Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.53
      1 /*	$NetBSD: agp.c,v 1.53 2007/12/05 07:06:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.53 2007/12/05 07:06:52 ad Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 
    107 #include "agp_ali.h"
    108 #include "agp_amd.h"
    109 #include "agp_i810.h"
    110 #include "agp_intel.h"
    111 #include "agp_sis.h"
    112 #include "agp_via.h"
    113 #include "agp_amd64.h"
    114 
    115 const struct agp_product {
    116 	uint32_t	ap_vendor;
    117 	uint32_t	ap_product;
    118 	int		(*ap_match)(const struct pci_attach_args *);
    119 	int		(*ap_attach)(struct device *, struct device *, void *);
    120 } agp_products[] = {
    121 #if NAGP_ALI > 0
    122 	{ PCI_VENDOR_ALI,	-1,
    123 	  NULL,			agp_ali_attach },
    124 #endif
    125 
    126 #if NAGP_AMD64 > 0
    127 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    128 	  agp_amd64_match,	agp_amd64_attach },
    129 #endif
    130 
    131 #if NAGP_AMD > 0
    132 	{ PCI_VENDOR_AMD,	-1,
    133 	  agp_amd_match,	agp_amd_attach },
    134 #endif
    135 
    136 #if NAGP_I810 > 0
    137 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    138 	  NULL,			agp_i810_attach },
    139 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    140 	  NULL,			agp_i810_attach },
    141 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    142 	  NULL,			agp_i810_attach },
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    174 	  NULL,			agp_i810_attach },
    175 #endif
    176 
    177 #if NAGP_INTEL > 0
    178 	{ PCI_VENDOR_INTEL,	-1,
    179 	  NULL,			agp_intel_attach },
    180 #endif
    181 
    182 #if NAGP_AMD64 > 0
    183 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    184 	  agp_amd64_match,	agp_amd64_attach },
    185 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    186 	  agp_amd64_match,	agp_amd64_attach },
    187 #endif
    188 
    189 #if NAGP_AMD64 > 0
    190 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    191 	  agp_amd64_match,	agp_amd64_attach },
    192 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    193 	  agp_amd64_match,	agp_amd64_attach },
    194 #endif
    195 
    196 #if NAGP_SIS > 0
    197 	{ PCI_VENDOR_SIS,	-1,
    198 	  NULL,			agp_sis_attach },
    199 #endif
    200 
    201 #if NAGP_AMD64 > 0
    202 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    203 	  agp_amd64_match,	agp_amd64_attach },
    204 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    205 	  agp_amd64_match,	agp_amd64_attach },
    206 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    207 	  agp_amd64_match,	agp_amd64_attach },
    208 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    209 	  agp_amd64_match,	agp_amd64_attach },
    210 #endif
    211 
    212 #if NAGP_VIA > 0
    213 	{ PCI_VENDOR_VIATECH,	-1,
    214 	  NULL,			agp_via_attach },
    215 #endif
    216 
    217 	{ 0,			0,
    218 	  NULL,			NULL },
    219 };
    220 
    221 static const struct agp_product *
    222 agp_lookup(const struct pci_attach_args *pa)
    223 {
    224 	const struct agp_product *ap;
    225 
    226 	/* First find the vendor. */
    227 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    228 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    229 			break;
    230 	}
    231 
    232 	if (ap->ap_attach == NULL)
    233 		return (NULL);
    234 
    235 	/* Now find the product within the vendor's domain. */
    236 	for (; ap->ap_attach != NULL; ap++) {
    237 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    238 			/* Ran out of this vendor's section of the table. */
    239 			return (NULL);
    240 		}
    241 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    242 			/* Exact match. */
    243 			break;
    244 		}
    245 		if (ap->ap_product == (uint32_t) -1) {
    246 			/* Wildcard match. */
    247 			break;
    248 		}
    249 	}
    250 
    251 	if (ap->ap_attach == NULL)
    252 		return (NULL);
    253 
    254 	/* Now let the product-specific driver filter the match. */
    255 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    256 		return (NULL);
    257 
    258 	return (ap);
    259 }
    260 
    261 static int
    262 agpmatch(struct device *parent, struct cfdata *match,
    263     void *aux)
    264 {
    265 	struct agpbus_attach_args *apa = aux;
    266 	struct pci_attach_args *pa = &apa->apa_pci_args;
    267 
    268 	if (agp_lookup(pa) == NULL)
    269 		return (0);
    270 
    271 	return (1);
    272 }
    273 
    274 static const int agp_max[][2] = {
    275 	{0,	0},
    276 	{32,	4},
    277 	{64,	28},
    278 	{128,	96},
    279 	{256,	204},
    280 	{512,	440},
    281 	{1024,	942},
    282 	{2048,	1920},
    283 	{4096,	3932}
    284 };
    285 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    286 
    287 static void
    288 agpattach(struct device *parent, struct device *self, void *aux)
    289 {
    290 	struct agpbus_attach_args *apa = aux;
    291 	struct pci_attach_args *pa = &apa->apa_pci_args;
    292 	struct agp_softc *sc = (void *)self;
    293 	const struct agp_product *ap;
    294 	int memsize, i, ret;
    295 
    296 	ap = agp_lookup(pa);
    297 	if (ap == NULL) {
    298 		printf("\n");
    299 		panic("agpattach: impossible");
    300 	}
    301 
    302 	aprint_naive(": AGP controller\n");
    303 
    304 	sc->as_dmat = pa->pa_dmat;
    305 	sc->as_pc = pa->pa_pc;
    306 	sc->as_tag = pa->pa_tag;
    307 	sc->as_id = pa->pa_id;
    308 
    309 	/*
    310 	 * Work out an upper bound for agp memory allocation. This
    311 	 * uses a heurisitc table from the Linux driver.
    312 	 */
    313 	memsize = ptoa(physmem) >> 20;
    314 	for (i = 0; i < agp_max_size; i++) {
    315 		if (memsize <= agp_max[i][0])
    316 			break;
    317 	}
    318 	if (i == agp_max_size)
    319 		i = agp_max_size - 1;
    320 	sc->as_maxmem = agp_max[i][1] << 20U;
    321 
    322 	/*
    323 	 * The mutex is used to prevent re-entry to
    324 	 * agp_generic_bind_memory() since that function can sleep.
    325 	 */
    326 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    327 
    328 	TAILQ_INIT(&sc->as_memory);
    329 
    330 	ret = (*ap->ap_attach)(parent, self, pa);
    331 	if (ret == 0)
    332 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    333 		    (unsigned long)sc->as_apaddr,
    334 		    (unsigned long)AGP_GET_APERTURE(sc));
    335 	else
    336 		sc->as_chipc = NULL;
    337 }
    338 
    339 CFATTACH_DECL(agp, sizeof(struct agp_softc),
    340     agpmatch, agpattach, NULL, NULL);
    341 
    342 int
    343 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    344 {
    345 	/*
    346 	 * Find the aperture. Don't map it (yet), this would
    347 	 * eat KVA.
    348 	 */
    349 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    350 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    351 	    &sc->as_apflags) != 0)
    352 		return ENXIO;
    353 
    354 	sc->as_apt = pa->pa_memt;
    355 
    356 	return 0;
    357 }
    358 
    359 struct agp_gatt *
    360 agp_alloc_gatt(struct agp_softc *sc)
    361 {
    362 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    363 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    364 	struct agp_gatt *gatt;
    365 	void *virtual;
    366 	int dummyseg;
    367 
    368 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    369 	if (!gatt)
    370 		return NULL;
    371 	gatt->ag_entries = entries;
    372 
    373 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    374 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    375 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    376 		return NULL;
    377 	gatt->ag_virtual = (uint32_t *)virtual;
    378 
    379 	gatt->ag_size = entries * sizeof(u_int32_t);
    380 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    381 	agp_flush_cache();
    382 
    383 	return gatt;
    384 }
    385 
    386 void
    387 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    388 {
    389 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    390 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    391 	free(gatt, M_AGP);
    392 }
    393 
    394 
    395 int
    396 agp_generic_detach(struct agp_softc *sc)
    397 {
    398 	mutex_destroy(&sc->as_mtx);
    399 	agp_flush_cache();
    400 	return 0;
    401 }
    402 
    403 static int
    404 agpdev_match(struct pci_attach_args *pa)
    405 {
    406 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    407 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    408 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    409 		    NULL, NULL))
    410 		return 1;
    411 
    412 	return 0;
    413 }
    414 
    415 int
    416 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    417 {
    418 	struct pci_attach_args pa;
    419 	pcireg_t tstatus, mstatus;
    420 	pcireg_t command;
    421 	int rq, sba, fw, rate, capoff;
    422 
    423 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    424 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    425 	     &capoff, NULL) == 0) {
    426 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
    427 		return ENXIO;
    428 	}
    429 
    430 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    431 	    sc->as_capoff + AGP_STATUS);
    432 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    433 	    capoff + AGP_STATUS);
    434 
    435 	/* Set RQ to the min of mode, tstatus and mstatus */
    436 	rq = AGP_MODE_GET_RQ(mode);
    437 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    438 		rq = AGP_MODE_GET_RQ(tstatus);
    439 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    440 		rq = AGP_MODE_GET_RQ(mstatus);
    441 
    442 	/* Set SBA if all three can deal with SBA */
    443 	sba = (AGP_MODE_GET_SBA(tstatus)
    444 	       & AGP_MODE_GET_SBA(mstatus)
    445 	       & AGP_MODE_GET_SBA(mode));
    446 
    447 	/* Similar for FW */
    448 	fw = (AGP_MODE_GET_FW(tstatus)
    449 	       & AGP_MODE_GET_FW(mstatus)
    450 	       & AGP_MODE_GET_FW(mode));
    451 
    452 	/* Figure out the max rate */
    453 	rate = (AGP_MODE_GET_RATE(tstatus)
    454 		& AGP_MODE_GET_RATE(mstatus)
    455 		& AGP_MODE_GET_RATE(mode));
    456 	if (rate & AGP_MODE_RATE_4x)
    457 		rate = AGP_MODE_RATE_4x;
    458 	else if (rate & AGP_MODE_RATE_2x)
    459 		rate = AGP_MODE_RATE_2x;
    460 	else
    461 		rate = AGP_MODE_RATE_1x;
    462 
    463 	/* Construct the new mode word and tell the hardware */
    464 	command = AGP_MODE_SET_RQ(0, rq);
    465 	command = AGP_MODE_SET_SBA(command, sba);
    466 	command = AGP_MODE_SET_FW(command, fw);
    467 	command = AGP_MODE_SET_RATE(command, rate);
    468 	command = AGP_MODE_SET_AGP(command, 1);
    469 	pci_conf_write(sc->as_pc, sc->as_tag,
    470 	    sc->as_capoff + AGP_COMMAND, command);
    471 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    472 
    473 	return 0;
    474 }
    475 
    476 struct agp_memory *
    477 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    478 {
    479 	struct agp_memory *mem;
    480 
    481 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    482 		return 0;
    483 
    484 	if (sc->as_allocated + size > sc->as_maxmem)
    485 		return 0;
    486 
    487 	if (type != 0) {
    488 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    489 		       type);
    490 		return 0;
    491 	}
    492 
    493 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    494 	if (mem == NULL)
    495 		return NULL;
    496 
    497 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    498 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    499 		free(mem, M_AGP);
    500 		return NULL;
    501 	}
    502 
    503 	mem->am_id = sc->as_nextid++;
    504 	mem->am_size = size;
    505 	mem->am_type = 0;
    506 	mem->am_physical = 0;
    507 	mem->am_offset = 0;
    508 	mem->am_is_bound = 0;
    509 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    510 	sc->as_allocated += size;
    511 
    512 	return mem;
    513 }
    514 
    515 int
    516 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    517 {
    518 	if (mem->am_is_bound)
    519 		return EBUSY;
    520 
    521 	sc->as_allocated -= mem->am_size;
    522 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    523 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    524 	free(mem, M_AGP);
    525 	return 0;
    526 }
    527 
    528 int
    529 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    530 			off_t offset)
    531 {
    532 	off_t i, k;
    533 	bus_size_t done, j;
    534 	int error;
    535 	bus_dma_segment_t *segs, *seg;
    536 	bus_addr_t pa;
    537 	int contigpages, nseg;
    538 
    539 	mutex_enter(&sc->as_mtx);
    540 
    541 	if (mem->am_is_bound) {
    542 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
    543 		mutex_exit(&sc->as_mtx);
    544 		return EINVAL;
    545 	}
    546 
    547 	if (offset < 0
    548 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    549 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    550 		printf("%s: binding memory at bad offset %#lx\n",
    551 			      sc->as_dev.dv_xname, (unsigned long) offset);
    552 		mutex_exit(&sc->as_mtx);
    553 		return EINVAL;
    554 	}
    555 
    556 	/*
    557 	 * XXXfvdl
    558 	 * The memory here needs to be directly accessable from the
    559 	 * AGP video card, so it should be allocated using bus_dma.
    560 	 * However, it need not be contiguous, since individual pages
    561 	 * are translated using the GATT.
    562 	 *
    563 	 * Using a large chunk of contiguous memory may get in the way
    564 	 * of other subsystems that may need one, so we try to be friendly
    565 	 * and ask for allocation in chunks of a minimum of 8 pages
    566 	 * of contiguous memory on average, falling back to 4, 2 and 1
    567 	 * if really needed. Larger chunks are preferred, since allocating
    568 	 * a bus_dma_segment per page would be overkill.
    569 	 */
    570 
    571 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    572 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    573 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    574 		if (segs == NULL) {
    575 			mutex_exit(&sc->as_mtx);
    576 			return ENOMEM;
    577 		}
    578 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    579 				     segs, nseg, &mem->am_nseg,
    580 				     contigpages > 1 ?
    581 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    582 			free(segs, M_AGP);
    583 			continue;
    584 		}
    585 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    586 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    587 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    588 			free(segs, M_AGP);
    589 			continue;
    590 		}
    591 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    592 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    593 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    594 			    mem->am_size);
    595 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    596 			free(segs, M_AGP);
    597 			continue;
    598 		}
    599 		mem->am_dmaseg = segs;
    600 		break;
    601 	}
    602 
    603 	if (contigpages == 0) {
    604 		mutex_exit(&sc->as_mtx);
    605 		return ENOMEM;
    606 	}
    607 
    608 
    609 	/*
    610 	 * Bind the individual pages and flush the chipset's
    611 	 * TLB.
    612 	 */
    613 	done = 0;
    614 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    615 		seg = &mem->am_dmamap->dm_segs[i];
    616 		/*
    617 		 * Install entries in the GATT, making sure that if
    618 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    619 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    620 		 * entries.
    621 		 */
    622 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    623 		     j += AGP_PAGE_SIZE) {
    624 			pa = seg->ds_addr + j;
    625 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    626 				(unsigned long)(offset + done + j),
    627 				(unsigned long)pa));
    628 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    629 			if (error) {
    630 				/*
    631 				 * Bail out. Reverse all the mappings
    632 				 * and unwire the pages.
    633 				 */
    634 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    635 					AGP_UNBIND_PAGE(sc, offset + k);
    636 
    637 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    638 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    639 						 mem->am_size);
    640 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    641 						mem->am_nseg);
    642 				free(mem->am_dmaseg, M_AGP);
    643 				mutex_exit(&sc->as_mtx);
    644 				return error;
    645 			}
    646 		}
    647 		done += seg->ds_len;
    648 	}
    649 
    650 	/*
    651 	 * Flush the CPU cache since we are providing a new mapping
    652 	 * for these pages.
    653 	 */
    654 	agp_flush_cache();
    655 
    656 	/*
    657 	 * Make sure the chipset gets the new mappings.
    658 	 */
    659 	AGP_FLUSH_TLB(sc);
    660 
    661 	mem->am_offset = offset;
    662 	mem->am_is_bound = 1;
    663 
    664 	mutex_exit(&sc->as_mtx);
    665 
    666 	return 0;
    667 }
    668 
    669 int
    670 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    671 {
    672 	int i;
    673 
    674 	mutex_enter(&sc->as_mtx);
    675 
    676 	if (!mem->am_is_bound) {
    677 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
    678 		mutex_exit(&sc->as_mtx);
    679 		return EINVAL;
    680 	}
    681 
    682 
    683 	/*
    684 	 * Unbind the individual pages and flush the chipset's
    685 	 * TLB. Unwire the pages so they can be swapped.
    686 	 */
    687 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    688 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    689 
    690 	agp_flush_cache();
    691 	AGP_FLUSH_TLB(sc);
    692 
    693 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    694 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    695 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    696 
    697 	free(mem->am_dmaseg, M_AGP);
    698 
    699 	mem->am_offset = 0;
    700 	mem->am_is_bound = 0;
    701 
    702 	mutex_exit(&sc->as_mtx);
    703 
    704 	return 0;
    705 }
    706 
    707 /* Helper functions for implementing user/kernel api */
    708 
    709 static int
    710 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    711 {
    712 	if (sc->as_state != AGP_ACQUIRE_FREE)
    713 		return EBUSY;
    714 	sc->as_state = state;
    715 
    716 	return 0;
    717 }
    718 
    719 static int
    720 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    721 {
    722 
    723 	if (sc->as_state == AGP_ACQUIRE_FREE)
    724 		return 0;
    725 
    726 	if (sc->as_state != state)
    727 		return EBUSY;
    728 
    729 	sc->as_state = AGP_ACQUIRE_FREE;
    730 	return 0;
    731 }
    732 
    733 static struct agp_memory *
    734 agp_find_memory(struct agp_softc *sc, int id)
    735 {
    736 	struct agp_memory *mem;
    737 
    738 	AGP_DPF(("searching for memory block %d\n", id));
    739 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    740 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    741 		if (mem->am_id == id)
    742 			return mem;
    743 	}
    744 	return 0;
    745 }
    746 
    747 /* Implementation of the userland ioctl api */
    748 
    749 static int
    750 agp_info_user(struct agp_softc *sc, agp_info *info)
    751 {
    752 	memset(info, 0, sizeof *info);
    753 	info->bridge_id = sc->as_id;
    754 	if (sc->as_capoff != 0)
    755 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    756 					       sc->as_capoff + AGP_STATUS);
    757 	else
    758 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    759 	info->aper_base = sc->as_apaddr;
    760 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    761 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    762 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    763 
    764 	return 0;
    765 }
    766 
    767 static int
    768 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    769 {
    770 	return AGP_ENABLE(sc, setup->agp_mode);
    771 }
    772 
    773 static int
    774 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    775 {
    776 	struct agp_memory *mem;
    777 
    778 	mem = AGP_ALLOC_MEMORY(sc,
    779 			       alloc->type,
    780 			       alloc->pg_count << AGP_PAGE_SHIFT);
    781 	if (mem) {
    782 		alloc->key = mem->am_id;
    783 		alloc->physical = mem->am_physical;
    784 		return 0;
    785 	} else {
    786 		return ENOMEM;
    787 	}
    788 }
    789 
    790 static int
    791 agp_deallocate_user(struct agp_softc *sc, int id)
    792 {
    793 	struct agp_memory *mem = agp_find_memory(sc, id);
    794 
    795 	if (mem) {
    796 		AGP_FREE_MEMORY(sc, mem);
    797 		return 0;
    798 	} else {
    799 		return ENOENT;
    800 	}
    801 }
    802 
    803 static int
    804 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    805 {
    806 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    807 
    808 	if (!mem)
    809 		return ENOENT;
    810 
    811 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    812 }
    813 
    814 static int
    815 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    816 {
    817 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    818 
    819 	if (!mem)
    820 		return ENOENT;
    821 
    822 	return AGP_UNBIND_MEMORY(sc, mem);
    823 }
    824 
    825 static int
    826 agpopen(dev_t dev, int oflags, int devtype,
    827     struct lwp *l)
    828 {
    829 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    830 
    831 	if (sc == NULL)
    832 		return ENXIO;
    833 
    834 	if (sc->as_chipc == NULL)
    835 		return ENXIO;
    836 
    837 	if (!sc->as_isopen)
    838 		sc->as_isopen = 1;
    839 	else
    840 		return EBUSY;
    841 
    842 	return 0;
    843 }
    844 
    845 static int
    846 agpclose(dev_t dev, int fflag, int devtype,
    847     struct lwp *l)
    848 {
    849 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    850 	struct agp_memory *mem;
    851 
    852 	/*
    853 	 * Clear the GATT and force release on last close
    854 	 */
    855 	if (sc->as_state == AGP_ACQUIRE_USER) {
    856 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    857 			if (mem->am_is_bound) {
    858 				printf("agpclose: mem %d is bound\n",
    859 				       mem->am_id);
    860 				AGP_UNBIND_MEMORY(sc, mem);
    861 			}
    862 			/*
    863 			 * XXX it is not documented, but if the protocol allows
    864 			 * allocate->acquire->bind, it would be possible that
    865 			 * memory ranges are allocated by the kernel here,
    866 			 * which we shouldn't free. We'd have to keep track of
    867 			 * the memory range's owner.
    868 			 * The kernel API is unsed yet, so we get away with
    869 			 * freeing all.
    870 			 */
    871 			AGP_FREE_MEMORY(sc, mem);
    872 		}
    873 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    874 	}
    875 	sc->as_isopen = 0;
    876 
    877 	return 0;
    878 }
    879 
    880 static int
    881 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    882 {
    883 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    884 
    885 	if (sc == NULL)
    886 		return ENODEV;
    887 
    888 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    889 		return EPERM;
    890 
    891 	switch (cmd) {
    892 	case AGPIOC_INFO:
    893 		return agp_info_user(sc, (agp_info *) data);
    894 
    895 	case AGPIOC_ACQUIRE:
    896 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    897 
    898 	case AGPIOC_RELEASE:
    899 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    900 
    901 	case AGPIOC_SETUP:
    902 		return agp_setup_user(sc, (agp_setup *)data);
    903 
    904 	case AGPIOC_ALLOCATE:
    905 		return agp_allocate_user(sc, (agp_allocate *)data);
    906 
    907 	case AGPIOC_DEALLOCATE:
    908 		return agp_deallocate_user(sc, *(int *) data);
    909 
    910 	case AGPIOC_BIND:
    911 		return agp_bind_user(sc, (agp_bind *)data);
    912 
    913 	case AGPIOC_UNBIND:
    914 		return agp_unbind_user(sc, (agp_unbind *)data);
    915 
    916 	}
    917 
    918 	return EINVAL;
    919 }
    920 
    921 static paddr_t
    922 agpmmap(dev_t dev, off_t offset, int prot)
    923 {
    924 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
    925 
    926 	if (offset > AGP_GET_APERTURE(sc))
    927 		return -1;
    928 
    929 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    930 	    BUS_SPACE_MAP_LINEAR));
    931 }
    932 
    933 const struct cdevsw agp_cdevsw = {
    934 	agpopen, agpclose, noread, nowrite, agpioctl,
    935 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    936 };
    937 
    938 /* Implementation of the kernel api */
    939 
    940 void *
    941 agp_find_device(int unit)
    942 {
    943 	return device_lookup(&agp_cd, unit);
    944 }
    945 
    946 enum agp_acquire_state
    947 agp_state(void *devcookie)
    948 {
    949 	struct agp_softc *sc = devcookie;
    950 	return sc->as_state;
    951 }
    952 
    953 void
    954 agp_get_info(void *devcookie, struct agp_info *info)
    955 {
    956 	struct agp_softc *sc = devcookie;
    957 
    958 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    959 	    sc->as_capoff + AGP_STATUS);
    960 	info->ai_aperture_base = sc->as_apaddr;
    961 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    962 	info->ai_memory_allowed = sc->as_maxmem;
    963 	info->ai_memory_used = sc->as_allocated;
    964 }
    965 
    966 int
    967 agp_acquire(void *dev)
    968 {
    969 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    970 }
    971 
    972 int
    973 agp_release(void *dev)
    974 {
    975 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    976 }
    977 
    978 int
    979 agp_enable(void *dev, u_int32_t mode)
    980 {
    981 	struct agp_softc *sc = dev;
    982 
    983 	return AGP_ENABLE(sc, mode);
    984 }
    985 
    986 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
    987 {
    988 	struct agp_softc *sc = dev;
    989 
    990 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
    991 }
    992 
    993 void agp_free_memory(void *dev, void *handle)
    994 {
    995 	struct agp_softc *sc = dev;
    996 	struct agp_memory *mem = (struct agp_memory *) handle;
    997 	AGP_FREE_MEMORY(sc, mem);
    998 }
    999 
   1000 int agp_bind_memory(void *dev, void *handle, off_t offset)
   1001 {
   1002 	struct agp_softc *sc = dev;
   1003 	struct agp_memory *mem = (struct agp_memory *) handle;
   1004 
   1005 	return AGP_BIND_MEMORY(sc, mem, offset);
   1006 }
   1007 
   1008 int agp_unbind_memory(void *dev, void *handle)
   1009 {
   1010 	struct agp_softc *sc = dev;
   1011 	struct agp_memory *mem = (struct agp_memory *) handle;
   1012 
   1013 	return AGP_UNBIND_MEMORY(sc, mem);
   1014 }
   1015 
   1016 void agp_memory_info(void *dev, void *handle,
   1017     struct agp_memory_info *mi)
   1018 {
   1019 	struct agp_memory *mem = (struct agp_memory *) handle;
   1020 
   1021 	mi->ami_size = mem->am_size;
   1022 	mi->ami_physical = mem->am_physical;
   1023 	mi->ami_offset = mem->am_offset;
   1024 	mi->ami_is_bound = mem->am_is_bound;
   1025 }
   1026 
   1027 int
   1028 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1029 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1030 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1031 
   1032 {
   1033 	int error, level = 0;
   1034 
   1035 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1036 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1037 		goto out;
   1038 	level++;
   1039 
   1040 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1041 			BUS_DMA_NOWAIT | flags)) != 0)
   1042 		goto out;
   1043 	level++;
   1044 
   1045 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1046 			BUS_DMA_NOWAIT, mapp)) != 0)
   1047 		goto out;
   1048 	level++;
   1049 
   1050 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1051 			BUS_DMA_NOWAIT)) != 0)
   1052 		goto out;
   1053 
   1054 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1055 
   1056 	return 0;
   1057 out:
   1058 	switch (level) {
   1059 	case 3:
   1060 		bus_dmamap_destroy(tag, *mapp);
   1061 		/* FALLTHROUGH */
   1062 	case 2:
   1063 		bus_dmamem_unmap(tag, *vaddr, size);
   1064 		/* FALLTHROUGH */
   1065 	case 1:
   1066 		bus_dmamem_free(tag, seg, *rseg);
   1067 		break;
   1068 	default:
   1069 		break;
   1070 	}
   1071 
   1072 	return error;
   1073 }
   1074 
   1075 void
   1076 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1077 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1078 {
   1079 
   1080 	bus_dmamap_unload(tag, map);
   1081 	bus_dmamap_destroy(tag, map);
   1082 	bus_dmamem_unmap(tag, vaddr, size);
   1083 	bus_dmamem_free(tag, seg, nseg);
   1084 }
   1085