agp.c revision 1.59.4.2 1 /* $NetBSD: agp.c,v 1.59.4.2 2008/12/13 01:14:34 haad Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.59.4.2 2008/12/13 01:14:34 haad Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
188 NULL, agp_i810_attach },
189 #endif
190
191 #if NAGP_INTEL > 0
192 { PCI_VENDOR_INTEL, -1,
193 NULL, agp_intel_attach },
194 #endif
195
196 #if NAGP_AMD64 > 0
197 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
198 agp_amd64_match, agp_amd64_attach },
199 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
200 agp_amd64_match, agp_amd64_attach },
201 #endif
202
203 #if NAGP_AMD64 > 0
204 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
205 agp_amd64_match, agp_amd64_attach },
206 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
207 agp_amd64_match, agp_amd64_attach },
208 #endif
209
210 #if NAGP_SIS > 0
211 { PCI_VENDOR_SIS, -1,
212 NULL, agp_sis_attach },
213 #endif
214
215 #if NAGP_AMD64 > 0
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
219 agp_amd64_match, agp_amd64_attach },
220 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
221 agp_amd64_match, agp_amd64_attach },
222 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
223 agp_amd64_match, agp_amd64_attach },
224 #endif
225
226 #if NAGP_VIA > 0
227 { PCI_VENDOR_VIATECH, -1,
228 NULL, agp_via_attach },
229 #endif
230
231 { 0, 0,
232 NULL, NULL },
233 };
234
235 static const struct agp_product *
236 agp_lookup(const struct pci_attach_args *pa)
237 {
238 const struct agp_product *ap;
239
240 /* First find the vendor. */
241 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
242 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
243 break;
244 }
245
246 if (ap->ap_attach == NULL)
247 return (NULL);
248
249 /* Now find the product within the vendor's domain. */
250 for (; ap->ap_attach != NULL; ap++) {
251 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
252 /* Ran out of this vendor's section of the table. */
253 return (NULL);
254 }
255 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
256 /* Exact match. */
257 break;
258 }
259 if (ap->ap_product == (uint32_t) -1) {
260 /* Wildcard match. */
261 break;
262 }
263 }
264
265 if (ap->ap_attach == NULL)
266 return (NULL);
267
268 /* Now let the product-specific driver filter the match. */
269 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
270 return (NULL);
271
272 return (ap);
273 }
274
275 static int
276 agpmatch(device_t parent, cfdata_t match, void *aux)
277 {
278 struct agpbus_attach_args *apa = aux;
279 struct pci_attach_args *pa = &apa->apa_pci_args;
280
281 if (agp_lookup(pa) == NULL)
282 return (0);
283
284 return (1);
285 }
286
287 static const int agp_max[][2] = {
288 {0, 0},
289 {32, 4},
290 {64, 28},
291 {128, 96},
292 {256, 204},
293 {512, 440},
294 {1024, 942},
295 {2048, 1920},
296 {4096, 3932}
297 };
298 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
299
300 static void
301 agpattach(device_t parent, device_t self, void *aux)
302 {
303 struct agpbus_attach_args *apa = aux;
304 struct pci_attach_args *pa = &apa->apa_pci_args;
305 struct agp_softc *sc = device_private(self);
306 const struct agp_product *ap;
307 int memsize, i, ret;
308
309 ap = agp_lookup(pa);
310 KASSERT(ap != NULL);
311
312 aprint_naive(": AGP controller\n");
313
314 sc->as_dev = self;
315 sc->as_dmat = pa->pa_dmat;
316 sc->as_pc = pa->pa_pc;
317 sc->as_tag = pa->pa_tag;
318 sc->as_id = pa->pa_id;
319
320 /*
321 * Work out an upper bound for agp memory allocation. This
322 * uses a heuristic table from the Linux driver.
323 */
324 memsize = ptoa(physmem) >> 20;
325 for (i = 0; i < agp_max_size; i++) {
326 if (memsize <= agp_max[i][0])
327 break;
328 }
329 if (i == agp_max_size)
330 i = agp_max_size - 1;
331 sc->as_maxmem = agp_max[i][1] << 20U;
332
333 /*
334 * The mutex is used to prevent re-entry to
335 * agp_generic_bind_memory() since that function can sleep.
336 */
337 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
338
339 TAILQ_INIT(&sc->as_memory);
340
341 ret = (*ap->ap_attach)(parent, self, pa);
342 if (ret == 0)
343 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
344 (unsigned long)sc->as_apaddr,
345 (unsigned long)AGP_GET_APERTURE(sc));
346 else
347 sc->as_chipc = NULL;
348
349 if (!device_pmf_is_registered(self)) {
350 if (!pmf_device_register(self, NULL, agp_resume))
351 aprint_error_dev(self, "couldn't establish power "
352 "handler\n");
353 }
354 }
355
356 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
357 agpmatch, agpattach, NULL, NULL);
358
359 int
360 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
361 {
362 /*
363 * Find the aperture. Don't map it (yet), this would
364 * eat KVA.
365 */
366 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
367 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
368 &sc->as_apflags) != 0)
369 return ENXIO;
370
371 sc->as_apt = pa->pa_memt;
372
373 return 0;
374 }
375
376 struct agp_gatt *
377 agp_alloc_gatt(struct agp_softc *sc)
378 {
379 u_int32_t apsize = AGP_GET_APERTURE(sc);
380 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
381 struct agp_gatt *gatt;
382 void *virtual;
383 int dummyseg;
384
385 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
386 if (!gatt)
387 return NULL;
388 gatt->ag_entries = entries;
389
390 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
391 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
392 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
393 free(gatt, M_AGP);
394 return NULL;
395 }
396 gatt->ag_virtual = (uint32_t *)virtual;
397
398 gatt->ag_size = entries * sizeof(u_int32_t);
399 memset(gatt->ag_virtual, 0, gatt->ag_size);
400 agp_flush_cache();
401
402 return gatt;
403 }
404
405 void
406 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
407 {
408 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
409 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
410 free(gatt, M_AGP);
411 }
412
413
414 int
415 agp_generic_detach(struct agp_softc *sc)
416 {
417 mutex_destroy(&sc->as_mtx);
418 agp_flush_cache();
419 return 0;
420 }
421
422 static int
423 agpdev_match(struct pci_attach_args *pa)
424 {
425 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
426 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
427 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
428 NULL, NULL))
429 return 1;
430
431 return 0;
432 }
433
434 int
435 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
436 {
437 struct pci_attach_args pa;
438 pcireg_t tstatus, mstatus;
439 pcireg_t command;
440 int rq, sba, fw, rate, capoff;
441
442 if (pci_find_device(&pa, agpdev_match) == 0 ||
443 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
444 &capoff, NULL) == 0) {
445 aprint_error_dev(sc->as_dev, "can't find display\n");
446 return ENXIO;
447 }
448
449 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
450 sc->as_capoff + AGP_STATUS);
451 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
452 capoff + AGP_STATUS);
453
454 /* Set RQ to the min of mode, tstatus and mstatus */
455 rq = AGP_MODE_GET_RQ(mode);
456 if (AGP_MODE_GET_RQ(tstatus) < rq)
457 rq = AGP_MODE_GET_RQ(tstatus);
458 if (AGP_MODE_GET_RQ(mstatus) < rq)
459 rq = AGP_MODE_GET_RQ(mstatus);
460
461 /* Set SBA if all three can deal with SBA */
462 sba = (AGP_MODE_GET_SBA(tstatus)
463 & AGP_MODE_GET_SBA(mstatus)
464 & AGP_MODE_GET_SBA(mode));
465
466 /* Similar for FW */
467 fw = (AGP_MODE_GET_FW(tstatus)
468 & AGP_MODE_GET_FW(mstatus)
469 & AGP_MODE_GET_FW(mode));
470
471 /* Figure out the max rate */
472 rate = (AGP_MODE_GET_RATE(tstatus)
473 & AGP_MODE_GET_RATE(mstatus)
474 & AGP_MODE_GET_RATE(mode));
475 if (rate & AGP_MODE_RATE_4x)
476 rate = AGP_MODE_RATE_4x;
477 else if (rate & AGP_MODE_RATE_2x)
478 rate = AGP_MODE_RATE_2x;
479 else
480 rate = AGP_MODE_RATE_1x;
481
482 /* Construct the new mode word and tell the hardware */
483 command = AGP_MODE_SET_RQ(0, rq);
484 command = AGP_MODE_SET_SBA(command, sba);
485 command = AGP_MODE_SET_FW(command, fw);
486 command = AGP_MODE_SET_RATE(command, rate);
487 command = AGP_MODE_SET_AGP(command, 1);
488 pci_conf_write(sc->as_pc, sc->as_tag,
489 sc->as_capoff + AGP_COMMAND, command);
490 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
491
492 return 0;
493 }
494
495 struct agp_memory *
496 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
497 {
498 struct agp_memory *mem;
499
500 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
501 return 0;
502
503 if (sc->as_allocated + size > sc->as_maxmem)
504 return 0;
505
506 if (type != 0) {
507 printf("agp_generic_alloc_memory: unsupported type %d\n",
508 type);
509 return 0;
510 }
511
512 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
513 if (mem == NULL)
514 return NULL;
515
516 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
517 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
518 free(mem, M_AGP);
519 return NULL;
520 }
521
522 mem->am_id = sc->as_nextid++;
523 mem->am_size = size;
524 mem->am_type = 0;
525 mem->am_physical = 0;
526 mem->am_offset = 0;
527 mem->am_is_bound = 0;
528 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
529 sc->as_allocated += size;
530
531 return mem;
532 }
533
534 int
535 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
536 {
537 if (mem->am_is_bound)
538 return EBUSY;
539
540 sc->as_allocated -= mem->am_size;
541 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
542 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
543 free(mem, M_AGP);
544 return 0;
545 }
546
547 int
548 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
549 off_t offset)
550 {
551 off_t i, k;
552 bus_size_t done, j;
553 int error;
554 bus_dma_segment_t *segs, *seg;
555 bus_addr_t pa;
556 int contigpages, nseg;
557
558 mutex_enter(&sc->as_mtx);
559
560 if (mem->am_is_bound) {
561 aprint_error_dev(sc->as_dev, "memory already bound\n");
562 mutex_exit(&sc->as_mtx);
563 return EINVAL;
564 }
565
566 if (offset < 0
567 || (offset & (AGP_PAGE_SIZE - 1)) != 0
568 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
569 aprint_error_dev(sc->as_dev,
570 "binding memory at bad offset %#lx\n",
571 (unsigned long) offset);
572 mutex_exit(&sc->as_mtx);
573 return EINVAL;
574 }
575
576 /*
577 * XXXfvdl
578 * The memory here needs to be directly accessable from the
579 * AGP video card, so it should be allocated using bus_dma.
580 * However, it need not be contiguous, since individual pages
581 * are translated using the GATT.
582 *
583 * Using a large chunk of contiguous memory may get in the way
584 * of other subsystems that may need one, so we try to be friendly
585 * and ask for allocation in chunks of a minimum of 8 pages
586 * of contiguous memory on average, falling back to 4, 2 and 1
587 * if really needed. Larger chunks are preferred, since allocating
588 * a bus_dma_segment per page would be overkill.
589 */
590
591 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
592 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
593 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
594 if (segs == NULL) {
595 mutex_exit(&sc->as_mtx);
596 return ENOMEM;
597 }
598 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
599 segs, nseg, &mem->am_nseg,
600 contigpages > 1 ?
601 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
602 free(segs, M_AGP);
603 continue;
604 }
605 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
606 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
607 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
608 free(segs, M_AGP);
609 continue;
610 }
611 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
612 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
613 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
614 mem->am_size);
615 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
616 free(segs, M_AGP);
617 continue;
618 }
619 mem->am_dmaseg = segs;
620 break;
621 }
622
623 if (contigpages == 0) {
624 mutex_exit(&sc->as_mtx);
625 return ENOMEM;
626 }
627
628
629 /*
630 * Bind the individual pages and flush the chipset's
631 * TLB.
632 */
633 done = 0;
634 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
635 seg = &mem->am_dmamap->dm_segs[i];
636 /*
637 * Install entries in the GATT, making sure that if
638 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
639 * aligned to PAGE_SIZE, we don't modify too many GATT
640 * entries.
641 */
642 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
643 j += AGP_PAGE_SIZE) {
644 pa = seg->ds_addr + j;
645 AGP_DPF(("binding offset %#lx to pa %#lx\n",
646 (unsigned long)(offset + done + j),
647 (unsigned long)pa));
648 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
649 if (error) {
650 /*
651 * Bail out. Reverse all the mappings
652 * and unwire the pages.
653 */
654 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
655 AGP_UNBIND_PAGE(sc, offset + k);
656
657 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
658 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
659 mem->am_size);
660 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
661 mem->am_nseg);
662 free(mem->am_dmaseg, M_AGP);
663 mutex_exit(&sc->as_mtx);
664 return error;
665 }
666 }
667 done += seg->ds_len;
668 }
669
670 /*
671 * Flush the CPU cache since we are providing a new mapping
672 * for these pages.
673 */
674 agp_flush_cache();
675
676 /*
677 * Make sure the chipset gets the new mappings.
678 */
679 AGP_FLUSH_TLB(sc);
680
681 mem->am_offset = offset;
682 mem->am_is_bound = 1;
683
684 mutex_exit(&sc->as_mtx);
685
686 return 0;
687 }
688
689 int
690 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
691 {
692 int i;
693
694 mutex_enter(&sc->as_mtx);
695
696 if (!mem->am_is_bound) {
697 aprint_error_dev(sc->as_dev, "memory is not bound\n");
698 mutex_exit(&sc->as_mtx);
699 return EINVAL;
700 }
701
702
703 /*
704 * Unbind the individual pages and flush the chipset's
705 * TLB. Unwire the pages so they can be swapped.
706 */
707 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
708 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
709
710 agp_flush_cache();
711 AGP_FLUSH_TLB(sc);
712
713 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
714 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
715 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
716
717 free(mem->am_dmaseg, M_AGP);
718
719 mem->am_offset = 0;
720 mem->am_is_bound = 0;
721
722 mutex_exit(&sc->as_mtx);
723
724 return 0;
725 }
726
727 /* Helper functions for implementing user/kernel api */
728
729 static int
730 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
731 {
732 if (sc->as_state != AGP_ACQUIRE_FREE)
733 return EBUSY;
734 sc->as_state = state;
735
736 return 0;
737 }
738
739 static int
740 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
741 {
742
743 if (sc->as_state == AGP_ACQUIRE_FREE)
744 return 0;
745
746 if (sc->as_state != state)
747 return EBUSY;
748
749 sc->as_state = AGP_ACQUIRE_FREE;
750 return 0;
751 }
752
753 static struct agp_memory *
754 agp_find_memory(struct agp_softc *sc, int id)
755 {
756 struct agp_memory *mem;
757
758 AGP_DPF(("searching for memory block %d\n", id));
759 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
760 AGP_DPF(("considering memory block %d\n", mem->am_id));
761 if (mem->am_id == id)
762 return mem;
763 }
764 return 0;
765 }
766
767 /* Implementation of the userland ioctl api */
768
769 static int
770 agp_info_user(struct agp_softc *sc, agp_info *info)
771 {
772 memset(info, 0, sizeof *info);
773 info->bridge_id = sc->as_id;
774 if (sc->as_capoff != 0)
775 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
776 sc->as_capoff + AGP_STATUS);
777 else
778 info->agp_mode = 0; /* i810 doesn't have real AGP */
779 info->aper_base = sc->as_apaddr;
780 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
781 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
782 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
783
784 return 0;
785 }
786
787 static int
788 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
789 {
790 return AGP_ENABLE(sc, setup->agp_mode);
791 }
792
793 static int
794 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
795 {
796 struct agp_memory *mem;
797
798 mem = AGP_ALLOC_MEMORY(sc,
799 alloc->type,
800 alloc->pg_count << AGP_PAGE_SHIFT);
801 if (mem) {
802 alloc->key = mem->am_id;
803 alloc->physical = mem->am_physical;
804 return 0;
805 } else {
806 return ENOMEM;
807 }
808 }
809
810 static int
811 agp_deallocate_user(struct agp_softc *sc, int id)
812 {
813 struct agp_memory *mem = agp_find_memory(sc, id);
814
815 if (mem) {
816 AGP_FREE_MEMORY(sc, mem);
817 return 0;
818 } else {
819 return ENOENT;
820 }
821 }
822
823 static int
824 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
825 {
826 struct agp_memory *mem = agp_find_memory(sc, bind->key);
827
828 if (!mem)
829 return ENOENT;
830
831 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
832 }
833
834 static int
835 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
836 {
837 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
838
839 if (!mem)
840 return ENOENT;
841
842 return AGP_UNBIND_MEMORY(sc, mem);
843 }
844
845 static int
846 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
847 {
848 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
849
850 if (sc == NULL)
851 return ENXIO;
852
853 if (sc->as_chipc == NULL)
854 return ENXIO;
855
856 if (!sc->as_isopen)
857 sc->as_isopen = 1;
858 else
859 return EBUSY;
860
861 return 0;
862 }
863
864 static int
865 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
866 {
867 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
868 struct agp_memory *mem;
869
870 if (sc == NULL)
871 return ENODEV;
872
873 /*
874 * Clear the GATT and force release on last close
875 */
876 if (sc->as_state == AGP_ACQUIRE_USER) {
877 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
878 if (mem->am_is_bound) {
879 printf("agpclose: mem %d is bound\n",
880 mem->am_id);
881 AGP_UNBIND_MEMORY(sc, mem);
882 }
883 /*
884 * XXX it is not documented, but if the protocol allows
885 * allocate->acquire->bind, it would be possible that
886 * memory ranges are allocated by the kernel here,
887 * which we shouldn't free. We'd have to keep track of
888 * the memory range's owner.
889 * The kernel API is unsed yet, so we get away with
890 * freeing all.
891 */
892 AGP_FREE_MEMORY(sc, mem);
893 }
894 agp_release_helper(sc, AGP_ACQUIRE_USER);
895 }
896 sc->as_isopen = 0;
897
898 return 0;
899 }
900
901 static int
902 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
903 {
904 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
905
906 if (sc == NULL)
907 return ENODEV;
908
909 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
910 return EPERM;
911
912 switch (cmd) {
913 case AGPIOC_INFO:
914 return agp_info_user(sc, (agp_info *) data);
915
916 case AGPIOC_ACQUIRE:
917 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
918
919 case AGPIOC_RELEASE:
920 return agp_release_helper(sc, AGP_ACQUIRE_USER);
921
922 case AGPIOC_SETUP:
923 return agp_setup_user(sc, (agp_setup *)data);
924
925 case AGPIOC_ALLOCATE:
926 return agp_allocate_user(sc, (agp_allocate *)data);
927
928 case AGPIOC_DEALLOCATE:
929 return agp_deallocate_user(sc, *(int *) data);
930
931 case AGPIOC_BIND:
932 return agp_bind_user(sc, (agp_bind *)data);
933
934 case AGPIOC_UNBIND:
935 return agp_unbind_user(sc, (agp_unbind *)data);
936
937 }
938
939 return EINVAL;
940 }
941
942 static paddr_t
943 agpmmap(dev_t dev, off_t offset, int prot)
944 {
945 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
946
947 if (sc == NULL)
948 return ENODEV;
949
950 if (offset > AGP_GET_APERTURE(sc))
951 return -1;
952
953 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
954 BUS_SPACE_MAP_LINEAR));
955 }
956
957 const struct cdevsw agp_cdevsw = {
958 agpopen, agpclose, noread, nowrite, agpioctl,
959 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
960 };
961
962 /* Implementation of the kernel api */
963
964 void *
965 agp_find_device(int unit)
966 {
967 return device_lookup_private(&agp_cd, unit);
968 }
969
970 enum agp_acquire_state
971 agp_state(void *devcookie)
972 {
973 struct agp_softc *sc = devcookie;
974
975 return sc->as_state;
976 }
977
978 void
979 agp_get_info(void *devcookie, struct agp_info *info)
980 {
981 struct agp_softc *sc = devcookie;
982
983 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
984 sc->as_capoff + AGP_STATUS);
985 info->ai_aperture_base = sc->as_apaddr;
986 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
987 info->ai_memory_allowed = sc->as_maxmem;
988 info->ai_memory_used = sc->as_allocated;
989 }
990
991 int
992 agp_acquire(void *dev)
993 {
994 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
995 }
996
997 int
998 agp_release(void *dev)
999 {
1000 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1001 }
1002
1003 int
1004 agp_enable(void *dev, u_int32_t mode)
1005 {
1006 struct agp_softc *sc = dev;
1007
1008 return AGP_ENABLE(sc, mode);
1009 }
1010
1011 void *
1012 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1013 {
1014 struct agp_softc *sc = dev;
1015
1016 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1017 }
1018
1019 void
1020 agp_free_memory(void *dev, void *handle)
1021 {
1022 struct agp_softc *sc = dev;
1023 struct agp_memory *mem = handle;
1024
1025 AGP_FREE_MEMORY(sc, mem);
1026 }
1027
1028 int
1029 agp_bind_memory(void *dev, void *handle, off_t offset)
1030 {
1031 struct agp_softc *sc = dev;
1032 struct agp_memory *mem = handle;
1033
1034 return AGP_BIND_MEMORY(sc, mem, offset);
1035 }
1036
1037 int
1038 agp_unbind_memory(void *dev, void *handle)
1039 {
1040 struct agp_softc *sc = dev;
1041 struct agp_memory *mem = handle;
1042
1043 return AGP_UNBIND_MEMORY(sc, mem);
1044 }
1045
1046 void
1047 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1048 {
1049 struct agp_memory *mem = handle;
1050
1051 mi->ami_size = mem->am_size;
1052 mi->ami_physical = mem->am_physical;
1053 mi->ami_offset = mem->am_offset;
1054 mi->ami_is_bound = mem->am_is_bound;
1055 }
1056
1057 int
1058 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1059 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1060 bus_dma_segment_t *seg, int nseg, int *rseg)
1061
1062 {
1063 int error, level = 0;
1064
1065 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1066 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1067 goto out;
1068 level++;
1069
1070 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1071 BUS_DMA_NOWAIT | flags)) != 0)
1072 goto out;
1073 level++;
1074
1075 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1076 BUS_DMA_NOWAIT, mapp)) != 0)
1077 goto out;
1078 level++;
1079
1080 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1081 BUS_DMA_NOWAIT)) != 0)
1082 goto out;
1083
1084 *baddr = (*mapp)->dm_segs[0].ds_addr;
1085
1086 return 0;
1087 out:
1088 switch (level) {
1089 case 3:
1090 bus_dmamap_destroy(tag, *mapp);
1091 /* FALLTHROUGH */
1092 case 2:
1093 bus_dmamem_unmap(tag, *vaddr, size);
1094 /* FALLTHROUGH */
1095 case 1:
1096 bus_dmamem_free(tag, seg, *rseg);
1097 break;
1098 default:
1099 break;
1100 }
1101
1102 return error;
1103 }
1104
1105 void
1106 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1107 void *vaddr, bus_dma_segment_t *seg, int nseg)
1108 {
1109 bus_dmamap_unload(tag, map);
1110 bus_dmamap_destroy(tag, map);
1111 bus_dmamem_unmap(tag, vaddr, size);
1112 bus_dmamem_free(tag, seg, nseg);
1113 }
1114
1115 static bool
1116 agp_resume(device_t dv PMF_FN_ARGS)
1117 {
1118 agp_flush_cache();
1119
1120 return true;
1121 }
1122