agp.c revision 1.54.10.5 1 /* $NetBSD: agp.c,v 1.54.10.5 2008/09/28 10:40:25 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54.10.5 2008/09/28 10:40:25 mjf Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 static int agpopen(dev_t, int, int, struct lwp *);
108 static int agpclose(dev_t, int, int, struct lwp *);
109 static paddr_t agpmmap(dev_t, off_t, int);
110 static int agpioctl(dev_t, u_long, void *, int, struct lwp *);
111
112 #include "agp_ali.h"
113 #include "agp_amd.h"
114 #include "agp_i810.h"
115 #include "agp_intel.h"
116 #include "agp_sis.h"
117 #include "agp_via.h"
118 #include "agp_amd64.h"
119
120 const struct agp_product {
121 uint32_t ap_vendor;
122 uint32_t ap_product;
123 int (*ap_match)(const struct pci_attach_args *);
124 int (*ap_attach)(device_t, device_t, void *);
125 } agp_products[] = {
126 #if NAGP_AMD64 > 0
127 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
128 agp_amd64_match, agp_amd64_attach },
129 #endif
130
131 #if NAGP_ALI > 0
132 { PCI_VENDOR_ALI, -1,
133 NULL, agp_ali_attach },
134 #endif
135
136 #if NAGP_AMD64 > 0
137 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
138 agp_amd64_match, agp_amd64_attach },
139 #endif
140
141 #if NAGP_AMD > 0
142 { PCI_VENDOR_AMD, -1,
143 agp_amd_match, agp_amd_attach },
144 #endif
145
146 #if NAGP_I810 > 0
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 NULL, agp_i810_attach },
189 #endif
190
191 #if NAGP_INTEL > 0
192 { PCI_VENDOR_INTEL, -1,
193 NULL, agp_intel_attach },
194 #endif
195
196 #if NAGP_AMD64 > 0
197 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
198 agp_amd64_match, agp_amd64_attach },
199 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
200 agp_amd64_match, agp_amd64_attach },
201 #endif
202
203 #if NAGP_AMD64 > 0
204 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
205 agp_amd64_match, agp_amd64_attach },
206 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
207 agp_amd64_match, agp_amd64_attach },
208 #endif
209
210 #if NAGP_SIS > 0
211 { PCI_VENDOR_SIS, -1,
212 NULL, agp_sis_attach },
213 #endif
214
215 #if NAGP_AMD64 > 0
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
219 agp_amd64_match, agp_amd64_attach },
220 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
221 agp_amd64_match, agp_amd64_attach },
222 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
223 agp_amd64_match, agp_amd64_attach },
224 #endif
225
226 #if NAGP_VIA > 0
227 { PCI_VENDOR_VIATECH, -1,
228 NULL, agp_via_attach },
229 #endif
230
231 { 0, 0,
232 NULL, NULL },
233 };
234
235 const struct cdevsw agp_cdevsw = {
236 agpopen, agpclose, noread, nowrite, agpioctl,
237 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
238 };
239
240 static const struct agp_product *
241 agp_lookup(const struct pci_attach_args *pa)
242 {
243 const struct agp_product *ap;
244
245 /* First find the vendor. */
246 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
247 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
248 break;
249 }
250
251 if (ap->ap_attach == NULL)
252 return (NULL);
253
254 /* Now find the product within the vendor's domain. */
255 for (; ap->ap_attach != NULL; ap++) {
256 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
257 /* Ran out of this vendor's section of the table. */
258 return (NULL);
259 }
260 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
261 /* Exact match. */
262 break;
263 }
264 if (ap->ap_product == (uint32_t) -1) {
265 /* Wildcard match. */
266 break;
267 }
268 }
269
270 if (ap->ap_attach == NULL)
271 return (NULL);
272
273 /* Now let the product-specific driver filter the match. */
274 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
275 return (NULL);
276
277 return (ap);
278 }
279
280 static int
281 agpmatch(device_t parent, cfdata_t match, void *aux)
282 {
283 struct agpbus_attach_args *apa = aux;
284 struct pci_attach_args *pa = &apa->apa_pci_args;
285
286 if (agp_lookup(pa) == NULL)
287 return (0);
288
289 return (1);
290 }
291
292 static const int agp_max[][2] = {
293 {0, 0},
294 {32, 4},
295 {64, 28},
296 {128, 96},
297 {256, 204},
298 {512, 440},
299 {1024, 942},
300 {2048, 1920},
301 {4096, 3932}
302 };
303 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
304
305 static void
306 agpattach(device_t parent, device_t self, void *aux)
307 {
308 struct agpbus_attach_args *apa = aux;
309 struct pci_attach_args *pa = &apa->apa_pci_args;
310 struct agp_softc *sc = device_private(self);
311 const struct agp_product *ap;
312 int memsize, i, ret;
313 int major = cdevsw_lookup_major(&agp_cdevsw);
314 int unit;
315
316 ap = agp_lookup(pa);
317 KASSERT(ap != NULL);
318
319 aprint_naive(": AGP controller\n");
320
321 sc->as_dev = self;
322 sc->as_dmat = pa->pa_dmat;
323 sc->as_pc = pa->pa_pc;
324 sc->as_tag = pa->pa_tag;
325 sc->as_id = pa->pa_id;
326
327 /*
328 * Work out an upper bound for agp memory allocation. This
329 * uses a heuristic table from the Linux driver.
330 */
331 memsize = ptoa(physmem) >> 20;
332 for (i = 0; i < agp_max_size; i++) {
333 if (memsize <= agp_max[i][0])
334 break;
335 }
336 if (i == agp_max_size)
337 i = agp_max_size - 1;
338 sc->as_maxmem = agp_max[i][1] << 20U;
339
340 /*
341 * The mutex is used to prevent re-entry to
342 * agp_generic_bind_memory() since that function can sleep.
343 */
344 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
345
346 TAILQ_INIT(&sc->as_memory);
347
348 ret = (*ap->ap_attach)(parent, self, pa);
349 if (ret == 0)
350 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
351 (unsigned long)sc->as_apaddr,
352 (unsigned long)AGP_GET_APERTURE(sc));
353 else
354 sc->as_chipc = NULL;
355
356 if (!device_pmf_is_registered(self)) {
357 if (!pmf_device_register(self, NULL, agp_resume))
358 aprint_error_dev(self, "couldn't establish power "
359 "handler\n");
360 }
361
362 unit = device_unit(self);
363 device_register_name(makedev(major, unit), self, true, DEV_VIDEO,
364 "agp%d", unit);
365 }
366
367 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
368 agpmatch, agpattach, NULL, NULL);
369
370 int
371 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
372 {
373 /*
374 * Find the aperture. Don't map it (yet), this would
375 * eat KVA.
376 */
377 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
378 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
379 &sc->as_apflags) != 0)
380 return ENXIO;
381
382 sc->as_apt = pa->pa_memt;
383
384 return 0;
385 }
386
387 struct agp_gatt *
388 agp_alloc_gatt(struct agp_softc *sc)
389 {
390 u_int32_t apsize = AGP_GET_APERTURE(sc);
391 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
392 struct agp_gatt *gatt;
393 void *virtual;
394 int dummyseg;
395
396 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
397 if (!gatt)
398 return NULL;
399 gatt->ag_entries = entries;
400
401 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
402 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
403 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
404 return NULL;
405 gatt->ag_virtual = (uint32_t *)virtual;
406
407 gatt->ag_size = entries * sizeof(u_int32_t);
408 memset(gatt->ag_virtual, 0, gatt->ag_size);
409 agp_flush_cache();
410
411 return gatt;
412 }
413
414 void
415 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
416 {
417 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
418 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
419 free(gatt, M_AGP);
420 }
421
422
423 int
424 agp_generic_detach(struct agp_softc *sc)
425 {
426 mutex_destroy(&sc->as_mtx);
427 agp_flush_cache();
428 return 0;
429 }
430
431 static int
432 agpdev_match(struct pci_attach_args *pa)
433 {
434 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
435 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
436 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
437 NULL, NULL))
438 return 1;
439
440 return 0;
441 }
442
443 int
444 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
445 {
446 struct pci_attach_args pa;
447 pcireg_t tstatus, mstatus;
448 pcireg_t command;
449 int rq, sba, fw, rate, capoff;
450
451 if (pci_find_device(&pa, agpdev_match) == 0 ||
452 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
453 &capoff, NULL) == 0) {
454 aprint_error_dev(sc->as_dev, "can't find display\n");
455 return ENXIO;
456 }
457
458 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
459 sc->as_capoff + AGP_STATUS);
460 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
461 capoff + AGP_STATUS);
462
463 /* Set RQ to the min of mode, tstatus and mstatus */
464 rq = AGP_MODE_GET_RQ(mode);
465 if (AGP_MODE_GET_RQ(tstatus) < rq)
466 rq = AGP_MODE_GET_RQ(tstatus);
467 if (AGP_MODE_GET_RQ(mstatus) < rq)
468 rq = AGP_MODE_GET_RQ(mstatus);
469
470 /* Set SBA if all three can deal with SBA */
471 sba = (AGP_MODE_GET_SBA(tstatus)
472 & AGP_MODE_GET_SBA(mstatus)
473 & AGP_MODE_GET_SBA(mode));
474
475 /* Similar for FW */
476 fw = (AGP_MODE_GET_FW(tstatus)
477 & AGP_MODE_GET_FW(mstatus)
478 & AGP_MODE_GET_FW(mode));
479
480 /* Figure out the max rate */
481 rate = (AGP_MODE_GET_RATE(tstatus)
482 & AGP_MODE_GET_RATE(mstatus)
483 & AGP_MODE_GET_RATE(mode));
484 if (rate & AGP_MODE_RATE_4x)
485 rate = AGP_MODE_RATE_4x;
486 else if (rate & AGP_MODE_RATE_2x)
487 rate = AGP_MODE_RATE_2x;
488 else
489 rate = AGP_MODE_RATE_1x;
490
491 /* Construct the new mode word and tell the hardware */
492 command = AGP_MODE_SET_RQ(0, rq);
493 command = AGP_MODE_SET_SBA(command, sba);
494 command = AGP_MODE_SET_FW(command, fw);
495 command = AGP_MODE_SET_RATE(command, rate);
496 command = AGP_MODE_SET_AGP(command, 1);
497 pci_conf_write(sc->as_pc, sc->as_tag,
498 sc->as_capoff + AGP_COMMAND, command);
499 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
500
501 return 0;
502 }
503
504 struct agp_memory *
505 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
506 {
507 struct agp_memory *mem;
508
509 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
510 return 0;
511
512 if (sc->as_allocated + size > sc->as_maxmem)
513 return 0;
514
515 if (type != 0) {
516 printf("agp_generic_alloc_memory: unsupported type %d\n",
517 type);
518 return 0;
519 }
520
521 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
522 if (mem == NULL)
523 return NULL;
524
525 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
526 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
527 free(mem, M_AGP);
528 return NULL;
529 }
530
531 mem->am_id = sc->as_nextid++;
532 mem->am_size = size;
533 mem->am_type = 0;
534 mem->am_physical = 0;
535 mem->am_offset = 0;
536 mem->am_is_bound = 0;
537 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
538 sc->as_allocated += size;
539
540 return mem;
541 }
542
543 int
544 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
545 {
546 if (mem->am_is_bound)
547 return EBUSY;
548
549 sc->as_allocated -= mem->am_size;
550 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
551 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
552 free(mem, M_AGP);
553 return 0;
554 }
555
556 int
557 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
558 off_t offset)
559 {
560 off_t i, k;
561 bus_size_t done, j;
562 int error;
563 bus_dma_segment_t *segs, *seg;
564 bus_addr_t pa;
565 int contigpages, nseg;
566
567 mutex_enter(&sc->as_mtx);
568
569 if (mem->am_is_bound) {
570 aprint_error_dev(sc->as_dev, "memory already bound\n");
571 mutex_exit(&sc->as_mtx);
572 return EINVAL;
573 }
574
575 if (offset < 0
576 || (offset & (AGP_PAGE_SIZE - 1)) != 0
577 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
578 aprint_error_dev(sc->as_dev,
579 "binding memory at bad offset %#lx\n",
580 (unsigned long) offset);
581 mutex_exit(&sc->as_mtx);
582 return EINVAL;
583 }
584
585 /*
586 * XXXfvdl
587 * The memory here needs to be directly accessable from the
588 * AGP video card, so it should be allocated using bus_dma.
589 * However, it need not be contiguous, since individual pages
590 * are translated using the GATT.
591 *
592 * Using a large chunk of contiguous memory may get in the way
593 * of other subsystems that may need one, so we try to be friendly
594 * and ask for allocation in chunks of a minimum of 8 pages
595 * of contiguous memory on average, falling back to 4, 2 and 1
596 * if really needed. Larger chunks are preferred, since allocating
597 * a bus_dma_segment per page would be overkill.
598 */
599
600 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
601 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
602 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
603 if (segs == NULL) {
604 mutex_exit(&sc->as_mtx);
605 return ENOMEM;
606 }
607 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
608 segs, nseg, &mem->am_nseg,
609 contigpages > 1 ?
610 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
611 free(segs, M_AGP);
612 continue;
613 }
614 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
615 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
616 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
617 free(segs, M_AGP);
618 continue;
619 }
620 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
621 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
622 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
623 mem->am_size);
624 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
625 free(segs, M_AGP);
626 continue;
627 }
628 mem->am_dmaseg = segs;
629 break;
630 }
631
632 if (contigpages == 0) {
633 mutex_exit(&sc->as_mtx);
634 return ENOMEM;
635 }
636
637
638 /*
639 * Bind the individual pages and flush the chipset's
640 * TLB.
641 */
642 done = 0;
643 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
644 seg = &mem->am_dmamap->dm_segs[i];
645 /*
646 * Install entries in the GATT, making sure that if
647 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
648 * aligned to PAGE_SIZE, we don't modify too many GATT
649 * entries.
650 */
651 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
652 j += AGP_PAGE_SIZE) {
653 pa = seg->ds_addr + j;
654 AGP_DPF(("binding offset %#lx to pa %#lx\n",
655 (unsigned long)(offset + done + j),
656 (unsigned long)pa));
657 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
658 if (error) {
659 /*
660 * Bail out. Reverse all the mappings
661 * and unwire the pages.
662 */
663 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
664 AGP_UNBIND_PAGE(sc, offset + k);
665
666 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
667 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
668 mem->am_size);
669 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
670 mem->am_nseg);
671 free(mem->am_dmaseg, M_AGP);
672 mutex_exit(&sc->as_mtx);
673 return error;
674 }
675 }
676 done += seg->ds_len;
677 }
678
679 /*
680 * Flush the CPU cache since we are providing a new mapping
681 * for these pages.
682 */
683 agp_flush_cache();
684
685 /*
686 * Make sure the chipset gets the new mappings.
687 */
688 AGP_FLUSH_TLB(sc);
689
690 mem->am_offset = offset;
691 mem->am_is_bound = 1;
692
693 mutex_exit(&sc->as_mtx);
694
695 return 0;
696 }
697
698 int
699 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
700 {
701 int i;
702
703 mutex_enter(&sc->as_mtx);
704
705 if (!mem->am_is_bound) {
706 aprint_error_dev(sc->as_dev, "memory is not bound\n");
707 mutex_exit(&sc->as_mtx);
708 return EINVAL;
709 }
710
711
712 /*
713 * Unbind the individual pages and flush the chipset's
714 * TLB. Unwire the pages so they can be swapped.
715 */
716 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
717 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
718
719 agp_flush_cache();
720 AGP_FLUSH_TLB(sc);
721
722 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
723 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
724 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
725
726 free(mem->am_dmaseg, M_AGP);
727
728 mem->am_offset = 0;
729 mem->am_is_bound = 0;
730
731 mutex_exit(&sc->as_mtx);
732
733 return 0;
734 }
735
736 /* Helper functions for implementing user/kernel api */
737
738 static int
739 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
740 {
741 if (sc->as_state != AGP_ACQUIRE_FREE)
742 return EBUSY;
743 sc->as_state = state;
744
745 return 0;
746 }
747
748 static int
749 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
750 {
751
752 if (sc->as_state == AGP_ACQUIRE_FREE)
753 return 0;
754
755 if (sc->as_state != state)
756 return EBUSY;
757
758 sc->as_state = AGP_ACQUIRE_FREE;
759 return 0;
760 }
761
762 static struct agp_memory *
763 agp_find_memory(struct agp_softc *sc, int id)
764 {
765 struct agp_memory *mem;
766
767 AGP_DPF(("searching for memory block %d\n", id));
768 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
769 AGP_DPF(("considering memory block %d\n", mem->am_id));
770 if (mem->am_id == id)
771 return mem;
772 }
773 return 0;
774 }
775
776 /* Implementation of the userland ioctl api */
777
778 static int
779 agp_info_user(struct agp_softc *sc, agp_info *info)
780 {
781 memset(info, 0, sizeof *info);
782 info->bridge_id = sc->as_id;
783 if (sc->as_capoff != 0)
784 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
785 sc->as_capoff + AGP_STATUS);
786 else
787 info->agp_mode = 0; /* i810 doesn't have real AGP */
788 info->aper_base = sc->as_apaddr;
789 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
790 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
791 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
792
793 return 0;
794 }
795
796 static int
797 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
798 {
799 return AGP_ENABLE(sc, setup->agp_mode);
800 }
801
802 static int
803 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
804 {
805 struct agp_memory *mem;
806
807 mem = AGP_ALLOC_MEMORY(sc,
808 alloc->type,
809 alloc->pg_count << AGP_PAGE_SHIFT);
810 if (mem) {
811 alloc->key = mem->am_id;
812 alloc->physical = mem->am_physical;
813 return 0;
814 } else {
815 return ENOMEM;
816 }
817 }
818
819 static int
820 agp_deallocate_user(struct agp_softc *sc, int id)
821 {
822 struct agp_memory *mem = agp_find_memory(sc, id);
823
824 if (mem) {
825 AGP_FREE_MEMORY(sc, mem);
826 return 0;
827 } else {
828 return ENOENT;
829 }
830 }
831
832 static int
833 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
834 {
835 struct agp_memory *mem = agp_find_memory(sc, bind->key);
836
837 if (!mem)
838 return ENOENT;
839
840 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
841 }
842
843 static int
844 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
845 {
846 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
847
848 if (!mem)
849 return ENOENT;
850
851 return AGP_UNBIND_MEMORY(sc, mem);
852 }
853
854 static int
855 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
856 {
857 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
858
859 if (sc == NULL)
860 return ENXIO;
861
862 if (sc->as_chipc == NULL)
863 return ENXIO;
864
865 if (!sc->as_isopen)
866 sc->as_isopen = 1;
867 else
868 return EBUSY;
869
870 return 0;
871 }
872
873 static int
874 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
875 {
876 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
877 struct agp_memory *mem;
878
879 if (sc == NULL)
880 return ENODEV;
881
882 /*
883 * Clear the GATT and force release on last close
884 */
885 if (sc->as_state == AGP_ACQUIRE_USER) {
886 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
887 if (mem->am_is_bound) {
888 printf("agpclose: mem %d is bound\n",
889 mem->am_id);
890 AGP_UNBIND_MEMORY(sc, mem);
891 }
892 /*
893 * XXX it is not documented, but if the protocol allows
894 * allocate->acquire->bind, it would be possible that
895 * memory ranges are allocated by the kernel here,
896 * which we shouldn't free. We'd have to keep track of
897 * the memory range's owner.
898 * The kernel API is unsed yet, so we get away with
899 * freeing all.
900 */
901 AGP_FREE_MEMORY(sc, mem);
902 }
903 agp_release_helper(sc, AGP_ACQUIRE_USER);
904 }
905 sc->as_isopen = 0;
906
907 return 0;
908 }
909
910 static int
911 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
912 {
913 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
914
915 if (sc == NULL)
916 return ENODEV;
917
918 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
919 return EPERM;
920
921 switch (cmd) {
922 case AGPIOC_INFO:
923 return agp_info_user(sc, (agp_info *) data);
924
925 case AGPIOC_ACQUIRE:
926 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
927
928 case AGPIOC_RELEASE:
929 return agp_release_helper(sc, AGP_ACQUIRE_USER);
930
931 case AGPIOC_SETUP:
932 return agp_setup_user(sc, (agp_setup *)data);
933
934 case AGPIOC_ALLOCATE:
935 return agp_allocate_user(sc, (agp_allocate *)data);
936
937 case AGPIOC_DEALLOCATE:
938 return agp_deallocate_user(sc, *(int *) data);
939
940 case AGPIOC_BIND:
941 return agp_bind_user(sc, (agp_bind *)data);
942
943 case AGPIOC_UNBIND:
944 return agp_unbind_user(sc, (agp_unbind *)data);
945
946 }
947
948 return EINVAL;
949 }
950
951 static paddr_t
952 agpmmap(dev_t dev, off_t offset, int prot)
953 {
954 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
955
956 if (sc == NULL)
957 return ENODEV;
958
959 if (offset > AGP_GET_APERTURE(sc))
960 return -1;
961
962 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
963 BUS_SPACE_MAP_LINEAR));
964 }
965
966 /* Implementation of the kernel api */
967
968 void *
969 agp_find_device(int unit)
970 {
971 return device_lookup_private(&agp_cd, unit);
972 }
973
974 enum agp_acquire_state
975 agp_state(void *devcookie)
976 {
977 struct agp_softc *sc = devcookie;
978
979 return sc->as_state;
980 }
981
982 void
983 agp_get_info(void *devcookie, struct agp_info *info)
984 {
985 struct agp_softc *sc = devcookie;
986
987 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
988 sc->as_capoff + AGP_STATUS);
989 info->ai_aperture_base = sc->as_apaddr;
990 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
991 info->ai_memory_allowed = sc->as_maxmem;
992 info->ai_memory_used = sc->as_allocated;
993 }
994
995 int
996 agp_acquire(void *dev)
997 {
998 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
999 }
1000
1001 int
1002 agp_release(void *dev)
1003 {
1004 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1005 }
1006
1007 int
1008 agp_enable(void *dev, u_int32_t mode)
1009 {
1010 struct agp_softc *sc = dev;
1011
1012 return AGP_ENABLE(sc, mode);
1013 }
1014
1015 void *
1016 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1017 {
1018 struct agp_softc *sc = dev;
1019
1020 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1021 }
1022
1023 void
1024 agp_free_memory(void *dev, void *handle)
1025 {
1026 struct agp_softc *sc = dev;
1027 struct agp_memory *mem = handle;
1028
1029 AGP_FREE_MEMORY(sc, mem);
1030 }
1031
1032 int
1033 agp_bind_memory(void *dev, void *handle, off_t offset)
1034 {
1035 struct agp_softc *sc = dev;
1036 struct agp_memory *mem = handle;
1037
1038 return AGP_BIND_MEMORY(sc, mem, offset);
1039 }
1040
1041 int
1042 agp_unbind_memory(void *dev, void *handle)
1043 {
1044 struct agp_softc *sc = dev;
1045 struct agp_memory *mem = handle;
1046
1047 return AGP_UNBIND_MEMORY(sc, mem);
1048 }
1049
1050 void
1051 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1052 {
1053 struct agp_memory *mem = handle;
1054
1055 mi->ami_size = mem->am_size;
1056 mi->ami_physical = mem->am_physical;
1057 mi->ami_offset = mem->am_offset;
1058 mi->ami_is_bound = mem->am_is_bound;
1059 }
1060
1061 int
1062 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1063 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1064 bus_dma_segment_t *seg, int nseg, int *rseg)
1065
1066 {
1067 int error, level = 0;
1068
1069 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1070 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1071 goto out;
1072 level++;
1073
1074 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1075 BUS_DMA_NOWAIT | flags)) != 0)
1076 goto out;
1077 level++;
1078
1079 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1080 BUS_DMA_NOWAIT, mapp)) != 0)
1081 goto out;
1082 level++;
1083
1084 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1085 BUS_DMA_NOWAIT)) != 0)
1086 goto out;
1087
1088 *baddr = (*mapp)->dm_segs[0].ds_addr;
1089
1090 return 0;
1091 out:
1092 switch (level) {
1093 case 3:
1094 bus_dmamap_destroy(tag, *mapp);
1095 /* FALLTHROUGH */
1096 case 2:
1097 bus_dmamem_unmap(tag, *vaddr, size);
1098 /* FALLTHROUGH */
1099 case 1:
1100 bus_dmamem_free(tag, seg, *rseg);
1101 break;
1102 default:
1103 break;
1104 }
1105
1106 return error;
1107 }
1108
1109 void
1110 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1111 void *vaddr, bus_dma_segment_t *seg, int nseg)
1112 {
1113 bus_dmamap_unload(tag, map);
1114 bus_dmamap_destroy(tag, map);
1115 bus_dmamem_unmap(tag, vaddr, size);
1116 bus_dmamem_free(tag, seg, nseg);
1117 }
1118
1119 static bool
1120 agp_resume(device_t dv PMF_FN_ARGS)
1121 {
1122 agp_flush_cache();
1123
1124 return true;
1125 }
1126