agp.c revision 1.54.10.6 1 /* $NetBSD: agp.c,v 1.54.10.6 2009/01/17 13:28:58 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54.10.6 2009/01/17 13:28:58 mjf Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 static int agpopen(dev_t, int, int, struct lwp *);
108 static int agpclose(dev_t, int, int, struct lwp *);
109 static paddr_t agpmmap(dev_t, off_t, int);
110 static int agpioctl(dev_t, u_long, void *, int, struct lwp *);
111
112 #include "agp_ali.h"
113 #include "agp_amd.h"
114 #include "agp_i810.h"
115 #include "agp_intel.h"
116 #include "agp_sis.h"
117 #include "agp_via.h"
118 #include "agp_amd64.h"
119
120 const struct agp_product {
121 uint32_t ap_vendor;
122 uint32_t ap_product;
123 int (*ap_match)(const struct pci_attach_args *);
124 int (*ap_attach)(device_t, device_t, void *);
125 } agp_products[] = {
126 #if NAGP_AMD64 > 0
127 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
128 agp_amd64_match, agp_amd64_attach },
129 #endif
130
131 #if NAGP_ALI > 0
132 { PCI_VENDOR_ALI, -1,
133 NULL, agp_ali_attach },
134 #endif
135
136 #if NAGP_AMD64 > 0
137 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
138 agp_amd64_match, agp_amd64_attach },
139 #endif
140
141 #if NAGP_AMD > 0
142 { PCI_VENDOR_AMD, -1,
143 agp_amd_match, agp_amd_attach },
144 #endif
145
146 #if NAGP_I810 > 0
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
192 NULL, agp_i810_attach },
193 #endif
194
195 #if NAGP_INTEL > 0
196 { PCI_VENDOR_INTEL, -1,
197 NULL, agp_intel_attach },
198 #endif
199
200 #if NAGP_AMD64 > 0
201 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
202 agp_amd64_match, agp_amd64_attach },
203 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
204 agp_amd64_match, agp_amd64_attach },
205 #endif
206
207 #if NAGP_AMD64 > 0
208 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
209 agp_amd64_match, agp_amd64_attach },
210 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
211 agp_amd64_match, agp_amd64_attach },
212 #endif
213
214 #if NAGP_SIS > 0
215 { PCI_VENDOR_SIS, -1,
216 NULL, agp_sis_attach },
217 #endif
218
219 #if NAGP_AMD64 > 0
220 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
221 agp_amd64_match, agp_amd64_attach },
222 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
223 agp_amd64_match, agp_amd64_attach },
224 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
225 agp_amd64_match, agp_amd64_attach },
226 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
227 agp_amd64_match, agp_amd64_attach },
228 #endif
229
230 #if NAGP_VIA > 0
231 { PCI_VENDOR_VIATECH, -1,
232 NULL, agp_via_attach },
233 #endif
234
235 { 0, 0,
236 NULL, NULL },
237 };
238
239 const struct cdevsw agp_cdevsw = {
240 agpopen, agpclose, noread, nowrite, agpioctl,
241 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
242 };
243
244 static const struct agp_product *
245 agp_lookup(const struct pci_attach_args *pa)
246 {
247 const struct agp_product *ap;
248
249 /* First find the vendor. */
250 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
251 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
252 break;
253 }
254
255 if (ap->ap_attach == NULL)
256 return (NULL);
257
258 /* Now find the product within the vendor's domain. */
259 for (; ap->ap_attach != NULL; ap++) {
260 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
261 /* Ran out of this vendor's section of the table. */
262 return (NULL);
263 }
264 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
265 /* Exact match. */
266 break;
267 }
268 if (ap->ap_product == (uint32_t) -1) {
269 /* Wildcard match. */
270 break;
271 }
272 }
273
274 if (ap->ap_attach == NULL)
275 return (NULL);
276
277 /* Now let the product-specific driver filter the match. */
278 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
279 return (NULL);
280
281 return (ap);
282 }
283
284 static int
285 agpmatch(device_t parent, cfdata_t match, void *aux)
286 {
287 struct agpbus_attach_args *apa = aux;
288 struct pci_attach_args *pa = &apa->apa_pci_args;
289
290 if (agp_lookup(pa) == NULL)
291 return (0);
292
293 return (1);
294 }
295
296 static const int agp_max[][2] = {
297 {0, 0},
298 {32, 4},
299 {64, 28},
300 {128, 96},
301 {256, 204},
302 {512, 440},
303 {1024, 942},
304 {2048, 1920},
305 {4096, 3932}
306 };
307 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
308
309 static void
310 agpattach(device_t parent, device_t self, void *aux)
311 {
312 struct agpbus_attach_args *apa = aux;
313 struct pci_attach_args *pa = &apa->apa_pci_args;
314 struct agp_softc *sc = device_private(self);
315 const struct agp_product *ap;
316 int memsize, i, ret;
317 int major = cdevsw_lookup_major(&agp_cdevsw);
318 int unit;
319
320 ap = agp_lookup(pa);
321 KASSERT(ap != NULL);
322
323 aprint_naive(": AGP controller\n");
324
325 sc->as_dev = self;
326 sc->as_dmat = pa->pa_dmat;
327 sc->as_pc = pa->pa_pc;
328 sc->as_tag = pa->pa_tag;
329 sc->as_id = pa->pa_id;
330
331 /*
332 * Work out an upper bound for agp memory allocation. This
333 * uses a heuristic table from the Linux driver.
334 */
335 memsize = ptoa(physmem) >> 20;
336 for (i = 0; i < agp_max_size; i++) {
337 if (memsize <= agp_max[i][0])
338 break;
339 }
340 if (i == agp_max_size)
341 i = agp_max_size - 1;
342 sc->as_maxmem = agp_max[i][1] << 20U;
343
344 /*
345 * The mutex is used to prevent re-entry to
346 * agp_generic_bind_memory() since that function can sleep.
347 */
348 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
349
350 TAILQ_INIT(&sc->as_memory);
351
352 ret = (*ap->ap_attach)(parent, self, pa);
353 if (ret == 0)
354 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
355 (unsigned long)sc->as_apaddr,
356 (unsigned long)AGP_GET_APERTURE(sc));
357 else
358 sc->as_chipc = NULL;
359
360 if (!device_pmf_is_registered(self)) {
361 if (!pmf_device_register(self, NULL, agp_resume))
362 aprint_error_dev(self, "couldn't establish power "
363 "handler\n");
364 }
365
366 unit = device_unit(self);
367 device_register_name(makedev(major, unit), self, true, DEV_VIDEO,
368 "agp%d", unit);
369 }
370
371 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
372 agpmatch, agpattach, NULL, NULL);
373
374 int
375 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
376 {
377 /*
378 * Find the aperture. Don't map it (yet), this would
379 * eat KVA.
380 */
381 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
382 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
383 &sc->as_apflags) != 0)
384 return ENXIO;
385
386 sc->as_apt = pa->pa_memt;
387
388 return 0;
389 }
390
391 struct agp_gatt *
392 agp_alloc_gatt(struct agp_softc *sc)
393 {
394 u_int32_t apsize = AGP_GET_APERTURE(sc);
395 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
396 struct agp_gatt *gatt;
397 void *virtual;
398 int dummyseg;
399
400 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
401 if (!gatt)
402 return NULL;
403 gatt->ag_entries = entries;
404
405 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
406 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
407 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
408 free(gatt, M_AGP);
409 return NULL;
410 }
411 gatt->ag_virtual = (uint32_t *)virtual;
412
413 gatt->ag_size = entries * sizeof(u_int32_t);
414 memset(gatt->ag_virtual, 0, gatt->ag_size);
415 agp_flush_cache();
416
417 return gatt;
418 }
419
420 void
421 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
422 {
423 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
424 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
425 free(gatt, M_AGP);
426 }
427
428
429 int
430 agp_generic_detach(struct agp_softc *sc)
431 {
432 mutex_destroy(&sc->as_mtx);
433 agp_flush_cache();
434 return 0;
435 }
436
437 static int
438 agpdev_match(struct pci_attach_args *pa)
439 {
440 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
441 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
442 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
443 NULL, NULL))
444 return 1;
445
446 return 0;
447 }
448
449 int
450 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
451 {
452 struct pci_attach_args pa;
453 pcireg_t tstatus, mstatus;
454 pcireg_t command;
455 int rq, sba, fw, rate, capoff;
456
457 if (pci_find_device(&pa, agpdev_match) == 0 ||
458 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
459 &capoff, NULL) == 0) {
460 aprint_error_dev(sc->as_dev, "can't find display\n");
461 return ENXIO;
462 }
463
464 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
465 sc->as_capoff + AGP_STATUS);
466 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
467 capoff + AGP_STATUS);
468
469 /* Set RQ to the min of mode, tstatus and mstatus */
470 rq = AGP_MODE_GET_RQ(mode);
471 if (AGP_MODE_GET_RQ(tstatus) < rq)
472 rq = AGP_MODE_GET_RQ(tstatus);
473 if (AGP_MODE_GET_RQ(mstatus) < rq)
474 rq = AGP_MODE_GET_RQ(mstatus);
475
476 /* Set SBA if all three can deal with SBA */
477 sba = (AGP_MODE_GET_SBA(tstatus)
478 & AGP_MODE_GET_SBA(mstatus)
479 & AGP_MODE_GET_SBA(mode));
480
481 /* Similar for FW */
482 fw = (AGP_MODE_GET_FW(tstatus)
483 & AGP_MODE_GET_FW(mstatus)
484 & AGP_MODE_GET_FW(mode));
485
486 /* Figure out the max rate */
487 rate = (AGP_MODE_GET_RATE(tstatus)
488 & AGP_MODE_GET_RATE(mstatus)
489 & AGP_MODE_GET_RATE(mode));
490 if (rate & AGP_MODE_RATE_4x)
491 rate = AGP_MODE_RATE_4x;
492 else if (rate & AGP_MODE_RATE_2x)
493 rate = AGP_MODE_RATE_2x;
494 else
495 rate = AGP_MODE_RATE_1x;
496
497 /* Construct the new mode word and tell the hardware */
498 command = AGP_MODE_SET_RQ(0, rq);
499 command = AGP_MODE_SET_SBA(command, sba);
500 command = AGP_MODE_SET_FW(command, fw);
501 command = AGP_MODE_SET_RATE(command, rate);
502 command = AGP_MODE_SET_AGP(command, 1);
503 pci_conf_write(sc->as_pc, sc->as_tag,
504 sc->as_capoff + AGP_COMMAND, command);
505 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
506
507 return 0;
508 }
509
510 struct agp_memory *
511 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
512 {
513 struct agp_memory *mem;
514
515 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
516 return 0;
517
518 if (sc->as_allocated + size > sc->as_maxmem)
519 return 0;
520
521 if (type != 0) {
522 printf("agp_generic_alloc_memory: unsupported type %d\n",
523 type);
524 return 0;
525 }
526
527 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
528 if (mem == NULL)
529 return NULL;
530
531 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
532 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
533 free(mem, M_AGP);
534 return NULL;
535 }
536
537 mem->am_id = sc->as_nextid++;
538 mem->am_size = size;
539 mem->am_type = 0;
540 mem->am_physical = 0;
541 mem->am_offset = 0;
542 mem->am_is_bound = 0;
543 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
544 sc->as_allocated += size;
545
546 return mem;
547 }
548
549 int
550 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
551 {
552 if (mem->am_is_bound)
553 return EBUSY;
554
555 sc->as_allocated -= mem->am_size;
556 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
557 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
558 free(mem, M_AGP);
559 return 0;
560 }
561
562 int
563 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
564 off_t offset)
565 {
566 off_t i, k;
567 bus_size_t done, j;
568 int error;
569 bus_dma_segment_t *segs, *seg;
570 bus_addr_t pa;
571 int contigpages, nseg;
572
573 mutex_enter(&sc->as_mtx);
574
575 if (mem->am_is_bound) {
576 aprint_error_dev(sc->as_dev, "memory already bound\n");
577 mutex_exit(&sc->as_mtx);
578 return EINVAL;
579 }
580
581 if (offset < 0
582 || (offset & (AGP_PAGE_SIZE - 1)) != 0
583 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
584 aprint_error_dev(sc->as_dev,
585 "binding memory at bad offset %#lx\n",
586 (unsigned long) offset);
587 mutex_exit(&sc->as_mtx);
588 return EINVAL;
589 }
590
591 /*
592 * XXXfvdl
593 * The memory here needs to be directly accessable from the
594 * AGP video card, so it should be allocated using bus_dma.
595 * However, it need not be contiguous, since individual pages
596 * are translated using the GATT.
597 *
598 * Using a large chunk of contiguous memory may get in the way
599 * of other subsystems that may need one, so we try to be friendly
600 * and ask for allocation in chunks of a minimum of 8 pages
601 * of contiguous memory on average, falling back to 4, 2 and 1
602 * if really needed. Larger chunks are preferred, since allocating
603 * a bus_dma_segment per page would be overkill.
604 */
605
606 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
607 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
608 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
609 if (segs == NULL) {
610 mutex_exit(&sc->as_mtx);
611 return ENOMEM;
612 }
613 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
614 segs, nseg, &mem->am_nseg,
615 contigpages > 1 ?
616 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
617 free(segs, M_AGP);
618 continue;
619 }
620 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
621 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
622 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
623 free(segs, M_AGP);
624 continue;
625 }
626 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
627 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
628 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
629 mem->am_size);
630 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
631 free(segs, M_AGP);
632 continue;
633 }
634 mem->am_dmaseg = segs;
635 break;
636 }
637
638 if (contigpages == 0) {
639 mutex_exit(&sc->as_mtx);
640 return ENOMEM;
641 }
642
643
644 /*
645 * Bind the individual pages and flush the chipset's
646 * TLB.
647 */
648 done = 0;
649 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
650 seg = &mem->am_dmamap->dm_segs[i];
651 /*
652 * Install entries in the GATT, making sure that if
653 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
654 * aligned to PAGE_SIZE, we don't modify too many GATT
655 * entries.
656 */
657 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
658 j += AGP_PAGE_SIZE) {
659 pa = seg->ds_addr + j;
660 AGP_DPF(("binding offset %#lx to pa %#lx\n",
661 (unsigned long)(offset + done + j),
662 (unsigned long)pa));
663 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
664 if (error) {
665 /*
666 * Bail out. Reverse all the mappings
667 * and unwire the pages.
668 */
669 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
670 AGP_UNBIND_PAGE(sc, offset + k);
671
672 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
673 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
674 mem->am_size);
675 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
676 mem->am_nseg);
677 free(mem->am_dmaseg, M_AGP);
678 mutex_exit(&sc->as_mtx);
679 return error;
680 }
681 }
682 done += seg->ds_len;
683 }
684
685 /*
686 * Flush the CPU cache since we are providing a new mapping
687 * for these pages.
688 */
689 agp_flush_cache();
690
691 /*
692 * Make sure the chipset gets the new mappings.
693 */
694 AGP_FLUSH_TLB(sc);
695
696 mem->am_offset = offset;
697 mem->am_is_bound = 1;
698
699 mutex_exit(&sc->as_mtx);
700
701 return 0;
702 }
703
704 int
705 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
706 {
707 int i;
708
709 mutex_enter(&sc->as_mtx);
710
711 if (!mem->am_is_bound) {
712 aprint_error_dev(sc->as_dev, "memory is not bound\n");
713 mutex_exit(&sc->as_mtx);
714 return EINVAL;
715 }
716
717
718 /*
719 * Unbind the individual pages and flush the chipset's
720 * TLB. Unwire the pages so they can be swapped.
721 */
722 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
723 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
724
725 agp_flush_cache();
726 AGP_FLUSH_TLB(sc);
727
728 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
729 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
730 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
731
732 free(mem->am_dmaseg, M_AGP);
733
734 mem->am_offset = 0;
735 mem->am_is_bound = 0;
736
737 mutex_exit(&sc->as_mtx);
738
739 return 0;
740 }
741
742 /* Helper functions for implementing user/kernel api */
743
744 static int
745 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
746 {
747 if (sc->as_state != AGP_ACQUIRE_FREE)
748 return EBUSY;
749 sc->as_state = state;
750
751 return 0;
752 }
753
754 static int
755 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
756 {
757
758 if (sc->as_state == AGP_ACQUIRE_FREE)
759 return 0;
760
761 if (sc->as_state != state)
762 return EBUSY;
763
764 sc->as_state = AGP_ACQUIRE_FREE;
765 return 0;
766 }
767
768 static struct agp_memory *
769 agp_find_memory(struct agp_softc *sc, int id)
770 {
771 struct agp_memory *mem;
772
773 AGP_DPF(("searching for memory block %d\n", id));
774 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
775 AGP_DPF(("considering memory block %d\n", mem->am_id));
776 if (mem->am_id == id)
777 return mem;
778 }
779 return 0;
780 }
781
782 /* Implementation of the userland ioctl api */
783
784 static int
785 agp_info_user(struct agp_softc *sc, agp_info *info)
786 {
787 memset(info, 0, sizeof *info);
788 info->bridge_id = sc->as_id;
789 if (sc->as_capoff != 0)
790 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
791 sc->as_capoff + AGP_STATUS);
792 else
793 info->agp_mode = 0; /* i810 doesn't have real AGP */
794 info->aper_base = sc->as_apaddr;
795 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
796 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
797 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
798
799 return 0;
800 }
801
802 static int
803 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
804 {
805 return AGP_ENABLE(sc, setup->agp_mode);
806 }
807
808 static int
809 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
810 {
811 struct agp_memory *mem;
812
813 mem = AGP_ALLOC_MEMORY(sc,
814 alloc->type,
815 alloc->pg_count << AGP_PAGE_SHIFT);
816 if (mem) {
817 alloc->key = mem->am_id;
818 alloc->physical = mem->am_physical;
819 return 0;
820 } else {
821 return ENOMEM;
822 }
823 }
824
825 static int
826 agp_deallocate_user(struct agp_softc *sc, int id)
827 {
828 struct agp_memory *mem = agp_find_memory(sc, id);
829
830 if (mem) {
831 AGP_FREE_MEMORY(sc, mem);
832 return 0;
833 } else {
834 return ENOENT;
835 }
836 }
837
838 static int
839 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
840 {
841 struct agp_memory *mem = agp_find_memory(sc, bind->key);
842
843 if (!mem)
844 return ENOENT;
845
846 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
847 }
848
849 static int
850 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
851 {
852 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
853
854 if (!mem)
855 return ENOENT;
856
857 return AGP_UNBIND_MEMORY(sc, mem);
858 }
859
860 static int
861 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
862 {
863 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
864
865 if (sc == NULL)
866 return ENXIO;
867
868 if (sc->as_chipc == NULL)
869 return ENXIO;
870
871 if (!sc->as_isopen)
872 sc->as_isopen = 1;
873 else
874 return EBUSY;
875
876 return 0;
877 }
878
879 static int
880 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
881 {
882 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
883 struct agp_memory *mem;
884
885 if (sc == NULL)
886 return ENODEV;
887
888 /*
889 * Clear the GATT and force release on last close
890 */
891 if (sc->as_state == AGP_ACQUIRE_USER) {
892 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
893 if (mem->am_is_bound) {
894 printf("agpclose: mem %d is bound\n",
895 mem->am_id);
896 AGP_UNBIND_MEMORY(sc, mem);
897 }
898 /*
899 * XXX it is not documented, but if the protocol allows
900 * allocate->acquire->bind, it would be possible that
901 * memory ranges are allocated by the kernel here,
902 * which we shouldn't free. We'd have to keep track of
903 * the memory range's owner.
904 * The kernel API is unsed yet, so we get away with
905 * freeing all.
906 */
907 AGP_FREE_MEMORY(sc, mem);
908 }
909 agp_release_helper(sc, AGP_ACQUIRE_USER);
910 }
911 sc->as_isopen = 0;
912
913 return 0;
914 }
915
916 static int
917 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
918 {
919 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
920
921 if (sc == NULL)
922 return ENODEV;
923
924 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
925 return EPERM;
926
927 switch (cmd) {
928 case AGPIOC_INFO:
929 return agp_info_user(sc, (agp_info *) data);
930
931 case AGPIOC_ACQUIRE:
932 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
933
934 case AGPIOC_RELEASE:
935 return agp_release_helper(sc, AGP_ACQUIRE_USER);
936
937 case AGPIOC_SETUP:
938 return agp_setup_user(sc, (agp_setup *)data);
939
940 case AGPIOC_ALLOCATE:
941 return agp_allocate_user(sc, (agp_allocate *)data);
942
943 case AGPIOC_DEALLOCATE:
944 return agp_deallocate_user(sc, *(int *) data);
945
946 case AGPIOC_BIND:
947 return agp_bind_user(sc, (agp_bind *)data);
948
949 case AGPIOC_UNBIND:
950 return agp_unbind_user(sc, (agp_unbind *)data);
951
952 }
953
954 return EINVAL;
955 }
956
957 static paddr_t
958 agpmmap(dev_t dev, off_t offset, int prot)
959 {
960 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
961
962 if (sc == NULL)
963 return ENODEV;
964
965 if (offset > AGP_GET_APERTURE(sc))
966 return -1;
967
968 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
969 BUS_SPACE_MAP_LINEAR));
970 }
971
972 /* Implementation of the kernel api */
973
974 void *
975 agp_find_device(int unit)
976 {
977 return device_lookup_private(&agp_cd, unit);
978 }
979
980 enum agp_acquire_state
981 agp_state(void *devcookie)
982 {
983 struct agp_softc *sc = devcookie;
984
985 return sc->as_state;
986 }
987
988 void
989 agp_get_info(void *devcookie, struct agp_info *info)
990 {
991 struct agp_softc *sc = devcookie;
992
993 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
994 sc->as_capoff + AGP_STATUS);
995 info->ai_aperture_base = sc->as_apaddr;
996 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
997 info->ai_memory_allowed = sc->as_maxmem;
998 info->ai_memory_used = sc->as_allocated;
999 }
1000
1001 int
1002 agp_acquire(void *dev)
1003 {
1004 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1005 }
1006
1007 int
1008 agp_release(void *dev)
1009 {
1010 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1011 }
1012
1013 int
1014 agp_enable(void *dev, u_int32_t mode)
1015 {
1016 struct agp_softc *sc = dev;
1017
1018 return AGP_ENABLE(sc, mode);
1019 }
1020
1021 void *
1022 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1023 {
1024 struct agp_softc *sc = dev;
1025
1026 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1027 }
1028
1029 void
1030 agp_free_memory(void *dev, void *handle)
1031 {
1032 struct agp_softc *sc = dev;
1033 struct agp_memory *mem = handle;
1034
1035 AGP_FREE_MEMORY(sc, mem);
1036 }
1037
1038 int
1039 agp_bind_memory(void *dev, void *handle, off_t offset)
1040 {
1041 struct agp_softc *sc = dev;
1042 struct agp_memory *mem = handle;
1043
1044 return AGP_BIND_MEMORY(sc, mem, offset);
1045 }
1046
1047 int
1048 agp_unbind_memory(void *dev, void *handle)
1049 {
1050 struct agp_softc *sc = dev;
1051 struct agp_memory *mem = handle;
1052
1053 return AGP_UNBIND_MEMORY(sc, mem);
1054 }
1055
1056 void
1057 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1058 {
1059 struct agp_memory *mem = handle;
1060
1061 mi->ami_size = mem->am_size;
1062 mi->ami_physical = mem->am_physical;
1063 mi->ami_offset = mem->am_offset;
1064 mi->ami_is_bound = mem->am_is_bound;
1065 }
1066
1067 int
1068 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1069 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1070 bus_dma_segment_t *seg, int nseg, int *rseg)
1071
1072 {
1073 int error, level = 0;
1074
1075 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1076 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1077 goto out;
1078 level++;
1079
1080 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1081 BUS_DMA_NOWAIT | flags)) != 0)
1082 goto out;
1083 level++;
1084
1085 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1086 BUS_DMA_NOWAIT, mapp)) != 0)
1087 goto out;
1088 level++;
1089
1090 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1091 BUS_DMA_NOWAIT)) != 0)
1092 goto out;
1093
1094 *baddr = (*mapp)->dm_segs[0].ds_addr;
1095
1096 return 0;
1097 out:
1098 switch (level) {
1099 case 3:
1100 bus_dmamap_destroy(tag, *mapp);
1101 /* FALLTHROUGH */
1102 case 2:
1103 bus_dmamem_unmap(tag, *vaddr, size);
1104 /* FALLTHROUGH */
1105 case 1:
1106 bus_dmamem_free(tag, seg, *rseg);
1107 break;
1108 default:
1109 break;
1110 }
1111
1112 return error;
1113 }
1114
1115 void
1116 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1117 void *vaddr, bus_dma_segment_t *seg, int nseg)
1118 {
1119 bus_dmamap_unload(tag, map);
1120 bus_dmamap_destroy(tag, map);
1121 bus_dmamem_unmap(tag, vaddr, size);
1122 bus_dmamem_free(tag, seg, nseg);
1123 }
1124
1125 static bool
1126 agp_resume(device_t dv PMF_FN_ARGS)
1127 {
1128 agp_flush_cache();
1129
1130 return true;
1131 }
1132