agp.c revision 1.54.10.3 1 /* $NetBSD: agp.c,v 1.54.10.3 2008/06/02 13:23:36 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54.10.3 2008/06/02 13:23:36 mjf Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 static int agpopen(dev_t, int, int, struct lwp *);
108 static int agpclose(dev_t, int, int, struct lwp *);
109 static paddr_t agpmmap(dev_t, off_t, int);
110 static int agpioctl(dev_t, u_long, void *, int, struct lwp *);
111
112 #include "agp_ali.h"
113 #include "agp_amd.h"
114 #include "agp_i810.h"
115 #include "agp_intel.h"
116 #include "agp_sis.h"
117 #include "agp_via.h"
118 #include "agp_amd64.h"
119
120 const struct agp_product {
121 uint32_t ap_vendor;
122 uint32_t ap_product;
123 int (*ap_match)(const struct pci_attach_args *);
124 int (*ap_attach)(struct device *, struct device *, void *);
125 } agp_products[] = {
126 #if NAGP_AMD64 > 0
127 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
128 agp_amd64_match, agp_amd64_attach },
129 #endif
130
131 #if NAGP_ALI > 0
132 { PCI_VENDOR_ALI, -1,
133 NULL, agp_ali_attach },
134 #endif
135
136 #if NAGP_AMD64 > 0
137 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
138 agp_amd64_match, agp_amd64_attach },
139 #endif
140
141 #if NAGP_AMD > 0
142 { PCI_VENDOR_AMD, -1,
143 agp_amd_match, agp_amd_attach },
144 #endif
145
146 #if NAGP_I810 > 0
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 NULL, agp_i810_attach },
185 #endif
186
187 #if NAGP_INTEL > 0
188 { PCI_VENDOR_INTEL, -1,
189 NULL, agp_intel_attach },
190 #endif
191
192 #if NAGP_AMD64 > 0
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
194 agp_amd64_match, agp_amd64_attach },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
196 agp_amd64_match, agp_amd64_attach },
197 #endif
198
199 #if NAGP_AMD64 > 0
200 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
201 agp_amd64_match, agp_amd64_attach },
202 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
203 agp_amd64_match, agp_amd64_attach },
204 #endif
205
206 #if NAGP_SIS > 0
207 { PCI_VENDOR_SIS, -1,
208 NULL, agp_sis_attach },
209 #endif
210
211 #if NAGP_AMD64 > 0
212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
213 agp_amd64_match, agp_amd64_attach },
214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
215 agp_amd64_match, agp_amd64_attach },
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
219 agp_amd64_match, agp_amd64_attach },
220 #endif
221
222 #if NAGP_VIA > 0
223 { PCI_VENDOR_VIATECH, -1,
224 NULL, agp_via_attach },
225 #endif
226
227 { 0, 0,
228 NULL, NULL },
229 };
230
231 const struct cdevsw agp_cdevsw = {
232 agpopen, agpclose, noread, nowrite, agpioctl,
233 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
234 };
235
236 static const struct agp_product *
237 agp_lookup(const struct pci_attach_args *pa)
238 {
239 const struct agp_product *ap;
240
241 /* First find the vendor. */
242 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
243 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
244 break;
245 }
246
247 if (ap->ap_attach == NULL)
248 return (NULL);
249
250 /* Now find the product within the vendor's domain. */
251 for (; ap->ap_attach != NULL; ap++) {
252 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
253 /* Ran out of this vendor's section of the table. */
254 return (NULL);
255 }
256 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
257 /* Exact match. */
258 break;
259 }
260 if (ap->ap_product == (uint32_t) -1) {
261 /* Wildcard match. */
262 break;
263 }
264 }
265
266 if (ap->ap_attach == NULL)
267 return (NULL);
268
269 /* Now let the product-specific driver filter the match. */
270 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
271 return (NULL);
272
273 return (ap);
274 }
275
276 static int
277 agpmatch(struct device *parent, struct cfdata *match,
278 void *aux)
279 {
280 struct agpbus_attach_args *apa = aux;
281 struct pci_attach_args *pa = &apa->apa_pci_args;
282
283 if (agp_lookup(pa) == NULL)
284 return (0);
285
286 return (1);
287 }
288
289 static const int agp_max[][2] = {
290 {0, 0},
291 {32, 4},
292 {64, 28},
293 {128, 96},
294 {256, 204},
295 {512, 440},
296 {1024, 942},
297 {2048, 1920},
298 {4096, 3932}
299 };
300 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
301
302 static void
303 agpattach(struct device *parent, struct device *self, void *aux)
304 {
305 struct agpbus_attach_args *apa = aux;
306 struct pci_attach_args *pa = &apa->apa_pci_args;
307 struct agp_softc *sc = (void *)self;
308 const struct agp_product *ap;
309 int memsize, i, ret;
310 int major = cdevsw_lookup_major(&agp_cdevsw);
311 int unit;
312
313 ap = agp_lookup(pa);
314 if (ap == NULL) {
315 printf("\n");
316 panic("agpattach: impossible");
317 }
318
319 aprint_naive(": AGP controller\n");
320
321 sc->as_dmat = pa->pa_dmat;
322 sc->as_pc = pa->pa_pc;
323 sc->as_tag = pa->pa_tag;
324 sc->as_id = pa->pa_id;
325
326 /*
327 * Work out an upper bound for agp memory allocation. This
328 * uses a heurisitc table from the Linux driver.
329 */
330 memsize = ptoa(physmem) >> 20;
331 for (i = 0; i < agp_max_size; i++) {
332 if (memsize <= agp_max[i][0])
333 break;
334 }
335 if (i == agp_max_size)
336 i = agp_max_size - 1;
337 sc->as_maxmem = agp_max[i][1] << 20U;
338
339 /*
340 * The mutex is used to prevent re-entry to
341 * agp_generic_bind_memory() since that function can sleep.
342 */
343 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
344
345 TAILQ_INIT(&sc->as_memory);
346
347 ret = (*ap->ap_attach)(parent, self, pa);
348 if (ret == 0)
349 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
350 (unsigned long)sc->as_apaddr,
351 (unsigned long)AGP_GET_APERTURE(sc));
352 else
353 sc->as_chipc = NULL;
354
355 if (!device_pmf_is_registered(self)) {
356 if (!pmf_device_register(self, NULL, agp_resume))
357 aprint_error_dev(self, "couldn't establish power handler\n");
358 }
359
360 unit = device_unit(self);
361 device_register_name(makedev(major, unit), self, true, DEV_VIDEO,
362 "agp%d", unit);
363 }
364
365 CFATTACH_DECL(agp, sizeof(struct agp_softc),
366 agpmatch, agpattach, NULL, NULL);
367
368 int
369 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
370 {
371 /*
372 * Find the aperture. Don't map it (yet), this would
373 * eat KVA.
374 */
375 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
376 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
377 &sc->as_apflags) != 0)
378 return ENXIO;
379
380 sc->as_apt = pa->pa_memt;
381
382 return 0;
383 }
384
385 struct agp_gatt *
386 agp_alloc_gatt(struct agp_softc *sc)
387 {
388 u_int32_t apsize = AGP_GET_APERTURE(sc);
389 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
390 struct agp_gatt *gatt;
391 void *virtual;
392 int dummyseg;
393
394 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
395 if (!gatt)
396 return NULL;
397 gatt->ag_entries = entries;
398
399 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
400 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
401 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
402 return NULL;
403 gatt->ag_virtual = (uint32_t *)virtual;
404
405 gatt->ag_size = entries * sizeof(u_int32_t);
406 memset(gatt->ag_virtual, 0, gatt->ag_size);
407 agp_flush_cache();
408
409 return gatt;
410 }
411
412 void
413 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
414 {
415 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
416 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
417 free(gatt, M_AGP);
418 }
419
420
421 int
422 agp_generic_detach(struct agp_softc *sc)
423 {
424 mutex_destroy(&sc->as_mtx);
425 agp_flush_cache();
426 return 0;
427 }
428
429 static int
430 agpdev_match(struct pci_attach_args *pa)
431 {
432 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
433 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
434 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
435 NULL, NULL))
436 return 1;
437
438 return 0;
439 }
440
441 int
442 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
443 {
444 struct pci_attach_args pa;
445 pcireg_t tstatus, mstatus;
446 pcireg_t command;
447 int rq, sba, fw, rate, capoff;
448
449 if (pci_find_device(&pa, agpdev_match) == 0 ||
450 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
451 &capoff, NULL) == 0) {
452 aprint_error_dev(&sc->as_dev, "can't find display\n");
453 return ENXIO;
454 }
455
456 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
457 sc->as_capoff + AGP_STATUS);
458 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
459 capoff + AGP_STATUS);
460
461 /* Set RQ to the min of mode, tstatus and mstatus */
462 rq = AGP_MODE_GET_RQ(mode);
463 if (AGP_MODE_GET_RQ(tstatus) < rq)
464 rq = AGP_MODE_GET_RQ(tstatus);
465 if (AGP_MODE_GET_RQ(mstatus) < rq)
466 rq = AGP_MODE_GET_RQ(mstatus);
467
468 /* Set SBA if all three can deal with SBA */
469 sba = (AGP_MODE_GET_SBA(tstatus)
470 & AGP_MODE_GET_SBA(mstatus)
471 & AGP_MODE_GET_SBA(mode));
472
473 /* Similar for FW */
474 fw = (AGP_MODE_GET_FW(tstatus)
475 & AGP_MODE_GET_FW(mstatus)
476 & AGP_MODE_GET_FW(mode));
477
478 /* Figure out the max rate */
479 rate = (AGP_MODE_GET_RATE(tstatus)
480 & AGP_MODE_GET_RATE(mstatus)
481 & AGP_MODE_GET_RATE(mode));
482 if (rate & AGP_MODE_RATE_4x)
483 rate = AGP_MODE_RATE_4x;
484 else if (rate & AGP_MODE_RATE_2x)
485 rate = AGP_MODE_RATE_2x;
486 else
487 rate = AGP_MODE_RATE_1x;
488
489 /* Construct the new mode word and tell the hardware */
490 command = AGP_MODE_SET_RQ(0, rq);
491 command = AGP_MODE_SET_SBA(command, sba);
492 command = AGP_MODE_SET_FW(command, fw);
493 command = AGP_MODE_SET_RATE(command, rate);
494 command = AGP_MODE_SET_AGP(command, 1);
495 pci_conf_write(sc->as_pc, sc->as_tag,
496 sc->as_capoff + AGP_COMMAND, command);
497 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
498
499 return 0;
500 }
501
502 struct agp_memory *
503 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
504 {
505 struct agp_memory *mem;
506
507 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
508 return 0;
509
510 if (sc->as_allocated + size > sc->as_maxmem)
511 return 0;
512
513 if (type != 0) {
514 printf("agp_generic_alloc_memory: unsupported type %d\n",
515 type);
516 return 0;
517 }
518
519 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
520 if (mem == NULL)
521 return NULL;
522
523 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
524 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
525 free(mem, M_AGP);
526 return NULL;
527 }
528
529 mem->am_id = sc->as_nextid++;
530 mem->am_size = size;
531 mem->am_type = 0;
532 mem->am_physical = 0;
533 mem->am_offset = 0;
534 mem->am_is_bound = 0;
535 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
536 sc->as_allocated += size;
537
538 return mem;
539 }
540
541 int
542 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
543 {
544 if (mem->am_is_bound)
545 return EBUSY;
546
547 sc->as_allocated -= mem->am_size;
548 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
549 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
550 free(mem, M_AGP);
551 return 0;
552 }
553
554 int
555 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
556 off_t offset)
557 {
558 off_t i, k;
559 bus_size_t done, j;
560 int error;
561 bus_dma_segment_t *segs, *seg;
562 bus_addr_t pa;
563 int contigpages, nseg;
564
565 mutex_enter(&sc->as_mtx);
566
567 if (mem->am_is_bound) {
568 aprint_error_dev(&sc->as_dev, "memory already bound\n");
569 mutex_exit(&sc->as_mtx);
570 return EINVAL;
571 }
572
573 if (offset < 0
574 || (offset & (AGP_PAGE_SIZE - 1)) != 0
575 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
576 aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n",
577 (unsigned long) offset);
578 mutex_exit(&sc->as_mtx);
579 return EINVAL;
580 }
581
582 /*
583 * XXXfvdl
584 * The memory here needs to be directly accessable from the
585 * AGP video card, so it should be allocated using bus_dma.
586 * However, it need not be contiguous, since individual pages
587 * are translated using the GATT.
588 *
589 * Using a large chunk of contiguous memory may get in the way
590 * of other subsystems that may need one, so we try to be friendly
591 * and ask for allocation in chunks of a minimum of 8 pages
592 * of contiguous memory on average, falling back to 4, 2 and 1
593 * if really needed. Larger chunks are preferred, since allocating
594 * a bus_dma_segment per page would be overkill.
595 */
596
597 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
598 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
599 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
600 if (segs == NULL) {
601 mutex_exit(&sc->as_mtx);
602 return ENOMEM;
603 }
604 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
605 segs, nseg, &mem->am_nseg,
606 contigpages > 1 ?
607 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
608 free(segs, M_AGP);
609 continue;
610 }
611 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
612 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
613 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
614 free(segs, M_AGP);
615 continue;
616 }
617 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
618 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
619 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
620 mem->am_size);
621 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
622 free(segs, M_AGP);
623 continue;
624 }
625 mem->am_dmaseg = segs;
626 break;
627 }
628
629 if (contigpages == 0) {
630 mutex_exit(&sc->as_mtx);
631 return ENOMEM;
632 }
633
634
635 /*
636 * Bind the individual pages and flush the chipset's
637 * TLB.
638 */
639 done = 0;
640 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
641 seg = &mem->am_dmamap->dm_segs[i];
642 /*
643 * Install entries in the GATT, making sure that if
644 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
645 * aligned to PAGE_SIZE, we don't modify too many GATT
646 * entries.
647 */
648 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
649 j += AGP_PAGE_SIZE) {
650 pa = seg->ds_addr + j;
651 AGP_DPF(("binding offset %#lx to pa %#lx\n",
652 (unsigned long)(offset + done + j),
653 (unsigned long)pa));
654 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
655 if (error) {
656 /*
657 * Bail out. Reverse all the mappings
658 * and unwire the pages.
659 */
660 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
661 AGP_UNBIND_PAGE(sc, offset + k);
662
663 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
664 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
665 mem->am_size);
666 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
667 mem->am_nseg);
668 free(mem->am_dmaseg, M_AGP);
669 mutex_exit(&sc->as_mtx);
670 return error;
671 }
672 }
673 done += seg->ds_len;
674 }
675
676 /*
677 * Flush the CPU cache since we are providing a new mapping
678 * for these pages.
679 */
680 agp_flush_cache();
681
682 /*
683 * Make sure the chipset gets the new mappings.
684 */
685 AGP_FLUSH_TLB(sc);
686
687 mem->am_offset = offset;
688 mem->am_is_bound = 1;
689
690 mutex_exit(&sc->as_mtx);
691
692 return 0;
693 }
694
695 int
696 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
697 {
698 int i;
699
700 mutex_enter(&sc->as_mtx);
701
702 if (!mem->am_is_bound) {
703 aprint_error_dev(&sc->as_dev, "memory is not bound\n");
704 mutex_exit(&sc->as_mtx);
705 return EINVAL;
706 }
707
708
709 /*
710 * Unbind the individual pages and flush the chipset's
711 * TLB. Unwire the pages so they can be swapped.
712 */
713 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
714 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
715
716 agp_flush_cache();
717 AGP_FLUSH_TLB(sc);
718
719 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
720 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
721 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
722
723 free(mem->am_dmaseg, M_AGP);
724
725 mem->am_offset = 0;
726 mem->am_is_bound = 0;
727
728 mutex_exit(&sc->as_mtx);
729
730 return 0;
731 }
732
733 /* Helper functions for implementing user/kernel api */
734
735 static int
736 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
737 {
738 if (sc->as_state != AGP_ACQUIRE_FREE)
739 return EBUSY;
740 sc->as_state = state;
741
742 return 0;
743 }
744
745 static int
746 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
747 {
748
749 if (sc->as_state == AGP_ACQUIRE_FREE)
750 return 0;
751
752 if (sc->as_state != state)
753 return EBUSY;
754
755 sc->as_state = AGP_ACQUIRE_FREE;
756 return 0;
757 }
758
759 static struct agp_memory *
760 agp_find_memory(struct agp_softc *sc, int id)
761 {
762 struct agp_memory *mem;
763
764 AGP_DPF(("searching for memory block %d\n", id));
765 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
766 AGP_DPF(("considering memory block %d\n", mem->am_id));
767 if (mem->am_id == id)
768 return mem;
769 }
770 return 0;
771 }
772
773 /* Implementation of the userland ioctl api */
774
775 static int
776 agp_info_user(struct agp_softc *sc, agp_info *info)
777 {
778 memset(info, 0, sizeof *info);
779 info->bridge_id = sc->as_id;
780 if (sc->as_capoff != 0)
781 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
782 sc->as_capoff + AGP_STATUS);
783 else
784 info->agp_mode = 0; /* i810 doesn't have real AGP */
785 info->aper_base = sc->as_apaddr;
786 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
787 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
788 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
789
790 return 0;
791 }
792
793 static int
794 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
795 {
796 return AGP_ENABLE(sc, setup->agp_mode);
797 }
798
799 static int
800 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
801 {
802 struct agp_memory *mem;
803
804 mem = AGP_ALLOC_MEMORY(sc,
805 alloc->type,
806 alloc->pg_count << AGP_PAGE_SHIFT);
807 if (mem) {
808 alloc->key = mem->am_id;
809 alloc->physical = mem->am_physical;
810 return 0;
811 } else {
812 return ENOMEM;
813 }
814 }
815
816 static int
817 agp_deallocate_user(struct agp_softc *sc, int id)
818 {
819 struct agp_memory *mem = agp_find_memory(sc, id);
820
821 if (mem) {
822 AGP_FREE_MEMORY(sc, mem);
823 return 0;
824 } else {
825 return ENOENT;
826 }
827 }
828
829 static int
830 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
831 {
832 struct agp_memory *mem = agp_find_memory(sc, bind->key);
833
834 if (!mem)
835 return ENOENT;
836
837 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
838 }
839
840 static int
841 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
842 {
843 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
844
845 if (!mem)
846 return ENOENT;
847
848 return AGP_UNBIND_MEMORY(sc, mem);
849 }
850
851 static int
852 agpopen(dev_t dev, int oflags, int devtype,
853 struct lwp *l)
854 {
855 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
856
857 if (sc == NULL)
858 return ENXIO;
859
860 if (sc->as_chipc == NULL)
861 return ENXIO;
862
863 if (!sc->as_isopen)
864 sc->as_isopen = 1;
865 else
866 return EBUSY;
867
868 return 0;
869 }
870
871 static int
872 agpclose(dev_t dev, int fflag, int devtype,
873 struct lwp *l)
874 {
875 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
876 struct agp_memory *mem;
877
878 /*
879 * Clear the GATT and force release on last close
880 */
881 if (sc->as_state == AGP_ACQUIRE_USER) {
882 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
883 if (mem->am_is_bound) {
884 printf("agpclose: mem %d is bound\n",
885 mem->am_id);
886 AGP_UNBIND_MEMORY(sc, mem);
887 }
888 /*
889 * XXX it is not documented, but if the protocol allows
890 * allocate->acquire->bind, it would be possible that
891 * memory ranges are allocated by the kernel here,
892 * which we shouldn't free. We'd have to keep track of
893 * the memory range's owner.
894 * The kernel API is unsed yet, so we get away with
895 * freeing all.
896 */
897 AGP_FREE_MEMORY(sc, mem);
898 }
899 agp_release_helper(sc, AGP_ACQUIRE_USER);
900 }
901 sc->as_isopen = 0;
902
903 return 0;
904 }
905
906 static int
907 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
908 {
909 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
910
911 if (sc == NULL)
912 return ENODEV;
913
914 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
915 return EPERM;
916
917 switch (cmd) {
918 case AGPIOC_INFO:
919 return agp_info_user(sc, (agp_info *) data);
920
921 case AGPIOC_ACQUIRE:
922 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
923
924 case AGPIOC_RELEASE:
925 return agp_release_helper(sc, AGP_ACQUIRE_USER);
926
927 case AGPIOC_SETUP:
928 return agp_setup_user(sc, (agp_setup *)data);
929
930 case AGPIOC_ALLOCATE:
931 return agp_allocate_user(sc, (agp_allocate *)data);
932
933 case AGPIOC_DEALLOCATE:
934 return agp_deallocate_user(sc, *(int *) data);
935
936 case AGPIOC_BIND:
937 return agp_bind_user(sc, (agp_bind *)data);
938
939 case AGPIOC_UNBIND:
940 return agp_unbind_user(sc, (agp_unbind *)data);
941
942 }
943
944 return EINVAL;
945 }
946
947 static paddr_t
948 agpmmap(dev_t dev, off_t offset, int prot)
949 {
950 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
951
952 if (offset > AGP_GET_APERTURE(sc))
953 return -1;
954
955 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
956 BUS_SPACE_MAP_LINEAR));
957 }
958
959 /* Implementation of the kernel api */
960
961 void *
962 agp_find_device(int unit)
963 {
964 return device_lookup(&agp_cd, unit);
965 }
966
967 enum agp_acquire_state
968 agp_state(void *devcookie)
969 {
970 struct agp_softc *sc = devcookie;
971 return sc->as_state;
972 }
973
974 void
975 agp_get_info(void *devcookie, struct agp_info *info)
976 {
977 struct agp_softc *sc = devcookie;
978
979 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
980 sc->as_capoff + AGP_STATUS);
981 info->ai_aperture_base = sc->as_apaddr;
982 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
983 info->ai_memory_allowed = sc->as_maxmem;
984 info->ai_memory_used = sc->as_allocated;
985 }
986
987 int
988 agp_acquire(void *dev)
989 {
990 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
991 }
992
993 int
994 agp_release(void *dev)
995 {
996 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
997 }
998
999 int
1000 agp_enable(void *dev, u_int32_t mode)
1001 {
1002 struct agp_softc *sc = dev;
1003
1004 return AGP_ENABLE(sc, mode);
1005 }
1006
1007 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
1008 {
1009 struct agp_softc *sc = dev;
1010
1011 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1012 }
1013
1014 void agp_free_memory(void *dev, void *handle)
1015 {
1016 struct agp_softc *sc = dev;
1017 struct agp_memory *mem = (struct agp_memory *) handle;
1018 AGP_FREE_MEMORY(sc, mem);
1019 }
1020
1021 int agp_bind_memory(void *dev, void *handle, off_t offset)
1022 {
1023 struct agp_softc *sc = dev;
1024 struct agp_memory *mem = (struct agp_memory *) handle;
1025
1026 return AGP_BIND_MEMORY(sc, mem, offset);
1027 }
1028
1029 int agp_unbind_memory(void *dev, void *handle)
1030 {
1031 struct agp_softc *sc = dev;
1032 struct agp_memory *mem = (struct agp_memory *) handle;
1033
1034 return AGP_UNBIND_MEMORY(sc, mem);
1035 }
1036
1037 void agp_memory_info(void *dev, void *handle,
1038 struct agp_memory_info *mi)
1039 {
1040 struct agp_memory *mem = (struct agp_memory *) handle;
1041
1042 mi->ami_size = mem->am_size;
1043 mi->ami_physical = mem->am_physical;
1044 mi->ami_offset = mem->am_offset;
1045 mi->ami_is_bound = mem->am_is_bound;
1046 }
1047
1048 int
1049 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1050 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1051 bus_dma_segment_t *seg, int nseg, int *rseg)
1052
1053 {
1054 int error, level = 0;
1055
1056 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1057 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1058 goto out;
1059 level++;
1060
1061 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1062 BUS_DMA_NOWAIT | flags)) != 0)
1063 goto out;
1064 level++;
1065
1066 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1067 BUS_DMA_NOWAIT, mapp)) != 0)
1068 goto out;
1069 level++;
1070
1071 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1072 BUS_DMA_NOWAIT)) != 0)
1073 goto out;
1074
1075 *baddr = (*mapp)->dm_segs[0].ds_addr;
1076
1077 return 0;
1078 out:
1079 switch (level) {
1080 case 3:
1081 bus_dmamap_destroy(tag, *mapp);
1082 /* FALLTHROUGH */
1083 case 2:
1084 bus_dmamem_unmap(tag, *vaddr, size);
1085 /* FALLTHROUGH */
1086 case 1:
1087 bus_dmamem_free(tag, seg, *rseg);
1088 break;
1089 default:
1090 break;
1091 }
1092
1093 return error;
1094 }
1095
1096 void
1097 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1098 void *vaddr, bus_dma_segment_t *seg, int nseg)
1099 {
1100
1101 bus_dmamap_unload(tag, map);
1102 bus_dmamap_destroy(tag, map);
1103 bus_dmamem_unmap(tag, vaddr, size);
1104 bus_dmamem_free(tag, seg, nseg);
1105 }
1106
1107 static bool
1108 agp_resume(device_t dv PMF_FN_ARGS)
1109 {
1110 agp_flush_cache();
1111
1112 return true;
1113 }
1114