agp.c revision 1.54.10.2 1 /* $NetBSD: agp.c,v 1.54.10.2 2008/04/03 12:42:48 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54.10.2 2008/04/03 12:42:48 mjf Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 static int agpopen(dev_t, int, int, struct lwp *);
108 static int agpclose(dev_t, int, int, struct lwp *);
109 static paddr_t agpmmap(dev_t, off_t, int);
110 static int agpioctl(dev_t, u_long, void *, int, struct lwp *);
111
112 #include "agp_ali.h"
113 #include "agp_amd.h"
114 #include "agp_i810.h"
115 #include "agp_intel.h"
116 #include "agp_sis.h"
117 #include "agp_via.h"
118 #include "agp_amd64.h"
119
120 const struct agp_product {
121 uint32_t ap_vendor;
122 uint32_t ap_product;
123 int (*ap_match)(const struct pci_attach_args *);
124 int (*ap_attach)(struct device *, struct device *, void *);
125 } agp_products[] = {
126 #if NAGP_ALI > 0
127 { PCI_VENDOR_ALI, -1,
128 NULL, agp_ali_attach },
129 #endif
130
131 #if NAGP_AMD64 > 0
132 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
133 agp_amd64_match, agp_amd64_attach },
134 #endif
135
136 #if NAGP_AMD > 0
137 { PCI_VENDOR_AMD, -1,
138 agp_amd_match, agp_amd_attach },
139 #endif
140
141 #if NAGP_I810 > 0
142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
143 NULL, agp_i810_attach },
144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
145 NULL, agp_i810_attach },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
147 NULL, agp_i810_attach },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
149 NULL, agp_i810_attach },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
151 NULL, agp_i810_attach },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
153 NULL, agp_i810_attach },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
155 NULL, agp_i810_attach },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
157 NULL, agp_i810_attach },
158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
159 NULL, agp_i810_attach },
160 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
161 NULL, agp_i810_attach },
162 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
163 NULL, agp_i810_attach },
164 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
165 NULL, agp_i810_attach },
166 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
167 NULL, agp_i810_attach },
168 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
169 NULL, agp_i810_attach },
170 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
171 NULL, agp_i810_attach },
172 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
173 NULL, agp_i810_attach },
174 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
175 NULL, agp_i810_attach },
176 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
177 NULL, agp_i810_attach },
178 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
179 NULL, agp_i810_attach },
180 #endif
181
182 #if NAGP_INTEL > 0
183 { PCI_VENDOR_INTEL, -1,
184 NULL, agp_intel_attach },
185 #endif
186
187 #if NAGP_AMD64 > 0
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
189 agp_amd64_match, agp_amd64_attach },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
191 agp_amd64_match, agp_amd64_attach },
192 #endif
193
194 #if NAGP_AMD64 > 0
195 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
196 agp_amd64_match, agp_amd64_attach },
197 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
198 agp_amd64_match, agp_amd64_attach },
199 #endif
200
201 #if NAGP_SIS > 0
202 { PCI_VENDOR_SIS, -1,
203 NULL, agp_sis_attach },
204 #endif
205
206 #if NAGP_AMD64 > 0
207 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
208 agp_amd64_match, agp_amd64_attach },
209 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
210 agp_amd64_match, agp_amd64_attach },
211 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
212 agp_amd64_match, agp_amd64_attach },
213 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
214 agp_amd64_match, agp_amd64_attach },
215 #endif
216
217 #if NAGP_VIA > 0
218 { PCI_VENDOR_VIATECH, -1,
219 NULL, agp_via_attach },
220 #endif
221
222 { 0, 0,
223 NULL, NULL },
224 };
225
226 const struct cdevsw agp_cdevsw = {
227 agpopen, agpclose, noread, nowrite, agpioctl,
228 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
229 };
230
231 static const struct agp_product *
232 agp_lookup(const struct pci_attach_args *pa)
233 {
234 const struct agp_product *ap;
235
236 /* First find the vendor. */
237 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
238 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
239 break;
240 }
241
242 if (ap->ap_attach == NULL)
243 return (NULL);
244
245 /* Now find the product within the vendor's domain. */
246 for (; ap->ap_attach != NULL; ap++) {
247 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
248 /* Ran out of this vendor's section of the table. */
249 return (NULL);
250 }
251 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
252 /* Exact match. */
253 break;
254 }
255 if (ap->ap_product == (uint32_t) -1) {
256 /* Wildcard match. */
257 break;
258 }
259 }
260
261 if (ap->ap_attach == NULL)
262 return (NULL);
263
264 /* Now let the product-specific driver filter the match. */
265 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
266 return (NULL);
267
268 return (ap);
269 }
270
271 static int
272 agpmatch(struct device *parent, struct cfdata *match,
273 void *aux)
274 {
275 struct agpbus_attach_args *apa = aux;
276 struct pci_attach_args *pa = &apa->apa_pci_args;
277
278 if (agp_lookup(pa) == NULL)
279 return (0);
280
281 return (1);
282 }
283
284 static const int agp_max[][2] = {
285 {0, 0},
286 {32, 4},
287 {64, 28},
288 {128, 96},
289 {256, 204},
290 {512, 440},
291 {1024, 942},
292 {2048, 1920},
293 {4096, 3932}
294 };
295 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
296
297 static void
298 agpattach(struct device *parent, struct device *self, void *aux)
299 {
300 struct agpbus_attach_args *apa = aux;
301 struct pci_attach_args *pa = &apa->apa_pci_args;
302 struct agp_softc *sc = (void *)self;
303 const struct agp_product *ap;
304 int memsize, i, ret;
305 int major = cdevsw_lookup_major(&agp_cdevsw);
306 int unit;
307
308 ap = agp_lookup(pa);
309 if (ap == NULL) {
310 printf("\n");
311 panic("agpattach: impossible");
312 }
313
314 aprint_naive(": AGP controller\n");
315
316 sc->as_dmat = pa->pa_dmat;
317 sc->as_pc = pa->pa_pc;
318 sc->as_tag = pa->pa_tag;
319 sc->as_id = pa->pa_id;
320
321 /*
322 * Work out an upper bound for agp memory allocation. This
323 * uses a heurisitc table from the Linux driver.
324 */
325 memsize = ptoa(physmem) >> 20;
326 for (i = 0; i < agp_max_size; i++) {
327 if (memsize <= agp_max[i][0])
328 break;
329 }
330 if (i == agp_max_size)
331 i = agp_max_size - 1;
332 sc->as_maxmem = agp_max[i][1] << 20U;
333
334 /*
335 * The mutex is used to prevent re-entry to
336 * agp_generic_bind_memory() since that function can sleep.
337 */
338 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
339
340 TAILQ_INIT(&sc->as_memory);
341
342 ret = (*ap->ap_attach)(parent, self, pa);
343 if (ret == 0)
344 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
345 (unsigned long)sc->as_apaddr,
346 (unsigned long)AGP_GET_APERTURE(sc));
347 else
348 sc->as_chipc = NULL;
349
350 if (!device_pmf_is_registered(self)) {
351 if (!pmf_device_register(self, NULL, agp_resume))
352 aprint_error_dev(self, "couldn't establish power handler\n");
353 }
354
355 unit = device_unit(self);
356 device_register_name(makedev(major, unit), self, true, DEV_VIDEO,
357 "agp%d", unit);
358 }
359
360 CFATTACH_DECL(agp, sizeof(struct agp_softc),
361 agpmatch, agpattach, NULL, NULL);
362
363 int
364 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
365 {
366 /*
367 * Find the aperture. Don't map it (yet), this would
368 * eat KVA.
369 */
370 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
371 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
372 &sc->as_apflags) != 0)
373 return ENXIO;
374
375 sc->as_apt = pa->pa_memt;
376
377 return 0;
378 }
379
380 struct agp_gatt *
381 agp_alloc_gatt(struct agp_softc *sc)
382 {
383 u_int32_t apsize = AGP_GET_APERTURE(sc);
384 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
385 struct agp_gatt *gatt;
386 void *virtual;
387 int dummyseg;
388
389 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
390 if (!gatt)
391 return NULL;
392 gatt->ag_entries = entries;
393
394 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
395 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
396 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
397 return NULL;
398 gatt->ag_virtual = (uint32_t *)virtual;
399
400 gatt->ag_size = entries * sizeof(u_int32_t);
401 memset(gatt->ag_virtual, 0, gatt->ag_size);
402 agp_flush_cache();
403
404 return gatt;
405 }
406
407 void
408 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
409 {
410 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
411 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
412 free(gatt, M_AGP);
413 }
414
415
416 int
417 agp_generic_detach(struct agp_softc *sc)
418 {
419 mutex_destroy(&sc->as_mtx);
420 agp_flush_cache();
421 return 0;
422 }
423
424 static int
425 agpdev_match(struct pci_attach_args *pa)
426 {
427 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
428 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
429 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
430 NULL, NULL))
431 return 1;
432
433 return 0;
434 }
435
436 int
437 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
438 {
439 struct pci_attach_args pa;
440 pcireg_t tstatus, mstatus;
441 pcireg_t command;
442 int rq, sba, fw, rate, capoff;
443
444 if (pci_find_device(&pa, agpdev_match) == 0 ||
445 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
446 &capoff, NULL) == 0) {
447 printf("%s: can't find display\n", sc->as_dev.dv_xname);
448 return ENXIO;
449 }
450
451 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
452 sc->as_capoff + AGP_STATUS);
453 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
454 capoff + AGP_STATUS);
455
456 /* Set RQ to the min of mode, tstatus and mstatus */
457 rq = AGP_MODE_GET_RQ(mode);
458 if (AGP_MODE_GET_RQ(tstatus) < rq)
459 rq = AGP_MODE_GET_RQ(tstatus);
460 if (AGP_MODE_GET_RQ(mstatus) < rq)
461 rq = AGP_MODE_GET_RQ(mstatus);
462
463 /* Set SBA if all three can deal with SBA */
464 sba = (AGP_MODE_GET_SBA(tstatus)
465 & AGP_MODE_GET_SBA(mstatus)
466 & AGP_MODE_GET_SBA(mode));
467
468 /* Similar for FW */
469 fw = (AGP_MODE_GET_FW(tstatus)
470 & AGP_MODE_GET_FW(mstatus)
471 & AGP_MODE_GET_FW(mode));
472
473 /* Figure out the max rate */
474 rate = (AGP_MODE_GET_RATE(tstatus)
475 & AGP_MODE_GET_RATE(mstatus)
476 & AGP_MODE_GET_RATE(mode));
477 if (rate & AGP_MODE_RATE_4x)
478 rate = AGP_MODE_RATE_4x;
479 else if (rate & AGP_MODE_RATE_2x)
480 rate = AGP_MODE_RATE_2x;
481 else
482 rate = AGP_MODE_RATE_1x;
483
484 /* Construct the new mode word and tell the hardware */
485 command = AGP_MODE_SET_RQ(0, rq);
486 command = AGP_MODE_SET_SBA(command, sba);
487 command = AGP_MODE_SET_FW(command, fw);
488 command = AGP_MODE_SET_RATE(command, rate);
489 command = AGP_MODE_SET_AGP(command, 1);
490 pci_conf_write(sc->as_pc, sc->as_tag,
491 sc->as_capoff + AGP_COMMAND, command);
492 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
493
494 return 0;
495 }
496
497 struct agp_memory *
498 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
499 {
500 struct agp_memory *mem;
501
502 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
503 return 0;
504
505 if (sc->as_allocated + size > sc->as_maxmem)
506 return 0;
507
508 if (type != 0) {
509 printf("agp_generic_alloc_memory: unsupported type %d\n",
510 type);
511 return 0;
512 }
513
514 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
515 if (mem == NULL)
516 return NULL;
517
518 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
519 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
520 free(mem, M_AGP);
521 return NULL;
522 }
523
524 mem->am_id = sc->as_nextid++;
525 mem->am_size = size;
526 mem->am_type = 0;
527 mem->am_physical = 0;
528 mem->am_offset = 0;
529 mem->am_is_bound = 0;
530 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
531 sc->as_allocated += size;
532
533 return mem;
534 }
535
536 int
537 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
538 {
539 if (mem->am_is_bound)
540 return EBUSY;
541
542 sc->as_allocated -= mem->am_size;
543 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
544 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
545 free(mem, M_AGP);
546 return 0;
547 }
548
549 int
550 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
551 off_t offset)
552 {
553 off_t i, k;
554 bus_size_t done, j;
555 int error;
556 bus_dma_segment_t *segs, *seg;
557 bus_addr_t pa;
558 int contigpages, nseg;
559
560 mutex_enter(&sc->as_mtx);
561
562 if (mem->am_is_bound) {
563 printf("%s: memory already bound\n", sc->as_dev.dv_xname);
564 mutex_exit(&sc->as_mtx);
565 return EINVAL;
566 }
567
568 if (offset < 0
569 || (offset & (AGP_PAGE_SIZE - 1)) != 0
570 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
571 printf("%s: binding memory at bad offset %#lx\n",
572 sc->as_dev.dv_xname, (unsigned long) offset);
573 mutex_exit(&sc->as_mtx);
574 return EINVAL;
575 }
576
577 /*
578 * XXXfvdl
579 * The memory here needs to be directly accessable from the
580 * AGP video card, so it should be allocated using bus_dma.
581 * However, it need not be contiguous, since individual pages
582 * are translated using the GATT.
583 *
584 * Using a large chunk of contiguous memory may get in the way
585 * of other subsystems that may need one, so we try to be friendly
586 * and ask for allocation in chunks of a minimum of 8 pages
587 * of contiguous memory on average, falling back to 4, 2 and 1
588 * if really needed. Larger chunks are preferred, since allocating
589 * a bus_dma_segment per page would be overkill.
590 */
591
592 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
593 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
594 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
595 if (segs == NULL) {
596 mutex_exit(&sc->as_mtx);
597 return ENOMEM;
598 }
599 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
600 segs, nseg, &mem->am_nseg,
601 contigpages > 1 ?
602 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
603 free(segs, M_AGP);
604 continue;
605 }
606 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
607 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
608 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
609 free(segs, M_AGP);
610 continue;
611 }
612 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
613 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
614 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
615 mem->am_size);
616 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
617 free(segs, M_AGP);
618 continue;
619 }
620 mem->am_dmaseg = segs;
621 break;
622 }
623
624 if (contigpages == 0) {
625 mutex_exit(&sc->as_mtx);
626 return ENOMEM;
627 }
628
629
630 /*
631 * Bind the individual pages and flush the chipset's
632 * TLB.
633 */
634 done = 0;
635 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
636 seg = &mem->am_dmamap->dm_segs[i];
637 /*
638 * Install entries in the GATT, making sure that if
639 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
640 * aligned to PAGE_SIZE, we don't modify too many GATT
641 * entries.
642 */
643 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
644 j += AGP_PAGE_SIZE) {
645 pa = seg->ds_addr + j;
646 AGP_DPF(("binding offset %#lx to pa %#lx\n",
647 (unsigned long)(offset + done + j),
648 (unsigned long)pa));
649 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
650 if (error) {
651 /*
652 * Bail out. Reverse all the mappings
653 * and unwire the pages.
654 */
655 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
656 AGP_UNBIND_PAGE(sc, offset + k);
657
658 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
659 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
660 mem->am_size);
661 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
662 mem->am_nseg);
663 free(mem->am_dmaseg, M_AGP);
664 mutex_exit(&sc->as_mtx);
665 return error;
666 }
667 }
668 done += seg->ds_len;
669 }
670
671 /*
672 * Flush the CPU cache since we are providing a new mapping
673 * for these pages.
674 */
675 agp_flush_cache();
676
677 /*
678 * Make sure the chipset gets the new mappings.
679 */
680 AGP_FLUSH_TLB(sc);
681
682 mem->am_offset = offset;
683 mem->am_is_bound = 1;
684
685 mutex_exit(&sc->as_mtx);
686
687 return 0;
688 }
689
690 int
691 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
692 {
693 int i;
694
695 mutex_enter(&sc->as_mtx);
696
697 if (!mem->am_is_bound) {
698 printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
699 mutex_exit(&sc->as_mtx);
700 return EINVAL;
701 }
702
703
704 /*
705 * Unbind the individual pages and flush the chipset's
706 * TLB. Unwire the pages so they can be swapped.
707 */
708 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
709 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
710
711 agp_flush_cache();
712 AGP_FLUSH_TLB(sc);
713
714 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
715 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
716 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
717
718 free(mem->am_dmaseg, M_AGP);
719
720 mem->am_offset = 0;
721 mem->am_is_bound = 0;
722
723 mutex_exit(&sc->as_mtx);
724
725 return 0;
726 }
727
728 /* Helper functions for implementing user/kernel api */
729
730 static int
731 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
732 {
733 if (sc->as_state != AGP_ACQUIRE_FREE)
734 return EBUSY;
735 sc->as_state = state;
736
737 return 0;
738 }
739
740 static int
741 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
742 {
743
744 if (sc->as_state == AGP_ACQUIRE_FREE)
745 return 0;
746
747 if (sc->as_state != state)
748 return EBUSY;
749
750 sc->as_state = AGP_ACQUIRE_FREE;
751 return 0;
752 }
753
754 static struct agp_memory *
755 agp_find_memory(struct agp_softc *sc, int id)
756 {
757 struct agp_memory *mem;
758
759 AGP_DPF(("searching for memory block %d\n", id));
760 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
761 AGP_DPF(("considering memory block %d\n", mem->am_id));
762 if (mem->am_id == id)
763 return mem;
764 }
765 return 0;
766 }
767
768 /* Implementation of the userland ioctl api */
769
770 static int
771 agp_info_user(struct agp_softc *sc, agp_info *info)
772 {
773 memset(info, 0, sizeof *info);
774 info->bridge_id = sc->as_id;
775 if (sc->as_capoff != 0)
776 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
777 sc->as_capoff + AGP_STATUS);
778 else
779 info->agp_mode = 0; /* i810 doesn't have real AGP */
780 info->aper_base = sc->as_apaddr;
781 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
782 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
783 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
784
785 return 0;
786 }
787
788 static int
789 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
790 {
791 return AGP_ENABLE(sc, setup->agp_mode);
792 }
793
794 static int
795 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
796 {
797 struct agp_memory *mem;
798
799 mem = AGP_ALLOC_MEMORY(sc,
800 alloc->type,
801 alloc->pg_count << AGP_PAGE_SHIFT);
802 if (mem) {
803 alloc->key = mem->am_id;
804 alloc->physical = mem->am_physical;
805 return 0;
806 } else {
807 return ENOMEM;
808 }
809 }
810
811 static int
812 agp_deallocate_user(struct agp_softc *sc, int id)
813 {
814 struct agp_memory *mem = agp_find_memory(sc, id);
815
816 if (mem) {
817 AGP_FREE_MEMORY(sc, mem);
818 return 0;
819 } else {
820 return ENOENT;
821 }
822 }
823
824 static int
825 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
826 {
827 struct agp_memory *mem = agp_find_memory(sc, bind->key);
828
829 if (!mem)
830 return ENOENT;
831
832 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
833 }
834
835 static int
836 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
837 {
838 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
839
840 if (!mem)
841 return ENOENT;
842
843 return AGP_UNBIND_MEMORY(sc, mem);
844 }
845
846 static int
847 agpopen(dev_t dev, int oflags, int devtype,
848 struct lwp *l)
849 {
850 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
851
852 if (sc == NULL)
853 return ENXIO;
854
855 if (sc->as_chipc == NULL)
856 return ENXIO;
857
858 if (!sc->as_isopen)
859 sc->as_isopen = 1;
860 else
861 return EBUSY;
862
863 return 0;
864 }
865
866 static int
867 agpclose(dev_t dev, int fflag, int devtype,
868 struct lwp *l)
869 {
870 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
871 struct agp_memory *mem;
872
873 /*
874 * Clear the GATT and force release on last close
875 */
876 if (sc->as_state == AGP_ACQUIRE_USER) {
877 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
878 if (mem->am_is_bound) {
879 printf("agpclose: mem %d is bound\n",
880 mem->am_id);
881 AGP_UNBIND_MEMORY(sc, mem);
882 }
883 /*
884 * XXX it is not documented, but if the protocol allows
885 * allocate->acquire->bind, it would be possible that
886 * memory ranges are allocated by the kernel here,
887 * which we shouldn't free. We'd have to keep track of
888 * the memory range's owner.
889 * The kernel API is unsed yet, so we get away with
890 * freeing all.
891 */
892 AGP_FREE_MEMORY(sc, mem);
893 }
894 agp_release_helper(sc, AGP_ACQUIRE_USER);
895 }
896 sc->as_isopen = 0;
897
898 return 0;
899 }
900
901 static int
902 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
903 {
904 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
905
906 if (sc == NULL)
907 return ENODEV;
908
909 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
910 return EPERM;
911
912 switch (cmd) {
913 case AGPIOC_INFO:
914 return agp_info_user(sc, (agp_info *) data);
915
916 case AGPIOC_ACQUIRE:
917 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
918
919 case AGPIOC_RELEASE:
920 return agp_release_helper(sc, AGP_ACQUIRE_USER);
921
922 case AGPIOC_SETUP:
923 return agp_setup_user(sc, (agp_setup *)data);
924
925 case AGPIOC_ALLOCATE:
926 return agp_allocate_user(sc, (agp_allocate *)data);
927
928 case AGPIOC_DEALLOCATE:
929 return agp_deallocate_user(sc, *(int *) data);
930
931 case AGPIOC_BIND:
932 return agp_bind_user(sc, (agp_bind *)data);
933
934 case AGPIOC_UNBIND:
935 return agp_unbind_user(sc, (agp_unbind *)data);
936
937 }
938
939 return EINVAL;
940 }
941
942 static paddr_t
943 agpmmap(dev_t dev, off_t offset, int prot)
944 {
945 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
946
947 if (offset > AGP_GET_APERTURE(sc))
948 return -1;
949
950 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
951 BUS_SPACE_MAP_LINEAR));
952 }
953
954 /* Implementation of the kernel api */
955
956 void *
957 agp_find_device(int unit)
958 {
959 return device_lookup(&agp_cd, unit);
960 }
961
962 enum agp_acquire_state
963 agp_state(void *devcookie)
964 {
965 struct agp_softc *sc = devcookie;
966 return sc->as_state;
967 }
968
969 void
970 agp_get_info(void *devcookie, struct agp_info *info)
971 {
972 struct agp_softc *sc = devcookie;
973
974 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
975 sc->as_capoff + AGP_STATUS);
976 info->ai_aperture_base = sc->as_apaddr;
977 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
978 info->ai_memory_allowed = sc->as_maxmem;
979 info->ai_memory_used = sc->as_allocated;
980 }
981
982 int
983 agp_acquire(void *dev)
984 {
985 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
986 }
987
988 int
989 agp_release(void *dev)
990 {
991 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
992 }
993
994 int
995 agp_enable(void *dev, u_int32_t mode)
996 {
997 struct agp_softc *sc = dev;
998
999 return AGP_ENABLE(sc, mode);
1000 }
1001
1002 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
1003 {
1004 struct agp_softc *sc = dev;
1005
1006 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1007 }
1008
1009 void agp_free_memory(void *dev, void *handle)
1010 {
1011 struct agp_softc *sc = dev;
1012 struct agp_memory *mem = (struct agp_memory *) handle;
1013 AGP_FREE_MEMORY(sc, mem);
1014 }
1015
1016 int agp_bind_memory(void *dev, void *handle, off_t offset)
1017 {
1018 struct agp_softc *sc = dev;
1019 struct agp_memory *mem = (struct agp_memory *) handle;
1020
1021 return AGP_BIND_MEMORY(sc, mem, offset);
1022 }
1023
1024 int agp_unbind_memory(void *dev, void *handle)
1025 {
1026 struct agp_softc *sc = dev;
1027 struct agp_memory *mem = (struct agp_memory *) handle;
1028
1029 return AGP_UNBIND_MEMORY(sc, mem);
1030 }
1031
1032 void agp_memory_info(void *dev, void *handle,
1033 struct agp_memory_info *mi)
1034 {
1035 struct agp_memory *mem = (struct agp_memory *) handle;
1036
1037 mi->ami_size = mem->am_size;
1038 mi->ami_physical = mem->am_physical;
1039 mi->ami_offset = mem->am_offset;
1040 mi->ami_is_bound = mem->am_is_bound;
1041 }
1042
1043 int
1044 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1045 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1046 bus_dma_segment_t *seg, int nseg, int *rseg)
1047
1048 {
1049 int error, level = 0;
1050
1051 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1052 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1053 goto out;
1054 level++;
1055
1056 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1057 BUS_DMA_NOWAIT | flags)) != 0)
1058 goto out;
1059 level++;
1060
1061 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1062 BUS_DMA_NOWAIT, mapp)) != 0)
1063 goto out;
1064 level++;
1065
1066 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1067 BUS_DMA_NOWAIT)) != 0)
1068 goto out;
1069
1070 *baddr = (*mapp)->dm_segs[0].ds_addr;
1071
1072 return 0;
1073 out:
1074 switch (level) {
1075 case 3:
1076 bus_dmamap_destroy(tag, *mapp);
1077 /* FALLTHROUGH */
1078 case 2:
1079 bus_dmamem_unmap(tag, *vaddr, size);
1080 /* FALLTHROUGH */
1081 case 1:
1082 bus_dmamem_free(tag, seg, *rseg);
1083 break;
1084 default:
1085 break;
1086 }
1087
1088 return error;
1089 }
1090
1091 void
1092 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1093 void *vaddr, bus_dma_segment_t *seg, int nseg)
1094 {
1095
1096 bus_dmamap_unload(tag, map);
1097 bus_dmamap_destroy(tag, map);
1098 bus_dmamem_unmap(tag, vaddr, size);
1099 bus_dmamem_free(tag, seg, nseg);
1100 }
1101
1102 static bool
1103 agp_resume(device_t dv PMF_FN_ARGS)
1104 {
1105 agp_flush_cache();
1106
1107 return true;
1108 }
1109