Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.50
      1 /*	$NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 
    107 #include "agp_ali.h"
    108 #include "agp_amd.h"
    109 #include "agp_i810.h"
    110 #include "agp_intel.h"
    111 #include "agp_sis.h"
    112 #include "agp_via.h"
    113 #include "agp_amd64.h"
    114 
    115 const struct agp_product {
    116 	uint32_t	ap_vendor;
    117 	uint32_t	ap_product;
    118 	int		(*ap_match)(const struct pci_attach_args *);
    119 	int		(*ap_attach)(struct device *, struct device *, void *);
    120 } agp_products[] = {
    121 #if NAGP_ALI > 0
    122 	{ PCI_VENDOR_ALI,	-1,
    123 	  NULL,			agp_ali_attach },
    124 #endif
    125 
    126 #if NAGP_AMD > 0
    127 	{ PCI_VENDOR_AMD,	-1,
    128 	  agp_amd_match,	agp_amd_attach },
    129 #endif
    130 
    131 #if NAGP_I810 > 0
    132 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    133 	  NULL,			agp_i810_attach },
    134 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    135 	  NULL,			agp_i810_attach },
    136 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    137 	  NULL,			agp_i810_attach },
    138 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    139 	  NULL,			agp_i810_attach },
    140 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    141 	  NULL,			agp_i810_attach },
    142 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    143 	  NULL,			agp_i810_attach },
    144 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    145 	  NULL,			agp_i810_attach },
    146 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    147 	  NULL,			agp_i810_attach },
    148 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    149 	  NULL,			agp_i810_attach },
    150 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    151 	  NULL,			agp_i810_attach },
    152 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    153 	  NULL,			agp_i810_attach },
    154 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    155 	  NULL,			agp_i810_attach },
    156 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    157 	  NULL,			agp_i810_attach },
    158 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    159 	  NULL,			agp_i810_attach },
    160 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    161 	  NULL,			agp_i810_attach },
    162 #endif
    163 
    164 #if NAGP_INTEL > 0
    165 	{ PCI_VENDOR_INTEL,	-1,
    166 	  NULL,			agp_intel_attach },
    167 #endif
    168 
    169 #if NAGP_SIS > 0
    170 	{ PCI_VENDOR_SIS,	-1,
    171 	  NULL,			agp_sis_attach },
    172 #endif
    173 
    174 #if NAGP_VIA > 0
    175 	{ PCI_VENDOR_VIATECH,	-1,
    176 	  NULL,			agp_via_attach },
    177 #endif
    178 
    179 #if NAGP_AMD64 > 0
    180 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    181 	  agp_amd64_match,	agp_amd64_attach },
    182 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    183 	  agp_amd64_match,	agp_amd64_attach },
    184 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    185 	  agp_amd64_match,	agp_amd64_attach },
    186 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    187 	  agp_amd64_match,	agp_amd64_attach },
    188 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    189 	  agp_amd64_match,	agp_amd64_attach },
    190 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    191 	  agp_amd64_match,	agp_amd64_attach },
    192 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    193 	  agp_amd64_match,	agp_amd64_attach },
    194 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    195 	  agp_amd64_match,	agp_amd64_attach },
    196 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    197 	  agp_amd64_match,	agp_amd64_attach },
    198 #endif
    199 
    200 	{ 0,			0,
    201 	  NULL,			NULL },
    202 };
    203 
    204 static const struct agp_product *
    205 agp_lookup(const struct pci_attach_args *pa)
    206 {
    207 	const struct agp_product *ap;
    208 
    209 	/* First find the vendor. */
    210 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    211 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    212 			break;
    213 	}
    214 
    215 	if (ap->ap_attach == NULL)
    216 		return (NULL);
    217 
    218 	/* Now find the product within the vendor's domain. */
    219 	for (; ap->ap_attach != NULL; ap++) {
    220 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    221 			/* Ran out of this vendor's section of the table. */
    222 			return (NULL);
    223 		}
    224 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    225 			/* Exact match. */
    226 			break;
    227 		}
    228 		if (ap->ap_product == (uint32_t) -1) {
    229 			/* Wildcard match. */
    230 			break;
    231 		}
    232 	}
    233 
    234 	if (ap->ap_attach == NULL)
    235 		return (NULL);
    236 
    237 	/* Now let the product-specific driver filter the match. */
    238 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    239 		return (NULL);
    240 
    241 	return (ap);
    242 }
    243 
    244 static int
    245 agpmatch(struct device *parent, struct cfdata *match,
    246     void *aux)
    247 {
    248 	struct agpbus_attach_args *apa = aux;
    249 	struct pci_attach_args *pa = &apa->apa_pci_args;
    250 
    251 	if (agp_lookup(pa) == NULL)
    252 		return (0);
    253 
    254 	return (1);
    255 }
    256 
    257 static const int agp_max[][2] = {
    258 	{0,	0},
    259 	{32,	4},
    260 	{64,	28},
    261 	{128,	96},
    262 	{256,	204},
    263 	{512,	440},
    264 	{1024,	942},
    265 	{2048,	1920},
    266 	{4096,	3932}
    267 };
    268 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    269 
    270 static void
    271 agpattach(struct device *parent, struct device *self, void *aux)
    272 {
    273 	struct agpbus_attach_args *apa = aux;
    274 	struct pci_attach_args *pa = &apa->apa_pci_args;
    275 	struct agp_softc *sc = (void *)self;
    276 	const struct agp_product *ap;
    277 	int memsize, i, ret;
    278 
    279 	ap = agp_lookup(pa);
    280 	if (ap == NULL) {
    281 		printf("\n");
    282 		panic("agpattach: impossible");
    283 	}
    284 
    285 	aprint_naive(": AGP controller\n");
    286 
    287 	sc->as_dmat = pa->pa_dmat;
    288 	sc->as_pc = pa->pa_pc;
    289 	sc->as_tag = pa->pa_tag;
    290 	sc->as_id = pa->pa_id;
    291 
    292 	/*
    293 	 * Work out an upper bound for agp memory allocation. This
    294 	 * uses a heurisitc table from the Linux driver.
    295 	 */
    296 	memsize = ptoa(physmem) >> 20;
    297 	for (i = 0; i < agp_max_size; i++) {
    298 		if (memsize <= agp_max[i][0])
    299 			break;
    300 	}
    301 	if (i == agp_max_size)
    302 		i = agp_max_size - 1;
    303 	sc->as_maxmem = agp_max[i][1] << 20U;
    304 
    305 	/*
    306 	 * The mutex is used to prevent re-entry to
    307 	 * agp_generic_bind_memory() since that function can sleep.
    308 	 */
    309 	mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE);
    310 
    311 	TAILQ_INIT(&sc->as_memory);
    312 
    313 	ret = (*ap->ap_attach)(parent, self, pa);
    314 	if (ret == 0)
    315 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    316 		    (unsigned long)sc->as_apaddr,
    317 		    (unsigned long)AGP_GET_APERTURE(sc));
    318 	else
    319 		sc->as_chipc = NULL;
    320 }
    321 
    322 CFATTACH_DECL(agp, sizeof(struct agp_softc),
    323     agpmatch, agpattach, NULL, NULL);
    324 
    325 int
    326 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    327 {
    328 	/*
    329 	 * Find the aperture. Don't map it (yet), this would
    330 	 * eat KVA.
    331 	 */
    332 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    333 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    334 	    &sc->as_apflags) != 0)
    335 		return ENXIO;
    336 
    337 	sc->as_apt = pa->pa_memt;
    338 
    339 	return 0;
    340 }
    341 
    342 struct agp_gatt *
    343 agp_alloc_gatt(struct agp_softc *sc)
    344 {
    345 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    346 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    347 	struct agp_gatt *gatt;
    348 	void *virtual;
    349 	int dummyseg;
    350 
    351 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    352 	if (!gatt)
    353 		return NULL;
    354 	gatt->ag_entries = entries;
    355 
    356 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    357 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    358 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    359 		return NULL;
    360 	gatt->ag_virtual = (uint32_t *)virtual;
    361 
    362 	gatt->ag_size = entries * sizeof(u_int32_t);
    363 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    364 	agp_flush_cache();
    365 
    366 	return gatt;
    367 }
    368 
    369 void
    370 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    371 {
    372 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    373 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    374 	free(gatt, M_AGP);
    375 }
    376 
    377 
    378 int
    379 agp_generic_detach(struct agp_softc *sc)
    380 {
    381 	mutex_destroy(&sc->as_mtx);
    382 	agp_flush_cache();
    383 	return 0;
    384 }
    385 
    386 static int
    387 agpdev_match(struct pci_attach_args *pa)
    388 {
    389 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    390 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    391 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    392 		    NULL, NULL))
    393 		return 1;
    394 
    395 	return 0;
    396 }
    397 
    398 int
    399 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    400 {
    401 	struct pci_attach_args pa;
    402 	pcireg_t tstatus, mstatus;
    403 	pcireg_t command;
    404 	int rq, sba, fw, rate, capoff;
    405 
    406 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    407 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    408 	     &capoff, NULL) == 0) {
    409 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    410 		return ENXIO;
    411 	}
    412 
    413 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    414 	    sc->as_capoff + AGP_STATUS);
    415 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    416 	    capoff + AGP_STATUS);
    417 
    418 	/* Set RQ to the min of mode, tstatus and mstatus */
    419 	rq = AGP_MODE_GET_RQ(mode);
    420 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    421 		rq = AGP_MODE_GET_RQ(tstatus);
    422 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    423 		rq = AGP_MODE_GET_RQ(mstatus);
    424 
    425 	/* Set SBA if all three can deal with SBA */
    426 	sba = (AGP_MODE_GET_SBA(tstatus)
    427 	       & AGP_MODE_GET_SBA(mstatus)
    428 	       & AGP_MODE_GET_SBA(mode));
    429 
    430 	/* Similar for FW */
    431 	fw = (AGP_MODE_GET_FW(tstatus)
    432 	       & AGP_MODE_GET_FW(mstatus)
    433 	       & AGP_MODE_GET_FW(mode));
    434 
    435 	/* Figure out the max rate */
    436 	rate = (AGP_MODE_GET_RATE(tstatus)
    437 		& AGP_MODE_GET_RATE(mstatus)
    438 		& AGP_MODE_GET_RATE(mode));
    439 	if (rate & AGP_MODE_RATE_4x)
    440 		rate = AGP_MODE_RATE_4x;
    441 	else if (rate & AGP_MODE_RATE_2x)
    442 		rate = AGP_MODE_RATE_2x;
    443 	else
    444 		rate = AGP_MODE_RATE_1x;
    445 
    446 	/* Construct the new mode word and tell the hardware */
    447 	command = AGP_MODE_SET_RQ(0, rq);
    448 	command = AGP_MODE_SET_SBA(command, sba);
    449 	command = AGP_MODE_SET_FW(command, fw);
    450 	command = AGP_MODE_SET_RATE(command, rate);
    451 	command = AGP_MODE_SET_AGP(command, 1);
    452 	pci_conf_write(sc->as_pc, sc->as_tag,
    453 	    sc->as_capoff + AGP_COMMAND, command);
    454 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    455 
    456 	return 0;
    457 }
    458 
    459 struct agp_memory *
    460 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    461 {
    462 	struct agp_memory *mem;
    463 
    464 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    465 		return 0;
    466 
    467 	if (sc->as_allocated + size > sc->as_maxmem)
    468 		return 0;
    469 
    470 	if (type != 0) {
    471 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    472 		       type);
    473 		return 0;
    474 	}
    475 
    476 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    477 	if (mem == NULL)
    478 		return NULL;
    479 
    480 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    481 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    482 		free(mem, M_AGP);
    483 		return NULL;
    484 	}
    485 
    486 	mem->am_id = sc->as_nextid++;
    487 	mem->am_size = size;
    488 	mem->am_type = 0;
    489 	mem->am_physical = 0;
    490 	mem->am_offset = 0;
    491 	mem->am_is_bound = 0;
    492 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    493 	sc->as_allocated += size;
    494 
    495 	return mem;
    496 }
    497 
    498 int
    499 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    500 {
    501 	if (mem->am_is_bound)
    502 		return EBUSY;
    503 
    504 	sc->as_allocated -= mem->am_size;
    505 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    506 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    507 	free(mem, M_AGP);
    508 	return 0;
    509 }
    510 
    511 int
    512 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    513 			off_t offset)
    514 {
    515 	off_t i, k;
    516 	bus_size_t done, j;
    517 	int error;
    518 	bus_dma_segment_t *segs, *seg;
    519 	bus_addr_t pa;
    520 	int contigpages, nseg;
    521 
    522 	mutex_enter(&sc->as_mtx);
    523 
    524 	if (mem->am_is_bound) {
    525 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    526 		mutex_exit(&sc->as_mtx);
    527 		return EINVAL;
    528 	}
    529 
    530 	if (offset < 0
    531 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    532 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    533 		printf("%s: binding memory at bad offset %#lx\n",
    534 			      sc->as_dev.dv_xname, (unsigned long) offset);
    535 		mutex_exit(&sc->as_mtx);
    536 		return EINVAL;
    537 	}
    538 
    539 	/*
    540 	 * XXXfvdl
    541 	 * The memory here needs to be directly accessable from the
    542 	 * AGP video card, so it should be allocated using bus_dma.
    543 	 * However, it need not be contiguous, since individual pages
    544 	 * are translated using the GATT.
    545 	 *
    546 	 * Using a large chunk of contiguous memory may get in the way
    547 	 * of other subsystems that may need one, so we try to be friendly
    548 	 * and ask for allocation in chunks of a minimum of 8 pages
    549 	 * of contiguous memory on average, falling back to 4, 2 and 1
    550 	 * if really needed. Larger chunks are preferred, since allocating
    551 	 * a bus_dma_segment per page would be overkill.
    552 	 */
    553 
    554 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    555 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    556 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    557 		if (segs == NULL) {
    558 			mutex_exit(&sc->as_mtx);
    559 			return ENOMEM;
    560 		}
    561 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    562 				     segs, nseg, &mem->am_nseg,
    563 				     contigpages > 1 ?
    564 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    565 			free(segs, M_AGP);
    566 			continue;
    567 		}
    568 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    569 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    570 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    571 			free(segs, M_AGP);
    572 			continue;
    573 		}
    574 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    575 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    576 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    577 			    mem->am_size);
    578 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    579 			free(segs, M_AGP);
    580 			continue;
    581 		}
    582 		mem->am_dmaseg = segs;
    583 		break;
    584 	}
    585 
    586 	if (contigpages == 0) {
    587 		mutex_exit(&sc->as_mtx);
    588 		return ENOMEM;
    589 	}
    590 
    591 
    592 	/*
    593 	 * Bind the individual pages and flush the chipset's
    594 	 * TLB.
    595 	 */
    596 	done = 0;
    597 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    598 		seg = &mem->am_dmamap->dm_segs[i];
    599 		/*
    600 		 * Install entries in the GATT, making sure that if
    601 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    602 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    603 		 * entries.
    604 		 */
    605 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    606 		     j += AGP_PAGE_SIZE) {
    607 			pa = seg->ds_addr + j;
    608 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    609 				(unsigned long)(offset + done + j),
    610 				(unsigned long)pa));
    611 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    612 			if (error) {
    613 				/*
    614 				 * Bail out. Reverse all the mappings
    615 				 * and unwire the pages.
    616 				 */
    617 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    618 					AGP_UNBIND_PAGE(sc, offset + k);
    619 
    620 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    621 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    622 						 mem->am_size);
    623 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    624 						mem->am_nseg);
    625 				free(mem->am_dmaseg, M_AGP);
    626 				mutex_exit(&sc->as_mtx);
    627 				return error;
    628 			}
    629 		}
    630 		done += seg->ds_len;
    631 	}
    632 
    633 	/*
    634 	 * Flush the CPU cache since we are providing a new mapping
    635 	 * for these pages.
    636 	 */
    637 	agp_flush_cache();
    638 
    639 	/*
    640 	 * Make sure the chipset gets the new mappings.
    641 	 */
    642 	AGP_FLUSH_TLB(sc);
    643 
    644 	mem->am_offset = offset;
    645 	mem->am_is_bound = 1;
    646 
    647 	mutex_exit(&sc->as_mtx);
    648 
    649 	return 0;
    650 }
    651 
    652 int
    653 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    654 {
    655 	int i;
    656 
    657 	mutex_enter(&sc->as_mtx);
    658 
    659 	if (!mem->am_is_bound) {
    660 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    661 		mutex_exit(&sc->as_mtx);
    662 		return EINVAL;
    663 	}
    664 
    665 
    666 	/*
    667 	 * Unbind the individual pages and flush the chipset's
    668 	 * TLB. Unwire the pages so they can be swapped.
    669 	 */
    670 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    671 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    672 
    673 	agp_flush_cache();
    674 	AGP_FLUSH_TLB(sc);
    675 
    676 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    677 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    678 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    679 
    680 	free(mem->am_dmaseg, M_AGP);
    681 
    682 	mem->am_offset = 0;
    683 	mem->am_is_bound = 0;
    684 
    685 	mutex_exit(&sc->as_mtx);
    686 
    687 	return 0;
    688 }
    689 
    690 /* Helper functions for implementing user/kernel api */
    691 
    692 static int
    693 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    694 {
    695 	if (sc->as_state != AGP_ACQUIRE_FREE)
    696 		return EBUSY;
    697 	sc->as_state = state;
    698 
    699 	return 0;
    700 }
    701 
    702 static int
    703 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    704 {
    705 
    706 	if (sc->as_state == AGP_ACQUIRE_FREE)
    707 		return 0;
    708 
    709 	if (sc->as_state != state)
    710 		return EBUSY;
    711 
    712 	sc->as_state = AGP_ACQUIRE_FREE;
    713 	return 0;
    714 }
    715 
    716 static struct agp_memory *
    717 agp_find_memory(struct agp_softc *sc, int id)
    718 {
    719 	struct agp_memory *mem;
    720 
    721 	AGP_DPF(("searching for memory block %d\n", id));
    722 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    723 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    724 		if (mem->am_id == id)
    725 			return mem;
    726 	}
    727 	return 0;
    728 }
    729 
    730 /* Implementation of the userland ioctl api */
    731 
    732 static int
    733 agp_info_user(struct agp_softc *sc, agp_info *info)
    734 {
    735 	memset(info, 0, sizeof *info);
    736 	info->bridge_id = sc->as_id;
    737 	if (sc->as_capoff != 0)
    738 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    739 					       sc->as_capoff + AGP_STATUS);
    740 	else
    741 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    742 	info->aper_base = sc->as_apaddr;
    743 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    744 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    745 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    746 
    747 	return 0;
    748 }
    749 
    750 static int
    751 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    752 {
    753 	return AGP_ENABLE(sc, setup->agp_mode);
    754 }
    755 
    756 static int
    757 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    758 {
    759 	struct agp_memory *mem;
    760 
    761 	mem = AGP_ALLOC_MEMORY(sc,
    762 			       alloc->type,
    763 			       alloc->pg_count << AGP_PAGE_SHIFT);
    764 	if (mem) {
    765 		alloc->key = mem->am_id;
    766 		alloc->physical = mem->am_physical;
    767 		return 0;
    768 	} else {
    769 		return ENOMEM;
    770 	}
    771 }
    772 
    773 static int
    774 agp_deallocate_user(struct agp_softc *sc, int id)
    775 {
    776 	struct agp_memory *mem = agp_find_memory(sc, id);
    777 
    778 	if (mem) {
    779 		AGP_FREE_MEMORY(sc, mem);
    780 		return 0;
    781 	} else {
    782 		return ENOENT;
    783 	}
    784 }
    785 
    786 static int
    787 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    788 {
    789 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    790 
    791 	if (!mem)
    792 		return ENOENT;
    793 
    794 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    795 }
    796 
    797 static int
    798 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    799 {
    800 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    801 
    802 	if (!mem)
    803 		return ENOENT;
    804 
    805 	return AGP_UNBIND_MEMORY(sc, mem);
    806 }
    807 
    808 static int
    809 agpopen(dev_t dev, int oflags, int devtype,
    810     struct lwp *l)
    811 {
    812 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    813 
    814 	if (sc == NULL)
    815 		return ENXIO;
    816 
    817 	if (sc->as_chipc == NULL)
    818 		return ENXIO;
    819 
    820 	if (!sc->as_isopen)
    821 		sc->as_isopen = 1;
    822 	else
    823 		return EBUSY;
    824 
    825 	return 0;
    826 }
    827 
    828 static int
    829 agpclose(dev_t dev, int fflag, int devtype,
    830     struct lwp *l)
    831 {
    832 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    833 	struct agp_memory *mem;
    834 
    835 	/*
    836 	 * Clear the GATT and force release on last close
    837 	 */
    838 	if (sc->as_state == AGP_ACQUIRE_USER) {
    839 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    840 			if (mem->am_is_bound) {
    841 				printf("agpclose: mem %d is bound\n",
    842 				       mem->am_id);
    843 				AGP_UNBIND_MEMORY(sc, mem);
    844 			}
    845 			/*
    846 			 * XXX it is not documented, but if the protocol allows
    847 			 * allocate->acquire->bind, it would be possible that
    848 			 * memory ranges are allocated by the kernel here,
    849 			 * which we shouldn't free. We'd have to keep track of
    850 			 * the memory range's owner.
    851 			 * The kernel API is unsed yet, so we get away with
    852 			 * freeing all.
    853 			 */
    854 			AGP_FREE_MEMORY(sc, mem);
    855 		}
    856 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    857 	}
    858 	sc->as_isopen = 0;
    859 
    860 	return 0;
    861 }
    862 
    863 static int
    864 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    865 {
    866 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    867 
    868 	if (sc == NULL)
    869 		return ENODEV;
    870 
    871 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    872 		return EPERM;
    873 
    874 	switch (cmd) {
    875 	case AGPIOC_INFO:
    876 		return agp_info_user(sc, (agp_info *) data);
    877 
    878 	case AGPIOC_ACQUIRE:
    879 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    880 
    881 	case AGPIOC_RELEASE:
    882 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    883 
    884 	case AGPIOC_SETUP:
    885 		return agp_setup_user(sc, (agp_setup *)data);
    886 
    887 	case AGPIOC_ALLOCATE:
    888 		return agp_allocate_user(sc, (agp_allocate *)data);
    889 
    890 	case AGPIOC_DEALLOCATE:
    891 		return agp_deallocate_user(sc, *(int *) data);
    892 
    893 	case AGPIOC_BIND:
    894 		return agp_bind_user(sc, (agp_bind *)data);
    895 
    896 	case AGPIOC_UNBIND:
    897 		return agp_unbind_user(sc, (agp_unbind *)data);
    898 
    899 	}
    900 
    901 	return EINVAL;
    902 }
    903 
    904 static paddr_t
    905 agpmmap(dev_t dev, off_t offset, int prot)
    906 {
    907 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    908 
    909 	if (offset > AGP_GET_APERTURE(sc))
    910 		return -1;
    911 
    912 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    913 	    BUS_SPACE_MAP_LINEAR));
    914 }
    915 
    916 const struct cdevsw agp_cdevsw = {
    917 	agpopen, agpclose, noread, nowrite, agpioctl,
    918 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    919 };
    920 
    921 /* Implementation of the kernel api */
    922 
    923 void *
    924 agp_find_device(int unit)
    925 {
    926 	return device_lookup(&agp_cd, unit);
    927 }
    928 
    929 enum agp_acquire_state
    930 agp_state(void *devcookie)
    931 {
    932 	struct agp_softc *sc = devcookie;
    933 	return sc->as_state;
    934 }
    935 
    936 void
    937 agp_get_info(void *devcookie, struct agp_info *info)
    938 {
    939 	struct agp_softc *sc = devcookie;
    940 
    941 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    942 	    sc->as_capoff + AGP_STATUS);
    943 	info->ai_aperture_base = sc->as_apaddr;
    944 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    945 	info->ai_memory_allowed = sc->as_maxmem;
    946 	info->ai_memory_used = sc->as_allocated;
    947 }
    948 
    949 int
    950 agp_acquire(void *dev)
    951 {
    952 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    953 }
    954 
    955 int
    956 agp_release(void *dev)
    957 {
    958 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    959 }
    960 
    961 int
    962 agp_enable(void *dev, u_int32_t mode)
    963 {
    964 	struct agp_softc *sc = dev;
    965 
    966 	return AGP_ENABLE(sc, mode);
    967 }
    968 
    969 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    970 {
    971 	struct agp_softc *sc = dev;
    972 
    973 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    974 }
    975 
    976 void agp_free_memory(void *dev, void *handle)
    977 {
    978 	struct agp_softc *sc = dev;
    979 	struct agp_memory *mem = (struct agp_memory *) handle;
    980 	AGP_FREE_MEMORY(sc, mem);
    981 }
    982 
    983 int agp_bind_memory(void *dev, void *handle, off_t offset)
    984 {
    985 	struct agp_softc *sc = dev;
    986 	struct agp_memory *mem = (struct agp_memory *) handle;
    987 
    988 	return AGP_BIND_MEMORY(sc, mem, offset);
    989 }
    990 
    991 int agp_unbind_memory(void *dev, void *handle)
    992 {
    993 	struct agp_softc *sc = dev;
    994 	struct agp_memory *mem = (struct agp_memory *) handle;
    995 
    996 	return AGP_UNBIND_MEMORY(sc, mem);
    997 }
    998 
    999 void agp_memory_info(void *dev, void *handle,
   1000     struct agp_memory_info *mi)
   1001 {
   1002 	struct agp_memory *mem = (struct agp_memory *) handle;
   1003 
   1004 	mi->ami_size = mem->am_size;
   1005 	mi->ami_physical = mem->am_physical;
   1006 	mi->ami_offset = mem->am_offset;
   1007 	mi->ami_is_bound = mem->am_is_bound;
   1008 }
   1009 
   1010 int
   1011 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1012 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1013 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1014 
   1015 {
   1016 	int error, level = 0;
   1017 
   1018 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1019 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1020 		goto out;
   1021 	level++;
   1022 
   1023 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1024 			BUS_DMA_NOWAIT | flags)) != 0)
   1025 		goto out;
   1026 	level++;
   1027 
   1028 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1029 			BUS_DMA_NOWAIT, mapp)) != 0)
   1030 		goto out;
   1031 	level++;
   1032 
   1033 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1034 			BUS_DMA_NOWAIT)) != 0)
   1035 		goto out;
   1036 
   1037 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1038 
   1039 	return 0;
   1040 out:
   1041 	switch (level) {
   1042 	case 3:
   1043 		bus_dmamap_destroy(tag, *mapp);
   1044 		/* FALLTHROUGH */
   1045 	case 2:
   1046 		bus_dmamem_unmap(tag, *vaddr, size);
   1047 		/* FALLTHROUGH */
   1048 	case 1:
   1049 		bus_dmamem_free(tag, seg, *rseg);
   1050 		break;
   1051 	default:
   1052 		break;
   1053 	}
   1054 
   1055 	return error;
   1056 }
   1057 
   1058 void
   1059 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1060 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1061 {
   1062 
   1063 	bus_dmamap_unload(tag, map);
   1064 	bus_dmamap_destroy(tag, map);
   1065 	bus_dmamem_unmap(tag, vaddr, size);
   1066 	bus_dmamem_free(tag, seg, nseg);
   1067 }
   1068