agp.c revision 1.57 1 /* $NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(struct device *, struct device *, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
180 NULL, agp_i810_attach },
181 #endif
182
183 #if NAGP_INTEL > 0
184 { PCI_VENDOR_INTEL, -1,
185 NULL, agp_intel_attach },
186 #endif
187
188 #if NAGP_AMD64 > 0
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
190 agp_amd64_match, agp_amd64_attach },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
192 agp_amd64_match, agp_amd64_attach },
193 #endif
194
195 #if NAGP_AMD64 > 0
196 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
197 agp_amd64_match, agp_amd64_attach },
198 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
199 agp_amd64_match, agp_amd64_attach },
200 #endif
201
202 #if NAGP_SIS > 0
203 { PCI_VENDOR_SIS, -1,
204 NULL, agp_sis_attach },
205 #endif
206
207 #if NAGP_AMD64 > 0
208 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
209 agp_amd64_match, agp_amd64_attach },
210 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
211 agp_amd64_match, agp_amd64_attach },
212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
213 agp_amd64_match, agp_amd64_attach },
214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
215 agp_amd64_match, agp_amd64_attach },
216 #endif
217
218 #if NAGP_VIA > 0
219 { PCI_VENDOR_VIATECH, -1,
220 NULL, agp_via_attach },
221 #endif
222
223 { 0, 0,
224 NULL, NULL },
225 };
226
227 static const struct agp_product *
228 agp_lookup(const struct pci_attach_args *pa)
229 {
230 const struct agp_product *ap;
231
232 /* First find the vendor. */
233 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
234 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
235 break;
236 }
237
238 if (ap->ap_attach == NULL)
239 return (NULL);
240
241 /* Now find the product within the vendor's domain. */
242 for (; ap->ap_attach != NULL; ap++) {
243 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
244 /* Ran out of this vendor's section of the table. */
245 return (NULL);
246 }
247 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
248 /* Exact match. */
249 break;
250 }
251 if (ap->ap_product == (uint32_t) -1) {
252 /* Wildcard match. */
253 break;
254 }
255 }
256
257 if (ap->ap_attach == NULL)
258 return (NULL);
259
260 /* Now let the product-specific driver filter the match. */
261 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
262 return (NULL);
263
264 return (ap);
265 }
266
267 static int
268 agpmatch(struct device *parent, struct cfdata *match,
269 void *aux)
270 {
271 struct agpbus_attach_args *apa = aux;
272 struct pci_attach_args *pa = &apa->apa_pci_args;
273
274 if (agp_lookup(pa) == NULL)
275 return (0);
276
277 return (1);
278 }
279
280 static const int agp_max[][2] = {
281 {0, 0},
282 {32, 4},
283 {64, 28},
284 {128, 96},
285 {256, 204},
286 {512, 440},
287 {1024, 942},
288 {2048, 1920},
289 {4096, 3932}
290 };
291 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
292
293 static void
294 agpattach(struct device *parent, struct device *self, void *aux)
295 {
296 struct agpbus_attach_args *apa = aux;
297 struct pci_attach_args *pa = &apa->apa_pci_args;
298 struct agp_softc *sc = (void *)self;
299 const struct agp_product *ap;
300 int memsize, i, ret;
301
302 ap = agp_lookup(pa);
303 if (ap == NULL) {
304 printf("\n");
305 panic("agpattach: impossible");
306 }
307
308 aprint_naive(": AGP controller\n");
309
310 sc->as_dmat = pa->pa_dmat;
311 sc->as_pc = pa->pa_pc;
312 sc->as_tag = pa->pa_tag;
313 sc->as_id = pa->pa_id;
314
315 /*
316 * Work out an upper bound for agp memory allocation. This
317 * uses a heurisitc table from the Linux driver.
318 */
319 memsize = ptoa(physmem) >> 20;
320 for (i = 0; i < agp_max_size; i++) {
321 if (memsize <= agp_max[i][0])
322 break;
323 }
324 if (i == agp_max_size)
325 i = agp_max_size - 1;
326 sc->as_maxmem = agp_max[i][1] << 20U;
327
328 /*
329 * The mutex is used to prevent re-entry to
330 * agp_generic_bind_memory() since that function can sleep.
331 */
332 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
333
334 TAILQ_INIT(&sc->as_memory);
335
336 ret = (*ap->ap_attach)(parent, self, pa);
337 if (ret == 0)
338 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
339 (unsigned long)sc->as_apaddr,
340 (unsigned long)AGP_GET_APERTURE(sc));
341 else
342 sc->as_chipc = NULL;
343
344 if (!device_pmf_is_registered(self)) {
345 if (!pmf_device_register(self, NULL, agp_resume))
346 aprint_error_dev(self, "couldn't establish power handler\n");
347 }
348 }
349
350 CFATTACH_DECL(agp, sizeof(struct agp_softc),
351 agpmatch, agpattach, NULL, NULL);
352
353 int
354 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
355 {
356 /*
357 * Find the aperture. Don't map it (yet), this would
358 * eat KVA.
359 */
360 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
361 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
362 &sc->as_apflags) != 0)
363 return ENXIO;
364
365 sc->as_apt = pa->pa_memt;
366
367 return 0;
368 }
369
370 struct agp_gatt *
371 agp_alloc_gatt(struct agp_softc *sc)
372 {
373 u_int32_t apsize = AGP_GET_APERTURE(sc);
374 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
375 struct agp_gatt *gatt;
376 void *virtual;
377 int dummyseg;
378
379 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
380 if (!gatt)
381 return NULL;
382 gatt->ag_entries = entries;
383
384 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
385 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
386 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
387 return NULL;
388 gatt->ag_virtual = (uint32_t *)virtual;
389
390 gatt->ag_size = entries * sizeof(u_int32_t);
391 memset(gatt->ag_virtual, 0, gatt->ag_size);
392 agp_flush_cache();
393
394 return gatt;
395 }
396
397 void
398 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
399 {
400 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
401 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
402 free(gatt, M_AGP);
403 }
404
405
406 int
407 agp_generic_detach(struct agp_softc *sc)
408 {
409 mutex_destroy(&sc->as_mtx);
410 agp_flush_cache();
411 return 0;
412 }
413
414 static int
415 agpdev_match(struct pci_attach_args *pa)
416 {
417 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
418 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
419 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
420 NULL, NULL))
421 return 1;
422
423 return 0;
424 }
425
426 int
427 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
428 {
429 struct pci_attach_args pa;
430 pcireg_t tstatus, mstatus;
431 pcireg_t command;
432 int rq, sba, fw, rate, capoff;
433
434 if (pci_find_device(&pa, agpdev_match) == 0 ||
435 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
436 &capoff, NULL) == 0) {
437 aprint_error_dev(&sc->as_dev, "can't find display\n");
438 return ENXIO;
439 }
440
441 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
442 sc->as_capoff + AGP_STATUS);
443 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
444 capoff + AGP_STATUS);
445
446 /* Set RQ to the min of mode, tstatus and mstatus */
447 rq = AGP_MODE_GET_RQ(mode);
448 if (AGP_MODE_GET_RQ(tstatus) < rq)
449 rq = AGP_MODE_GET_RQ(tstatus);
450 if (AGP_MODE_GET_RQ(mstatus) < rq)
451 rq = AGP_MODE_GET_RQ(mstatus);
452
453 /* Set SBA if all three can deal with SBA */
454 sba = (AGP_MODE_GET_SBA(tstatus)
455 & AGP_MODE_GET_SBA(mstatus)
456 & AGP_MODE_GET_SBA(mode));
457
458 /* Similar for FW */
459 fw = (AGP_MODE_GET_FW(tstatus)
460 & AGP_MODE_GET_FW(mstatus)
461 & AGP_MODE_GET_FW(mode));
462
463 /* Figure out the max rate */
464 rate = (AGP_MODE_GET_RATE(tstatus)
465 & AGP_MODE_GET_RATE(mstatus)
466 & AGP_MODE_GET_RATE(mode));
467 if (rate & AGP_MODE_RATE_4x)
468 rate = AGP_MODE_RATE_4x;
469 else if (rate & AGP_MODE_RATE_2x)
470 rate = AGP_MODE_RATE_2x;
471 else
472 rate = AGP_MODE_RATE_1x;
473
474 /* Construct the new mode word and tell the hardware */
475 command = AGP_MODE_SET_RQ(0, rq);
476 command = AGP_MODE_SET_SBA(command, sba);
477 command = AGP_MODE_SET_FW(command, fw);
478 command = AGP_MODE_SET_RATE(command, rate);
479 command = AGP_MODE_SET_AGP(command, 1);
480 pci_conf_write(sc->as_pc, sc->as_tag,
481 sc->as_capoff + AGP_COMMAND, command);
482 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
483
484 return 0;
485 }
486
487 struct agp_memory *
488 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
489 {
490 struct agp_memory *mem;
491
492 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
493 return 0;
494
495 if (sc->as_allocated + size > sc->as_maxmem)
496 return 0;
497
498 if (type != 0) {
499 printf("agp_generic_alloc_memory: unsupported type %d\n",
500 type);
501 return 0;
502 }
503
504 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
505 if (mem == NULL)
506 return NULL;
507
508 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
509 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
510 free(mem, M_AGP);
511 return NULL;
512 }
513
514 mem->am_id = sc->as_nextid++;
515 mem->am_size = size;
516 mem->am_type = 0;
517 mem->am_physical = 0;
518 mem->am_offset = 0;
519 mem->am_is_bound = 0;
520 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
521 sc->as_allocated += size;
522
523 return mem;
524 }
525
526 int
527 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
528 {
529 if (mem->am_is_bound)
530 return EBUSY;
531
532 sc->as_allocated -= mem->am_size;
533 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
534 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
535 free(mem, M_AGP);
536 return 0;
537 }
538
539 int
540 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
541 off_t offset)
542 {
543 off_t i, k;
544 bus_size_t done, j;
545 int error;
546 bus_dma_segment_t *segs, *seg;
547 bus_addr_t pa;
548 int contigpages, nseg;
549
550 mutex_enter(&sc->as_mtx);
551
552 if (mem->am_is_bound) {
553 aprint_error_dev(&sc->as_dev, "memory already bound\n");
554 mutex_exit(&sc->as_mtx);
555 return EINVAL;
556 }
557
558 if (offset < 0
559 || (offset & (AGP_PAGE_SIZE - 1)) != 0
560 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
561 aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n",
562 (unsigned long) offset);
563 mutex_exit(&sc->as_mtx);
564 return EINVAL;
565 }
566
567 /*
568 * XXXfvdl
569 * The memory here needs to be directly accessable from the
570 * AGP video card, so it should be allocated using bus_dma.
571 * However, it need not be contiguous, since individual pages
572 * are translated using the GATT.
573 *
574 * Using a large chunk of contiguous memory may get in the way
575 * of other subsystems that may need one, so we try to be friendly
576 * and ask for allocation in chunks of a minimum of 8 pages
577 * of contiguous memory on average, falling back to 4, 2 and 1
578 * if really needed. Larger chunks are preferred, since allocating
579 * a bus_dma_segment per page would be overkill.
580 */
581
582 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
583 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
584 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
585 if (segs == NULL) {
586 mutex_exit(&sc->as_mtx);
587 return ENOMEM;
588 }
589 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
590 segs, nseg, &mem->am_nseg,
591 contigpages > 1 ?
592 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
593 free(segs, M_AGP);
594 continue;
595 }
596 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
597 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
598 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
599 free(segs, M_AGP);
600 continue;
601 }
602 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
603 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
604 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
605 mem->am_size);
606 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
607 free(segs, M_AGP);
608 continue;
609 }
610 mem->am_dmaseg = segs;
611 break;
612 }
613
614 if (contigpages == 0) {
615 mutex_exit(&sc->as_mtx);
616 return ENOMEM;
617 }
618
619
620 /*
621 * Bind the individual pages and flush the chipset's
622 * TLB.
623 */
624 done = 0;
625 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
626 seg = &mem->am_dmamap->dm_segs[i];
627 /*
628 * Install entries in the GATT, making sure that if
629 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
630 * aligned to PAGE_SIZE, we don't modify too many GATT
631 * entries.
632 */
633 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
634 j += AGP_PAGE_SIZE) {
635 pa = seg->ds_addr + j;
636 AGP_DPF(("binding offset %#lx to pa %#lx\n",
637 (unsigned long)(offset + done + j),
638 (unsigned long)pa));
639 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
640 if (error) {
641 /*
642 * Bail out. Reverse all the mappings
643 * and unwire the pages.
644 */
645 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
646 AGP_UNBIND_PAGE(sc, offset + k);
647
648 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
649 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
650 mem->am_size);
651 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
652 mem->am_nseg);
653 free(mem->am_dmaseg, M_AGP);
654 mutex_exit(&sc->as_mtx);
655 return error;
656 }
657 }
658 done += seg->ds_len;
659 }
660
661 /*
662 * Flush the CPU cache since we are providing a new mapping
663 * for these pages.
664 */
665 agp_flush_cache();
666
667 /*
668 * Make sure the chipset gets the new mappings.
669 */
670 AGP_FLUSH_TLB(sc);
671
672 mem->am_offset = offset;
673 mem->am_is_bound = 1;
674
675 mutex_exit(&sc->as_mtx);
676
677 return 0;
678 }
679
680 int
681 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
682 {
683 int i;
684
685 mutex_enter(&sc->as_mtx);
686
687 if (!mem->am_is_bound) {
688 aprint_error_dev(&sc->as_dev, "memory is not bound\n");
689 mutex_exit(&sc->as_mtx);
690 return EINVAL;
691 }
692
693
694 /*
695 * Unbind the individual pages and flush the chipset's
696 * TLB. Unwire the pages so they can be swapped.
697 */
698 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
699 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
700
701 agp_flush_cache();
702 AGP_FLUSH_TLB(sc);
703
704 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
705 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
706 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
707
708 free(mem->am_dmaseg, M_AGP);
709
710 mem->am_offset = 0;
711 mem->am_is_bound = 0;
712
713 mutex_exit(&sc->as_mtx);
714
715 return 0;
716 }
717
718 /* Helper functions for implementing user/kernel api */
719
720 static int
721 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
722 {
723 if (sc->as_state != AGP_ACQUIRE_FREE)
724 return EBUSY;
725 sc->as_state = state;
726
727 return 0;
728 }
729
730 static int
731 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
732 {
733
734 if (sc->as_state == AGP_ACQUIRE_FREE)
735 return 0;
736
737 if (sc->as_state != state)
738 return EBUSY;
739
740 sc->as_state = AGP_ACQUIRE_FREE;
741 return 0;
742 }
743
744 static struct agp_memory *
745 agp_find_memory(struct agp_softc *sc, int id)
746 {
747 struct agp_memory *mem;
748
749 AGP_DPF(("searching for memory block %d\n", id));
750 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
751 AGP_DPF(("considering memory block %d\n", mem->am_id));
752 if (mem->am_id == id)
753 return mem;
754 }
755 return 0;
756 }
757
758 /* Implementation of the userland ioctl api */
759
760 static int
761 agp_info_user(struct agp_softc *sc, agp_info *info)
762 {
763 memset(info, 0, sizeof *info);
764 info->bridge_id = sc->as_id;
765 if (sc->as_capoff != 0)
766 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
767 sc->as_capoff + AGP_STATUS);
768 else
769 info->agp_mode = 0; /* i810 doesn't have real AGP */
770 info->aper_base = sc->as_apaddr;
771 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
772 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
773 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
774
775 return 0;
776 }
777
778 static int
779 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
780 {
781 return AGP_ENABLE(sc, setup->agp_mode);
782 }
783
784 static int
785 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
786 {
787 struct agp_memory *mem;
788
789 mem = AGP_ALLOC_MEMORY(sc,
790 alloc->type,
791 alloc->pg_count << AGP_PAGE_SHIFT);
792 if (mem) {
793 alloc->key = mem->am_id;
794 alloc->physical = mem->am_physical;
795 return 0;
796 } else {
797 return ENOMEM;
798 }
799 }
800
801 static int
802 agp_deallocate_user(struct agp_softc *sc, int id)
803 {
804 struct agp_memory *mem = agp_find_memory(sc, id);
805
806 if (mem) {
807 AGP_FREE_MEMORY(sc, mem);
808 return 0;
809 } else {
810 return ENOENT;
811 }
812 }
813
814 static int
815 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
816 {
817 struct agp_memory *mem = agp_find_memory(sc, bind->key);
818
819 if (!mem)
820 return ENOENT;
821
822 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
823 }
824
825 static int
826 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
827 {
828 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
829
830 if (!mem)
831 return ENOENT;
832
833 return AGP_UNBIND_MEMORY(sc, mem);
834 }
835
836 static int
837 agpopen(dev_t dev, int oflags, int devtype,
838 struct lwp *l)
839 {
840 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
841
842 if (sc == NULL)
843 return ENXIO;
844
845 if (sc->as_chipc == NULL)
846 return ENXIO;
847
848 if (!sc->as_isopen)
849 sc->as_isopen = 1;
850 else
851 return EBUSY;
852
853 return 0;
854 }
855
856 static int
857 agpclose(dev_t dev, int fflag, int devtype,
858 struct lwp *l)
859 {
860 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
861 struct agp_memory *mem;
862
863 /*
864 * Clear the GATT and force release on last close
865 */
866 if (sc->as_state == AGP_ACQUIRE_USER) {
867 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
868 if (mem->am_is_bound) {
869 printf("agpclose: mem %d is bound\n",
870 mem->am_id);
871 AGP_UNBIND_MEMORY(sc, mem);
872 }
873 /*
874 * XXX it is not documented, but if the protocol allows
875 * allocate->acquire->bind, it would be possible that
876 * memory ranges are allocated by the kernel here,
877 * which we shouldn't free. We'd have to keep track of
878 * the memory range's owner.
879 * The kernel API is unsed yet, so we get away with
880 * freeing all.
881 */
882 AGP_FREE_MEMORY(sc, mem);
883 }
884 agp_release_helper(sc, AGP_ACQUIRE_USER);
885 }
886 sc->as_isopen = 0;
887
888 return 0;
889 }
890
891 static int
892 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
893 {
894 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
895
896 if (sc == NULL)
897 return ENODEV;
898
899 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
900 return EPERM;
901
902 switch (cmd) {
903 case AGPIOC_INFO:
904 return agp_info_user(sc, (agp_info *) data);
905
906 case AGPIOC_ACQUIRE:
907 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
908
909 case AGPIOC_RELEASE:
910 return agp_release_helper(sc, AGP_ACQUIRE_USER);
911
912 case AGPIOC_SETUP:
913 return agp_setup_user(sc, (agp_setup *)data);
914
915 case AGPIOC_ALLOCATE:
916 return agp_allocate_user(sc, (agp_allocate *)data);
917
918 case AGPIOC_DEALLOCATE:
919 return agp_deallocate_user(sc, *(int *) data);
920
921 case AGPIOC_BIND:
922 return agp_bind_user(sc, (agp_bind *)data);
923
924 case AGPIOC_UNBIND:
925 return agp_unbind_user(sc, (agp_unbind *)data);
926
927 }
928
929 return EINVAL;
930 }
931
932 static paddr_t
933 agpmmap(dev_t dev, off_t offset, int prot)
934 {
935 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
936
937 if (offset > AGP_GET_APERTURE(sc))
938 return -1;
939
940 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
941 BUS_SPACE_MAP_LINEAR));
942 }
943
944 const struct cdevsw agp_cdevsw = {
945 agpopen, agpclose, noread, nowrite, agpioctl,
946 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
947 };
948
949 /* Implementation of the kernel api */
950
951 void *
952 agp_find_device(int unit)
953 {
954 return device_lookup(&agp_cd, unit);
955 }
956
957 enum agp_acquire_state
958 agp_state(void *devcookie)
959 {
960 struct agp_softc *sc = devcookie;
961 return sc->as_state;
962 }
963
964 void
965 agp_get_info(void *devcookie, struct agp_info *info)
966 {
967 struct agp_softc *sc = devcookie;
968
969 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
970 sc->as_capoff + AGP_STATUS);
971 info->ai_aperture_base = sc->as_apaddr;
972 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
973 info->ai_memory_allowed = sc->as_maxmem;
974 info->ai_memory_used = sc->as_allocated;
975 }
976
977 int
978 agp_acquire(void *dev)
979 {
980 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
981 }
982
983 int
984 agp_release(void *dev)
985 {
986 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
987 }
988
989 int
990 agp_enable(void *dev, u_int32_t mode)
991 {
992 struct agp_softc *sc = dev;
993
994 return AGP_ENABLE(sc, mode);
995 }
996
997 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
998 {
999 struct agp_softc *sc = dev;
1000
1001 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1002 }
1003
1004 void agp_free_memory(void *dev, void *handle)
1005 {
1006 struct agp_softc *sc = dev;
1007 struct agp_memory *mem = (struct agp_memory *) handle;
1008 AGP_FREE_MEMORY(sc, mem);
1009 }
1010
1011 int agp_bind_memory(void *dev, void *handle, off_t offset)
1012 {
1013 struct agp_softc *sc = dev;
1014 struct agp_memory *mem = (struct agp_memory *) handle;
1015
1016 return AGP_BIND_MEMORY(sc, mem, offset);
1017 }
1018
1019 int agp_unbind_memory(void *dev, void *handle)
1020 {
1021 struct agp_softc *sc = dev;
1022 struct agp_memory *mem = (struct agp_memory *) handle;
1023
1024 return AGP_UNBIND_MEMORY(sc, mem);
1025 }
1026
1027 void agp_memory_info(void *dev, void *handle,
1028 struct agp_memory_info *mi)
1029 {
1030 struct agp_memory *mem = (struct agp_memory *) handle;
1031
1032 mi->ami_size = mem->am_size;
1033 mi->ami_physical = mem->am_physical;
1034 mi->ami_offset = mem->am_offset;
1035 mi->ami_is_bound = mem->am_is_bound;
1036 }
1037
1038 int
1039 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1040 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1041 bus_dma_segment_t *seg, int nseg, int *rseg)
1042
1043 {
1044 int error, level = 0;
1045
1046 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1047 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1048 goto out;
1049 level++;
1050
1051 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1052 BUS_DMA_NOWAIT | flags)) != 0)
1053 goto out;
1054 level++;
1055
1056 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1057 BUS_DMA_NOWAIT, mapp)) != 0)
1058 goto out;
1059 level++;
1060
1061 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1062 BUS_DMA_NOWAIT)) != 0)
1063 goto out;
1064
1065 *baddr = (*mapp)->dm_segs[0].ds_addr;
1066
1067 return 0;
1068 out:
1069 switch (level) {
1070 case 3:
1071 bus_dmamap_destroy(tag, *mapp);
1072 /* FALLTHROUGH */
1073 case 2:
1074 bus_dmamem_unmap(tag, *vaddr, size);
1075 /* FALLTHROUGH */
1076 case 1:
1077 bus_dmamem_free(tag, seg, *rseg);
1078 break;
1079 default:
1080 break;
1081 }
1082
1083 return error;
1084 }
1085
1086 void
1087 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1088 void *vaddr, bus_dma_segment_t *seg, int nseg)
1089 {
1090
1091 bus_dmamap_unload(tag, map);
1092 bus_dmamap_destroy(tag, map);
1093 bus_dmamem_unmap(tag, vaddr, size);
1094 bus_dmamem_free(tag, seg, nseg);
1095 }
1096
1097 static bool
1098 agp_resume(device_t dv PMF_FN_ARGS)
1099 {
1100 agp_flush_cache();
1101
1102 return true;
1103 }
1104