 440},
264 {1024, 942},
265 {2048, 1920},
266 {4096, 3932}
267 };
268 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
269
270 static void
271 agpattach(struct device *parent, struct device *self, void *aux)
272 {
273 struct agpbus_attach_args *apa = aux;
274 struct pci_attach_args *pa = &apa->apa_pci_args;
275 struct agp_softc *sc = (void *)self;
276 const struct agp_product *ap;
277 int memsize, i, ret;
278
279 ap = agp_lookup(pa);
280 if (ap == NULL) {
281 printf("\n");
282 panic("agpattach: impossible");
283 }
284
285 aprint_naive(": AGP controller\n");
286
287 sc->as_dmat = pa->pa_dmat;
288 sc->as_pc = pa->pa_pc;
289 sc->as_tag = pa->pa_tag;
290 sc->as_id = pa->pa_id;
291
292 /*
293 * Work out an upper bound for agp memory allocation. This
294 * uses a heurisitc table from the Linux driver.
295 */
296 memsize = ptoa(physmem) >> 20;
297 for (i = 0; i < agp_max_size; i++) {
298 if (memsize <= agp_max[i][0])
299 break;
300 }
301 if (i == agp_max_size)
302 i = agp_max_size - 1;
303 sc->as_maxmem = agp_max[i][1] << 20U;
304
305 /*
306 * The mutex is used to prevent re-entry to
307 * agp_generic_bind_memory() since that function can sleep.
308 */
309 mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
310
311 TAILQ_INIT(&sc->as_memory);
312
313 ret = (*ap->ap_attach)(parent, self, pa);
314 if (ret == 0)
315 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
316 (unsigned long)sc->as_apaddr,
317 (unsigned long)AGP_GET_APERTURE(sc));
318 else
319 sc->as_chipc = NULL;
320 }
321
322 CFATTACH_DECL(agp, sizeof(struct agp_softc),
323 agpmatch, agpattach, NULL, NULL);
324
325 int
326 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
327 {
328 /*
329 * Find the aperture. Don't map it (yet), this would
330 * eat KVA.
331 */
332 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
333 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
334 &sc->as_apflags) != 0)
335 return ENXIO;
336
337 sc->as_apt = pa->pa_memt;
338
339 return 0;
340 }
341
342 struct agp_gatt *
343 agp_alloc_gatt(struct agp_softc *sc)
344 {
345 u_int32_t apsize = AGP_GET_APERTURE(sc);
346 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
347 struct agp_gatt *gatt;
348 void *virtual;
349 int dummyseg;
350
351 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
352 if (!gatt)
353 return NULL;
354 gatt->ag_entries = entries;
355
356 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
357 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
358 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
359 return NULL;
360 gatt->ag_virtual = (uint32_t *)virtual;
361
362 gatt->ag_size = entries * sizeof(u_int32_t);
363 memset(gatt->ag_virtual, 0, gatt->ag_size);
364 agp_flush_cache();
365
366 return gatt;
367 }
368
369 void
370 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
371 {
372 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
373 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
374 free(gatt, M_AGP);
375 }
376
377
378 int
379 agp_generic_detach(struct agp_softc *sc)
380 {
381 mutex_destroy(&sc->as_mtx);
382 agp_flush_cache();
383 return 0;
384 }
385
386 static int
387 agpdev_match(struct pci_attach_args *pa)
388 {
389 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
390 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
391 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
392 NULL, NULL))
393 return 1;
394
395 return 0;
396 }
397
398 int
399 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
400 {
401 struct pci_attach_args pa;
402 pcireg_t tstatus, mstatus;
403 pcireg_t command;
404 int rq, sba, fw, rate, capoff;
405
406 if (pci_find_device(&pa, agpdev_match) == 0 ||
407 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
408 &capoff, NULL) == 0) {
409 printf("%s: can't find display\n", sc->as_dev.dv_xname);
410 return ENXIO;
411 }
412
413 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
414 sc->as_capoff + AGP_STATUS);
415 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
416 capoff + AGP_STATUS);
417
418 /* Set RQ to the min of mode, tstatus and mstatus */
419 rq = AGP_MODE_GET_RQ(mode);
420 if (AGP_MODE_GET_RQ(tstatus) < rq)
421 rq = AGP_MODE_GET_RQ(tstatus);
422 if (AGP_MODE_GET_RQ(mstatus) < rq)
423 rq = AGP_MODE_GET_RQ(mstatus);
424
425 /* Set SBA if all three can deal with SBA */
426 sba = (AGP_MODE_GET_SBA(tstatus)
427 & AGP_MODE_GET_SBA(mstatus)
428 & AGP_MODE_GET_SBA(mode));
429
430 /* Similar for FW */
431 fw = (AGP_MODE_GET_FW(tstatus)
432 & AGP_MODE_GET_FW(mstatus)
433 & AGP_MODE_GET_FW(mode));
434
435 /* Figure out the max rate */
436 rate = (AGP_MODE_GET_RATE(tstatus)
437 & AGP_MODE_GET_RATE(mstatus)
438 & AGP_MODE_GET_RATE(mode));
439 if (rate & AGP_MODE_RATE_4x)
440 rate = AGP_MODE_RATE_4x;
441 else if (rate & AGP_MODE_RATE_2x)
442 rate = AGP_MODE_RATE_2x;
443 else
444 rate = AGP_MODE_RATE_1x;
445
446 /* Construct the new mode word and tell the hardware */
447 command = AGP_MODE_SET_RQ(0, rq);
448 command = AGP_MODE_SET_SBA(command, sba);
449 command = AGP_MODE_SET_FW(command, fw);
450 command = AGP_MODE_SET_RATE(command, rate);
451 command = AGP_MODE_SET_AGP(command, 1);
452 pci_conf_write(sc->as_pc, sc->as_tag,
453 sc->as_capoff + AGP_COMMAND, command);
454 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
455
456 return 0;
457 }
458
459 struct agp_memory *
460 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
461 {
462 struct agp_memory *mem;
463
464 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
465 return 0;
466
467 if (sc->as_allocated + size > sc->as_maxmem)
468 return 0;
469
470 if (type != 0) {
471 printf("agp_generic_alloc_memory: unsupported type %d\n",
472 type);
473 return 0;
474 }
475
476 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
477 if (mem == NULL)
478 return NULL;
479
480 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
481 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
482 free(mem, M_AGP);
483 return NULL;
484 }
485
486 mem->am_id = sc->as_nextid++;
487 mem->am_size = size;
488 mem->am_type = 0;
489 mem->am_physical = 0;
490 mem->am_offset = 0;
491 mem->am_is_bound = 0;
492 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
493 sc->as_allocated += size;
494
495 return mem;
496 }
497
498 int
499 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
500 {
501 if (mem->am_is_bound)
502 return EBUSY;
503
504 sc->as_allocated -= mem->am_size;
505 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
506 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
507 free(mem, M_AGP);
508 return 0;
509 }
510
511 int
512 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
513 off_t offset)
514 {
515 off_t i, k;
516 bus_size_t done, j;
517 int error;
518 bus_dma_segment_t *segs, *seg;
519 bus_addr_t pa;
520 int contigpages, nseg;
521
522 mutex_enter(&sc->as_mtx);
523
524 if (mem->am_is_bound) {
525 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
526 mutex_exit(&sc->as_mtx);
527 return EINVAL;
528 }
529
530 if (offset < 0
531 || (offset & (AGP_PAGE_SIZE - 1)) != 0
532 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
533 printf("%s: binding memory at bad offset %#lx\n",
534 sc->as_dev.dv_xname, (unsigned long) offset);
535 mutex_exit(&sc->as_mtx);
536 return EINVAL;
537 }
538
539 /*
540 * XXXfvdl
541 * The memory here needs to be directly accessable from the
542 * AGP video card, so it should be allocated using bus_dma.
543 * However, it need not be contiguous, since individual pages
544 * are translated using the GATT.
545 *
546 * Using a large chunk of contiguous memory may get in the way
547 * of other subsystems that may need one, so we try to be friendly
548 * and ask for allocation in chunks of a minimum of 8 pages
549 * of contiguous memory on average, falling back to 4, 2 and 1
550 * if really needed. Larger chunks are preferred, since allocating
551 * a bus_dma_segment per page would be overkill.
552 */
553
554 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
555 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
556 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
557 if (segs == NULL) {
558 mutex_exit(&sc->as_mtx);
559 return ENOMEM;
560 }
561 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
562 segs, nseg, &mem->am_nseg,
563 contigpages > 1 ?
564 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
565 free(segs, M_AGP);
566 continue;
567 }
568 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
569 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
570 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
571 free(segs, M_AGP);
572 continue;
573 }
574 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
575 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
576 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
577 mem->am_size);
578 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
579 free(segs, M_AGP);
580 continue;
581 }
582 mem->am_dmaseg = segs;
583 break;
584 }
585
586 if (contigpages == 0) {
587 mutex_exit(&sc->as_mtx);
588 return ENOMEM;
589 }
590
591
592 /*
593 * Bind the individual pages and flush the chipset's
594 * TLB.
595 */
596 done = 0;
597 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
598 seg = &mem->am_dmamap->dm_segs[i];
599 /*
600 * Install entries in the GATT, making sure that if
601 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
602 * aligned to PAGE_SIZE, we don't modify too many GATT
603 * entries.
604 */
605 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
606 j += AGP_PAGE_SIZE) {
607 pa = seg->ds_addr + j;
608 AGP_DPF(("binding offset %#lx to pa %#lx\n",
609 (unsigned long)(offset + done + j),
610 (unsigned long)pa));
611 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
612 if (error) {
613 /*
614 * Bail out. Reverse all the mappings
615 * and unwire the pages.
616 */
617 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
618 AGP_UNBIND_PAGE(sc, offset + k);
619
620 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
621 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
622 mem->am_size);
623 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
624 mem->am_nseg);
625 free(mem->am_dmaseg, M_AGP);
626 mutex_exit(&sc->as_mtx);
627 return error;
628 }
629 }
630 done += seg->ds_len;
631 }
632
633 /*
634 * Flush the CPU cache since we are providing a new mapping
635 * for these pages.
636 */
637 agp_flush_cache();
638
639 /*
640 * Make sure the chipset gets the new mappings.
641 */
642 AGP_FLUSH_TLB(sc);
643
644 mem->am_offset = offset;
645 mem->am_is_bound = 1;
646
647 mutex_exit(&sc->as_mtx);
648
649 return 0;
650 }
651
652 int
653 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
654 {
655 int i;
656
657 mutex_enter(&sc->as_mtx);
658
659 if (!mem->am_is_bound) {
660 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
661 mutex_exit(&sc->as_mtx);
662 return EINVAL;
663 }
664
665
666 /*
667 * Unbind the individual pages and flush the chipset's
668 * TLB. Unwire the pages so they can be swapped.
669 */
670 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
671 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
672
673 agp_flush_cache();
674 AGP_FLUSH_TLB(sc);
675
676 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
677 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
678 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
679
680 free(mem->am_dmaseg, M_AGP);
681
682 mem->am_offset = 0;
683 mem->am_is_bound = 0;
684
685 mutex_exit(&sc->as_mtx);
686
687 return 0;
688 }
689
690 /* Helper functions for implementing user/kernel api */
691
692 static int
693 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
694 {
695 if (sc->as_state != AGP_ACQUIRE_FREE)
696 return EBUSY;
697 sc->as_state = state;
698
699 return 0;
700 }
701
702 static int
703 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
704 {
705
706 if (sc->as_state == AGP_ACQUIRE_FREE)
707 return 0;
708
709 if (sc->as_state != state)
710 return EBUSY;
711
712 sc->as_state = AGP_ACQUIRE_FREE;
713 return 0;
714 }
715
716 static struct agp_memory *
717 agp_find_memory(struct agp_softc *sc, int id)
718 {
719 struct agp_memory *mem;
720
721 AGP_DPF(("searching for memory block %d\n", id));
722 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
723 AGP_DPF(("considering memory block %d\n", mem->am_id));
724 if (mem->am_id == id)
725 return mem;
726 }
727 return 0;
728 }
729
730 /* Implementation of the userland ioctl api */
731
732 static int
733 agp_info_user(struct agp_softc *sc, agp_info *info)
734 {
735 memset(info, 0, sizeof *info);
736 info->bridge_id = sc->as_id;
737 if (sc->as_capoff != 0)
738 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
739 sc->as_capoff + AGP_STATUS);
740 else
741 info->agp_mode = 0; /* i810 doesn't have real AGP */
742 info->aper_base = sc->as_apaddr;
743 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
744 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
745 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
746
747 return 0;
748 }
749
750 static int
751 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
752 {
753 return AGP_ENABLE(sc, setup->agp_mode);
754 }
755
756 static int
757 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
758 {
759 struct agp_memory *mem;
760
761 mem = AGP_ALLOC_MEMORY(sc,
762 alloc->type,
763 alloc->pg_count << AGP_PAGE_SHIFT);
764 if (mem) {
765 alloc->key = mem->am_id;
766 alloc->physical = mem->am_physical;
767 return 0;
768 } else {
769 return ENOMEM;
770 }
771 }
772
773 static int
774 agp_deallocate_user(struct agp_softc *sc, int id)
775 {
776 struct agp_memory *mem = agp_find_memory(sc, id);
777
778 if (mem) {
779 AGP_FREE_MEMORY(sc, mem);
780 return 0;
781 } else {
782 return ENOENT;
783 }
784 }
785
786 static int
787 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
788 {
789 struct agp_memory *mem = agp_find_memory(sc, bind->key);
790
791 if (!mem)
792 return ENOENT;
793
794 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
795 }
796
797 static int
798 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
799 {
800 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
801
802 if (!mem)
803 return ENOENT;
804
805 return AGP_UNBIND_MEMORY(sc, mem);
806 }
807
808 static int
809 agpopen(dev_t dev, int oflags, int devtype,
810 struct lwp *l)
811 {
812 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
813
814 if (sc == NULL)
815 return ENXIO;
816
817 if (sc->as_chipc == NULL)
818 return ENXIO;
819
820 if (!sc->as_isopen)
821 sc->as_isopen = 1;
822 else
823 return EBUSY;
824
825 return 0;
826 }
827
828 static int
829 agpclose(dev_t dev, int fflag, int devtype,
830 struct lwp *l)
831 {
832 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
833 struct agp_memory *mem;
834
835 /*
836 * Clear the GATT and force release on last close
837 */
838 if (sc->as_state == AGP_ACQUIRE_USER) {
839 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
840 if (mem->am_is_bound) {
841 printf("agpclose: mem %d is bound\n",
842 mem->am_id);
843 AGP_UNBIND_MEMORY(sc, mem);
844 }
845 /*
846 * XXX it is not documented, but if the protocol allows
847 * allocate->acquire->bind, it would be possible that
848 * memory ranges are allocated by the kernel here,
849 * which we shouldn't free. We'd have to keep track of
850 * the memory range's owner.
851 * The kernel API is unsed yet, so we get away with
852 * freeing all.
853 */
854 AGP_FREE_MEMORY(sc, mem);
855 }
856 agp_release_helper(sc, AGP_ACQUIRE_USER);
857 }
858 sc->as_isopen = 0;
859
860 return 0;
861 }
862
863 static int
864 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
865 {
866 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
867
868 if (sc == NULL)
869 return ENODEV;
870
871 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
872 return EPERM;
873
874 switch (cmd) {
875 case AGPIOC_INFO:
876 return agp_info_user(sc, (agp_info *) data);
877
878 case AGPIOC_ACQUIRE:
879 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
880
881 case AGPIOC_RELEASE:
882 return agp_release_helper(sc, AGP_ACQUIRE_USER);
883
884 case AGPIOC_SETUP:
885 return agp_setup_user(sc, (agp_setup *)data);
886
887 case AGPIOC_ALLOCATE:
888 return agp_allocate_user(sc, (agp_allocate *)data);
889
890 case AGPIOC_DEALLOCATE:
891 return agp_deallocate_user(sc, *(int *) data);
892
893 case AGPIOC_BIND:
894 return agp_bind_user(sc, (agp_bind *)data);
895
896 case AGPIOC_UNBIND:
897 return agp_unbind_user(sc, (agp_unbind *)data);
898
899 }
900
901 return EINVAL;
902 }
903
904 static paddr_t
905 agpmmap(dev_t dev, off_t offset, int prot)
906 {
907 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
908
909 if (offset > AGP_GET_APERTURE(sc))
910 return -1;
911
912 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
913 BUS_SPACE_MAP_LINEAR));
914 }
915
916 const struct cdevsw agp_cdevsw = {
917 agpopen, agpclose, noread, nowrite, agpioctl,
918 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
919 };
920
921 /* Implementation of the kernel api */
922
923 void *
924 agp_find_device(int unit)
925 {
926 return device_lookup(&agp_cd, unit);
927 }
928
929 enum agp_acquire_state
930 agp_state(void *devcookie)
931 {
932 struct agp_softc *sc = devcookie;
933 return sc->as_state;
934 }
935
936 void
937 agp_get_info(void *devcookie, struct agp_info *info)
938 {
939 struct agp_softc *sc = devcookie;
940
941 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
942 sc->as_capoff + AGP_STATUS);
943 info->ai_aperture_base = sc->as_apaddr;
944 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
945 info->ai_memory_allowed = sc->as_maxmem;
946 info->ai_memory_used = sc->as_allocated;
947 }
948
949 int
950 agp_acquire(void *dev)
951 {
952 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
953 }
954
955 int
956 agp_release(void *dev)
957 {
958 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
959 }
960
961 int
962 agp_enable(void *dev, u_int32_t mode)
963 {
964 struct agp_softc *sc = dev;
965
966 return AGP_ENABLE(sc, mode);
967 }
968
969 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
970 {
971 struct agp_softc *sc = dev;
972
973 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
974 }
975
976 void agp_free_memory(void *dev, void *handle)
977 {
978 struct agp_softc *sc = dev;
979 struct agp_memory *mem = (struct agp_memory *) handle;
980 AGP_FREE_MEMORY(sc, mem);
981 }
982
983 int agp_bind_memory(void *dev, void *handle, off_t offset)
984 {
985 struct agp_softc *sc = dev;
986 struct agp_memory *mem = (struct agp_memory *) handle;
987
988 return AGP_BIND_MEMORY(sc, mem, offset);
989 }
990
991 int agp_unbind_memory(void *dev, void *handle)
992 {
993 struct agp_softc *sc = dev;
994 struct agp_memory *mem = (struct agp_memory *) handle;
995
996 return AGP_UNBIND_MEMORY(sc, mem);
997 }
998
999 void agp_memory_info(void *dev, void *handle,
1000 struct agp_memory_info *mi)
1001 {
1002 struct agp_memory *mem = (struct agp_memory *) handle;
1003
1004 mi->ami_size = mem->am_size;
1005 mi->ami_physical = mem->am_physical;
1006 mi->ami_offset = mem->am_offset;
1007 mi->ami_is_bound = mem->am_is_bound;
1008 }
1009
1010 int
1011 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1012 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1013 bus_dma_segment_t *seg, int nseg, int *rseg)
1014
1015 {
1016 int error, level = 0;
1017
1018 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1019 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1020 goto out;
1021 level++;
1022
1023 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1024 BUS_DMA_NOWAIT | flags)) != 0)
1025 goto out;
1026 level++;
1027
1028 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1029 BUS_DMA_NOWAIT, mapp)) != 0)
1030 goto out;
1031 level++;
1032
1033 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1034 BUS_DMA_NOWAIT)) != 0)
1035 goto out;
1036
1037 *baddr = (*mapp)->dm_segs[0].ds_addr;
1038
1039 return 0;
1040 out:
1041 switch (level) {
1042 case 3:
1043 bus_dmamap_destroy(tag, *mapp);
1044 /* FALLTHROUGH */
1045 case 2:
1046 bus_dmamem_unmap(tag, *vaddr, size);
1047 /* FALLTHROUGH */
1048 case 1:
1049 bus_dmamem_free(tag, seg, *rseg);
1050 break;
1051 default:
1052 break;
1053 }
1054
1055 return error;
1056 }
1057
1058 void
1059 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1060 void *vaddr, bus_dma_segment_t *seg, int nseg)
1061 {
1062
1063 bus_dmamap_unload(tag, map);
1064 bus_dmamap_destroy(tag, map);
1065 bus_dmamem_unmap(tag, vaddr, size);
1066 bus_dmamem_free(tag, seg, nseg);
1067 }
1068